
On the Security of KZG Commitment for VSS
Atsuki Momose

University of Illinois at

Urbana-Champaign

Urbana, IL, USA

atsuki.momose@gmail.com

Sourav Das

University of Illinois at

Urbana-Champaign

Urbana, IL, USA

souravd2@illinois.edu

Ling Ren

University of Illinois at

Urbana-Champaign

Urbana, IL, USA

renling@illinois.edu

ABSTRACT
The constant-sized polynomial commitment scheme by Kate, Za-

verucha, and Goldberg (Asiscrypt 2010), also known as the KZG

commitment, is an essential component in designing bandwidth-

efficient verifiable secret-sharing (VSS) protocols. We point out,

however, that the KZG commitment is missing two important prop-

erties that are crucial for VSS protocols.

First, the KZG commitment has not been proven to be degree
binding in the standard adversary model without idealized group

assumptions. In other words, the committed polynomial is not guar-

anteed to have the claimed degree, which is supposed to be the

reconstruction threshold of VSS. Without this property, sharehold-

ers in VSS may end up reconstructing different secrets depending

on which shares are used.

Second, the KZG commitment does not support polynomials

with different degrees at once with a single setup. If the reconstruc-

tion threshold of the underlying VSS protocol changes, the protocol

must redo the setup, which involves an expensive multi-party com-

putation known as the powers of tau setup.

In this work, we augment the KZG commitment to address both

of these limitations. Our scheme is degree-binding in the stan-

dard model under the strong Diffie-Hellman (SDH) assumption. It

supports any degree 0 < 𝑑 ≤ 𝑚 under a powers-of-tau common

reference string with𝑚+1 group elements generated by a one-time

setup.

CCS CONCEPTS
• Security and privacy → Distributed systems security;

KEYWORDS
Verifiable Secret-Sharing; KZG Polynomial Commitment

1 INTRODUCTION
Verifiable secret-sharing (VSS) [15] allows a designated dealer to

share a secret with a set of 𝑛 nodes, of which at most 𝑓 nodes are

malicious. Later, the set of nodes runs an interactive protocol to

recover the secret. VSS has been used as a crucial component to

design secure protocols of multi-party computation (MPC) [6, 31],

distributed key generation [19, 24], randomness beacon [8, 18], and

many more. MPC protocols, in particular, require the dealer to

simultaneously share multiple secrets, often proportional to the

circuit size. We refer to VSS where the dealer shares multiple secrets

simultaneously as a multi-secret VSS.
Existing efficient constructions of VSS, especially multi-secret

VSS [2, 41] crucially rely on polynomial commitment schemes with

constant commitment size and constant evaluation proof. Con-

cretely, they use the celebrated Kate-Zaverucha-Goldberg polyno-

mial commitment scheme [27], here on referred to as the KZG

commitment.

Polynomial commitment, when used for VSS, must be degree
binding, i.e., the degree of the polynomial used to share the secret

must match the threshold 𝑓 (or lower). Intuitively, this ensures

that each honest node outputs the same secret during the recovery

protocol. Otherwise, interpolations using different sets of 𝑓 + 1
shares would result in honest nodes outputting different secrets.

Despite its established use, this important degree-binding prop-

erty has not been proven for the KZG commitment. The original

KZG paper [27, 28] proves a similar property called strong cor-
rectness using a non-standard polynomial Diffie-Helman (PDH)

assumption. We observe that the strong correctness property is

insufficient for VSS (we will elaborate on this in §3). Very recently,

Abraham et al. [2] prove the degree binding property, which they

refer to as interpolation binding, assuming hardness of Strong Diffie

Helman (SDH) [9] in the Algebraic Group Model [23], which sig-

nificantly constrains the adversary’s capabilities. This strong as-

sumption has to do with the common reference string (CRS) of the

KZG commitment. Specifically, the KZG commitment to a degree-𝑓

polynomial 𝜙 (·) is represented as 𝑔𝜙 (𝜏) for generator 𝑔 ∈ G and

a trapdoor 𝜏 ∈ Z∗𝑞 , which is computed from a powers-of-tau CRS

[𝑔,𝑔𝜏 , . . . , 𝑔𝜏 𝑓]. Obviously, the degree binding property of the KZG

commitment relies on the fact that the adversary does not know

𝑔𝜏
𝑓 +𝑘

for any 𝑘 > 0. However, it is hard to argue that the adversary

cannot compute the higher powers 𝑔𝜏
𝑓 +𝑘

in the standard model

where the adversary can access the group representation and per-

form arbitrary operations on them. This is what leads Abraham et

al. to resort to an idealized group model (such as AGM) to prove

the degree binding property of the KZG commitment.

Relying on the incapability of computing higher powers for

degree-binding introduces another issue. VSS protocols built on the

original KZG commitment are not reconfiguration friendly. Namely,

the protocols are unsuitable for systems in which the number of

participants and the fault threshold changes dynamically [2, 41].

In reconfigurable systems where the threshold 𝑓 changes during

the execution, the protocol must use a separate CRS with a distinct

trapdoor for each threshold. This is undesirable as the size of the

CRS may become prohibitively large.

Our result. The main contribution of this work is to augment

the KZG commitment to make it degree-binding against the stan-

dard adversary, i.e., without idealized group assumptions. Our aug-

mented KZG commitment supports any degree 0 < 𝑑 ≤ 𝑚 with a

1

single CRS [𝑔,𝑔𝜏 , . . . , 𝑔𝜏𝑚], and hence efficiently supports reconfig-

urable systems. Building on our augmented KZG commitment, we

design a multi-secret VSS with optimal communication. Formally,

Theorem 1.1. Assuming the existence of a public-key infrastruc-
ture, random oracle, and a universal common reference string under
the SDH assumption, there exists a multi-secret VSS protocol with
𝑂 (𝜅𝐿𝑛 + 𝜅𝑛2) communication tolerating 𝑓 < 𝑛/3 corruption, where
𝐿 is the number of secrets and 𝜅 is the security parameter.

The core technical ingredient is the proof of degree from an

aggregated linear-sized commitment, such as Feldman commit-

ment [21]. Our key idea is that, instead of making sure an adversary

is incapable of committing to a higher-degree polynomial, we make

it detectable. Specifically, we allow an adversary to compute a KZG

commitment to a higher-degree polynomial, but its degree is re-

vealed due to the standard degree-binding property of the Feldman

commitment. Since we do not rely on the adversary’s inability

to compute higher powers, we do not have to assume an ideal-

ized group model (like [2] does). The Feldman commitment is of

𝑂 (𝜅𝑛) size and hence cannot be used directly. We instead aggregate

𝐿 = 𝑂 (𝑛) commitments to amortize the cost.

Not relying on the inability to compute higher powers in CRS

makes our scheme reconfiguration-friendly. This has an immediate

impact on existing dynamic committee threshold cryptography. For

example, the state-of-the-art dynamic committee proactive secret-

sharing (DPSS) [26, 42] adopts the original KZG commitment to

batch-amortize the communication cost. These protocols require

a powers-of-tau setup every time the committee is resized. These

repeated setups can be avoided if our augmented KZG is used

instead. We also present a DPSS protocol using our VSS protocol in

Appendix C.

Remark on proof size. Here, we reiterate that our augmented

KZG commitment is always linear-sized, so it may not be suitable

for a single polynomial. However, we also note that in the context

of VSS, the KZG commitment is specifically useful when dealing

with a linear number of polynomials [3, 41]. For a single-secret VSS

involving a single polynomial, standard linear-sized commitments

such as Feldman or Pedersen commitments are sufficient since we

already incur quadratic communication in other aspects.

Remark on the network model. For ease of exposition, we

present our multi-secret VSS protocol assuming a synchronous

network. Our VSS protocol can be easily extended to tolerate asyn-

chronous networks using existing techniques (cf. §5.5). Our DPSS

protocol, however, works only in the synchrony model.

Organization. The rest of the paper is organized as follows. After

providing the model, the problem definitions, and some prelimi-

naries in §2, we give an overview of the key technical highlights

in §3. We present our augmented KZG commitment in §4 and our

multi-secret VSS protocol in § 5. We review related works in §6 and

conclude with discussions in §7.

2 MODEL AND PRELIMINARIES
We consider a system of 𝑛 nodes (numbered from 1 to 𝑛) of which

at most 𝑓 < 𝑛/3 are corrupt. All corrupt nodes are controlled by a

probabilistic polynomial-time (PPT) adversary A. The adversary

chooses which nodes to corrupt upfront, i.e., we assume static cor-
ruption. Also, we assume that every pair of nodes can communicate

over an authenticated and private channel, which is commonly

implemented with a digital signature and symmetric/asymmetric

encryption under a public-key infrastructure.

When we assume the synchrony model, we consider a simple

lockstep round model. Any message sent by an honest node within

a round is delivered to the recipient by the end of that round. Unless

explicitly stated otherwise, a value in this paper is an element of

a prime field Z𝑞 where 𝑞 ≥ 2
𝜅
and a polynomial is an element

of Z𝑞 [𝑥]. Let 𝑔 be a generator of a group G of order 𝑞 such that

a bilinear pairing 𝑒 : G × G → G𝑇 exists [10]. We use [𝑎] to
denote an ordered set {1, . . . , 𝑎} and use [𝑎, 𝑏] to denote {𝑎, . . . , 𝑏}.
We use the bold notation 𝒙 to denote a vector. For a vector of

polynomials 𝝓 = [𝜙1 (·), . . . , 𝜙𝐿 (·)], we use 𝝓 (𝑖) to denote element-

wise evaluations at 𝑖 , i.e., [𝜙1 (𝑖), . . . , 𝜙𝐿 (𝑖)].

2.1 Multi-secret VSS
A multi-secret verifiable secret-sharing (VSS) protocol allows a

dealer D ∈ [𝑛] to share 𝐿 secrets 𝒛 = [𝑧1, . . . , 𝑧𝐿] with all nodes.

At the end of the protocol, each node 𝑖 ∈ [𝑛] outputs the share
𝒔𝑖 = [𝑠𝑖,1, . . . , 𝑠𝑖,𝐿] along with a bit 𝑏 ∈ {0, 1}. The bit 𝑏 indicates

whether the overall sharing was successful. In other words, 𝑏 = 1

means that all honest nodes have successfully received their shares.

The protocol must satisfy the following properties:

• (Weak) guaranteed output. If an honest node outputs 𝑏 = 1, then

every honest node 𝑖 has a non-empty share 𝒔𝑖 ≠ ⊥.
• Commitment. There exist 𝐿 polynomials 𝜙1 (·), . . . , 𝜙𝐿 (·) all with

degree 𝑓 s.t. for any honest node 𝑖 , if 𝑖 has a non-empty share

𝒔𝑖 ≠ ⊥, then for all 𝑘 ∈ [𝐿], 𝑠𝑖,𝑘 = 𝜙𝑘 (𝑖).
• Validity. If the dealer is honest, then all honest nodes output 𝑏 =

1, and the 𝐿 polynomials (defined by the commitment property)

satisfy 𝜙𝑘 (0) = 𝑧𝑘 for all 𝑘 ∈ [𝐿].
• Secrecy (informal). If the dealer is honest, the adversary learns

no information about 𝒛 beyond public values.

Note that it is possible that a node outputs nothing, which we

capture with outputting 𝒔𝑖 = ⊥. We formally define the secrecy

property in §5.3, when we define the ideal functionality FVSS for
multi-secret VSS. Although FVSS also captures the correctness prop-
erties defined above, we provide these property-based definitions

for ease of exposition.

Remark on guaranteed output. The classical definition of VSS [6,

15] requires a stronger guaranteed output property, i.e., at the end

of the protocol, either every honest node outputs the correct share,

or nobody outputs (i.e., outputs ⊥). To achieve this property, all

existing VSS protocols use a broadcast [20]. However, the stronger

guaranteed output property is not always required. For example,

applications such as [8, 18] (including our DPSS protocol) do not

need this strong guarantee. In this paper, we use a weaker guaran-

tee on output, which lets us design a VSS protocol with𝑂 (1) round
complexity. We also note that a protocol satisfying our VSS defini-

tion can be easily extended to the classical definition by invoking a

binary Byzantine agreement [1, 30, 33] at the end.

2

2.2 KZG commitment
We now describe the part of the KZG polynomial commitment

required to understand our paper and refer readers to [27] for more

details. To commit to a polynomial of degree 𝑑 , the commitment

scheme requires a powers-of-tau CRS [𝑔,𝑔𝜏 , . . . , 𝑔𝜏𝑑] for a secret
𝜏 ∈ Z∗𝑞 , and provides the following interfaces.

• 𝑣 ← Commit(𝜙 (·)). On input a polynomial 𝜙 (·) of degree 𝑑 , it
computes the commitment 𝑣 = 𝑔𝜙 (𝜏) .

• 𝑤𝑖 ← CreateWitness(𝜙 (·), 𝑖). On input a polynomial 𝜙 (·) and
an index 𝑖 , it computes a witness 𝑤𝑖 for the evaluation 𝜙 (𝑖) as:

𝑤𝑖 = 𝑔𝜓 (𝜏) where 𝜓 (𝑥) = 𝜙 (𝑥) − 𝜙 (𝑖)
𝑥 − 𝑖

• 𝑏 ← VerifyEval(𝑣, 𝑖, 𝜙 (𝑖),𝑤𝑖). On input a polynomial commit-

ment 𝑣 , an index 𝑖 , an evaluation 𝜙 (𝑖), and the witness 𝑤𝑖 , it

checks whether 𝜙 (𝑖) is equal to the committed polynomial eval-

uated at 𝑖 .

Assuming the hardness of the Strong Diffie-Helman (SDH), the

KZG commitment is binding and hiding, where.
• (Evaluation) binding. No adversary can compute two different

polynomial evaluations 𝜙 (𝑖) and 𝜙 ′ (𝑖) ≠ 𝜙 (𝑖) along with wit-

nesses 𝑤𝑖 and 𝑤
′
𝑖
s.t. they are both verified by VerifyEval with

respect to the same commitment 𝑣 .

• Hiding. Given evaluations of a polynomial 𝜙 (·) on any set 𝑋 of

less than 𝑑 indices along with the witnesses and the commitment,

no adversary can compute 𝜙 (𝑗) for 𝑗 ∉ 𝑋 .

Definition 2.1 (SDH Assumption). Let 𝜏 ∈ Z∗𝑞 be a random field

element. For any ℓ ∈ 𝑂 (poly(𝜅)) and any PPT adversary A, the

probability

Pr[A([𝑔,𝑔𝜏 , . . . , 𝑔𝜏
ℓ

]) → (𝑔
1

𝜏+𝑐 , 𝑐)]
is negligible for any freely chosen 𝑐 ∈ Z𝑞 .

2.3 Other primitives
We use a random oracle denoted H(·) instantiated by a crypto-

graphic hash function. We also use the random oracle to build a

pseudorandom function (PRF). For simplicity, we use PRF𝑠 (𝜇) to de-
note H(𝑠 |𝜇). Our protocol also uses the Feldman commitment [21]

and a Gradecast protocol, as defined below.

Feldman commitment. For a polynomial𝜙 (𝑥) = 𝑎0+𝑎1𝑥+, . . . , 𝑎𝑑𝑥𝑑
of degree-𝑑 , the Feldman commitment 𝒗 is the vector defined as

𝒗 = [𝑔𝑎0 , . . . , 𝑔𝑎𝑑]
Given the commitment 𝒗, a evaluation 𝜙 (𝑖) can be verified by

checking that

𝑔𝜙 (𝑖) =
∏

0≤𝑘≤𝑑
𝑣𝑖

𝑘

𝑘

Gradecast [29]. Gradecast allows a dealer D to broadcast a mes-

sage𝑀 with weak consensus. Specifically, at the end of the protocol,

each node outputs (𝑀,𝑏) where 𝑀 ∈ {0, 1}𝐿 is a message of any

length 𝐿 = 𝑂 (poly(𝜅)) and 𝑏 ∈ {0, 1} is a grade bit satisfying the

following properties.

• Consistency. If two honest nodes output (𝑀, ∗) and (𝑀′, ∗), re-
spectively, for𝑀,𝑀′ ≠ ⊥ then𝑀 = 𝑀′.

• Graded agreement. If an honest node outputs (𝑀, 1), all honest
nodes output (𝑀, ∗).

• Validity. If the dealer is honest, all honest nodes output (𝑀, 1).
Note that a gradecast allows a node to output nothing, which

is expressed as outputting 𝑀 = ⊥. Concretely, we use the grade-
cast protocol (henceforth denoted GC) in Appendix A. GC has a

communication cost 𝑂 (𝐿𝑛 + 𝜅𝑛2).

3 OVERVIEW
In this section, we present an overview of this work to elaborate

on the technical contributions.

3.1 Degree-binding KZG Commitment for
Multiple Polynomials

As we describe in §1, the degree binding property intuitively guar-

antees that the committed polynomial is of the claimed degree (or

lower), which is supposed to be the reconstruction threshold of

the VSS scheme. Formalizing the degree binding property turns

out to be non-trivial. Recall from §2.2, the KZG commitment of

a polynomial 𝜙 (·) of degree 𝑑 is 𝑣 = 𝑔𝜙 (𝜏) . However, 𝑣 is also a

commitment to a different polynomial 𝜙 ′ (·) with degree 𝑑′ ≠ 𝑑 ,

whenever 𝜙 (𝜏) = 𝜙 ′ (𝜏). A tempting but incorrect way of defining

degree binding is:

“No PPT adversary A can output a polynomial commitment 𝑣
along with 𝑑′ + 1 evaluations and valid proofs such that interpolating
the 𝑑′ + 1 evaluations results in a polynomial of degree 𝑑′ > 𝑑 .”

The strong correctness property in the KZG paper [27, 28] is

indeed defined in this flavor. However, this is insufficient for the VSS

correctness due to its implicit constraint on 𝑑′. More concretely,

as defined above, the PPT algorithm A needs to output Ω(𝑑′)
values, which implicitly assumes 𝑑′ is polynomial in the security

parameter 𝜅. In VSS, however, the adversary A (or the corrupt

dealer) is required to compute only 𝑂 (𝑛) evaluations (shares for
nodes), even when it commits to a polynomial of super-polynomial

degree, i.e., 𝑑′ = 𝜔 (poly(𝜅)). We address this subtlety by defining

the degree binding as follows.

Definition 3.1 (informal). No PPT adversary A can compute a

commitment 𝑣 to a polynomial 𝜙 (·) together with
(1) A set 𝑋 of 𝑑 + 1 indices and for each 𝑖 ∈ 𝑋 , the evaluation 𝜙 (𝑖)

and the corresponding witness; and

(2) An additional evaluation 𝜙 (𝑗) for 𝑗 ∉ 𝑋 such that 𝜙 (𝑗) ≠

𝜙 ′ (𝑗), where 𝜙 ′ (·) is the degree-𝑑 polynomial defined by the

evaluations of 𝜙 (·) at 𝑋 .

Intuitively, our definition ensures that even if 𝑣 is a commitment

to a polynomial of super-polynomial degree, all witness evaluations

of 𝜙 (·) lie on a unique polynomial 𝜙 ′ (·) of degree 𝑑 .
We note that the proof technique used for strong correctness in

the KZG paper [28] does not apply to Definition 3.1 (see Appendix B

for more detailed discussions). We also note that our degree binding

property is equivalent to the interpolation binding defined in [2],

but with a slightly different description for ease of extension to the

batch setting below.

Degree-binding for batch setting. As noted in §1, within the

context of VSS, KZG commitment is specifically useful in batch

3

settings where a linear number of polynomials need to be commit-

ted. Therefore, we will define the concept of degree binding for

multiple polynomials. To this end, we first extend the interface of

the KZG commitment to include a degree proof. Specifically, for a set
of polynomials 𝝓 = [𝜙1 (·), . . . , 𝜙𝐿 (·)], a degree proof 𝜋 convinces a

verifier that all polynomials in 𝝓 are of degree at most 𝑑 . We extend

the degree binding property for multiple polynomials as follows.

Definition 3.2 (informal). No adversary A can compute a vector

of commitments 𝒗 to a vector of polynomials 𝝓 together with

(1) A set of 𝑋 of 𝑑 + 1 indices, and for each 𝑖 ∈ 𝑋 , the evaluations

𝝓 (𝑖) with the witnesses, and the degree proof 𝜋 ; and

(2) An additional single evaluation 𝜙𝑘 (𝑗) ≠ 𝜙 ′
𝑘
(𝑗) with the wit-

ness for any 𝑘 ∈ [𝐿] where 𝜙 ′
𝑘
(·) is a degree-𝑑 polynomial

interpolated from the 𝑑 + 1 evaluations for 𝜙𝑘 (·) at 𝑋 .

Intuitively, in VSS with 𝑑 = 𝑓 , the above property guarantees

that when 𝑓 + 1 honest shareholders receive all 𝐿 shares with a

valid degree proof, the shares of the remaining honest nodes lie on

the same degree-𝑓 polynomial. Looking ahead, this is sufficient to

achieve VSS correctness.

Degree proof from aggregated commitment.We obtain a de-

gree proof from an aggregation of linear-sized commitments. A

simple example is an aggregated Feldman commitment. Specifi-

cally, the degree proof 𝜋 for polynomials 𝜙1 (·), . . . , 𝜙𝐿 (·) of the
same degree is a Feldman commitment to the following aggregated

polynomial

Φ(·) =
∑︁

1≤𝑘≤𝐿
𝜌𝑘 · 𝜙𝑘 (·),

which is a random linear combination of the polynomials 𝝓 with

coefficients 𝜌1, . . . , 𝜌𝐿 ; let us assume here these random values

are chosen after the polynomials are given (we apply Fiat-Shamir

later [22]). In VSS, a dealer, when sharing 𝐿 secrets over polyno-

mials 𝜙1 (·), . . . , 𝜙𝐿 (·), also sends the above Feldman commitment

along with the shares. Once a shareholder 𝑖 receives the shares

𝜙1 (𝑖), . . . , 𝜙𝐿 (𝑖), it verifies the aggregation of the shares Φ(𝑖) with
the Feldman commitment, besides the verification of individual

share with the KZG commitment. The Feldman commitment has

Ω(𝜅𝑛) size (as the degree is𝑑 = 𝑓), but it is amortized over 𝐿 = 𝑂 (𝑛)
secrets. Due to the randomization, it is hard for a corrupt dealer to

choose dependent polynomials with higher degrees (trying to can-

cel out the higher degree terms) while preserving the aggregated

polynomial degree-𝑓 . While the construction is quite intuitive, the

proof is not as straightforward as one might expect. Our proof

based on a reduction to the SDH problem (in Lemma 4.2) might be

of independent interest.

The key conceptual difference from the previous approach to

achieving the degree binding of KZG lies in not explicitly preventing

an adversary from computing a KZG commitment to a high-degree

polynomial. Instead, we separately detect the degree by making

use of a linear-sized commitment that is degree-revealing by de-

sign. This approach, not only helps us eliminate idealized group

assumptions but also enables us to reuse the same powers-of-tau

CRS for multiple degrees. Specifically, we can support polynomials

with any degree 0 < 𝑑 ≤ 𝑚 using a single CRS [𝑔,𝑔𝜏 , . . . , 𝑔𝜏𝑚],
eliminating the need for repeated setup.

Why not use aggregated Feldman directly in place of KZG?
One might wonder why we do not use the aggregated Feldman com-

mitment directly to verify the shares in place of KZG commitments.

This is because the verification using the aggregated commitment

requires having shares of all the committed polynomials. In other

words, it does not allow for the individual verification of each share.

This limitation is problematic because, in most applications, there is

a need to utilize each individual secret share separately. Therefore,

we opt to use the aggregated commitment only for degree checking

while using KZG commitments for verifying each share.

3.2 Multi-Secret VSS with Optimal
Communication

One of the major tasks in VSS is to disseminate the shares efficiently

but verifiably. Namely, we have to solve the following problem with

𝑂 (𝐿) communication (i.e., constant cost per node): an honest node

𝑖 receives the correct share 𝒔𝑖 = [𝜙1 (𝑖), . . . , 𝜙𝐿 (𝑖)] or all honest
nodes detect the corrupt dealer. Note that we will have 𝑛 instances

of this task (i.e., for each node 𝑖) so the overall cost will be 𝑂 (𝐿𝑛).
Below, let us assume for simplicity that the KZG commitments to

the polynomials are known to all nodes. Also, we assume 𝐿 = 𝑓 + 1
for simplicity.

The first natural technique we can use is a verifiable information

dispersal algorithm (IDA) [12, 36]. In IDA, there is a single sender

who holds a message𝑀 , and at the end of the protocol, the erasure-

coded symbols of the message are distributed among the nodes.

Specifically, the message𝑀 is encoded into 𝑛 symbols [𝑐1, . . . , 𝑐𝑛]
using (𝑓 , 𝑛)-erasure coding, and each node 𝑗 will receive 𝑗-th sym-

bol 𝑐 𝑗 . The dealer in VSS can use IDA to disseminate the node 𝑖’s

share 𝑀 = 𝒔𝑖 . Upon receiving the assigned symbol 𝑐 𝑗 , each node

𝑗 forwards it to the shareholder 𝑖 and sends a vote to all nodes.

If 2𝑓 + 1 nodes send votes, at least 𝑓 + 1 honest nodes must have

forwarded their code words, so the shareholder 𝑖 can successfully

reconstruct the original message. Otherwise, all honest nodes know

the dealer is corrupt. Since each symbol is of constant size, the

communication cost is 𝑂 (𝐿) (the voting cost is amortized over 𝑛

instances of dissemination).

However, there is one remaining task to complete the problem.

Recall that the message𝑀 that node 𝑖 receives must be the correct

batch of shares 𝒔𝑖 = [𝜙1 (𝑖), . . . , 𝜙𝐿 (𝑖)]. This requirement is not

guaranteed in the IDA above. In other words, while node 𝑖 is guar-

anteed to receive a message𝑀 that the dealer has sent, the message

𝑀 may not necessarily contain the correct shares – potentially, an

arbitrary blob when the dealer is corrupt. Therefore, if the dealer

sends an invalid message 𝑀 through the IDA, the corresponding

shareholder 𝑖 must forward the message 𝑀 to all other nodes to

help other honest nodes detect the corrupt dealer. However, this

dealer implication step incurs Ω(𝜅𝑛3) communication in the worst

case (i.e., when all nodes implicate the dealer) as the message𝑀 is

of size 𝐿 = Ω(𝑛) [41].

Efficient implication from systematic RS code. To achieve the

dealer implication step with 𝑂 (𝜅𝑛2) communication, let us delve

more into the IDA implementation. The problem with the use of

black-box IDA is that it is hard to validate the message without

reconstructing the whole message. Each node can send only a

constant-sized message during the implication step. In the above

4

IDA using black-box erasure coding, each individual code symbol

does not carry sufficient information to detect an invalid message.

We solve this problem by utilizing a specific erasure coding scheme

in which each code symbol has a certain relation to the original

message. Concretely, we implement IDA using a systematic Reed-
Solomon code [37]. The message𝑀 = 𝒔𝑖 is encoded as evaluations

of a degree-𝑓 polynomial𝜓 (·) interpolated from the shares

𝒔𝑖 = [𝜙1 (𝑖), . . . , 𝜙𝐿 (𝑖)] .

Namely, 𝜓 (𝑘) = 𝜙𝑘 (𝑖) for all 𝑘 ∈ [𝐿]. Then the code words are

defined as

𝒄 = [𝜓 (1), . . . ,𝜓 (𝑛)] .

Note that the first 𝐿 symbols correspond to the original message

(by the nature of systematic code).

𝑐1 = 𝜙1 (𝑖), 𝑐2 = 𝜙2 (𝑖), . . . , 𝑐𝐿 = 𝜙𝐿 (𝑖).

Recall that the message 𝑀 is considered invalid if any single

element 𝑠𝑖,𝑘 is not a valid share 𝜙𝑘 (𝑖). Therefore, receiving the

corresponding symbol 𝑐𝑘 = 𝑠𝑖,𝑘 is enough to detect an invalid

message𝑀 , and hence a corrupt dealer. This allows the shareholder

𝑖 to implicate the dealer with a constant-sized message and reduces

the overall communication cost to 𝑂 (𝜅𝑛2).
Note that the protocol described above does not guarantee the

secrecy of the shares. Our protocol in §5 applies a simple one-time

pad based on PRF to hide the shares during IDA.

4 DEGREE BINDING KZG COMMITMENT
In this section, we augment the KZG commitment to make it degree-

binding. The augmented KZG commitment supports polynomials

of any degree 0 < 𝑑 ≤ 𝑚 under a universal structured reference

string [𝑔,𝑔𝜏 , . . . , 𝑔𝜏𝑚] for a trapdoor 𝜏 ∈ Z∗𝑞 .

Extended interface. To formally define degree binding and our

commitment scheme, we first extend the interface of the KZG com-

mitment. Specifically, in addition to all the interfaces of the original

KZG commitment, we define two auxiliary functions to prove/verify

the degree of the committed polynomials as follows:

• 𝜋 ← ProveDeg(𝝓, 𝒗). It takes as input 𝐿 polynomials 𝝓 of degree

at most 𝑑 , and the corresponding commitments 𝒗,

𝝓 = [𝜙1 (·), . . . , 𝜙𝐿 (·)]

𝒗 = [𝑔𝜙1 (𝜏) , . . . , 𝑔𝜙𝐿 (𝜏)]

and outputs a degree proof 𝜋 .

• 𝑏 ← VerifyDeg(𝑑, 𝒗, 𝜋, 𝑖, 𝝓 (𝑖)). It takes as input the degree 𝑑 , a
vector 𝒗 of commitments, the degree proof 𝜋 , and the evaluations

of all committed polynomials on index 𝑖 , and outputs 𝑏 ∈ {0, 1}
indicating if all the polynomials are of degree at most 𝑑 .

Degree binding. Our goal is to design an extended KZG commit-

ment with the above auxiliary functions that satisfies the following

degree binding property:

Definition 4.1 (Degree Binding). For any 𝑑 > 0 and any PPT

adversary A, the probability that A successfully computes all of

the following simultaneously is negligible.

(1) Commitments 𝒗 = [𝑣1, . . . , 𝑣𝐿] and a degree proof 𝜋 .

(2) A set 𝐻 of 𝑑 + 1 distinct indices, evaluations 𝝓 (𝑖) along with

the witnesses𝑤𝑖,1, . . . ,𝑤𝑖,𝐿 for all 𝑖 ∈ 𝐻 s.t.

VerifyEval(𝑣𝑘 , 𝑖, 𝜙𝑘 (𝑖),𝑤𝑖,𝑘) = 1 ∀𝑘 ∈ [𝐿]
VerifyDeg(𝑑, 𝒗, 𝜋, 𝑖, 𝝓 (𝑖)) = 1

(3) For any 𝑘 ∈ [𝐿] and 𝑗 ∈ Z𝑞 , a polynomial evaluation 𝜙𝑘 (𝑗)
along with the witness𝑤 𝑗,𝑘 s.t.

VerifyEval(𝑣𝑘 , 𝑖, 𝜙𝑘 (𝑗),𝑤 𝑗,𝑘) = 1

𝜙𝑘 (𝑗) ≠ 𝜙 ′
𝑘
(𝑗)

where 𝜙 ′
𝑘
(·) is the degree-𝑑 polynomial uniquely defined by

the 𝑑 + 1 evaluations of 𝜙𝑘 (·) on indices in 𝐻 .

Intuition in the use of VSS. In our VSS protocol, a dealer shares 𝐿

secrets 𝑧1, . . . , 𝑧𝐿 over polynomials 𝜙1 (·), . . . , 𝜙𝐿 (·) all with degree

at most 𝑑 = 𝑓 . A corrupt dealer may try to use polynomials with

a higher degree 𝑑 > 𝑓 . However, our protocol makes sure at least

𝑓 +1 honest nodes verify their shares withVerifyEval andVerifyDeg.
These shares define 𝐻 and 𝜙 ′

𝑘
(·) for all 𝑘 ∈ [𝐿]. The degree binding

property guarantees, if another node 𝑗 receives its share 𝜙𝑘 (·) of
any 𝑘-th secret, then it must be 𝜙𝑘 (𝑗) = 𝜙 ′

𝑘
(𝑗). Therefore, all valid

shares lie on a unique polynomial of degree at most 𝑓 .

Our augmented KZG commitment.We now describe our aug-

mented KZG commitment with the two auxiliary functions in Fig-

ure 1. The proving function ProveDeg generates the Feldman com-

mitment to the aggregated polynomial. Specifically, it first gener-

ates deterministic pseudo-random values 𝜌1, . . . , 𝜌𝐿 that bind to the

commitment 𝒗 by querying the random oracle, i.e., 𝜌𝑘 = H(𝒗 |𝑘).
Then, it computes a commitment 𝜋 to the aggregated polynomial

Φ(·) =
∑︁

1≤𝑘≤𝐿
𝜌𝑘 · 𝜙𝑘 (·) = 𝛼0 + 𝛼1𝑥 + . . . + 𝛼𝑑𝑥𝑑 .

The verification function VerifyDeg performs the same aggregation

operation on the shares and the KZG commitments. Specifically,

it first performs the aggregation on the shares in the exponent to

check that ∑︁
1≤𝑘≤𝐿

𝜌𝑘 · 𝜙𝑘 (𝑖) = 𝛼0 + 𝛼1𝑖 + . . . + 𝛼𝑑𝑖𝑑 ,

It then performs the aggregation on the commitments on the pairing

to verify ∑︁
1≤𝑘≤𝐿

𝜌𝑘 · 𝜙𝑘 (𝜏) = 𝛼0 + 𝛼1𝜏 + . . . + 𝛼𝑑𝜏𝑑 .

We show that our augmented KZG commitment is degree-binding

under the SDH assumption.

Lemma 4.2. Under the SDH assumption, the augmented KZG com-
mitment in Figure 1 is degree binding.

Proof. Suppose an adversary A computes (1) and (2) in Defi-

nition 4.1. Namely, A has commitments 𝒗 = [𝑣1, . . . , 𝑣𝐿], a degree
proof 𝜋 , and evaluations 𝝓 (𝑖) with the witnesses𝑤𝑖,1, . . . ,𝑤𝑖,𝐿 for

𝑑 + 1 distinct indices 𝑖 ∈ 𝐻 . Let 𝛽 (·) be the degree-𝑑 polynomial

defined by the proof 𝜋 = [𝑔𝛼0 , . . . , 𝑔𝛼𝑑]:

𝛽 (𝑥) = 𝛼0 + . . . + 𝛼𝑑𝑥𝑑

5

Degree-binding KZG commitment.

Besides all functionalities of KZG commitment, we have two

additional functionalities to prove and verify the degree 𝑑 of

polynomials.

𝜋 ← ProveDeg(𝝓, 𝒗).
• Generate random values 𝝆 = [𝜌1, . . . , 𝜌𝐿] by querying the

random oracle 𝜌𝑘 ← H(𝒗 |𝑘) for each 𝑘 ∈ [𝐿].
• Let 𝒂𝑘 be the vector of coefficients of 𝜙𝑘 (·). Compute

[𝛼0, . . . , 𝛼𝑑] = 𝜌1𝒂1 + . . . + 𝜌𝐿𝒂𝐿 .
• Output 𝜋 = [𝑔𝛼1 , . . . , 𝑔𝛼𝑑].

𝑏 ← VerifyDeg(𝑑, 𝒗, 𝜋, 𝑖, 𝝓 (𝑖)).
• If |𝜋 | ≠ 𝑑 , then output 𝑏 = 0.

• Generate random values 𝝆 = [𝜌1, . . . , 𝜌𝐿] by querying the

random oracle 𝜌𝑘 ← H(𝒗 |𝑘) for each 𝑘 ∈ [𝐿].
• If both of the following conditions hold, then output 𝑏 = 1,

otherwise, 𝑏 = 0.∏
1≤𝑘≤𝐿

𝑔𝜌𝑘 ·𝜙𝑘 (𝑖) =
∏

0≤ 𝑗≤𝑑
𝜋𝑖

𝑗

𝑗∏
1≤𝑘≤𝐿

𝑒 (𝑣𝑘 , 𝑔)𝜌𝑘 =
∏

0≤ 𝑗≤𝑑
𝑒 (𝜋 𝑗 , 𝑔𝜏

𝑗

)

𝜋 𝑗 is the 𝑗-th element of 𝜋 , and 𝑒 (·) is the pairing.

Figure 1: Our augmented KZG commitment.

Let Φ′ (·) be the polynomial defined as follows:

Φ′ (·) =
∑︁

1≤𝑘≤𝐿
𝜌𝑘 · 𝜙 ′𝑘 (·) .

where 𝜙 ′
𝑘
(·) is the degree-𝑑 polynomial interpolated from the 𝑑 + 1

evaluations on 𝜙𝑘 (·) for 𝐻 . Due to the first condition of VerifyDeg,
and since 𝜙𝑘 (𝑖) = 𝜙 ′

𝑘
(𝑖) for each 𝑖 ∈ 𝐻 by definition, we have∏

1≤𝑘≤𝐿
𝑔𝜌𝑘 ·𝜙

′
𝑘
(𝑖) =

∏
0≤ 𝑗≤𝑑

𝑔𝛼 𝑗 ·𝑖 𝑗 .

Thus, we have Φ′ (𝑖) = 𝛽 (𝑖) for all 𝑖 ∈ 𝐻 . Since both Φ′ (·) and 𝛽 (·)
are of degree-𝑑 and share the same points on 𝑑 + 1 indices, we have
Φ′ (·) = 𝛽 (·). Due to the second condition of VerifyDeg, we have∑︁

1≤𝑘≤𝐿
𝜌𝑘 · 𝜙𝑘 (𝜏) = 𝛽 (𝜏) = Φ′ (𝜏).

Put in another way, let 𝜹 = [𝛿1, . . . , 𝛿𝐿] where 𝛿𝑘 = 𝜙𝑘 (𝜏) − 𝜙 ′𝑘 (𝜏).
We have that the inner product of 𝜹 and 𝝆 is 𝜹 · 𝝆 = 0. Since the

choice of the vector 𝜹 (uniquely determined by 𝒗) is independent of
the random oracle’s outputs 𝝆, the probabilityA can choose 𝜹 ≠ 0
that satisfies 𝜹 · 𝝆 = 0 is negligible. Therefore, 𝜹 = 0 and we have

𝜙𝑘 (𝜏) = 𝜙 ′
𝑘
(𝜏) for all 𝑘 ∈ [𝐿].

Now, suppose for contradiction that A can also compute (3),

namely, an evaluation with a witness

𝜙𝑘 (𝑗), 𝑤 𝑗,𝑘 = 𝑔
𝜙𝑘 (𝜏)−𝜙𝑘 (𝑗)

𝜏− 𝑗

for some 𝑘, 𝑗 ∈ [𝐿] that satisfies 𝜙𝑘 (𝑗) ≠ 𝜙 ′
𝑘
(𝑗). The adversary A

can also easily compute

𝜙 ′
𝑘
(𝑗), 𝑤 ′

𝑗,𝑘
= 𝑔

𝜙′
𝑘
(𝜏)−𝜙′

𝑘
(𝑗)

𝜏− 𝑗

Since we have 𝜙𝑘 (𝜏) = 𝜙 ′
𝑘
(𝜏), the adversary A can compute

(
𝑤 𝑗,𝑘

𝑤 ′
𝑗,𝑘

)
1

𝜙′
𝑘
(𝑗)−𝜙𝑘 (𝑗) = 𝑔

1

𝜏− 𝑗 .

This breaks the SDH assumption. □

5 MULTI-SECRET VSS WITH OPTIMAL
COMMUNICATION

This section presents a multi-secret VSS with 𝑂 (𝜅𝐿𝑛 + 𝜅𝑛2) com-

munication for sharing 𝐿 secrets. For simplicity, we first present

a synchronous protocol, and then explain how to extend it to an

asynchronous protocol using existing techniques.

Share format. Our VSS protocol (in fact VSS protocols in general)

outputs not only the share 𝑠𝑖 = 𝜙 (𝑖) but the witness𝑤𝑖 and the com-

mitment 𝑣 to the polynomial. Therefore, for ease of presentation,

we say (𝑠𝑖 ,𝑤𝑖 , 𝑣) is a valid share for 𝑖 ∈ [𝑛] if
VerifyEval(𝑣, 𝑖, 𝑠𝑖 ,𝑤𝑖) = 1

When the shared polynomial 𝜙 (·) is known, we say (𝑠𝑖 ,𝑤𝑖 , 𝑣) is a
valid share for 𝑖 over 𝜙 (·).
Encryption with PRF. We make use of PRF to generate a one-

time pad for encrypting each node’s share. We assume each node 𝑖

before starting the protocol exchanges a secret key sk𝑖 ∈ Z∗𝑞 with

the dealer D and receives the dealer’s signature on the secret key.

For simplicity, we use the notation 𝜌𝑖,𝑘 = PRFsk𝑖 (𝑘) and 𝜌′
𝑖,𝑘

=

PRFsk𝑖 (𝑛 + 𝑘) to denote the one-time pads for 𝑘 ∈ [𝑛].

5.1 Our Protocol
We describe our multi-secret VSS protocol (denotedVSS) in Figure 2.
For ease of exposition, we present a protocol for sharing 𝐿 = 𝑓 + 1
secrets, and it can be easily extended to support any number of

secrets.

Intuitive overview. The protocol consists of three phases. The
dealer D sends to each node 𝑖 the share 𝝓 (𝑖) through a verifiable

information dispersal algorithm (IDA) (Commit–Reconstruct). If

a node receives an invalid message from the IDA, the node impli-

cates the dealer (Accuse). Then, nodes vote in two rounds if they

have not detected any misbehavior of the dealer and output the

shares if there are enough votes (Ready–Output). These steps basi-

cally follow hbACSS [41]. There are, however, two key differences

from hbACSS as we alluded to in §3. First, we use our augmented

KZG commitment (from §4), which helps achieve the commitment
property of VSS. Second, our IDA implementation is based on the

systematic RS code, which allows nodes to implicate a corrupt

dealer with a constant-sized accusation message. We elaborate on

each step below.

Commit. The dealer D first computes the sharing polynomial,

encoding polynomials (for erasure coding), and the associated com-

mitments and degree proofs. Specifically, it first samples the ran-

dom sharing polynomials of degree-𝑓 denoted 𝜙1 (·), . . . , 𝜙 𝑓 +1 (·)
6

VSS – Multi-secret VSS.

Let D be the dealer who has secrets 𝒛 := [𝑧1, . . . , 𝑧𝑓 +1] to share.

• We assume each node 𝑖 and the dealer D share a random

secret key sk𝑖 signed by D.

• Let 𝜌𝑖,𝑘 = PRFsk𝑖 (𝑘) and 𝜌′
𝑖,𝑘

= PRFsk𝑖 (𝑛 + 𝑘) denote the

one-time pads for each 𝑘 ∈ [𝑛].

// Round 1–3.
Commit. The dealer D computes the following:

(1) 𝑓 + 1 random polynomials 𝜙1 (·), . . . , 𝜙 𝑓 +1 (·) with degree 𝑓

for sharing 𝑧1, . . . , 𝑧𝑓 +1.

(2) For each 𝑗 ∈ [𝑛], let 𝜓 𝑗 (·) and 𝜓 ′
𝑗
(·) be two polynomials

with degree-𝑓 s.t. for all 𝑘 ∈ [𝑓 + 1]

𝜓 𝑗 (𝑘) = 𝜙𝑘 (𝑗) ⊕ 𝜌 𝑗,𝑘 𝜓 ′𝑗 (𝑘) = 𝑤 𝑗,𝑘 ⊕ 𝜌′
𝑗,𝑘

where𝑤 𝑗,𝑘 is the witness for 𝜙𝑘 (𝑗).
(3) Let 𝒗, 𝒖, 𝒖′ be the vectors of commitments to 𝝓 (·), 𝝍 (·), 𝝍′ (·),

and 𝜋𝑣, 𝜋𝑢 , 𝜋
′
𝑢 be the associated degree-proofs.

The dealer D sends to each node 𝑗 ∈ [𝑛], for all 𝑘 ∈ [𝑛],

code𝑘,𝑗 := (𝜓𝑘 (𝑗), 𝜓 ′𝑘 (𝑗), 𝜇 𝑗,𝑘 , 𝜇
′
𝑗,𝑘
)

where 𝜇 𝑗,𝑘 and 𝜇′
𝑗,𝑘

are the witnesses for𝜓𝑘 (𝑗) and𝜓 ′𝑘 (𝑗).
D also sends (𝒗, 𝒖, 𝒖′, 𝜋𝑣, 𝜋𝑢 , 𝜋 ′𝑢) to all nodes through GC.

// Round 4.
Forward. If node 𝑖 has received code𝑗,𝑖 for all 𝑗 ∈ [𝑛] that are
verified with the commitments 𝒖, 𝒖′ and degree proofs 𝜋𝑢 , 𝜋

′
𝑢

received fromGCwith grade 𝑏 = 1, then node 𝑖 forwards code𝑗,𝑖
to node 𝑗 .

// Round 5.
Reconstruct. Node 𝑖 computes𝜓𝑖 (·) and𝜓𝑖 (·) by interpolation

using 𝑓 +1 points received through code𝑖,∗ verified with the com-

mitments 𝒖, 𝒖′ and the proofs 𝜋𝑢 , 𝜋
′
𝑢 received from GC (with

any grade).

Accuse. Node 𝑖 verifies that for all 𝑘 ∈ [𝐿], (𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝑣𝑘) is a
valid share for 𝑖 , where

𝑠𝑖,𝑘 = 𝜓𝑖 (𝑘) ⊕ 𝜌𝑖,𝑘 𝑤𝑖,𝑘 = 𝜓 ′𝑖 (𝑘) ⊕ 𝜌′
𝑖,𝑘

If the verification failed for any 𝑘 , node 𝑖 sens to all nodes

accuse𝑖 := (𝜓𝑖 (𝑘),𝜓 ′𝑖 (𝑘), 𝜇𝑖,𝑘 , 𝜇
′
𝑖,𝑘
),

for an arbitrary such 𝑘 ∈ [𝑛] along with the signed sk𝑖 .

// Round 6.
Ready. Node 𝑖 sends “ready” to all nodes if

(1) 𝑖 forwarded code𝑗,𝑖 to each 𝑗 ∈ [𝑛] in round 𝑡 = 3; and

(2) Node 𝑖’s shares (𝒔𝑖 ,𝒘𝑖 , 𝒗) are verified with 𝜋𝑣 ; and

(3) 𝑖 has not received any valid accusation, namely

accuse𝑗 := (𝑠 𝑗,𝑘 , �̂� 𝑗,𝑘 , 𝜇 𝑗,𝑘 , 𝜇
′
𝑗,𝑘
) .

with the signed sk𝑗 s.t. both of the following hold.

(a) (𝑠 𝑗,𝑘 , 𝜇 𝑗,𝑘 , 𝑢𝑘) and (�̂� 𝑗,𝑘 , 𝜇
′
𝑗,𝑘
, 𝑢′

𝑘
) are both valid shares

for index 𝑘 .

(b) (𝑠 𝑗,𝑘 ,𝑤 𝑗,𝑘 , 𝑣 𝑗) is not a valid share for 𝑗 where

𝑠 𝑗,𝑘 = 𝑠 𝑗,𝑘 ⊕ 𝜌 𝑗,𝑘 𝑤 𝑗,𝑘 = �̂� 𝑗,𝑘 ⊕ 𝜌′
𝑗,𝑘

// Round 7.
Complete. If node 𝑖 has received “ready” from 2𝑓 + 1 nodes,

then send “complete” to all nodes.

// At the end of round 7.
Output. If node 𝑖 has received “complete” from𝑚 > 2𝑓 nodes,

then 𝑖 outputs 𝑏 = 1, otherwise 𝑏 = 0. If𝑚 > 𝑓 , then 𝑖 outputs

the share (𝒔𝑖 ,𝒘𝑖 , 𝒗).

Figure 2: Our multi-secret VSS for sharing 𝐿 = 𝑓 + 1 secrets. For simplicity of presentation, we assume the representation of a
group element has the same length as that of a field element.

s.t. 𝜙𝑘 (0) = 𝑧𝑘 for all 𝑘 ∈ [𝑓 + 1]. Then, for each node 𝑖 ∈ [𝑛],
the dealer computes two encoding polynomials 𝜓𝑖 (·) and 𝜓 ′

𝑖
(·)

both with degree-𝑓 for disseminating the shares and the associated

witnesses. They are interpolated from the 𝑓 + 1 shares/witnesses
encrypted with one-time pads. For each 𝑘 ∈ [𝑓 + 1],

𝜓𝑖 (𝑘) = 𝜙𝑘 (𝑖) ⊕ 𝜌𝑖,𝑘 𝜓 ′𝑖 (𝑘) = 𝑤𝑖,𝑘 ⊕ 𝜌′
𝑖,𝑘
,

where𝑤𝑖,𝑘 is thewitness for𝜙𝑘 (𝑖). Herewe note that eachwitness is
a group element and its representation is larger than a field element

(e.g., a share), so we have to use multiple encoding polynomials

depending on the representation of a group element. For simplicity,

we assume a witness has the same length as a field element.

The dealer also computes the vectors 𝒗, 𝒖, 𝒖′ of commitments to

the three types of polynomials. Specifically, for each 𝑘 ∈ [𝑓 + 1], 𝑣𝑘
is the commitment to 𝜙𝑘 (·), and for each 𝑘 ∈ [𝑛], 𝑢𝑘 and 𝑢′

𝑘
are the

commitments to𝜓𝑘 (·) and𝜓 ′𝑘 (·), respectively. Also 𝜋𝑣 , 𝜋𝑢 , and 𝜋
′
𝑢

are degree proofs for 𝝓 (·), 𝝍 (·), and 𝝍′ (·), respectively. Specifically,
𝜋𝑣 = ProveDeg([𝜙1 (·), . . . , 𝜙 𝑓 +1 (·)], 𝒗) .

𝜋𝑢 and 𝜋 ′𝑢 are computed similarly. Then, the dealer starts dissemi-

nating the share for node 𝑖 by sending to each node 𝑗 the code word

(for both share and witness)

code𝑖, 𝑗 := (𝜓𝑖 (𝑗), 𝜓 ′𝑖 (𝑗), 𝜇 𝑗,𝑖 , 𝜇
′
𝑗,𝑖)

where 𝜇 𝑗,𝑖 and 𝜇
′
𝑗,𝑖

are the witnesses for𝜓𝑖 (𝑗) and𝜓 ′𝑖 (𝑗). The dealer
also sends to all nodes the commitments and the degree proofs by

invoking a gradecast (defined in §2), denoted GC.

Forward and reconstruct. If the gradecast GC outputs the com-

mitments and proofs with grade 𝑏 = 1, a node verifies the assigned

code words. Specifically, for the encoding polynomials 𝝍 (·) =

[𝜓1 (·), . . . ,𝜓𝑛 (·)], node 𝑖 checks that
VerifyEval(𝑢 𝑗 , 𝑖,𝜓 𝑗 (𝑖), 𝜇 𝑗,𝑖) = 1 ∀𝑗 ∈ [𝑛]
VerifyDeg(𝑓 , 𝒖, 𝜋𝑢 , 𝑖, 𝝍 (𝑖)) = 1,

7

Node 𝑖 also performs the same check on 𝝍′ (𝑖). If all of the verifica-
tions pass, node 𝑖 forwards to node each 𝑗 the code word code𝑗,𝑖 .

Node 𝑖 then computes the encoding polynomials𝜓𝑖 (·) and𝜓 ′𝑖 (·)
by interpolation using the collected code words after verifying with

the commitments 𝑢𝑖 and 𝑢
′
𝑖
. This completes the IDA for node 𝑖 .

Accuse. The node 𝑖 then checks if the reconstructed message is

valid. Specifically, for each 𝑘 ∈ [𝑓 + 1], node 𝑖 performs decryption

on the encoded symbols

𝑠𝑖,𝑘 = 𝜓𝑖 (𝑘) ⊕ 𝜌𝑖,𝑘 𝑤𝑖,𝑘 = 𝜓 ′𝑖 (𝑘) ⊕ 𝜌′
𝑖,𝑘

and then check if (𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝑣𝑘) is a valid share. If any of them are

invalid, node 𝑖 chooses an arbitrary such𝑘 , and implicates the dealer

by sending to all nodes

accuse𝑖 := (𝜓𝑖 (𝑘),𝜓 ′𝑖 (𝑘), 𝜇𝑖,𝑘 , 𝜇
′
𝑖,𝑘
),

and reveals the PRF key sk𝑖 signed by the dealer.

Ready/complete/output. The sharing is completed after two

rounds of voting. Each node first sends “ready” if it has not detected

any dealer’s misbehavior. The absence of misbehavior is checked

based on three criteria. First, the node must have forwarded all

code words supposed to be assigned. Second, the share (𝒔𝑖 ,𝒘𝑖 , 𝒗)
must be verified with the degree-proof 𝜋𝑣 , namely

VerifyDeg(𝑓 , 𝒗, 𝜋𝑣, 𝑖, 𝒔𝑖) = 1,

Finally, the node 𝑖 must have neither sent nor received any valid

accusation. If all of these conditions hold, then the node considers

the dealer has behaved honestly. Each node then sends “complete”

if it receives “ready” from 2𝑓 + 1 nodes. Finally, node 𝑖 outputs

the share (𝒔𝑖 ,𝒘𝑖 , 𝒗) if it has received “complete” from more than

𝑓 nodes. Also, if 2𝑓 + 1 nodes sent “complete”, then outputs 𝑏 = 1

indicating the overall sharing is successful.

5.2 Correctness Proof
We first show the correctness of our multi-secret VSS protocol for

sharing 𝐿 = 𝑓 + 1. Validity is straightforward.

Lemma 5.1 (Commitment). There exist polynomials𝜙1 (·), . . . , 𝜙𝐿 (·)
all with degree 𝑓 s.t. for any honest node 𝑖 ∈ [𝑛], if 𝑖 has a non-empty
output (𝒔𝑖 ,𝒘𝑖 , 𝒗) ≠ ⊥ then, for all 𝑘 ∈ [𝐿], (𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝑣𝑘) is a valid
share for 𝑖 over 𝜙𝑘 (·).

Proof. Suppose an honest node 𝑖 outputs (𝒔𝑖 ,𝒘𝑖 , 𝒗) ≠ ⊥. Then,
for each 𝑘 ∈ [𝐿], (𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝑣𝑘) is a valid share for node 𝑖 . The

node 𝑖 must have received the commitments 𝒗 from GC. Due to the
consistency property of GC, honest nodes do not have any other

commitments 𝒗′ ≠ 𝒗. Therefore, if any honest node 𝑗 has an output

(𝒔 𝑗 ,𝒘 𝑗 , 𝒗′) ≠ ⊥, then, 𝒗 = 𝒗′ and for each 𝑘 ∈ [𝐿], (𝑠 𝑗,𝑘 ,𝑤 𝑗,𝑘 , 𝑣𝑘) is
a valid share for node 𝑗 . The honest node 𝑖 computes the output

(𝒔𝑖 ,𝒘𝑖 , 𝒗) ≠ ⊥ after receiving “complete” from at least 𝑓 + 1 nodes.
Out of these 𝑓 + 1 nodes, at least one node is honest, who has

received “ready” from at least 2𝑓 + 1 nodes. A subset 𝐻 of 𝑓 + 1
nodesmust be honest. Each node 𝑗 ∈ 𝐻 must have received a unique

valid share (𝑠 𝑗,𝑘 ,𝑤 𝑗,𝑘 , 𝑣𝑘) for each 𝑘 ∈ [𝐿] (due to the evaluation

binding property). The shares for 𝐻 define, for each 𝑘 ∈ [𝐿], a
unique degree-𝑓 polynomial 𝜙𝑘 (·). Since all of the shares for 𝐻

are also verified by VerifyDeg, due to the degree-binding property,

node 𝑖’s output (𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝑣𝑘) must be a share over 𝜙𝑘 (·) for each
𝑘 ∈ [𝐿]. □

Lemma 5.2 (Guaranteed output). If an honest node outputs
𝑏 = 1, then all honest nodes have non-empty (≠ ⊥) outputs.

Proof. If an honest node outputs 𝑏 = 1, at least 2𝑓 + 1 nodes
must have sent “complete”, out of which at least 𝑓 + 1 nodes (say 𝐻)

must be honest. Let 𝑖 be any honest node. Each honest node 𝑗 ∈ 𝐻
must have forwarded to 𝑖

code𝑖, 𝑗 := (𝜓𝑖 (𝑗),𝜓 ′𝑖 (𝑗), 𝜇 𝑗,𝑖 , 𝜇
′
𝑗,𝑖),

and all of them must be verified with the commitments 𝒖, 𝒖′ and
the degree proofs 𝜋𝑢 , 𝜋

′
𝑢 received from GC with grade 𝑏 = 1. Due

to the graded consistency property of GC, node 𝑖 must receive the

commitments 𝒖, 𝒖′ and the degree proofs 𝜋𝑢 , 𝜋
′
𝑢 from GC. Thus,

the node 𝑖 can interpolate the degree-𝑓 polynomials𝜓𝑖 (·) and𝜓 ′𝑖 (·)
from the 𝑓 + 1 verified points on each polynomial.

Suppose any of the reconstructed share (𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝑣𝑘) (where
𝑠𝑖,𝑘 = 𝜓𝑘 (𝑖) ⊕ 𝜌𝑖,𝑘 and𝑤𝑖,𝑘 = 𝜓 ′

𝑘
(𝑖) ⊕ 𝜌′

𝑖,𝑘
) is not a valid share for 𝑖 ,

then node 𝑖 would have sent to all nodes

accuse𝑖 := (𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝜇𝑖,𝑘 , 𝜇
′
𝑖,𝑘
) .

Then, nodes in 𝐻 would not have sent “ready”, a contradiction.

Therefore, the node 𝑖 must have received, for all 𝑘 ∈ [𝐿], a valid
share (𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝑣𝑘), and outputs (𝒔𝑖 ,𝒘𝑖 , 𝒗) ≠ ⊥. □

5.3 Secrecy Proof
Next, we show the secrecy of our protocol VSS based on the stan-

dard simulation-based argument [13, 14]. The ideal functionality is

defined in Figure 3. We first briefly mention that the functionality

satisfies the VSS correctness. If the dealer is honest, all honest nodes

receive the shares of the secrets 𝒛 over randomly sampled degree-𝑓

polynomials with success bit 𝑏 = 1 (validity). Even if the dealer is

corrupt, the functionality computes honest nodes’ shares over a

unique degree-𝑓 polynomial 𝜙𝑘 (·) for each 𝑘 ∈ [𝐿] (commitment).

Furthermore, if there is an honest node that outputs success bit

𝑏 = 1, then the functionality must receive 𝑏∗
𝑖
≠ ⊥ for all 𝑖 , so it

delivers shares to all honest nodes (guaranteed output). We now

show the secrecy of our protocol below.

Lemma 5.3. The protocol VSS realizes the functionality FVSS.

Proof. Let A be the adversary, andZ be the environment. We

construct a simulator S that simulates the real-world adversary’s

view in the execution of VSS while interacting with the function-

ality FVSS. Without loss of generality, we assume nodes [1, . . . , 𝑓]
are corrupt.

Corrupt dealer case. S locally executes VSS with A. Let 𝝓 =

[𝜙1 (·), . . . , 𝜙𝐿] be the degree-𝑓 polynomials used to share the se-

crets in the local execution. Due to the commitment property, a

unique polynomial 𝜙𝑘 (·) always exists for each 𝑘 ∈ [𝐿]. The simu-

lator S computes the 𝜙𝑘 (·) by interpolating shares for 𝑓 + 1 honest
nodes who sent “ready”. Let 𝒃∗ = [𝑏∗

1
, . . . , 𝑏∗𝑛] where 𝑏∗1, . . . , 𝑏

∗
𝑓
= 0

and 𝑏∗
𝑓 +1, . . . , 𝑏

∗
𝑛 be the success bit 𝑏 that VSS outputs in honest

nodes 𝑓 + 1, . . . , 𝑛. S sends to FVSS both 𝝓 and 𝒃 . S sends any

message to the environmentZ thatA sends in the local execution.

Now we showZ’s view in the ideal world is indistinguishable

from that of the real world. First, honest nodes’ outputs should

be identical to the outputs in the simulated execution due to the

8

FVSS – Ideal functionality of VSS.
Let 𝐿 = 𝑓 + 1.
• In round 1, receive from an honest dealer 𝒛 = [𝑧1, . . . , 𝑧𝐿],

and compute the following

– Randomly sampled polynomials 𝝓 = [𝜙1 (·), . . . , 𝜙𝐿 (·)]
of degree 𝑓 to share 𝒛.

– 𝒃∗ = [𝑏∗
1
, . . . , 𝑏∗𝑛] where 𝑏∗𝑘 = 1 for all 𝑘 ∈ [𝑛].

Then, send to the adversary, for each corrupt node 𝑖 ,

(𝒔𝑖 ,𝒘𝑖 , 𝒗) and degree-proof 𝜋𝑣 where for each 𝑘 ∈ [𝐿],
(𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝑣𝑘) is a share for 𝑖 over 𝜙𝑘 (·).

• If it receives 𝝓 = [𝜙1 (·), . . . , 𝜙𝐿 (·)] and 𝒃∗ ∈ {0, 1,⊥}𝑛
from a corrupt dealer in any round, check that

– 𝜙𝑘 (·) is a degree-𝑓 polynomial for all 𝑘 ∈ [𝐿], and
– If there is an honest node 𝑖 with 𝑏∗

𝑖
= 1, then for all

honest node 𝑘 ∈ [𝑛], 𝑏∗
𝑘
≠ ⊥.

Otherwise, set 𝝓, 𝒃∗ = ⊥.
• In round 7, send (𝒔𝑖 ,𝒘𝑖 , 𝒗) and 𝑏 = 𝑏∗

𝑖
to each honest node

𝑖 ∈ [𝑛] if 𝑏𝑖 ≠ ⊥ where for each 𝑘 ∈ [𝐿], (𝑠𝑖,𝑘 ,𝑤𝑖,𝑘 , 𝑣𝑘) is a
share for node 𝑖 over 𝜙𝑘 (·). For node 𝑖 with 𝑏∗

𝑖
= ⊥, send

𝑏 = 0 as the success bit.

Figure 3: Ideal functionality of our VSS protocol

guaranteed output of VSS. If 𝑏∗
𝑖
= 1 for any honest node 𝑖 , then

for all 𝑘 ∈ [𝑛], 𝑏∗
𝑘
≠ ⊥. Thus, FVSS computes the shares for honest

nodes over the polynomials 𝝓 sent by S, hence the same output in

the S’s local execution. Corrupt nodes’ outputs and the message

sent directly fromS are both exactly the same as the local execution.

Honest dealer case. S locally executes VSS with A except that

honest nodes deviate from the protocol as follows:

(1) The honest dealer performs honest sharing for corrupt nodes,

but for honest nodes, perform sharing with fake secrets. Specif-

ically, let (𝒔𝑖 , �̂�𝑖 , 𝒗) be the share for each corrupt node 𝑖 and

𝜋𝑣 be the degree proof, which S receives from FVSS. For each
𝑘 ∈ [𝐿], the dealer computes the sharing polynomial 𝜙𝑘 (·) (for
each 𝑘 ∈ [𝐿]) by interpolation using 𝜙𝑘 (𝑖) = 𝑠𝑖,𝑘 for all 𝑖 ∈ [𝑓]
and a randomly chosen 𝜙𝑘 (𝑓 + 1). The witness 𝑤𝑖,𝑘 is set to

�̂�𝑖,𝑘 for each corrupt 𝑖 . The commitment vector is 𝒗 = 𝒗. The
degree proof for the sharing polynomials is 𝜋𝑣 = 𝜋𝑣 . Except for

these, the dealer behaves as specified.

(2) Each honest node 𝑖 will not send accuse𝑖 . Namely, the honest

nodes, despite receiving invalid shares, behave as if the sharing

was successful.

In both the ideal world and the real world, nodes’ outputs are

shares of 𝒛 over randomly sampled polynomials 𝝓 and are identi-

cally distributed in both. The rest of the proof shows that (for each

sampled 𝝓) whatZ receives from S in the ideal world is indistin-

guishable from what is received fromA in the real world. It is easy

to see that whatZ receives is identical in both worlds except for

variables dependent on the encoding polynomials𝜓𝑖 (·) and𝜓 ′𝑖 (·)
for each honest 𝑖 . The encoding polynomial 𝜓𝑖 (·) is interpolated
from the independently randomized symbols 𝜙𝑘 (𝑖) ⊕ 𝜌𝑖,𝑘 . Since the
PRF key sk𝑖 is unknown to Z, each of these symbols and hence

the encoding polynomial𝜓𝑖 (·) is indistinguishable in both worlds,

The same argument holds for𝜓 ′
𝑖
(·). Therefore, whatZ receives is

indistinguishable in both worlds. □

5.4 Reducing Computational Overhead
Asmentioned, our protocol follows the construction of hbACSS [41].

The main distinction from hbACSS lies in the use of our augmented

KZG commitment with additional degree proof. An important point

to discuss is how much overhead is introduced by the degree proof.

One can easily observe that the communication cost is negligible, as

the degree proof is a single Feldman commitment of size𝑂 (𝑑). The
dealer’s computational overhead for generating degree proof is also

trivial, requiring only 𝑂 (𝑑) elliptic curve group exponentiation.

In comparison, computing commitment and witnesses requires

𝑂 (𝑑𝐿𝑛) group exponentiation. However, verifying a degree proof

requires 𝐿 paring operations, which introduces an overhead com-

parable to the cost of verifying evaluation proofs. This issue can be

partially mitigated by using another commitment scheme in place

of the Feldman commitment.

Degree proof from masked polynomial. Essentially, we can

adopt any aggregatable commitment for degree proof. One such

example is the commitment scheme based on random polynomial

masking [17, 38]. Specifically, a dealer chooses a random mask

polynomial 𝜙0 (·) besides the sharing polynomials 𝜙1 (·), . . . , 𝜙𝐿 (·),
and open a random linear combination

Φ(·) =
∑︁

0≤𝑘≤𝐿
𝜌𝑘 · 𝜙𝑘 (·)

as the proof of degree, where 𝜌𝑘 is random values chosen indepen-

dently from the choice of polynomials. The random polynomial

𝜙0 (·) is also shared among nodes (i.e., node 𝑖 receives 𝜙0 (𝑖)) along
with the KZG commitment 𝑣0 = 𝑔𝜙0 (𝜏)

and associated evaluation

proofs.

Each shareholder 𝑖 performs the verification similar to that of

Figure 1. Specifically, node 𝑖 checks that

Φ(𝑖) =
∑︁

0≤𝑘≤𝐿
𝜌𝑘 · 𝜙𝑘 (𝑖)

𝑔Φ(𝜏) =
∏

0≤𝑘≤𝐿
𝑣
𝜌𝑘
𝑘

The proof of degree binding for the Feldman variant (Lemma 4.2)

can be generalized to the above variant. In essence, the proof shows

that the committed polynomials on the Feldman commitments and

the KZG commitments are equal. Since the aggregated commitment

is degree binding by design, this implies that the polynomials bind-

ing to the KZG commitments also have the claimed degree. The

equality of polynomials follows from the fact that the adversary

cannot choose different polynomials whose random combinations

agree. These arguments directly apply to the above approach.

Finally, to briefly analyze the overhead for each shareholder, the

KZG verification takes 3 pairings per secret while the verification of

degree proof takes one group exponentiation per secret. Therefore,

we believe this is a worthwhile cost for achieving security under

the standard model and for providing reconfiguration friendliness.

9

5.5 Extension to Asynchronous VSS
We have presented our VSS protocol in the synchrony model. The

protocol can be extended to support an asynchronous network

using existing techniques. In an asynchronous network, there is

no bound on the message delivery delay. Thus, asynchronous VSS

(AVSS) allows each node to output its share whenever it receives

enough messages. Also, nodes do not output the success bit any-

more because failure to receive a share at some point does not mean

a node will never receive its share. The guaranteed output property
is changed accordingly, which is also called completeness.

• If an honest node 𝑖 outputs the share 𝒔𝑖 , then every honest node

𝑗 eventually outputs the share 𝒔 𝑗 .

To achieve this property, we have to make two major modifica-

tions to our synchronous VSS.

Timed algorithm to event-triggered. The first standard modifi-

cation is to make the algorithm event-triggered and non-blocking.

Each event must be upon receiving enough valid messages as mes-

sages are not guaranteed to be timely delivered in an asynchronous

network. For example, forwarding code words (tagged Forward)

happens upon receiving all code words that are verified with the

commitments and degree proofs. Similarly, sending “ready” hap-

pens upon receiving all valid shares and forwarding all valid code

words, and sending “complete” happens upon receiving 2𝑓 + 1
“ready”. Gradecast should be replaced by reliable broadcast, which

allows nodes to receive the sender’s message at any time.

Share recovery for completeness. The key challenge in extend-

ing synchronous to asynchronous VSS is to achieve completeness
stated above. In synchronous VSS, once a valid accusation is re-

ceived, honest nodes can simply abort the sharing by outputting

the failure bit 𝑏 = 0. Under asynchrony, however, an honest node’s

accusation can be delayed arbitrarily, which can be after other hon-

est nodes output their shares. Therefore, the honest node that failed

to receive its valid share needs a way to recover its share. This

problem is solved by the ShareRecovery algorithm (Algorithm 2) of

hbAVSS [41]). In a nutshell, the missing shares can be interpolated

from 𝑓 + 1 honest nodes’ shares.

6 RELATEDWORKS
Verifiable secret-sharing [15, 35] is an essential tool in threshold

cryptography. There has been a lot of research on single-secret

VSS for different network models and different security levels. For

a brief review, existing information-theoretic VSS protocols toler-

ate 𝑓 < 𝑛/3 corruption and cost 𝑂 (𝜅𝑛3) communication both in

synchrony and asynchrony [16]. With computational security, a

synchronous VSS tolerates 𝑓 < 𝑛/2 corruption and cost 𝑂 (𝜅𝑛2)
communication [8], and an asynchronous AVSS tolerates 𝑓 < 𝑛/3
corruption and cost 𝑂 (𝜅𝑛2) communication [3]. Single-secret VSS

has applications including distributed key generation for threshold

signature/encryption [24] and randomness beacons [8, 18]. In some

applications, however, a dealer must share multiple secrets [6, 42].

Such a multi-secret VSS can be solved more efficiently by amor-

tizing some costs over multiple secrets. Here, we review several

existing approaches to achieve multi-secret VSS with linear cost.

Along the way, we also review the polynomial commitments used

in these schemes.

Player-elimination in MPC. The preprocessing phase of MPC

usually involves each node sharing a large number of secrets, typi-

cally proportional to the number of gates in the circuit. Thus, amor-

tizing the sharing cost over multiple secrets is a natural problem in

MPC [5, 17, 25]. The common approach is to detect corrupt nodes

and eliminate them from the execution. The cost of eliminating at

most 𝑓 corrupt nodes is amortized over the remaining honest exe-

cution with linear communication. However, this approach takes

𝑂 (𝑛) rounds and does not work in asynchrony. We also note that

it is unclear if this approach is applicable to standalone VSS.

Packed secret-sharing. Patra et al. [34] presents asynchronous
multi-secret VSS with 𝑂 (𝜅𝐿𝑛 + 𝑛2) communication but tolerates

𝑓 < 𝑛/4 corruption. Their protocol takes the classic packed sharing
approach, namely a linear number of secrets are shared with a

single polynomial. However, this approach inherently sacrifices the

corruption threshold.

IDA-then-accuse. Another natural approach, which we follow

to some extent, is to rely on an information dispersal algorithm

(IDA). Yurek et al. [41] presented an asynchronous multi-secret VSS

with linear communication. The protocol uses a black-box IDA to

disseminate a batch of shares to each node. Nodes then validate

the shares and implicate the dealer upon receiving incorrect shares.

Since the implication is required to contain all the 𝐿 = 𝑂 (𝑛) received
shares, the total communication cost is at least Ω(𝑛3). hbACSS has
several variants depending on the polynomial commitment scheme

used. hbACSS0 and hbACSS2 use a polynomial commitment based

on Bulletproofs [11] and does not need the powers of tau setup. But

the communication cost is Ω(𝜅𝐿𝑛 log𝑛 +𝜅𝑛3) and the commitment

is not homomorphic. hbACSS1 achieves 𝑂 (𝜅𝐿𝑛 + 𝜅𝑛3) using the

original KZG commitment.

Bingo. The closest work to this paper is Bingo [2], an asynchronous
multi-secret VSS with optimal𝑂 (𝜅𝐿𝑛 + 𝜅𝑛2) communication. They

use a bivariate polynomial to share multiple secrets at once with

amortized linear cost per secret. They use the KZG commitment

extended for bivariate polynomials.

The main advantage of this work over Bingo is that we achieve

degree binding without idealized group assumptions. Bingo adopts

the original KZG commitment and proves it is degree-binding (they

call it interpolation binding) under the Algebraic adversary (i.e., in

the AGM). We have eliminated the idealized group assumption of

AGM by separately detecting the high-degree polynomials using

an aggregation of linear-sized commitments as degree proof.

Bingo achieves adaptive security, while our scheme only achieves

static security. Achieving adaptive security with our augmentation

is interesting future work.

Optimistic approach. Optimizing the cost in an optimistic ex-

ecution is another common approach. Basu et al. [4] present a

single-secret VSS protocol with linear communication in failure-

free cases. However, the protocol incurs quadratic communication

in the worst case. The protocol uses the original KZG commitment.

Benhamouda et al. [7] present a synchronous multi-secret VSS pro-

tocol that costs amortized linear communication when the dealer

is honest. When the dealer is malicious, honest nodes’ shares are

opened to everybody, thus costing quadratic communication per

secret.

10

7 DISCUSSION AND CONCLUSION
In this work, we have revisited the security of the KZG commitment

in the use of VSS and pointed out two issues with the original KZG

commitment: 1) it is not proven degree-binding without idealized

group assumptions, and 2) it does not support multiple degrees

with a single setup. We have augmented the KZG commitment to

make it degree-binding and presented a multi-secret VSS protocol

building on our extended KZG commitment. Finally, we discuss

some limitations of our protocols to conclude the paper.

Fault-tolerance limit.Another important question is whether it is

possible to achieve linear communication with optimal corruption

threshold 𝑓 < 𝑛/2 in synchrony. The bottleneck is in disseminating

shares. The classic technique of IDA using erasure coding [12]

(which we also adopt) has a fundamental limit on the threshold.

Specifically, nodes can expect to receive votes from 𝑛 − 𝑓 nodes,

of which 𝑛 − 2𝑓 are honest and forward the assigned code words

that help shareholders recover the original message. We must have

𝑛 − 2𝑓 = Ω(𝑛) to achieve linear communication with this approach.

Computational complexity. Another general problem with the

use of KZG commitment (both in the original and ours) is its com-

putation cost. Computing a witness for each share requires a linear

number of group exponentiation. Some previous works showed

how to compute the witnesses with logarithmic computation cost in

a batch setting [39, 41]. However, their experimental results showed

that it is still costly compared to linear-sized commitment schemes.

So the computation/communication trade-off still exists.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers at ACM CCS 2023

for their helpful feedback. We thank Dahlia Malkhi and Andrew

Miller for valuable discussions related to this paper. This work is

funded in part by the NSF award 2240976.

REFERENCES
[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.

2019. Synchronous Byzantine Agreement with Expected𝑂 (1) Rounds, Expected
𝑂 (𝑛2) Communication, and Optimal Resilience. In Financial Cryptography and
Data Security (FC). Springer, 320–334.

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad

Stern. 2022. Bingo: Adaptively Secure Packed Asynchronous Verifiable Secret

Sharing and Asynchronous Distributed Key Generation. IACR Cryptology ePrint
Archive, Report 2022/1759 (2022).

[3] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. 2021. High-threshold avss

with optimal communication complexity. In Financial Cryptography and Data
Security (FC). Springer, 479–498.

[4] Soumya Basu, Alin Tomescu, Ittai Abraham, Dahlia Malkhi, Michael K Reiter,

and Emin Gün Sirer. 2019. Efficient verifiable secret sharing with share recovery

in BFT protocols. In ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2387–2402.

[5] Zuzana Beerliová-Trubíniová and Martin Hirt. 2008. Perfectly-secure MPC with

linear communication complexity. In Theory of Cryptography Conference (TCC).
Springer, 213–230.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness the-

orems for noncryptographic fault-tolerant distributed computations. In Annual
ACM Symposium on Theory of Computing (STOC). 1–10.

[7] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin.

2022. Threshold Cryptography as a Service (in theMultiserver and YOSOModels).

In ACM SIGSAC Conference on Computer and Communications Security (CCS).
323–336.

[8] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.

2021. Randpiper–reconfiguration-friendly random beacons with quadratic com-

munication. In ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS). 3502–3524.

[9] Dan Boneh and Xavier Boyen. 2008. Short signatures without random oracles

and the SDH assumption in bilinear groups. Journal of Cryptology 21, 2 (2008),

149–177.

[10] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the

Weil pairing. In Annual International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT). Springer, 514–532.

[11] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions

and more. In IEEE Symposium on Security and Privacy (S&P). IEEE, 315–334.
[12] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information

dispersal. In IEEE Symposium on Reliable Distributed Systems (SRDS). IEEE, 191–
201.

[13] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-

tographic protocols. In Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 136–145.

[14] Ran Canetti, Asaf Cohen, and Yehuda Lindell. 2015. A simpler variant of uni-

versally composable security for standard multiparty computation. In Annual
International Cryptology Conference (CRYPTO). Springer, 3–22.

[15] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Ver-

ifiable secret sharing and achieving simultaneity in the presence of faults. In

Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 383–395.
[16] Ashish Choudhury. 2020. Optimally-resilient unconditionally-secure asynchro-

nous multi-party computation revisited. IACR Cryptology ePrint Archive, Report
2020/906 (2020).

[17] Ivan Damgård and Jesper Buus Nielsen. 2007. Scalable and unconditionally

secure multiparty computation. In Annual International Cryptology Conference
(CRYPTO). Springer, 572–590.

[18] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. Spurt: Scal-

able distributed randomness beacon with transparent setup. In IEEE Symposium
on Security and Privacy (S&P). IEEE, 2502–2517.

[19] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-

Kogias, and Ling Ren. 2022. Practical asynchronous distributed key generation.

In IEEE Symposium on Security and Privacy (S&P). IEEE, 2518–2534.
[20] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for

Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656–666.
[21] Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret

sharing. In Annual Symposium on Foundations of Computer Science (FOCS). IEEE,
427–438.

[22] Amos Fiat and Adi Shamir. 1987. How to prove yourself: Practical solutions

to identification and signature problems. In Annual International Cryptology
Conference (CRYPTO). Springer, 186–194.

[23] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The algebraic group model

and its applications. In Annual International Cryptology Conference (CRYPTO).
Springer, 33–62.

[24] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure

distributed key generation for discrete-log based cryptosystems. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT). Springer, 295–310.

[25] Martin Hirt and Jesper Buus Nielsen. 2006. Robust multiparty computation with

linear communication complexity. In Annual International Cryptology Conference
(CRYPTO). Springer, 463–482.

[26] Bin Hu, Zongyang Zhang, Han Chen, You Zhou, Huazu Jiang, and Jianwei Liu.

2022. DyCAPS: Asynchronous Proactive Secret Sharing for Dynamic Committees.

IACR Cryptology ePrint Archive, Report 2022/1169 (2022).
[27] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. In Annual International
Conference on the Theory and Application of Cryptology and Information Security
(ASIACRYPT). Springer, 177–194.

[28] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Polynomial Com-

mitments. (2010). https://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf

[29] Jonathan Katz and Chiu-Yuen Koo. 2009. On expected constant-round protocols

for byzantine agreement. J. Comput. System Sci. 75, 2 (2009), 91–112.
[30] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-

erals Problem. ACM Transactions on Programming Languages and Systems 4, 3
(1982), 382–401.

[31] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket

Kate, and Andrew Miller. 2019. Honeybadgermpc and asynchromix: Practical

asynchronous mpc and its application to anonymous communication. In ACM
SIGSAC Conference on Computer and Communications Security (CCS). 887–903.

[32] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang,

Ari Juels, and Dawn Song. 2019. CHURP: dynamic-committee proactive secret

sharing. In ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2369–2386.

[33] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2014. Signature-

free asynchronous Byzantine consensus with 𝑡 < 𝑛/3 and𝑂 (𝑛2) messages. In

ACM Symposium on Principles of Distributed Computing (PODC). 2–9.

11

https://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf

[34] Arpita Patra, Ashish Choudhury, and C Pandu Rangan. 2010. Communication

efficient perfectly secure VSS and MPC in asynchronous networks with optimal

resilience. In International Conference on Cryptology in Africa (AFRICACRYPT).
Springer, 184–202.

[35] Torben Pryds Pedersen. 2001. Non-interactive and information-theoretic secure

verifiable secret sharing. InAnnual International Cryptology Conference (CRYPTO).
Springer, 129–140.

[36] Michael O Rabin. 1989. Efficient dispersal of information for security, load

balancing, and fault tolerance. Journal of the ACM (JACM) 36, 2 (1989), 335–348.
[37] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300–304.

[38] Victor Shoup and Nigel P Smart. 2023. Lightweight Asynchronous Verifiable

Secret Sharing with Optimal Resilience. IACR Cryptology ePrint Archive, Report
2023/536 (2023).

[39] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,

Guy Golan Gueta, and Srinivas Devadas. 2020. Towards scalable threshold

cryptosystems. In IEEE Symposium on Security and Privacy (S&P). IEEE, 877–893.
[40] Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson Bessani. 2022.

Cobra: Dynamic proactive secret sharing for confidential bft services. In IEEE
Symposium on Security and Privacy (S&P). IEEE, 1335–1353.

[41] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.

2022. hbACSS: How to Robustly Share Many Secrets. In Network and Distributed
System Security Symposium (NDSS).

[42] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. 2022. Long live the

honey badger: Robust asynchronous dpss and its applications. IACR Cryptology
ePrint Archive, Report 2022/971.

A GRADE-CAST FOR A LARGE MESSAGE.
This section presents a concrete protocol for gradecast, which takes

3 rounds and costs 𝑂 (𝐿𝑛 + 𝜅𝑛2) communication to send a message

𝑀 of size 𝐿. The protocol is described in Algorithm 4.

Error correcting code. Our protocol uses Reed-Solomon codes for

error-correcting codes. We review the interface and the property

here. The encoding algorithm takes the message𝑀 consisting of 𝑘

symbols and outputs𝑚 code words:

𝑐1, .., 𝑐𝑚 ← RS.Enc(𝑀,𝑚,𝑘)
The decoding algorithm takes a set 𝑋 of code words with at most 𝑟

errors and decodes the original𝑀 with 𝑘 symbols:

𝑀 ← RS.Dec(𝑘, 𝑟, 𝑋)
It is well-known that the decoding algorithm can correct up to 𝑟

errors if |𝑋 | ≥ 𝑘 + 2𝑟 [37].
Correctness. We show the protocol GC satisfies graded agreement
and consistency below (validity is straightforward).

Lemma A.1 (Graded agreement). If an honest node outputs
(𝑀, 1), then all honest nodes output (𝑀, ∗).

Proof. An honest node outputs a message𝑀 with grade 𝑏 = 1

when the node receives {"vote",H(𝑀)} from 2𝑓 + 1 nodes. At least
𝑓 + 1 of these must be received by all honest nodes, thus they all

have at least grade 𝑏 ≥ 0. So, the rest of the proof shows all honest

nodes can reconstruct the message𝑀 .

Among the 2𝑓 + 1 nodes who sent {"vote",H(𝑀)}, there is a set
𝐻 of at 𝑓 + 1 honest nodes. Each honest node 𝑖 ∈ 𝐻 must have

received the same pair of a code word 𝑐𝑖 and the hash H(𝑀) from
at least 2𝑓 + 1 nodes, out of which at least 𝑓 + 1 are honest. The
𝑓 + 1 honest nodes who sent {𝑐𝑖 ,H(𝑀)} must have received from

the dealer the same message 𝑀 , whose hash matches ℎ = H(𝑀),
and sent every code word 𝑐 𝑗 to the assigned node 𝑗 , which is then

forwarded by the node 𝑗 if honest. Therefore each honest node

receives a set 𝑋 of at least 2𝑓 + 1 code words of 𝑀 with at most

GC – Grade-cast

A dealer D has a message𝑀 to send to all nodes.

• Round 1. The dealer D sends𝑀 to all nodes.

• Round 2. If node 𝑖 receives a single message 𝑀 from the

dealer, then generates

𝑐1, .., 𝑐𝑛 ← RS.Enc(𝑀,𝑛, 𝑓 + 1)
and send {𝑐 𝑗 ,H(𝑀)} to each node 𝑗 .

• Round 3. If node 𝑖 receives {𝑐, ℎ} from𝑚 > 𝑓 nodes, then 𝑖

forwards it to all nodes in 𝑅. If𝑚 > 2𝑓 , then 𝑖 also sends

{"vote", ℎ} to all nodes.

• At the end of round 3. If node 𝑖 receives {"vote", ℎ} from
𝑚 > 2𝑓 nodes, then node 𝑖 sets 𝑏 = 1. If 𝑓 < 𝑚 ≤ 2𝑓 then

𝑏 = 0. If𝑚 > 𝑓 , reconstruct𝑀 by invoking

𝑀 ← RS.Dec(𝑓 + 1, 𝑟 , 𝑋)
where 𝑋 is the set of more than 2𝑓 code words received

with the same hash, and 𝑟 = |𝑋 | − (2𝑓 + 1). If H(𝑀) = ℎ,

then 𝑖 outputs𝑀 with grade 𝑏.

Figure 4: Gradecast with linear communication.

𝑟 = |𝑋 | − (2𝑓 + 1) possible error, thus reconstructing the message

𝑀 . □

Lemma A.2 (Consistency). If two honest nodes output (𝑀, ∗) and
(𝑀′, ∗), then𝑀 = 𝑀′.

Proof. Suppose for contradiction, two honest nodes output

different messages𝑀 and𝑀′. An honest node outputs a message

𝑀 when the node receives {"vote",H(𝑀)} from at least 𝑓 + 1 nodes,
out of which at least one node must be honest. The honest node

who sent {"vote",H(𝑀)} must have received the same code word 𝑐

and the hashH(𝑀) from a set𝑇 of at least 2𝑓 +1 nodes. By the same

logic, there is a set 𝑇 ′ of 2𝑓 + 1 nodes who sent the hash H(𝑀′)
along with the codes of 𝑀′. The two sets 𝑇 and 𝑇 ′ have at least
𝑓 + 1 intersection, out of which at least one node must be honest.

However, an honest node sends a hash only if it receives a single

message. Therefore, an honest node could not have sent both H(𝑀)
and H(𝑀′); a contradiction. □

B DEGREE BINDING AND PDH ASSUMPTION
In §3, we have explained the strong correctness property [28] proven
under the PDH assumption is insufficient and provided a degree

binding property as a sufficient alternative. We observe that with

our definition of degree binding, the proof based on the PDH as-

sumption does not apply. To clarify, let us review the definition of

the PDH assumption below (refer to Definition 2 in [27]).

Definition B.1 (𝑡-PDH Assumption.). Let 𝜏 ∈ Z∗𝑞 be a randomly

chosen value. For any PPT adversary A, the probability

Pr[A([𝑔,𝑔𝜏 , .., 𝑔𝜏
𝑡

]) → (𝜙 (·), 𝑔𝜙 (𝜏))]
is negligible for any polynomial 𝜙 (·) ∈ Z𝑞 [𝑥] s.t. the degree 𝑑

satisfies 𝑡 < 𝑑 < 2
𝜅
.

12

The above definition says the PDH problem (i.e., computing

the polynomial 𝜙 (·) and the commitment 𝑔𝜙 (𝜏)) is hard to solve

for any degree 𝑑 . To carefully look into the definition, when the

degree is of super polynomial, i.e., 𝑑 = 𝜔 (poly(𝜅)), the statement

is trivially true since the representation of the solution 𝜙 (·) is of
super polynomial-sized. However, it does not imply the hardness of

computing a moderate number (i.e., polynomial in 𝜅) of evaluations

on the polynomial 𝜙 (·) of super-polynomial degree, which must

be also excluded with our degree binding. Therefore, the PDH

assumption does not apply to the proof of degree binding.

C DPSS WITH CONSTANT-ROUND EPOCH
In this section, we design a dynamic-committee proactive secret-

sharing (DPSS) building on our multi-secret VSS. Our protocol

always completes the secret handover in 𝑂 (1) round and costs

𝑂 (𝜅𝑛3) communication. The reconfiguration-friendly nature of our

augmented KZG commitment allows our protocol to re-size the

committee over repeated handovers without redoing the powers of

tau setup.

Definition. DPSS [32] allows one committee to hand over a shared

secret to another committee. The repetition of the handover allows

the system to keep the shared secret available while changing the

responsible members. The classic definition of proactive secret-

sharing assumes each committee shares a secret over a unique

polynomial. Specifically, each node 𝑖 in the old committee 𝑅 holds

a share 𝑠𝑖 = 𝜙 (𝑖) over a single polynomial 𝜙 (·), and the handover

protocol allows each node 𝑗 in the new committee 𝑅′ to receive

a share 𝑠 𝑗 = 𝜙 ′ (𝑗) over a new polynomial 𝜙 ′ (·) sharing the same

secret 𝜙 ′ (0) = 𝜙 (0). However, this definition implicitly assumes

consensus on the unique random polynomial 𝜙 ′ (·). This makes

all existing DPSS protocols [26, 32, 40, 42] incur Ω(𝑛) or Ω(𝜅)
round to complete the handover in the worst case, during which

the committee must stay online. To avoid this, we let a committee

hold multiple polynomials (sharing the same secret). We give a

more formal definition below.

Let 𝑅 and 𝑅′ be two (possibly joint) sets of 𝑛 nodes, where at

most 𝑓 < 𝑛/3 nodes are corrupt in each committee. Each node 𝑖 ∈ 𝑅
inputs a vector 𝒔𝑖 = [𝜙1 (𝑖), .., 𝜙𝑛 (𝑖)] of𝑛 shareswhere𝜙1 (·), .., 𝜙𝑛 (·)
are polynomials of degree 𝑓 and share the same secret (i.e., there

is a unique secret 𝑧 and 𝜙𝑘 (0) = 𝑧 for all 𝑘 ∈ [𝑛]). We also allow

some node 𝑖 to include an empty share 𝑠𝑖,𝑘 = ⊥ for some entry

𝑘 ∈ [𝑛]. After running the handover protocol, each node 𝑗 ∈ 𝑅′

outputs a vector 𝒔 𝑗 = [𝜙 ′
1
(𝑖), .., 𝜙 ′𝑛 (𝑖)] of 𝑛 shares over new random

polynomials 𝜙 ′
1
(·), .., 𝜙 ′𝑛 (·) that shares the same secret 𝑧. To make

sure an available (i.e., recoverable by honest nodes) secret in 𝑅 is

always available in committee 𝑅′, we also require the following

property.

• If there exists an entry 𝑘 ∈ [𝑛] s.t. all honest node 𝑖 ∈ 𝑅 holds

𝑠𝑖,𝑘 ≠ ⊥, then 𝑠 𝑗,𝑙 ≠ ⊥ for all honest 𝑗, 𝑙 ∈ 𝑅′.
We also assume each node 𝑖 when it inputs(outputs) a share

𝜙𝑘 (𝑖) also inputs(outputs) the KZG witness and the commitment.

Resizable committee.Asmentioned, our DPSS protocol can easily

support changing committee size and the corruption threshold

over repeated handovers. Specifically, our protocol can support

any number of nodes 0 < 𝑛 ≤ 𝑚 in each committee (as long as

up to 𝑓 < 𝑛/3 are corrupt) under the availability of a structured

reference string [𝑔,𝑔𝜏 , .., 𝑔𝜏𝑚] for a random 𝜏 ∈ Z∗𝑞 . Therefore, it
is also allowed that 𝑅 and 𝑅′ have different numbers of nodes. For

simplicity of presentation, we assume they are both 𝑛 nodes.

Empty share. In our DPSS, it is possible that an honest node’s

share 𝒔𝑖 includes an empty share 𝑠𝑖,𝑘 = ⊥ for some entry 𝑘 ∈ [𝑛].
Looking ahead, this results in an honest node sharing an empty

value ⊥. For technical reasons, we consider ⊥ as a share over an

empty polynomial for any index 𝑖 ∈ [𝑛].
Lagrange coefficient. We use the notation 𝜆𝑘 to denote the La-

grange coefficient for index𝑘 to interpolate a polynomial evaluation

on index 0. Specifically, for a set𝑇 of indices (used for interpolation),

the Lagrange coefficient for index 𝑘 ∈ 𝑇 is described as

𝜆𝑘 =
∏

𝑖∈𝑇 \𝑘

𝑖

𝑖 − 𝑘 .

We omit to mention 𝑇 when it is clear from the context.

C.1 Our Protocol
Our DPSS protocol is described in Figure 5. We elaborate on the

intuition below.

DPSS from leader-aided handover. For ease of understanding,
let us first consider a solution to the classic DPSS definition where

each committee holds a single polynomial. Assuming a consensus

protocol, we can design a simple handover protocol using the classic

re-sharing share technique [6]. Specifically, each member 𝑖 ∈ 𝑅 of

the old committee re-shares its share 𝑠𝑖 = 𝜙 (𝑖) by invoking VSS (let
us denote VSS𝑖). Let𝑇 ⊂ 𝑅 be an agreed-on set of 𝑓 +1 nodes whose
VSS were successful. Each member 𝑗 ∈ 𝑅′ of the new committee

can compute its new share 𝑠 𝑗 as follows

𝑠 𝑗 = 𝜙 ′ (𝑗) =
∑︁
𝑖∈𝑇

𝜆𝑖 ·𝜓𝑖 (𝑗)

where𝜓𝑖 (𝑗) is the share received fromVSS𝑖 . The secret𝜙 ′ (0) shared
over the new polynomial is an interpolation from 𝜓𝑖 (0) = 𝜙 (𝑖)
for all 𝑖 ∈ 𝑇 , thus matches the original secret 𝜙 (0). All of the
coefficients of 𝜙 ′ (·) except for dimension zero are defined by the

coefficients of the 𝑓 + 1 polynomials, which include at least one

random polynomial chosen by an honest node. Thus an adversary

cannot determine honest nodes’ shares. The communication cost is

𝑂 (𝜅𝑛3) as we have 𝑛 single-secret VSSs each of them costs at least

𝑂 (𝑛2) communication.

Back to our problem with the constant-round limit, we cannot

agree on any single bit. Since we have exponentially many possible

choices of 𝑇 , nodes cannot compute shares over an agree-on poly-

nomial. To address this issue, we let each member 𝑖 ∈ 𝑅′ of the new
committee serve as a leader and choose its own set 𝑇𝑖 . This results

in a committee holding 𝑛 polynomials defined by 𝑇1, ..,𝑇𝑛 . Now,

since each node 𝑘 ∈ 𝑅 inputs 𝑛 shares, the leader 𝑖 also designates

the index 𝑙 . Then, the 𝑖-th share of node 𝑗 ∈ 𝑅′ is computed as

𝑠 𝑗,𝑖 =
∑︁
𝑘∈𝑇𝑖

𝜆𝑘 ·𝜓𝑘,𝑙 (𝑗) .

where𝜓𝑘,𝑙 (·) is the polynomial used for 𝑙-th sharing of VSS𝑘 (i.e.,

for sharing 𝜙𝑙 (𝑖)). Here, since we have 𝑛 parallel handovers in each

epoch, we have 𝑛2 total secret-sharing. However, as each node has

13

Each node 𝑖 ∈ 𝑅 inputs (𝒔𝑖 ,𝒘𝑖 , 𝒗).

// Round 1–7
Re-share. Each node 𝑖 ∈ 𝑅 starts re-sharing its share 𝒔𝑖 with
the new committee 𝑅′ by invoking VSS𝑖 .

Share-proof. Let𝜓𝑖,𝑘 (·) be the polynomial used to share 𝑠𝑖,𝑘 in

VSS𝑖 and 𝜂𝑖,𝑘 is the witness for𝜓𝑖,𝑘 (0). Node 𝑖 also sends to all

of the members of the new committee 𝑅′

share-proof𝑖 := (𝒗,𝒘𝑖 , 𝝁𝑖 ,𝜼𝑖)

by invoking gradecast GC𝑖 , where 𝝁𝑖 = [𝑔𝑠𝑖,1 , .., 𝑔𝑠𝑖,𝑛] and
𝜼𝑖 = [𝜂𝑖,1, .., 𝜂𝑖,𝑛].

// Round 8–10.
Verify share-proof. Each node 𝑗 ∈ 𝑅′ verifies share-proof𝑖 re-
ceived from GC𝑖 by checking that for all 𝑘 ∈ [𝑛], the committed

share 𝑠𝑖,𝑘 (i.e., 𝜇𝑖,𝑘 = 𝑔𝑠𝑖,𝑘) satisfies

VerifyEval(𝑣𝑘 , 𝑖, 𝑠𝑖,𝑘 ,𝑤𝑖,𝑘) = 1

VerifyEval(𝑢𝑖,𝑘 , 0, 𝑠𝑖,𝑘 , 𝜂𝑖,𝑘) = 1

where 𝑢𝑖,𝑘 is the commitment to𝜓𝑖,𝑘 (·) received during VSS𝑖 .

Choose polynomials. Each node 𝑗 ∈ 𝑅′ chooses a set of 𝑓 + 1
indices 𝑇𝑗 ⊂ [𝑛] and an index 𝑙 ∈ [𝑛] that satisfies both of the

following.

(1) For all 𝑘 ∈ 𝑇𝑗 , VSS𝑘 has outputted (𝒔 𝑗,𝑘 , �̂� 𝑗,𝑘 , 𝒗𝑘) with suc-

cess bit 𝑏 = 1 s.t. the (𝑠 𝑗,𝑘,𝑙 , �̂� 𝑗,𝑘,𝑙 , 𝑣𝑘,𝑙) ≠ ⊥ (i.e., the 𝑙-th

share is not a share over an empty polynomial).

(2) There is a commitment 𝑣 , and for all 𝑖 ∈ 𝑇𝑗 , GC𝑖 has out-

putted with grade 𝑏 = 1 a verified share-proof𝑖 that includes
𝒗 = [.., 𝑣𝑙 = 𝑣, ..] (i.e., the 𝑙-th commitment is 𝑣).

then, sends (𝑇𝑗 , 𝑙) to all members of the new committee 𝑅′ by
invoking a gradecast GC′

𝑗
.

// At the end of round 10.
New shares. Each node 𝑗 ∈ 𝑅′ verifies, for each 𝑖 ∈ [𝑛], the
output (𝑇𝑖 , 𝑙) from GC′

𝑖
by checking that

(1) For all 𝑘 ∈ 𝑇𝑖 , VSS𝑘 has outputted a share (𝒔 𝑗,𝑘 , �̂� 𝑗,𝑘 , 𝒗𝑘) s.t.
(𝑠 𝑗,𝑘,𝑙 , �̂� 𝑗,𝑘,𝑙 , 𝑣𝑘,𝑙) ≠ ⊥.

(2) There is a commitment 𝑣 , and for all 𝑘 ∈ 𝑇𝑖 , share-proof𝑘 is

verified and includes 𝒗 = [.., 𝑣𝑘,𝑙 = 𝑣, ..].
Then, computes the new shares 𝒔 𝑗 = [𝑠 𝑗,1, .., 𝑠 𝑗,𝑛], the commit-

ments 𝒗 = [𝑣1, .., 𝑣𝑛] and the witnesses𝒘 𝑗 = [𝑤 𝑗,1, ..,𝑤 𝑗,𝑛]. For
𝑖 ∈ [𝑛] with verified {𝑇𝑖 , 𝑙},

𝑠 𝑗,𝑖 =
∑︁
𝑘∈𝑇𝑖

𝜆𝑘 · 𝑠 𝑗,𝑘,𝑙 , 𝑣𝑖 =
∏
𝑘∈𝑇𝑖

𝑣
𝜆𝑘
𝑘,𝑙
, 𝑤 𝑗,𝑖 =

∏
𝑘∈𝑇𝑖

�̂�
𝜆𝑘
𝑗,𝑘,𝑙

otherwise 𝑠 𝑗,𝑖 , 𝑣𝑖 ,𝑤 𝑗,𝑖 ← ⊥.
Node 𝑗 outputs the new share (𝒔 𝑗 ,𝒘 𝑗 , 𝒗)

Figure 5: Our DPSS protocol with constant-round handover.

𝐿 = 𝑛 shares to re-share, we can use our multi-secret VSS protocol

with 𝑂 (𝜅𝑛2) total communication, thus the overall communication

cost is still 𝑂 (𝜅𝑛3).
Validate shares. When a node 𝑖 ∈ 𝑅 re-shares its share 𝑠𝑖,𝑘 =

𝜙𝑘 (𝑖), it must prove that the shared secret𝜓𝑖,𝑘 (0) (in VSS𝑖) matches

the original share 𝜙𝑘 (𝑖). To this end, the node 𝑖 also sends (via a

gradecast) share-proof𝑖 that contains a committed share 𝜇𝑖,𝑘 = 𝑔𝑠𝑖,𝑘 ,

the witness 𝜂𝑖,𝑘 for𝜓𝑖,𝑘 (0), as well as the commitment 𝑣𝑘 to 𝜙𝑘 (·)
and the witness𝑤𝑖,𝑘 for 𝜙𝑘 (𝑖). Each of the new committee members

verifies the share-proof𝑖 by checking that

VerifyEval(𝑣𝑘 , 𝑖, 𝑠𝑖,𝑘 ,𝑤𝑖,𝑘) = 1

VerifyEval(𝑢𝑖,𝑘 , 0, 𝑠𝑖,𝑘 , 𝜂𝑖,𝑘) = 1

where 𝑢𝑖,𝑘 is the commitment to𝜓𝑖,𝑘 (·) received during VSS𝑖 . Here,
note that node 𝑗 only knows the committed share 𝑔𝑠𝑖,𝑘 (rather

than the share 𝑠𝑖,𝑘 itself). However, recall that the verification in

VerifyEval is in pairing [27]. Thus, it can be done without knowing

the 𝑠𝑖,𝑘 . Specifically, checking that VerifyEval(𝑣, 𝑖, 𝑠,𝑤) = 1 for 𝜇 =

𝑔𝑠 can be done by verifying the following equality

𝑒 (𝑔, 𝑣) = 𝑒 (𝑤,𝑔𝜏−𝑖) · 𝑒 (𝜇, 𝑔) .
where 𝑒 is the pairing.

C.2 Correctness Proof
We prove the correctness of our DPSS protocol. Let 𝑧 be the secret

shared by the old committee 𝑅. Namely, 𝜙𝑘 (0) = 𝑧 for all 𝑘 ∈ [𝑛].
We first show that if an honest node 𝑗 ∈ 𝑅′ in the new committee

outputs a share 𝑠 𝑗,𝑘 , then it is a share 𝜙 ′
𝑘
(𝑗) over a unique degree-𝑓

polynomial 𝜙 ′
𝑘
(·) of the same secret 𝜙𝑘 (0) = 𝑧.

Lemma C.1. There exists 𝑛 polynomials 𝜙 ′
1
(·), .., 𝜙 ′𝑛 (·) all with

degree-𝑓 and 𝜙 ′
𝑘
(0) = 𝑧 for all 𝑘 ∈ [𝑛] s.t. if an honest node 𝑗 ∈ 𝑅′

outputs a share 𝒔 𝑗 , then 𝑠 𝑗,𝑘 = 𝜙 ′
𝑘
(𝑗) or ⊥.

Proof. Due to the commitment property of VSS, if an honest

node 𝑗 ∈ 𝑅′ in the new committee outputs (𝒔 𝑗,𝑖 , �̂� 𝑗,𝑖 , 𝒗𝑖) from VSS𝑖 ,
then for each 𝑘 ∈ [𝑛], (𝑠 𝑗,𝑖,𝑘 , �̂� 𝑗,𝑖,𝑘 , 𝑣𝑖,𝑘) is a share for node 𝑗 over

a unique degree-𝑓 polynomial𝜓𝑖,𝑘 (·). Each node 𝑗 ∈ 𝑅′ computes

the output (𝑠 𝑗,𝑖 ,𝑤 𝑗,𝑖 , 𝑣𝑖) for each 𝑖 ∈ [𝑛] based on the set 𝑇𝑖 of

indices and an index 𝑙 ∈ [𝑛] proposed by 𝑖 ∈ 𝑅 via GC′
𝑖
. Due to

the consistency of GC, all honest nodes receive the same (𝑇𝑖 , 𝑙).
An honest node 𝑗 ∈ 𝑅′ computes the output (𝑠 𝑗,𝑖 ,𝑤 𝑗,𝑖 , 𝑣𝑖) ≠ ⊥
after verifying that for all 𝑘 ∈ 𝑇𝑖 , share-proof𝑘 is verified and

includes the same commitment 𝑣𝑘,𝑙 = 𝑣 . Since at least one of 𝑇𝑖
must be honest, 𝑣 is the commitment to 𝜙𝑙 (·). The verification

of share-proof𝑘 = (𝒗,𝒘𝑘 , 𝝁𝑘 ,𝜼𝑘) makes sure that 𝜇𝑘,𝑙 = 𝑔𝜙𝑙 (𝑘)

(by the first condition), and further (by the second condition) that

𝜓𝑘,𝑙 (0) = 𝜙𝑙 (𝑘). Therefore, there is a polynomial uniquely defined

by the set of indices 𝑇𝑖

𝜙 ′𝑖 (·) =
∑︁
𝑘∈𝑇𝑖

𝜆𝑘 ·𝜓𝑘,𝑙 (·) (𝜙 ′𝑖 (0) = 𝑧)

14

and the new share (𝑠 𝑗,𝑖 ,𝑤 𝑗,𝑖 , 𝑣𝑖) will be

𝑠 𝑗,𝑖 =
∑︁
𝑘∈𝑇𝑖

𝜆𝑘 · 𝑠 𝑗,𝑘,𝑙 = 𝜙 ′𝑖 (𝑗)

𝑣𝑖 =
∏
𝑘∈𝑇𝑖

𝑣
𝜆𝑘
𝑘,𝑙

= 𝑔𝜙
′
𝑖 (𝜏)

𝑤 𝑗,𝑖 =
∏
𝑘∈𝑇𝑖

�̂�
𝜆𝑘
𝑗,𝑘,𝑙

= 𝑔
𝜙′
𝑖
(𝜏)−𝜙′

𝑖
(𝑗)

𝜏− 𝑗

Therefore, if the node 𝑗 computes a new share (𝑠 𝑗,𝑖 ,𝑤 𝑗,𝑖 , 𝑣𝑖) ≠ ⊥,
then it must be the share on the polynomial 𝜙 ′

𝑖
(·) uniquely defined

by the set 𝑇𝑖 . □

Finally, we show that an available secret among 𝑅 is also always

available among 𝑅′.

Lemma C.2. If there exists an entry 𝑘 ∈ [𝑛] s.t. all honest node
𝑖 ∈ 𝑅 inputs 𝑠𝑖,𝑘 ≠ ⊥, then 𝑠 𝑗, 𝑗 ′ ≠ ⊥ for all honest 𝑗, 𝑗 ′ ∈ 𝑅′.

Proof. The honest node 𝑗 ∈ 𝑅 computes 𝑠 𝑗, 𝑗 ′ based on the set

𝑇𝑗 ′ proposed by the honest node 𝑗 ′ ∈ 𝑅. When the node 𝑗 ′ chooses
its 𝑇𝑗 ′ and 𝑙 , it checks that (for all 𝑘 ∈ 𝑇𝑗 ′) VSS𝑘 has outputted

with success bit 𝑏 = 1 the share (𝒔 𝑗 ′,𝑘 , �̂� 𝑗 ′,𝑘 , 𝒗𝑘) the 𝑙-th entry non-

empty (𝑠𝑖,𝑘,𝑙 , �̂�𝑖,𝑘,𝑙 , 𝑣𝑘,𝑙) ≠ ⊥. Due to guaranteed output of VSS𝑘 ,
the honest node 𝑗 must receive a share (𝑠 𝑗,𝑘,𝑙 , �̂� 𝑗,𝑘,𝑙 , 𝑣𝑘,𝑙) ≠ ⊥.
Moreover, the node 𝑗 ′ must have received a verified share-proof𝑘
with grade 𝑏 = 1 from GC𝑘 . Due to the graded consistency of GC,

the share-proof𝑘 is also received and verified by node 𝑗 . Therefore,

if the node 𝑗 ′ can compute 𝑇𝑗 ′ and 𝑙 , then node 𝑗 can compute the

share (𝑠 𝑗, 𝑗 ′ ,𝑤 𝑗, 𝑗 ′ , 𝑣 𝑗 ′) ≠ ⊥.
The rest of the proof shows that the honest node 𝑗 ′ can always

compute𝑇𝑗 ′ and 𝑙 . Let𝑇 ⊂ 𝑅 be a set of 𝑓 +1 honest nodes. Each node
𝑖 ∈ 𝑇 honestly shares 𝑠𝑖,𝑘 ≠ ⊥ via VSS𝑖 , which makes 𝑗 ′ receive
(𝑠 𝑗 ′,𝑖,𝑘 , �̂� 𝑗 ′,𝑖,𝑘 , 𝑣𝑖,𝑘) ≠ ⊥ with success bit 𝑏 = 1 (due to the validity

property of VSS). Node 𝑖 also honestly sends a verified share-proof𝑖
viaGC𝑖 , making node 𝑗 ′ receive share-proof𝑖 with grade 𝑏 = 1 (due

to the validity property of GC) and verify it. Therefore, node 𝑗 ′ can
choose 𝑇𝑗 ′ = 𝑇 and 𝑙 = 𝑘 . □

15

	Abstract
	1 Introduction
	2 Model and Preliminaries
	2.1 Multi-secret VSS
	2.2 KZG commitment
	2.3 Other primitives

	3 Overview
	3.1 Degree-binding KZG Commitment for Multiple Polynomials
	3.2 Multi-Secret VSS with Optimal Communication

	4 Degree Binding KZG Commitment
	5 Multi-Secret VSS with Optimal Communication
	5.1 Our Protocol
	5.2 Correctness Proof
	5.3 Secrecy Proof
	5.4 Reducing Computational Overhead
	5.5 Extension to Asynchronous VSS

	6 Related Works
	7 Discussion and Conclusion
	Acknowledgments
	References
	A Grade-cast for a large message.
	B Degree binding and PDH Assumption
	C DPSS with Constant-Round Epoch
	C.1 Our Protocol
	C.2 Correctness Proof

