
Riggs: Decentralized Sealed-Bid Auctions
Nirvan Tyagi

Cornell University

Arasu Arun

New York University

Cody Freitag

Cornell Tech

Riad Wahby

Carnegie Mellon University

Cubist

Joseph Bonneau

New York University

a16z crypto research

David Mazières

Stanford University

ABSTRACT
We introduce the first practical protocols for fully decentralized

sealed-bid auctions using timed commitments. Timed commitments

ensure that the auction is finalized fairly even if all participants drop

out after posting bids or if 𝑛 − 1 bidders collude to try to learn the

𝑛th bidder’s bid value. Our protocols rely on a novel non-malleable

timed commitment scheme which efficiently supports range proofs

to establish that bidders have sufficient funds to cover a hidden

bid value. This allows us to penalize users who abandon bids for

exactly the bid value, while supporting simultaneous bidding in

multiple auctions with a shared collateral pool. Our protocols are

concretely efficient and we have implemented them in an Ethereum-

compatible smart contract which automatically enforces payment

and delivery of an auctioned digital asset.

1 INTRODUCTION
Sealed-bid auctions are an important tool in auction design. The

most well-known format is the sealed-bid second-price auction, also
known as a Vickrey auction in honor of Vickrey’s Nobel prize–

winning 1961 work formalizing the concept [Vic61] (though such

auctions were regularly used in practice in the 19
th

century [LR00],

well before Vickrey’s work). In a classic (offline) Vickrey auction, a

group of 𝑛 bidders privately submits bids to a trusted auctioneer,

who awards the good to the highest bidder at the price of the second-

highest bid submitted. Vickrey showed that, in an idealized model,

bidders in this auction format are incentivized to bid their true

valuation of the good and the resulting sale price is equivalent to

that produced by the more commonly used open-bid ascending-

price auction (or English auction).
Vickrey auctions only require one round of communication, a

compelling efficiency advantage over English auctions which can

require an extended bidding period to discover the winning price.

Vickrey auctions also have a privacy advantage: only the auctioneer

need see bid values. English auctions inherently require publicizing

bids to enable price discovery.

Despite these advantages, Vickrey auctions have remained far

less common in practice. Rothkopf et al. [RTK90] argued in 1990

that two key issues prevented more widespread use: concerns about

cheating by the trusted auctioneer and concerns by bidders about

revealing their true valuations. For example, just this year, Google

is being sued by the US Justice department for “anticompetitive

auction manipulation” [Goo23].

In 1993, Nurmi and Salomaa [NS93] first proposed using cryp-

tography to prevent cheating by the auctioneer and limit public

revelation of bids. Franklin and Reiter [FR96] proposed the first

complete cryptographic protocol for sealed-bid auctions, relying

on an honest majority of auctioneers to ensure honest behavior.

Sealed-bid auctions have since motivated a diverse cryptographic

literature with dozens of proposed protocols, covering many differ-

ent auction formats and privacy models (for a survey see Alvarez

and Nojoumian [AN20]). Generically, the auction process can be

cast as a secure multi-party computation problem between the bid-

ders [NPS99]; MPC was famously deployed in a real 2009 auction

for Danish sugar beets [BCD
+
09].

Prior to the advent of blockchains, all of these protocols suf-

fered from a fundamental limitation that the cryptographic proto-

col could only compute the correct sale price but not enforce that

the winning bidder actually pays (nor that the item is delivered as

promised). Blockchains with a sufficiently powerful smart contract

environment can facilitate a fully decentralized auction by enforcing
payment and even enforcing delivery for certain types of digital

goods (e.g., NFTs). Unsurprisingly, cryptographic auctions were

quickly suggested as an example application for smart-contract

enabled blockchains [KMS
+
16, BK18].

The typical structure sees users post cryptographic commit-

ments to the blockchain to bind them to a (hidden) bid value. Users

then reveal their bids after all commitments have been published.

However, blockchains cannot force any user to reveal their com-

mitted bid. Bidders can be incentivized to open their bid via penal-

ties [ADMM14, KZZ16] or required to provide enough information

for a majority of other bidders to reconstruct their bid [BK18]. But

these approaches are complex in practice, requiring either careful

reasoning about the size of penalties required to incentivize cor-

rect behavior or opening the auction up to attack by a dishonest

majority of participants.

In this work, we refine the approach of implementing sealed-bid

auctions using timed commitments, as first proposed by Boneh and

Naor [BN00]. With timed commitments, a participant’s bid can be

recovered without the participant’s cooperation, by computing a

slow function which forces open their commitment. This approach

guarantees that the auction can be fairly concluded even if all

parties drop out or if 𝑛 − 1 bidders collude. The slowness of the

force-opening algorithm is necessary to ensure bidders cannot learn

others’ bids in time to adjust their own bidding strategy.

The basic proposal of Boneh and Naor does not achieve fully

decentralized auctions, however, as it does not defend against bid-

ders placing bids they cannot afford. This problem is more than

merely a nuisance: a malicious bidder can manipulate their balance

during the bid-opening phase to back out of a bid by nullifying their

ability to pay. Such manipulation has implications on the credibility
of an auction [AL20] in which a set of bidders may collude with

the seller to bias auction results. In this work, we extend timed

commitment–based techniques to the fully decentralized sealed-

bid setting. Specifically, we develop new techniques for efficient

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

proofs that a bid sealed via a timed commitment is fully backed

by a bidder’s available funds, while keeping the actual bid amount

private. Our proposed solutions (which we collectively call Riggs)

support concurrent bids on multiple asynchronous auctions and

are extensible to any auction design in the sealed bid setting. This

includes not just second-price Vickrey auctions, but also, for exam-

ple, generalized 𝑘 + 1st price multi-good auctions or multi-round

simultaneous ascending auctions as used by the FCC for wireless

spectrum [GV99].

We implement our designs in Rust and build a compatible smart

contract implementation in Solidity that adheres to existing token

standards and can be deployed on the Ethereum blockchain to inter-

act with the NFT and token ecosystems. The cost to generate a bid

in our Rust implementation is 71 ms; the cost to validate that bid in

our Ethereum smart contract implementation is roughly 2.5 million

gas. While the latter is expensive (≈$134 on Ethereum at time of

writing), we believe that these costs will decrease substantially in

the future; we discuss in Section 7.

To summarize, our contributions are:

• Introducing the threat model for a fully decentralized auc-

tion and uncovering weaknesses in folklore proposals for the

setting.

• Construction of a new non-malleable timed commitment

scheme that efficiently supports range proofs. With practical-

ity in mind, we design and prove our scheme secure in the

random oracle model. Thus, even when used without range

proofs, our timed commitment scheme is the most efficient

that we are aware of.

• Design of the Riggs-RP and Riggs-TC variants of an auction

protocol for the decentralized setting.

• Implementation and evaluation of our protocols in a native

Rust implementation and a compatible smart contract imple-

mentation deployable on the Ethereum blockchain.

2 BACKGROUND AND PRELIMINARIES

Prime-order cyclic groups.We denoteG as a cyclic group of prime
order. Looking forward, the group will be selected to have order 𝑝
determined by the range of valid bids and a security parameter 𝜆.
We denote canonical generators of the group as 𝑔 and ℎ, and we

assume an efficient setup algorithm that on input security parameter

𝜆, generates a group, (𝑝,G, 𝑔, ℎ) ←$ GGen(𝜆), where ∥𝑝∥ = 𝜆. The
discrete log of 𝑔 is not known with respect to ℎ.

Pedersen commitments. A Pedersen commitment [Ped91] com-

mits to a message m ∈ Z𝑝 in a commitment com = 𝑔mℎ𝛼 in a

prime-order cyclic group for a random 𝛼←$ Z𝑝. The commitment

com can be opened to revealm by providing opening proof 𝛼 and

m. The commitment is hiding and binding meaning no information

aboutm is revealed through com and it is infeasible for computa-

tionally bounded adversaries to open com to any value other than

m. Pedersen commitments have a convenient additive homomorphic
property that we will take advantage of. That is, two commitments,

com1 = 𝑔m1ℎ𝛼1
and com2 = 𝑔m2ℎ𝛼2

can be combined to com-

pute com← com1 · com2 that opens to m1 +m2 using opening

𝛼1 + 𝛼2.

RSA groups. A strong RSA group is the multiplicative group of in-

vertible integersmodulo𝑁 (denotedZ∗
𝑁

= {𝑥 ∈ Z𝑁 : gcd(𝑥,𝑁) =
1}), where 𝑁 is the product of two safe primes 𝑞1, 𝑞2 (i.e., such

that
𝑞1−1
2 and

𝑞2−1
2 are also prime). We define the group of RSA

quadratic residues for 𝑁 as QR𝑁 = {𝑥2 mod 𝑁 : 𝑥 ∈ Z∗
𝑁
},

and the signed quadratic residues as QR+𝑁 = {|𝑥| : 𝑥 ∈ QR𝑁 }. In
QR+𝑁 , the elements 𝑁 − 𝑥 and 𝑥 are equivalent, so the group can

be represented by integers in the interval [1, ⌊𝑁2 ⌋]. Furthermore,

all elements can be efficiently tested for membership and all ele-

ments (except for 1) are part of subgroups of size >
𝜙(𝑁)

4 , where

𝜑(·) is the Euler totient function. For this reason, we will use the
group G = QR+𝑁 \ {1}, for which we assume a setup algorithm,

(𝑞1, 𝑞2, 𝑁,G, 𝑔, ℎ) ←$ RSAGGen(𝜆) where ∥𝑞1∥ = ∥𝑞2∥ = 𝜏 (𝜆);
and 𝜏 (𝜆) is defined such that factoring 𝑁 takes time 2𝜆. We refer

to [Pie19, MT19] for more details.

Timed commitments. A timed commitment [BN00] (or similar

time-lock puzzle [RSW96]) commits to a message m in a commit-

ment com such that the message is hidden, but can be force-opened

by any party by performing a sequential amount of work deter-

mined by some delay parameter 𝑡. Timed commitments can be

created and opened efficiently by the committer (requiring at most

𝑂(lg 𝑡) work). Furthermore, if a commitment is force-opened, an

efficiently-verifiable proof of opening can be provided.

Most timed-commitment protocols rely on the decisional re-

peated squaring problem [RSW96]: given 𝑔 ∈ G, it is hard to dis-

tinguish 𝑧 = 𝑔2
𝑡
from random without executing a computation of

sequential depth at least 𝑡. This problem is believed to be as hard as

computing the order of the group (for an RSA group, factoring 𝑁);

this has been proven in generic computation models [KLX20, RS20].

Boneh and Naor’s original construction [BN00] required the

committer (but not others) to know the group order ∥G∥ and hence
required a different G for each committer. Modern timed commit-

ments [FKPS21, KLX20, MT19, TCLM21] use of proofs of exponenti-

ation in groups of unknown order [Wes19, Pie19], in which a prover

convinces a verifier for 𝑧, 𝑔 ∈ G and 𝛼 ∈ Z, the relation 𝑧 = 𝑔𝛼

holds. Importantly, the integer 𝛼 can be much larger than ∥G∥, but
the verifier’s running time remains Õ(log∥G∥). Thus these modern

constructions enable all committers to use the same G which can

be a global parameter.

Non-interactive zero-knowledge proofs. A non-interactive proof
system for a relation R over statement-witness pairs (𝑥,𝑤) enables
producing a proof, 𝜋 ← Prove(pk, 𝑥, 𝑤), that convinces a verifier
∃𝑤 : (𝑥;𝑤) ∈ R, 0/1 ← Ver(𝑣𝑘, 𝜋, 𝑥); pk and vk are proving

and verification keys output by a setup, (pk, vk) ← Keygen(R). A
non-interactive argument of knowledge further convinces the verifier
not only that the witness 𝑤 exists but also that the prover knows 𝑤
(also known as soundness). If proved in zero-knowledge, the verifier
does not learn any additional information about 𝑤.

Range proofs.We make use of non-interactive zero-knowledge

range proofs which allow a prover to convince a verifier that a

committed integer 𝑥 falls within a range [𝐴,𝐵]. There have been
two standard approaches to constructing range proofs. The first is

based on 𝑛-ary decomposition of 𝑥 (or 𝑥 −𝐴 and 𝐵 − 𝑥), commit-

ting to decomposed limbs, using homomorphic properties of the

Riggs: Decentralized Sealed-Bid Auctions

commitment to show the limbs recompose to 𝑥, and lastly proving

that each limb falls within [0, 𝑛] [CCS08, Gro11, BBB+18, CHJ+20].
The second is based on square decomposition of 𝑥 using Lagrange’s

four square theorem which states that every positive integer can be

decomposed to the sum of four integer squares, 𝑥 =
∑4

𝑖=1 𝑥
2
𝑖 . The

prover homomorphically computes a commitment to 𝑥 − 𝐴 and

𝐵 − 𝑥 and proves that both are positive by additionally providing

commitments to the square decomposition and homomorphically

verifying the sum of squares [Bou00, Lip03, Gro05, CPP17]. This

approach requires commitments to integers which has typically

necessitated using hidden order groups [FO97, DF02], until recently

Couteau et al. constructed bounded integer commitments in known

order groups [CKLR21]. Our techniques for constructing range

proofs on top of timed commitments will be compatible with either

approach.

3 OVERVIEW
3.1 Auction Setting and Threat Model
In this work, we are concerned with building decentralized sealed-
bid auctions. In place of a trusted auctioneer used in traditional

sealed-bid auctions, we rely on a decentralized consensus protocol

(in short, a blockchain). This could be done using a special-purpose

consensus protocol implementing the auctioneer logic; though our

goal is to use a general-purpose consensus protocol that supports

arbitrary programs (or smart contracts).
We do not rely on any specific underlying consensus mechanism,

e.g., proof-of-work or proof-of-stake. We assume, as is standard,

that the underlying consensus protocol is correct, that is, only valid

transactions which follow the rules of the smart contract can be

added to the chain. We also assume that the consensus protocol is

eventually consistent, that is, all nodes agree on transaction history

except up to a small suffix. Finally, we assume that the underlying

consensus protocol is live and censorship-resistant. That is, users
attempting to broadcast a transaction to the chain will succeed

with high probability, possibly under the assumption that adequate

fees are paid. No auction system will be secure if an attacker can

manipulate the consensus protocol (for example, via bribery of the

participants) to prevent anybody else from placing a bid.

Wemodel bidders and sellers as pseudonymous, possibly ephemeral

cryptographic identities. An adversary may control any number

of Sybil identities, but cannot impersonate an identity they do not

own. Since identities are pseudonymous, the auction mechanism

cannot rely on reputational or legal pressure to induce exchange

between the winner(s) and seller; enforcement must therefore be

integrated into the protocol.

Our system can tolerate targeted network-level denial-of-service

attacks, e.g. arbitrarily dropping or delaying packets. As long as

we assume that a new ephemeral identity is able to send at least

one transaction (a bid commitment) to the blockchain before being

targeted for denial of service, our use of timed commitments ensures

an attacker cannot manipulate the auction result by preventing

them from publishing their bid opening.

3.2 Technical Overview
Our main technical contribution is a cryptographic protocol that

composes timed commitments with efficient range proofs. Using

this protocol, we avoid pitfalls in previously proposed auction

systems stemming from abandoned bids, high collateral cost, and

denial-of-service attacks. We provide an overview of our approach

by stepping through a series of strawman solutions illustrating each

of these issues.

“Commit-and-reveal” with a per-auction collateral. As a start-
ing point, consider a natural two-phase construction in which bid-

ders first submit a commitment to their bid in a bid collection phase,

and then open the commitment to reveal their bid to conclude the

auction in a later bid self-opening phase. A serious problemwith this

approach is that bidders must be trusted to open their commitment:

a cheating bidder can watch the bids as they are opened during the

second phase and simply refuse to open theirs if they do not like the

outcome, thus biasing the auction. Consider the following concrete

attack against second-price (Vickrey) auctions. Cheating bidders

in collusion with the seller (or Sybils controlled by the seller) can

place multiple bids at various price points. As honest bids are re-

vealed, the cheating bidder can reveal a bid that is just below the

highest honest bid and abandon other bids, thus driving up the

price paid to the seller. This is a standard attack in the economics

literature against the credibility of an auction [AL20]. In the worst

case this attack reduces the auction to a first-price auction which

is a poor outcome – it incentivizes bidders not to bid their actual

value, hindering efficient price discovery.

To incentivize against such abandoned bids, we might require

bidders to place collateral in escrow (via a smart contract) before

bidding, which is forfeit if the bidder does not self-open. In this

case, the collateral must be larger than the corresponding bid so

that the seller can collect payment; an opened bid greater than its

collateral is invalid. It has been shown that setting collateral in this

manner recovers credibility of an auction [FW20].

However, even this collateral strawman proposal has two limi-

tations that motivate our work. First, unless the escrow contract

has some privacy mechanism, collateral values are public—so to

avoid revealing information, the user must escrow much more than

the bid amount (say, an upper bound on the item’s value). Schlegel

et al. [SM21] analyzed this setup from an economic point of view

and concluded that it has the potential to skew bidding strategy.

It is also inefficient, as users must lock up a large amount of extra

collateral to avoid revealing information. This is even more severe

with simultaneous auctions, each of which require separate col-

lateral per bid. In total, several concurrent bids may require the

user to escrow a huge amount, potentially limiting their ability to

participate.

Second, while collateral incentivizes a bidder not to abandon

their bid, it does not address scenarios where a bidder tries to open

their bid but is unable to. As examples, a user may have unreliable

network access, or an auction may be held on a blockchain that

experiences transaction congestion. In these and similar situations,

the risk of losing collateral may dissuade users from participating.

Perhaps more importantly, bidders have an incentive to mount

denial-of-service attacks against one another: an attacker can iden-

tify other bidders from their posted bid commitment and interfere

with future self-opening posts, thereby reducing the pool of bids in

the auction. We now address these limitations in turn.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

Pooled collateral and concurrent auctions. Using a blockchain

platform that doesn’t support transaction-level privacy inherently

requires that users have more collateral on deposit than the max-

imum plausible price for an item. However, if a user is bidding

on multiple items in concurrent auctions, the user can escrow a

single collateral pool for all of their active bids, potentially greatly

reducing their escrow requirements.

We could try pooling collateral with a simple rule that a user’s

bid is invalid if it exceeds the collateral size, otherwise the bid

value (once revealed) is subtracted from the bidder’s collateral pool.

Unfortunately, this enables bidders to abandon their bids: during

the opening phase, a remorseful bidder can race to win a separate

item in a wash-sale auction (i.e., creating a short-term auction in

which they are the seller), thereby siphoning enough collateral from

their pool to invalidate the regretted bid.

This attack relies on the fact that concurrent auctions’ start and

end times can be different, allowing a wash-sale auction to complete

during another auction’s opening phase. Thus, we might prevent

this attack by forcing auctions to be synchronized in epochs: all

auctions within an epoch start and end together, and the auctions

for the next epoch cannot start until the prior epoch is finished.

In this case, a user’s bids are either all valid (i.e., bids sum to less

than the collateral pool) or all invalid, and a user’s collateral pool

is locked during any epoch in which the user placed a bid. We give

further details on this approach in Appendix B.

The requirement to synchronize the start and end of all auctions

is inconvenient, both for bidders and sellers. To sidestep this re-

quirement, an alternative approach is to ask bidders to prove in
zero knowledge that the sum of their active bids is less than their

collateral (reminiscent of private payment systems [BAZB20]). In

this model, a bidder cannot place any bid that would exceed the size

of their collateral pool (and hence invalidate a prior bid), since in

that case they would be unable to produce a valid proof—meaning

it is safe to allow asynchronous concurrent auctions. Bidders can

even adjust the size of their collateral pool as long as they prove

that the new amount covers all outstanding bids.

Denial-of-service protection via timed commitments. Boneh
and Naor first proposed using timed commitments (§2) for sealed-

bid auctions [BN00]. In this arrangement, any abandoned bids that

were not opened during the self-opening phase are instead opened

during a subsequent force-opening phase, via a long sequential com-

putation; the cost to force a commitment must be chosen so that

the bid remains secret until all bids are collected. This approach

ensures that all bids are included in the auction results, even ones

a bidder is unwilling or unable to open. Parties who do the ex-

pensive computational work of forcing open abandoned bids can

be incentivized with a reward; this reward must be chosen care-

fully to avoid incentivizing undesirable behavior (e.g., launching

denial-of-service attacks purely for the opportunity to collect the

forced-opening reward). We now show how to integrate timed com-

mitments with range proofs, which (as discussed above) enable

asynchronous concurrent auctions.

Range proofs over timed commitments. A natural approach to inte-

grating timed commitments and range proofs is to use a non-

interactive zero knowledge proof system to prove that the en-

closed bid lies in the valid range. Many general-purpose zero-

knowledge succinct non-interactive argument of knowledge (zk-

SNARK) constructions are known (e.g., [PHGR13, Gro16, BBHR19,

GWC19, CHM
+
20, Set20]; [Tha20] surveys). In principle, such sys-

tems allow one to prove arbitrary relations, and in fact Katz et

al. recently used zkSNARKs to ensure non-malleability of timed

commitments [KLX20]. In practice, however, the relation being

proved must be encoded in an arithmetic constraint formalism,

which often introduces orders-of-magnitude overheads for natural

computations. We evaluate this approach in Section 7, finding that

it results in over 20 second proving times; looking ahead, this is

≈ 300× worse than our solution.

To avoid the overhead of general-purpose proof systems, we

devise an application-specific proof system that takes advantage of

the algebraic structure of the timed commitment. Our starting point

is the linearly-homomorphic timed commitment of [MT19], which

is related to Paillier encryption [Pai99]. Given an input-output pair

for the sequentially hard repeated squaring problem (ℎ, 𝑧) where
𝑧 = ℎ2

𝑡 (mod 𝑁), a commitment to bid b is as follows:

com(𝑏;𝛼) =
(
ℎ𝛼 (mod 𝑁), (1 +𝑁)b · 𝑧𝑁 ·𝛼 (mod 𝑁2)

)
,

where 𝛼 is sampled as a large random exponent. To force open

the commitment, one first computes the blinding factor 𝑧𝑁 ·𝛼 via

repeated squaring of ℎ𝑁 ·𝛼, then unblinds the second element of

com and computes the discrete log of the result to the base (1+𝑁).
[TCLM21] show how to use a proof of group homomorphism over

hidden-order groups [CCL
+
20, BBF19, BCM05] to prove knowledge

of the enclosed bid, ensuring non-malleability.

This construction can be extended to support range proofs. At a

high level, the strategy is to take advantage of concretely efficient

range proof constructions for Pedersen commitments in a prime-

order cyclic group, i.e., comG = 𝑔bℎ𝛽 for random 𝛽 [BBB
+
18,

CKLR21]. Specifically, rather than simply proving knowledge of

the bid enclosed in the timed commitment (as discussed above),

one can use a similar proof of group homomorphism to prove that

the values committed in com and comG are equal [WBJP20], then

apply a efficient range proof to comG to show that the timed com-

mitment com contains a bid in the appropriate range.
1
While this

construction is much more efficient than using a general-purpose

zkSNARK, we can optimize even further in the auction setting.

Timed commitment to range proof commitment opening.The key ob-
servation behind our final optimization is that, in our setting, the

commitment consistency check can be deferred to the opening

phase. Let the timed commitment com’s value be the opening of

the range-proof commitment comG. As before, the range proof

must be checked at bid time; later, upon opening the timed com-

mitment, one can simply check that the claimed opening of the

range-proof commitment is valid; otherwise, the bid is regarded

as invalid. This approach—a timed commitment to the opening of

another commitment—was previously proposed for decentralized

1
Another approach would be to perform the range proof in the RSA group that the

timed commitment is in. Unfortunately, range proofs over RSA groups [Bou00, Lip03,

Gro05, CPP17] are concretely expensive.

Riggs: Decentralized Sealed-Bid Auctions

auctions [DDM
+
20]; we observe that the same mechanism yields

very efficient range proofs in our context.

In slightlymore detail, the range-proof commitment is a Pedersen

commitment comG = 𝑔bℎ𝛽 to bid b, and the timed commitment’s

value is (b, 𝛽), i.e., the opening of comG. During the bidding phase,
any efficient range proof can be used with comG; once the timed

commitment is opened, the bid is accepted if and only if its value

opens comG.
Importantly, if the timed commitment is non-malleable and bind-

ing, the bid’s validity is determined at the outset and cannot be

changed later. Moreover, all collateral lock-ups are determined by

the range-proof commitment, so a valid proof ensures sufficient

collateral. The attacker might still submit a malformed timed com-

mitment (i.e., one that does not open the range-proof commitment),

but this is not an issue: the effect is just that the attacker’s collateral

is locked until the bid is invalidated at opening time.

This protocol has significant efficiency benefits over generating

range proofs directly on the timed commitment. It obviates the

proof of equivalence, thereby allowing the use of non-algebraic

timed commitments [FKPS21], which are more efficient. It is also

modular: if denial-of-service (DoS) protection is not needed, the

timed commitment can just be elided. Putting it all together, we

are left with a timed commitment range proof with essentially

minimal overhead: it consists solely of the most efficient known

non-malleable timed commitment and the most efficient known

range proof.

4 NON-MALLEABLE TIMED COMMITMENTS
In this section, we formalize and construct the non-malleable (non-

interactive) timed commitments used for our decentralized auction

protocols. Our construction builds off of plain commitments by

adding a timed trapdoor following [BN00, FKPS21, KLX20]. In Sec-

tion 4.1, we first define a plain (non-timed) commitment, and then

we formalize timed commitments in Section 4.2. Finally, in Sec-

tion 4.3, we construct a non-malleable timed commitment given

any non-malleable plain commitment (e.g. using Pedersen commit-

ments with Bulletproofs [BBB
+
18]). Full details, discussion, and

security proofs for this section are provided in Appendix A.

4.1 Non-interactive Commitments
At a high level, a plain non-interactive commitment consists of

a commitment algorithm Comm that on input a bid b outputs a

commitment com and an opening proof 𝜋Open. Then, a verification

algorithm VerOpen checks whether or not com is a valid commit-

ment to b with respect to 𝜋Open. The syntax for a non-interactive

commitment C consists of the following algorithms:

• pp←$ C.Setup(𝜆): The setup algorithm defines the public

parameters pp given a security parameter 𝜆. We will assume

pp is available to all following algorithms, and all parties have

assurance it was generated honestly.

• (com, 𝜋Open) ←$ C.Commpp (b): The commit algorithm takes

in a message b. It produces a commitment com with an open-

ing proof 𝜋Open.

• 0/1← C.VerOpenpp (com,b, 𝜋Open): The opening verifica-
tion algorithm on input 𝜋Open verifies the commitment com

opens to the claimed message b. We note that the proof covers

the case where the commitment is claimed to be unopenable,

i.e., b = ⊥.
For simplicity, we may drop the public parameters from the super-

script if the use is clear from context.

Correctness and security properties. We give high level overviews

of the correctness and security properties we require for such com-

mitments. We defer formal definitions to Appendix A.1.

For correctness, we require that for anywell-formedpp,VerOpen
outputs 1 on well-formed values output by Comm. We also require

that if VerOpen outputs 1 for some commitment com and bid b,
then com is in the support of Comm with bid b. This always can
hold by having 𝜋Open include the randomness used by Comm and

checking that com was computed correctly in VerOpen.
For security, we require two main properties: binding and non-

malleability (hiding). All properties hold with high probability over

honestly generated public parameters pp. Binding guarantees that

no adversary can provide valid opening proofs to open a commit-

ment com to two different values b ≠ b′.
Non-malleability guarantees that nomeddler-in-the-middle (MIM)

adversary that receives as input a commitment com for a bid b can

output a different commitment com′ for a bid b′ related to b. In
fact, we require a stronger notion of concurrent non-malleability

that guarantees the MIM cannot output many different commit-

ments for bids b1, . . . ,b𝑛 such that they are all jointly related to b
in a non-trivial way. We note that non-malleability implies that the

commitment satisfies hiding. If an adversary can compute the bid

b under a commitment com better than guessing, it could generate

a fresh commitment to b + 1, for example, which is clearly related

to b.

4.2 Timed Commitments
Timed commitments extend plain commitments by adding a “force

opening” functionality to open the commitment com after some

specified 𝑡 time, given by the algorithm ForceOpen. We addition-

ally require that “timed” versions of the security properties hold

even in the presence of the ForceOpen algorithm, which we dis-

cuss below. A timed commitment TC consists of the algorithms

(Setup,Comm,ForceOpen,VerOpen), although the syntax ofComm
and VerOpen remain unchanged from plain (non-timed) commit-

ments. The new syntax for Setup and ForceOpen are as follows:

• pp←$ TC.Setup(𝜆, 𝑡): The setup algorithm additionally takes

as input a delay parameter 𝑡. For definitional simplicity, we as-

sume a fixed delay parameter during setup, but our proposed

construction will support flexibly-chosen delay parameters,

which we discuss later.

• (b, 𝜋Open) ← TC.ForceOpenpp (com): The force open al-

gorithm allows any party to recover the message b and an

opening proof 𝜋Open given the commitment com. The force

open algorithm runs in time 𝑡 · poly(𝜆). If the commitment

fails to open, b is set to ⊥.

Timed correctness and security properties. Again, we defer the for-
mal definitions to Appendix A.1, but provide a high level overview

here. Correctness is the same as for plain commitments, but we

also require that on input a well-formed commitment com for bid

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

b, ForceOpen outputs b. Furthermore, if com is not well-formed,

we require that ForceOpen outputs ⊥.
For security, binding remains unchanged. However, a timed ver-

sion of non-malleability now must hold even in the presence of the

ForceOpen algorithm. Note that the full notion of non-malleability

cannot hold in general as ForceOpen immediately breaks hiding

(and hence non-malleability) for time 𝑡 adversaries. As such, we re-
quire that MIM attackers running in parallel time less than 𝑡 cannot
maul a commitment com for a bid b into a commitment com′ for
a related bid b′. Freitag et al. [FKPS21] show that concurrent non-

malleability is impossible to achieve in the timed setting. In brief, a

MIM attacker that receives as input a commitment com for a bid b
can commit to bids b1, . . . ,b𝑛 that jointly encode com, but this is

clearly related to b. So, following the work of [FKPS21], we consider
a weaker notion which they term functional non-malleability with

respect to a class of functions. We consider the class of functions

Fℓ that roughly correspond to functions that can be computed in

parallel time less than 𝑡 and have bounded output length ℓ such that
ℓ bits are too short to encode com. We require that for any function

𝑓 ∈ Fℓ, no MIM attacker that receives as input a commitment com
for a bid b can commit to bids b1, . . . ,b𝑛 such that 𝑓 (b1, . . . ,b𝑛)
is non-trivially related to b. We discuss the subtleties of this def-

inition further in Appendix A.3, but note that (1) this essentially

implies the definition of Katz et al. [KLX20] for ℓ = 1 (formally

shown in [FKPS21]) and (2) this suffices for the security of most

natural auction types (and all counterexamples for auctions with

long output seem to be contrived).

4.3 TTD: Timed Trapdoor Construction
Our main construction is a timed commitment based on RSA groups

and proofs of exponentiation and defined relative to an underlying

commitment scheme C. Our construction is defined in the random

oracle model where all algorithms have access to a random hash

function H. Let C be a non-malleable (non-timed) commitment

scheme. Looking ahead, we will instantiate C with a Pedersen

commitment coupled with Bulletproofs as a proof of knowledge to

satisfy non-malleability [BBB
+
18, GT21, GOP

+
22].

On top of the plain commitment scheme, we construct our timed

commitment scheme TTD. We set up a “timed trapdoor” based on

the sequential hardness of repeated squaring following the seminal

work of Rivest, Shamir, andWagner [RSW96] and additionally using

a hash functionH (modeled as a random oracle). Specifically, during

setup, we initialize an input/ output pair ℎ, 𝑧 such that ℎ2
𝑡
= 𝑧

(mod 𝑁). When computing the commitment, the committer first

computes a plain (non-timed) commitment comC for the bid b with

opening proof 𝜋Open,C using an underlying commitment scheme C.
It then sets up a “timed trapdoor” to open comC to the bid b in time

𝑡 as follows. The committer randomizes the input/ output pair ℎ, 𝑧

from the setup using a large random exponent 𝛼 to compute ℎ̂ =

ℎ𝛼 (mod 𝑁) and 𝑧 = 𝑧𝛼 (mod 𝑁). The committer computes a

hash of the output (and public parameters pp) to generate a key

k = H(𝑧,pp) which is used to encrypt the bid b with the opening

proof 𝜋Open,𝐶 using a CCA-secure symmetric encryption scheme,

so ct ← CCA.Enc(k, (b, 𝜋Open,C)). The timed trapdoor consists

of the randomized repeated squaring input ℎ̂ and the ciphertext ct.

So, to compute the bid and opening, it suffices to compute 𝑧 = ℎ̂2
𝑡

TTD.Setup(𝜆, 𝑡)
ppC←$ C.Setup(𝜆)
(𝑞1, 𝑞2,𝑁,G, 𝑔, ℎ) ←$ RSAGGen(𝜆)
𝑧 ← ℎ(2𝑡 mod 𝜙(𝑁)) (mod 𝑁)
Return pp = (ppC,𝑁, ℎ, 𝑧, 𝑡)

TTD.Commpp (b)
(comC, 𝜋Open,C) ←$ C.Comm(b)
𝛼←$ [22𝜆]
ℎ̂← ℎ𝛼 (mod 𝑁) ; 𝑧 ← 𝑧𝛼 (mod 𝑁)
k ← H(𝑧,pp)
ct←$ CCA.Enc(k, (b, 𝜋Open,C))
Return (com = (comC, (ℎ̂, ct)), 𝜋Open = (committer, 𝛼))

TTD.ForceOpenpp (com = (comC, (ℎ̂, ct)))

𝑧 ← ℎ̂2𝑡 (mod 𝑁)
𝜋PoE←$ PoE.Prove(𝑁, ℎ̂, 𝑧, 𝑡)
k ← H(𝑧,pp)
(b, 𝜋Open,C) ← CCA.Dec(k, ct) ; 𝜋Open ← (𝑧, 𝜋PoE)
If not C.VerOpen(comC,b, 𝜋Open,C) then return (⊥, (force, 𝜋Open))
Else return (b, (force, 𝜋Open))

TTD.VerOpenpp (com = (comC, (ℎ̂, ct)),b, 𝜋Open = (mode, 𝜋))
If mode = force

..... Parse 𝜋 = (𝑧, 𝜋PoE)

..... k ← 𝐻 (𝑧,pp) ; (b′, 𝜋Open,C) ← CCA.Dec(k, ct)

..... Return 0 if PoE.Ver((𝑁, ℎ̂, 𝑧, 𝑡), 𝜋PoE) = 0 or b ≠ b′

Else if mode = committer

..... Parse 𝜋 = 𝛼 ; 𝑧 ← 𝑧𝛼 (mod 𝑁)

..... k ← 𝐻 (𝑧,pp) ; (b′, 𝜋Open,C) ← CCA.Dec(k, ct)

..... Return 0 if ℎ̂ ≠ ℎ𝛼 (mod 𝑁) or b ≠ b′

If b = ⊥, return (C.VerOpen(comC,b, 𝜋Open,C) = 0)

Else if b ≠ ⊥, return (C.VerOpen(comC,b, 𝜋Open,C) = 1)

Figure 1: A non-malleable timed commitment TTD, parameterized
by a non-malleable (non-timed) commitment scheme C, a proof
of exponentiation PoE, and a CCA-secure symmetric encryption
scheme CCA. The construction is in the random oracle model where
all algorithms have access to the hash function H, modeled as a
uniformly random function initialized during setup.

(mod 𝑁), the corresponding key k = H(𝑧,pp), and then decrypt

the ciphertext ct.
Additionally, we note that if a committer deviates from the pro-

tocol and produces an invalid commitment, i.e., a commitment in

which either (1) the key derived from k = H(𝑧,pp) fails to decrypt
ct, or (2) the decrypted opening (b′, 𝜋Open,C) ← CCA.Dec(k, ct)
fails to open comC, force-opening will return ⊥ along with a proof

that the commitment is malformed. A proof of exponentiation (e.g.

via the protocol of Wesolowski [Wes19] or Pietrzak [Pie19]) is com-

puted to convince the verifier of the correct computation of output

𝑧; given this element, the verifier can confirm for themselves that

and the timed trapdoor is invalid.

The full details of the timed commitment protocol are provided

in Figure 1, and we defer the proofs of security to Appendix A.2.

Security relies on a trusted setup to compute an RSA group of

hidden order. However, given such a setup, the RSA group can be

reused across many delay parameter configurations. To use a new

delay parameter 𝑡, a (ℎ, 𝑧) pair where 𝑧 = ℎ𝑡 (mod 𝑁) must be

computed and included as part of the public parameters. Without

the RSA group trapdoor, computing such a pair will take time on the

Riggs: Decentralized Sealed-Bid Auctions

Protocol: Sealed-Bid Auction with Timed Commitments

Initialization: The auction is initialized with public parameters for a timed com-

mitment scheme C and delay parameter 𝑡.

Phase 1: Bid collection

(1) The auctioneer starts accepting bids at time 𝑡0 .

(2) To place a bid, a user must:

(a) Commit to bid b, sending com to the auctioneer,

(com, 𝜋Open) ←$ C.Comm(b) . User stores opening 𝜋Open .

(b) Lock up bid amount with the auctioneer (see Figure 3). Lock up opening

rewards with the auctioneer in the amount of rwdOpen and rwdForce .

(3) The auctioneer ends bid collection at time 𝑡0 + 𝑡.
Phase 2: Bid self-opening

(1) Users provide openings 𝜋Open computed in phase 1 to reveal bid b.

(2) Auctioneer verifies opening (C.VerOpen(com,b, 𝜋Open)). If opening is

valid, rewards rwdOpen and rwdForce are unlocked, and the bid entry is

marked as opened.

(3) At time 𝑡0 + 𝑡 + 𝑡Open , any bid entries that were not self-opened are marked

as abandoned. The locked up reward rwdOpen is forfeited.

Phase 3: Bid force-opening

(1) Each abandoned bid is force-opened by a third-party opener,

(b, 𝜋Open) ← C.ForceOpen(com) .
(2) Auctioneer verifies opening (C.VerOpen(com,b, 𝜋Open)). If opening

is valid, the opener receives rwdForce . If b ≠ ⊥, the bid entry is marked

as opened, else it is marked as invalid.

(3) Auctioneer ends bid force-opening when there are no more abandoned

entries.

Output: Auction results are determined from the bids marked as opened.

Figure 2: Sealed-bid auction protocol of Riggs-RP and Riggs-TC pro-
ceeds in phases. The highlighted integration of timed commitments
is included only in Riggs-TC.

order of the delay parameter, but once computed, it can be reused

to compute any number of commitments. The party computing

pair (ℎ, 𝑧) may also compute a proof of exponentiation to allow

for others to verify the wellformedness of the public parameters.

5 DECENTRALIZED SEALED-BID AUCTIONS
Here we present our two auction protocols, Riggs-RP and Riggs-TC.

Riggs-RP uses range proofs to verify validity of bids across asyn-

chronous concurrent auctions. Riggs-TC extends Riggs-RP with

timed commitments to protect against DoS by bidders who refuse

to open their bids (§3).

5.1 Range Proofs for Concurrent Auctions
In Riggs-RP, each user is associated with a collateral that is used to

back all bids to auctions a user has participated in. Auctions consist

of two phases (detailed in Figure 2). First, in the bid collection phase,

users choose bid b, generate a Pedersen commitment comPed =

𝑔bℎ𝛼b
, and lock up a portion of their collateral (we describe the lock-

up mechanism below). In the second phase, users open and reveal

their committed bid, and the results of the auction are determined

from the opened bids. If a user does not open their commitment,

they forfeit the locked-up portion of their collateral.

As discussed in Section 3.2, when sharing a single collateral

pool across many auctions, new bids and changes to the collateral

pool must not invalidate outstanding bids. Riggs-RP enforces this by

requiring a user to prove statements about the collateral and a user’s

active bids (using range proofs) whenever they bid or change their

collateral pool. In particular, Riggs-RP stores a user’s collateral bal,
plus a commitment to the sum of the user’s active bids comactive .

• When a user places a new bid, they prove that their bid is

bounded (0 ≤ b < 232) and that the sum of their current

active bids B and new bid is at most their collateral (B +
b ≤ bal). If these range proofs verify, the bid commitment

is accepted and comactive is updated by summing the bid

commitment homomorphically.

• When a user wishes to withdraw part of their collateral, they

prove that the amount being withdrawn amt does not cause
the remaining collateral to not cover active bids, i.e., B <
bal − amt.

The details of the auction house protocol are given in Figure 3.

In Figure 3, for simplicity of presentation, we overload use of the

delay parameter 𝑡 both as the cryptographic delay parameter and

as a unit of time. In practice, determining the relationship between

the cryptographic delay parameter and the wall-clock time delay is

an intricate process; we discuss this further in Section 7.

5.2 Timed Commitments for DoS Protection
As discussed in Section 3.2, Riggs-RP relies on each bidder to come

online and open their bid commitment. To ensure that all bids

are opened, Riggs-TC uses our timed trapdoor commitment (§4)

alongside the Pedersen commitment to the bid amount used in

Riggs-RP. Riggs-TC also adds a force-opening phase after the self-

opening phase concludes; any bid commitments that have not yet

been opened are forced open using the timed trapdoor, and the

auction results are not determined until all bids have been opened.

This means that bidders cannot abandon their bids, nor are they

incentivized to DoS other bidders in order to exclude bids from the

final result. Figure 2 details the force-opening phase.

Incentives for force opening. Force-opening entails a significant
amount of sequential work; this work (and thus the auction) will

not be completed without an incentive. Both the seller and honest

bidders have an incentive to force-open bids to complete the auction

and unlock collateral, but relying on these parties to force-open

may affect the efficiency of the auction: rational bidders will price in

the expected force-opening cost when placing their bids. Worse, the

total cost of force-opening can be manipulated, e.g., by malicious

bidders who submit and abandon low-value bids.

To address this, Riggs-TC requires bidders to lock-up a reward

for the first party who forces open their abandoned bid. This reward

must be chosen to closely match the cost of opening an abandoned

bid: too small and abandoned bids will never be opened, too large

and adversaries are incentivized to DoS honest bidders and then

force-open their bids. One potential solution is to choose the re-

ward and delay parameters by consulting a marketplace like Open-

Square [TGB
+
21]. Even so, introducing a force-opening reward

without care enables certain types of undesireable behavior such

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

Protocol: Asynchronous Auction House with Timed Commitments

Initialization: The auction house is initialized with public parameters for the Ped

commitment scheme and for the TTD timed commitment scheme. The auction

house stores a list of active auctions active in addition to the following for each

associated user:

– bal: Account collateral balance of the user.

– comactive : Pedersen commitment to sum of active bids of the user.

Since the auction house is asynchronous, the protocol is not defined by phases,

but rather by asynchronous actions.

Action 0: Auction registration: A seller may register an auction with the auction

house to start any time 𝑡0 , specifying the length of the auction with a time

parameter 𝑡. The seller will also provide the necessary additional public param-

eters for TTD for 𝑡. The auction house immediately begins an instance of the

auction protocol from Figure 2 adding it to active.

Action 1: Balance updates

(1) A user may deposit funds into their account. The auction house updates the

collateral bal accordingly, bal ← bal + amt.

(2) A user may withdraw funds from their account by providing a proof for the

following relation where amt is the amount being withdrawn:

Rwdrw =


(
(comactive ,bal, amt), (B, 𝛼)

)
:

comactive = 𝑔Bℎ𝛼 ∧ 0 ≤ B ≤ bal − amt

 .

If the proof verifies, the amount is withdrawn and the user’s collateral is

updated.

Action 2: Bidding

Users may place a bid on any auction that is in its bid collection phase (see

Figure 2). To place a bid:

(1) A user locks up the bid amount and requisite opening rewards by

producing a range proof. The user collateral is updated accordingly:

bal ← bal − rwdOpen − rwdForce . A user submits a commitment to their

bid comPed (or timed commitment comTTD = (comPed, com𝑡)) and proves:

Rbid =


(
(comPed, comactive ,bal), (b,B, 𝛼b, 𝛼B)

)
:

comPed = 𝑔bℎ𝛼b ∧ comactive = 𝑔Bℎ𝛼B

∧ 0 ≤ b ≤ 232 ∧ B + b ≤ bal

 .

(2) If the proof verifies, the bid is accepted for the auction, and the user’s active

bids commitment is updated,

comactive ← comactive · comPed .

Action 3: Auction results

When an auction ends, the auction is removed from active and the results are

incorporated into the auction house state:

(1) The value of each opened bid b is removed from the user’s active bid com-

mitment, comactive ← comactive/𝑔b
.

(2) Any bid amount amt ≤ b determined to be transacted as part of the auction

results is subtracted from the user’s collateral and deposited to the seller,

bal ← bal − amt.

Figure 3: Asynchronous auction house protocol of Riggs-RP and
Riggs-TC to handle multiple concurrent auctions. The highlighted
integration of timed commitments is included only in Riggs-TC.

as griefing and front-running attacks. We address each of these

attacks in Riggs-TC in turn below.

The bidder themself (who knows the opening to their own com-

mitment) has a small advantage in computing a force-opening proof

for their commitment, compared to a party with no such knowl-

edge [Wes19]. They also have the opportunity to begin computing

the force-opening proof early (before their bid is publicly available).

This enables a griefing attack: a bidder pretends to abandon their

bid, waits for others to do most of the force-opening work, then

announces the force-opening proof, thus retrieving the reward and

wasting others’ time. To disincentivize this behavior, Riggs-TC also

requires bidders to lock-up a separate self-opening reward that

is forfeit if a bidder abandons their bid, ensuring that users lose

money on net from griefing. Figures 2 and 3 give details.

Finally, we must consider front-running attacks. Here, a mali-

cious party does no work but attempts to intercept and replay the

force-opening proof of an honest party to claim the reward for

themself. To solve this, we can use watermarked proofs [KOR04,
Wes19, ABC22] which allow the prover to embed associated data

that is authenticated during proof verification. In our timed commit-

ment protocol, force-opening requires producing a proof of integer

exponentiation [Wes19] (see Figure 1). An honest party embeds

their identity as the watermark for the proof of integer exponentia-

tion. The watermark is verified as part of the force-opening proof

and the opening reward is given to the watermarked identity. Wa-

termarking prevents front-running attacks: since malicious parties

are not able to tamper with watermarked proofs to edit the water-

mark (e.g., to change the watermark to a different identity), only

a party that performed the sequential work needed to produce a

valid watermarked proof will be eligible for the reward. Support-

ing watermarks in existing proofs of integer exponentiation ap-

proaches incurs minimal overhead, simply requiring committing to

the watermark in the challenge-generation step of the Fiat-Shamir

proof [Wes19, ABC22].

5.3 Security
We now consider how the proposed construction, Riggs-TC meets

the security goals of the auction setting. We consider Riggs-TC as it

is a superset of the functionality provided by Riggs-RP. We discuss

the goals of completeness and bid privacy.

Completeness. First consider the completeness of the construction.
An auction that is complete should (1) result in a winner and price

determined by the auction protocol (e.g., second-price) among all

valid bids, and (2) result in the winning bidder paying the seller

the appropriate winning price. Riggs-TC has two mechanisms for

determining the correct winner and price of the auction. First, the

binding property of the (timed) commitment scheme ensures that

it is infeasible for bids to be opened to anything other than one

value; this prevents malicious bidders from equivocating on their

bid. Second, the completeness property of the timed commitment

scheme means that commitments are guaranteed to be opened to

their one value even without further interaction from the bidder;

this prevents honest bidders from being excluded from the final auc-

tion results. Once a winner and price is determined, Riggs-TC relies

on the soundness of the range proofs along with the additive homo-

morphic properties of the Pedersen commitment to ensure auction

Riggs: Decentralized Sealed-Bid Auctions

payment. By construction of the protocol, a Pedersen commitment

to the sum of all active bids is maintained using the additive ho-

momorphic property of Pedersen commitments. Finally, from the

soundness of the range proof protocol for relations Rwdrw and Rbid
(see Figure 3), the sum of all active bids for a bidder is always less

than or equal to the bidder’s collateral, thereby guaranteeing the

ability to payout in the event of a win.

Bid privacy. In addition to completeness which reasons about the

completion of an auction, we consider bid privacy in which we

reason about the confidentiality of bid values during the bidding

phase. Recall that the incentive compatibility of sealed-bid auctions

relies on the inability of bidders to see the bids of others before

placing their own bid. Consider again the strawman proposal in

which a per-auction collateral is locked up (see Section 3.2). Here,

the argument is simple: the bid commitment completely hides the

bid value by the hiding property of the commitment, thus the only

information leaked is from the public collateral in that a valid bid

must fall below the collateral value. We depart from this strategy

in favor of a shared collateral across all auctions that a bidder is

participating in simultaneously. Our approach has usability benefits

in that bidders maymore easily participate in simultaneous auctions

without locking up excessive amounts of funds but comes at the

cost of a weaker bid privacy guarantee.

More precisely, Riggs-TC (and Riggs-RP) necessarily leak an

upper bound of the sum of a bidder’s bids across all active auctions

as the bidder’s public collateral. Further, observing this leakage

over time as auctions begin and end (and over a possibly changing

collateral) may allow for more fine-grained inference on a bidder’s

bids for long-term auctions. Note that this leakage is necessary to

achieve the completeness property described above and ensure

winner payout. Ultimately, the flexibility of a shared collateral

allows a bidder some plausible deniability over how their bids are

distributed across their active auctions, but it does not provide a

shortcut to providing full bid privacy with respect to the maximum

bid amount for each auction. For that, the bidderwould need to incur

the large collateral lock-up of the per-auction strawman. We leave

to future work, an empirical analysis of the leakage and efficacy

of inference attacks in realistic simultaneous auction scenarios.

Lastly, an adversary does not learn anything more beyond the

above described leakage. In Riggs-TC, we appeal to the functional

non-malleability of the timed commitment (analog to hiding in the

non-timed setting).

Formal analyses. As mentioned above, we provide formal secu-

rity definitions for timed commitments and proofs of security for

our proposed timed commitment primitive TTD, the core underly-

ing component of Riggs-TC (deferred to Appendix A). This formal

treatment does not cover the full auction protocol informally dis-

cussed above. Developing formal models suitable for analysis of

these higher level primitives remains an open problem.

6 IMPLEMENTATION
We implement our constructions in Rust. Our auction house imple-

mentation consists of a number of modular libraries that may be

of independent interest. We implement a Bulletproofs range proof

library in the arkworks ecosystem (for pairing-based cryptogra-

phy and zero-knowledge proofs) [BCG
+
20]. The implementation

is agnostic to the choice of curve, however our evaluation is per-

formed over the BN254 curve [BN05], which, looking forward,

will be efficient within the Ethereum Virtual Machine (EVM). We

also implement a proof of exponentiation for RSA hidden order

groups [Wes19]; we discuss several implementation optimizations

(for hash-to-prime) to reduce EVM costs. Lastly, we provide a timed

commitments library of the constructions from Section 4 as well as a

SNARK-based timed trapdoor (used as a baseline). In evaluation, we

instantiate the timed commitments (and proof of exponentiation)

with an RSA group of 2048 bits. Putting these libraries together,

we implement the Riggs-RP and Riggs-TC auction house proto-

cols. The protocols are described for any single-round sealed-bid

auction; we implement a second-price auction. In total, our Rust

implementation consists of ≈ 7000 lines of code and is available

open source
2
.

Ethereum smart contracts. In addition to evaluating our auc-

tion house through a Rust implementation, we implement an auc-

tion house smart contract in Solidity that can be deployed on the

Ethereum blockchain. The smart contract is compatible with the

Rust implementation, i.e., client operations are computed using the

Rust library and the produced outputs are serialized into a contract

call. Our Ethereum auction house smart contract integrates with

existing Ethereum standards. An auction can be created for any

non-fungible token (NFT) that follows the ERC-721 standard, and

the auction house collateral is made up of an “auction house token”

that abides by the ERC-20 standard for fungible tokens.

Our auction protocols additionally require an “auction comple-

tion” contract call to compute the auction winner, complete the

payout between the winner(s) and seller, and refund the losers.

Looking forward, we find that the cost of this contract call scales

with the number of bidders in the auction, so it is not sufficient for

it to be paid solely by the seller. Instead, we have bidders escrow

some funds with the contract to reimburse the caller of the comple-

tion call; the cost of the contract call varies with the price of gas

(Ethereum’s computation unit), to address this variance, one may

escrow gas tokens instead of ether [BDTJ18]. In total, our smart

contracts implementation consists of ≈ 2000 lines of Solidity.

Hash-to-prime optimization. The dominating cost in verifica-

tion of the proof of exponentiation (for force-opening) is validation

of the hash-to-prime. The non-interactive proof of exponentiation

requires a prime challenge drawn from a space of size twice the

security parameter (i.e., 256 bits of entropy for 128 bits of secu-

rity) [BBF18]. Typically, testing primality of a large prime using

Miller-Rabin primality test is concretely efficient but is expensive

in the EVM computation model. Instead, we use rejection sampling

on carefully constructed integers to find a prime that admits gen-

eration of a short Pocklington primality certificate [BLS75]; the

certificate can be efficiently verified with the EVM. Our techniques

are related to those applied in other computation models such as

embedded systems [CFTP12] and zero-knowledge constraint sys-

tems [OWWB20].

2
https://github.com/nirvantyagi/riggs

https://github.com/nirvantyagi/riggs

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

Baselines. To evaluate our proposed constructions, we additionally
implement two baselines. We implement the per-auction collateral

solution described in Section 3.2 as a minimal comparison point

with limited features. We also implement a SNARK-based solution

with the same feature set as Riggs-TC. The SNARK construction

is the same as Riggs-TC except we replace the timed trapdoor of

Section 4 with a SNARK proof of equivalence between the Peder-

sen commitment and HTC timed commitment. We implement the

SNARK timed commitment in Rust generic to the choice of SNARK

proving system and pairing-friendly curve within arkworks, and
evaluate using the Groth16 [Gro16] proof system. We also provide

smart contract implementations in Solidity for the baselines, includ-

ing SNARK verifier implementations for Groth16. We instantiate

the Pedersen commitment over the Edwards curve on BN254 (i.e.,

Baby Jubjub) which admits efficient circuit encodings when proved

with a SNARK over BN254. However, Baby Jubjub does not admit

the same efficiency benefits of BN254 on EVM; it does not have

precompiled opcodes for group operations.

7 EVALUATION
This section answers the following questions:

• What are the costs to host an auction?

• What are the costs for a bidder to participate?

• What are the costs of force-opening and what are the implica-

tions for setting time parameters?

To answer these questions, we must also evaluate the costs for the

participants (verifiers or miners) in the decentralized consensus

protocol. In our auction protocols, consensus participants are tasked

with, for example, verifying commitment openings and maintaining

collateral balances. The cost of performing these tasks is passed on

to the bidders and seller in the form of transaction fees.

We evaluate blockchain costs in two ways (shown in Figure 4).

First, we provide cost as the running time of our Rust implemen-

tation, which represents the case of running a special-purpose

blockchain dedicated to hosting auctions. Second, we provide the

costs of running our protocols as a smart contract on the Ethereum

blockchain. These costs are measured in gas, a currency used in

Ethereum to assign cost to operations in the EVM computational

model; we report gas costs per the London hard fork of Ethereum.
3

The blockchain costs can be divided into costs that are fixed

per-auction and costs that scale linearly with the number of partic-

ipating bidders. In our smart contract implementation, we require

bidders to pay the per-bidder cost and the seller to pay the fixed

costs. but other payment configurations are possible (e.g., winner

pays fixed costs). A bidder also incurs costs to compute commit-

ments and range proofs; we report the running times in Figure 5. All

benchmarks for bidders and consensus participants were performed

using an Intel Core i7-1165G7 processor with 4 cores.

Fixed costs to host an auction. To host an auction, two fixed

costs that edit blockchain state and require blockchain consensus

are incurred: auction creation and auction completion. In auction

creation, the seller initializes new state on the blockchain for the

new auction, incurring a cost that depends on the blockchain’s

3
Concretely, one unit of Ethereum gas costs ≈$10−4 at time of writing.

storage model. For Ethereum, the per-auction collateral baseline

and Riggs-RP have the smallest costs, followed by Riggs-TC and the

SNARK baseline, which are ≈2.5× greater. This is because the latter
protocols need extra storage for timed commitment parameters.

Completing an auction consists of (1) a fixed-size computation

that pays from winner(s) to seller, and (2) a computation that scales

with the number of bidders, namely, computing the winner and

updating each bidder’s state based on the result of the auction. The

fixed-size computation is minimal for all of our auction protocols;

we discuss per-bidder costs next.

Per-bidder costs to participate in an auction. A bidder incurs

cost for (1) submitting a bid to the blockchain, (2) opening their bid,

and (3) computing their portion of the completion procedure. (We

discuss force-opening further below.)

To submit a bid, a bidder must first perform some local com-

putation to prepare their bid and accompanying proof material,

then pay for the blockchain computation that stores the bid and

verifies the proofs. Figure 5 shows the running time for the local

computation (no proof is required for the per-auction collateral

baseline). Riggs-RP and Riggs-TC require two range proofs, which

are the dominant cost; Riggs-TC is slightly more expensive since

it also requires computing the timed commitment. The SNARK

baseline requires computing a proof of equivalence between the

Pedersen commitment and the timed commitment; this cost dom-

inates, resulting in ≈ 300× overhead. We discuss on-blockchain

costs below.

Self-opening costs are as follows; note that the bidder has already

computed the opening during bid submission, so no further local

computation is required. The per-auction collateral baseline admits

the cheapest verification: because it does not use any algebraic

proofs, it uses a hash-based commitment that is cheap to verify

on-chain. The other three protocols require opening a Pedersen

commitment; while costlier than hashing, this is still relatively

inexpensive.

Finally, for Riggs-RP, Riggs-TC, and the SNARK baseline (which

maintain a unified per-user collateral instead of collateral per user

per auction), a bidder may also deposit and withdraw funds from

their collateral. Deposits are essentially free, while withdrawals

require submitting a range proof showing that the withdrawal

doesn’t reduce the collateral below the sum of the user’s active bids;

the cost of computing the withdrawal proof is small (<50 ms).

Blockchain costs for submitting a bid. Figure 4 shows on-chain
costs for submitting a bid. The per-auction collateral baseline simply

stores the commitment and does not require proof verification.

Riggs-RP and Riggs-TC entail range proof verification, and the

SNARK baseline requires verification of the SNARK. We discuss

these costs below.

Riggs-RP and Riggs-TC have rather high per-bid costs: at time

of writing, 2.5 million gas costs ≈$134 on Ethereum. In practice,

we believe the cost (in dollars) of running auctions would be much

lower, for two reasons. First, EVM-compatible chains like EOS [eos]

and Avalanche [ava] are growing rapidly in popularity, and have

orders ofmagnitude lower transaction costs (concretely, the cost of a

bid on Avalanche at time of writing would be ≈$1.50). Second, ≈90%
of per-bid cost is verifying Bulletproofs; since this computation is

useful elsewhere (e.g., for private payments [BAZB20, Dia21]), it

Riggs: Decentralized Sealed-Bid Auctions

Per-auction col. Riggs-RP Riggs-TC SNARK

Auction phase cost type native (µs) EVM (gas) native (µs) EVM (gas) native (µs) EVM (gas) native (µs) EVM (gas)

Auction creation fixed - 23 × 104 - 25 × 104 - 71 × 104 - 74 × 104

Bid collection per-bidder 0.7 (0.5) 16 × 104 2100 (200) 191 × 104 2100 (200) 221 × 104 8100 (400) 10243 × 104

Bid self-opening per-bidder 1.6 (0.3) 10 × 104 210 (30) 10 × 104 220 (20) 10 × 104 300 (10) 148 × 104

Auction completion fixed 3 (1) 12 × 104 2.9 (0.4) 12 × 104 3.1 (0.4) 12 × 104 2.5 (0.4) 12 × 104

per-bidder 0.3 (0.2) 6 × 104 1.3 (0.2) 9 × 104 1.1 (0.3) 10 × 104 3.4 (0.3) 11 × 104

Figure 4: Costs for each phase of an auction, given both as a running time (µs) of our native Rust implementation and as a gas cost for the EVM
compilation of the corresponding computation. The costs for each phase are specified as fixed per-auction or linearly scaling per-bidder. The
running time is given with a standard deviation while the gas cost is deterministically computed.

Operation Per-auction col. Riggs-RP Riggs-TC SNARK

Submit bid 0.0006 (0.0001) 66 (1) 71 (3) 21700 (700)

Withdraw - 34 (2) 34 (2) 34 (2)

Figure 5: Bidder running time (ms) for computing commitments and
proofs for bid submission and collateral withdrawal.

20 216 232 2480

2000

4000

ve
rif

y
tim

e
(μ

s)

20 216 232 2480

2

4

ga
s c

os
t

×106

0.0 0.2 0.4 0.6 0.8 1.0
delay parameter

0.0

0.5

1.0

Figure 6: Verification costs of force-opening as a function of the
delay parameter.

might eventually become a precompiled contract (i.e., a built-in

primitive), slashing costs
4
.

In addition to high monetary costs, throughput limitations of

existing blockchain infrastructure are another barrier to the deploy-

ment of decentralized auctions. For example, Ethereum’s current

target block size is 15 million gas and block time is 12 seconds,

meaning current throughput will only allow for < 50 bids to be

collected per minute (in the optimistic case where full throughput

is dedicated to auctions). Again, we expect scalability to improve

as significant work is underway to improve scalability of layer 1

smart contract platforms as well as build layer 2 solutions (e.g.,

rollups) [But, WGH
+
, SSV21]. Our approach should extend to fu-

ture systems as scalability improves. Future work may also consider

special-purpose roll-up solutions tailored to the auction setting.

Estimating the delay parameter. To evaluate force-opening, we

first need select the delay parameter 𝑡 for each timed commitment,

which is an intricate process when deploying time-based crypto-

graphic tools. First, we must estimate the minimum desired wall-

clock time below which no plausible adversary should be able to

force-open a committed bid. In our auction setting, this time must

be long enough to ensure no adversary can (privately) force-open

4
Our SNARK baseline takes advantage of Ethereum precompiled contracts purpose

built for verifying SNARKs, which both skews the results and evidences an appetite

for supporting such primitives.

a posted bid and still have time to post their own bid commitment,

possibly influenced by learning one or more existing bids.

The bid collection phase can be relatively short: a sealed-bid auc-

tion does not require back-and-forth interaction as in an English

auction; all bid commitments can be posted roughly simultaneously

at auction start.
5
However, we must consider the maximum time be-

tween when a bidder broadcasts their bid to the network and when

it is included in a block that is confirmed (with high probability) in

the eventual longest chain. An attacker can begin force-opening

as soon as a transaction is broadcast, and we can conservatively

assume they can react to the forced-open bid and get their own

bid included in block instantly. Transaction confirmation times

vary based on network congestion and the gas price offered by the

user. A common approximation is that Ethereum transactions are

typically confirmed within 5 minutes.

Next, given a wall-clock time target such as 5 minutes, we must

determinewhat delay parameter 𝑡 in our timed commitment scheme

achieves this minimum for plausible adversaries. This is also an

imprecise process which requires assumptions about adversarial

sequential computation speed. An attacker with an unlimited bud-

get can likely eke out out marginally more computation speed.

We can use existing best-in-class implementations to inform our

assumptions: FPGAs have been shown to achieve 224 modular

squarings per second for a 2048 RSA modulus [Özt20], and speeds

up to 228 squarings per second are projected for ASICs with cur-

rent technology [MÖS22]. Based on these results, we might take

230 squarings per second as a conservative estimate of adversary

capability. Combining this estimate with our 5 minute goal suggests

a delay parameter 𝑡 = 239.
We note that, compared to many other scenarios that use time-

based cryptography, auctions are relatively robust to incorrect as-

sumptions about attacker capabilities. First, delay parameters can be

chosen close to the time of each auction, meaning there is no need

to reason about future improvements in attacker speed. Second, the

worst-case scenario of an attacker able to force-open bids in less

than the desired time only reveals committed bids to the attacker.

This does not help an attacker who is attempting to bid for and win

the auction: they are still incentivized in the second-price format to

bid their true valuation. The only attack this enables is for a seller

observing committed bids to post a shill bid to raise the ultimate

sale price, effectively reducing the auction to a first-price auction

5
Since bidding in sealed-bid auctions requires no real-time human action, users who

are not available at the designated bidding time, can set up a simple automated bidding

agent to post their desired bid at the correct time.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

or open-bid auction. The attacker cannot modify other users’ bids

or prevent the auction from completing.

Cost and time to force-open a bid.While the delay parameter

is set based on conservative estimates of the best plausible adver-

sary’s capability, force-opening must be completed using whatever

capability is available to honest parties.
6
Moreover, the cost of force-

opening comprises both computing blinding factor of the timed

commitment and proving the correct computation using a proof

of exponentiation. Wesolowski [Wes19] provides an algorithm for

computing the proof of exponentiation in 3 · 𝑡/log 𝑡 group opera-

tions given storage of

√
𝑡 group elements. With an ASIC performing

the initial blinding factor computation and a CPU computing the

proof of exponentiation, we would expect force-opening to take

≈ 8 hours.

In addition to locking up a reward to reimburse the force-opening

party for the force-opening computation, the bidder also locks up

a fee for blockchain costs associated with verifying force-opening

(e.g., using gas tokens [BDTJ18] for Ethereum). Figure 6 shows

how the verification cost of force-opening changes with the delay

parameter. Asymptotically, the force-opening costs increase log-

arithmically with the delay parameter. However, in practice we

find that the variance in hash-to-prime cost dwarfs the asymptotic

growth. Verification costs remain low (< 5 ms) for large delay pa-

rameters, well beyond the conservative estimate for a 5 minute

auction.

8 RELATEDWORK

Auctions from timed commitments. Timed commitments have

long been proposed (at least theoretically) for use with sealed-bid

auctions [BN00, MT19, KLX20, FKPS21]. This work addresses the

practical details of the deployment setting including handling con-

current auctions (with range proofs) and abandoned bids (with

reward incentives), as well as optimizing and evaluating an imple-

mentation. Perhaps the most closely related work is that of Deuber

et al. [DDM
+
20] that employs a similar “timed commitment to a

commitment opening” approach for practical efficiency. In their

setting, a first-price sealed-bid auction is proposed for minting new

tokens where bids correspond to “waiting time”, and the bidder

willing to wait the longest wins the newly minted token. Here, bid

currency corresponds to time, in contrast to tokens, and enforcing

valid auction results using range proofs on token balances is not a

concern; [DDM
+
20] also does not consider incentives for opening

abandoned bids. Further, we formalize and prove that the strategy

of generically combining a timed commitment with another com-

mitment scheme results in a secure timed commitment with the

desired properties (see Section 4 and Appendix A) – this modular

result was not previously provided [DDM
+
20].

Sealed-bid auctions on the blockchain.Anumber of papers have

proposed blockchain-based sealed-bid auction platforms, mostly

building on top of Ethereum. These proposals can be divided into

two broad approaches. The first category are protocols which use

a variation of commit-reveal. These protocols generally guaran-

tee bid privacy but cannot guarantee the auction will complete,

6
In the literature on VDFs the ratio of these speeds is often denoted 𝐴max .

relying on deposits and penalties to discourage participants from

aborting [BCDB18, KST
+
20, LZL

+
21, CLXW22].

The second category of proposals utilize some form of off-chain

auctioneer (or set of auctioneers) to collect and reveal bids. These

protocols guarantee auction completion but rely on trust assump-

tions to ensure bid privacy. Many protocols assume a semi-trusted

auctioneer, using a variety of cryptographic approaches to prove

that the winner and winning price were computed correctly [GY18,

DKK19, SVS
+
21, CC21, AMG21]. However, the auctioneer is trusted

not to collude with bidders by revealing private bid values early.

Other implementations use trusted enclaves [GY19, DK21] to ful-

fill the role of the auctioneer. Blass and Kerschbaum proposed

STRAIN [BK18], in which all parties jointly implement the auc-

tion as a multi-party computation protocol, requiring an honest-

majority assumption to prevent a malicious coalition from learning

bid values early.

In contrast to all of these proposals, our protocols guarantee

auction completion (as long as timed commitments can be force-

opened) as well as bid privacy (as long as an adversary cannot

exceed maximum estimated computation speeds).

The only concrete protocol we know of using timing assumptions

is due to Xiong and Wang [XW19], using time-release encryption.

However, their time-release encryption primitive relies on a trusted

third party (the time server) rather than computational assump-

tions. Specifically, the time server releases information allowing

the auctioneer to decrypt bids at the appropriate time. Thus the

security model for bid privacy is similar to that in protocols with a

semi-trusted auctioneer.

Finally, we note that we are unaware of any widely-deployed

blockchain auction system in practice which uses sealed bids. Auc-

tionity [LNPR18], for example, which bills itself as “the world’s

largest blockchain auction house for cryptocollectibles” uses an

open-bid English auction format, as do major NFT platforms which

implement auctions such as OpenSeas or Rarible. The traditional

(offline) auction houses Sotheby’s [sot21] and Christie’s [chr21]

both began auctioning NFTs with bids denominated in ETH in 2021,

but maintained an English auction format with a fully trusted (and

in fact, human) auctioneer.

Publicly verifiable secret sharing (PVSS). PVSS [Sta96] has

been an alternative proposal to timed commitments for settings

like sealed auctions that require unbiased outputs. Bids are verifi-

ably secret-shared to a set of parties. Parties keep the secret share

hidden during the duration of the auction so as to hide bids, and

then communicate with other parties after the close of the auction

to reconstruct bids. Auction integrity is maintained as long as some

threshold of parties adhere to the protocol.We opt for timed commit-

ments as they generally incur less communication costs and have

a weaker trust model than PVSS-based approaches. Furthermore,

timed commitments offer a route to a simpler blockchain-agnostic

protocol, as opposed to PVSS which require determining a set of

parties to secret share (which ideally would bootstrap on top of spe-

cific committee-based consensus protocols [GHM
+
17, DGKR18],

e.g., [GKM
+
22, BGG

+
20, GHK

+
21, GHM

+
21]).

Distributed randomness beacons. Distributed randomness gen-

eration or beacons are protocols in which untrusted parties collabo-

rate to produce an unbiased random output. Systems for distributed

Riggs: Decentralized Sealed-Bid Auctions

randomness have thus been proposed based on PVSS [SJK
+
17,

CD17, SJSW20, BSL
+
21, DKIR21] and timed commitments [LW15,

BGB17, Dra18, SJH
+
21, TCLM21]. Parties contribute randomness

in the form of secret shares or timed commitment which are com-

bined to form the final output. While the sealed-bid auction setting

shares many similarities with distributed randomness generation,

it introduces more complexities including verifying bid validity.

Front-running countermeasure for decentralized exchanges.
Front-running, in the context of decentralized exchanges, is when

privileged parties with low network latency (e.g., miners) observe

incoming transactions, create new transactions of their own, and or-

der transactions beneficially to claim the price difference value [DGK
+
20]

(see [BCD
+
21] for detailed survey of front-running strategies).

There is evidence that the existence of such privileged parties

is inherent in the peer-to-peer network setting [TKFJ22], so in-

stead commit-and-reveal protocols (that can be instantiated via

PVSS or timed commitments) have been proposed to mitigate front-

running by hiding the proposed transactions during a commit

phase [ZMEF22, MGZ22]. Instantiating our sealed bid auction pro-

tocols with a double auction mechanism for matching buyers and

sellers may result in a front-running resistant exchange protocol.

We leave further evaluation of such a proposal to future work.

Delay encryption. Burdges and De Feo present a new primi-

tive termed delay encryption related to timed commitments [BF21].

Given a fresh random identifier (e.g., from a randomness beacon),

messages (bids) can be encrypted to the identifier such that the

resulting ciphertexts can all be decrypted (opened) by computing

a decryption key from the identifier with a sequential amount of

work. Thus, only one sequential problem needs to be solved to open

all bids, whereas with timed commitments, every abandoned bid

requires a different sequential problem. Unfortunately, the only

existing construction for delay encryption is based on isogenies

and is not practical for deployment.

Related to delay encryption, there exists a line of work that aims

to “encrypt to the future” bootstrapping on public values that are

created during progression of the blockchain (e.g., signatures signed

by trusted committee or sequence of solutions to computational

puzzles). Using a primitive known as witness encryption [GGSW13],

bids can be encrypted to a statement about these to-be-public values

that can be decrypted when the witness (public value) is revealed

in the future. Existing practical approaches [CDK
+
21, DHMW22]

have the limitation that they can only encrypt to a committee

that is known ahead of time, which for relevant consensus proto-

cols [GHM
+
17, DGKR18] allows encrypting a few blocks ahead but

not more than that, or using not yet practical witness encryption

for NP [LJKW18].

Sealed payments on the blockchain. Zether [BAZB20, Dia21]
and ZCash [zca] (among others) employ zero-knowledge proofs

for hiding the amount transferred in a token transaction on the

blockchain; Zether [BAZB20] employs range proofs in a manner

similar to Riggs-RP to verify account balances, while ZCash proves

the existence of an unspent transaction. Both works along with

Zerocoin [MGGR13] also propose approaches for anonymizing the

participants of a transaction. These techniques can be adapted to

our setting to, if used with care [KYMM18], help hide collateral

amounts (see Section 9). While these protocols, namely Zether,

offer approaches for proving validity of hidden bids and collateral,

they do not address denial-of-service attacks in the auction setting.

In Riggs-TC, we show how to compose range proofs with timed

commitments to mitigate such attacks.

Timed payments on the blockchain. A challenge that arises in

contingent payments on the blockchain (e.g., multi-hop or cross-

chain) is atomicity, enforcing that all dependent transactions either

succeed or fail together. A hash time-lock contract (HTLC) [PD16]

enables atomic transactions by requiring a recipient to acknowl-

edge a payment by a certain time (typically determined by block

numbers) or forfeit the ability to claim the transaction, return-

ing the funds to the payer. HTLCs have been extended to hide

the identity of participating parties [MMK
+
17, MMS

+
19, AEE

+
21,

TBM
+
20] and for hiding other contingencies for transaction execu-

tion [Max15, CGGN17, BK19]. As in our setting, the time compo-

nent requires thinking carefully about incentives for participating

parties [TYME21]. However, HTLCs do not attempt to hide the

payment amount which make them unsuitable for the sealed-bid

setting without significant new machinery.

9 CONCLUDING DISCUSSION
We conclude by discussing several important directions for future

work and extensions to the auction setting beyond the core proto-

cols presented.

Multi-round auctions. It is straightforward to extend our pro-

tocols to multi-round auction formats such as the simultaneous
ascending auctions employed by Federal Communications Commis-

sion for wireless spectrum auctions [GV99]. In such an auction, the

public parameters (e.g., the reserve price or participant set) of the

next auction is determined by the results of previous round auc-

tions. Since the parameters are public, the blockchain can enforce

the next round’s auction is parameterized appropriately.

Hidden collateral via private payments. The public collateral
of a user serves as an upper bound for the sum of a user’s ac-

tive bids. Thus, observing the collateral of a user leaks some in-

formation on the possible values of their sealed bids. This leak-

age can be reduced using techniques for private payments on the

blockchain [BAZB20, zca]. Instead of storing public collateral, the

auction house could store a commitment to collateral and support

private payments between users’ collateral pools to further ob-

fuscate collateral amounts. Private blockchain payment protocols

are not perfect [KYMM18, GKRN18], but may be a worthwhile

improvement over the current leakage in some settings.

Minimizing locked-up opening rewards. We can consider a hy-

brid protocol between Riggs-RP and Riggs-TC in which the timed

commitment is optional. The auction protocol can allow users that

are not worried about DoS attacks (e.g., large custodial “users” with

significant infrastructure) to submit bids without timed commit-

ments, omitting opening rewards. On a similar note, we can allow

for bids to be submitted using varied delay parameters dependent

on how close the auction is to the end of the bid collection phase.

Bids submitted close to the end of the auction would allow for a

smaller delay parameter and a correspondingly smaller opening

reward lock-up.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

Mitigating opportunity cost for participants. If a bid is aban-

doned, the duration of the auction (and time for which collateral is

locked up) is extended while the force-opening phase completes.

Participating bidders pay an opportunity cost in their locked up col-

lateral, and the seller pays an opportunity cost in delayed payment

for their locked up good. Some examples of possible mitigations

might be releasing collateral lock-up early if a self-opened bid is

not in contention to win (e.g., in a second price auction, if a bid is

not the current highest bid), or allowing an auction to end with-

out completing the force-opening phase if both seller and current

winning bidder(s) agree on doing so. However, sellers opting for

early completion may again incentivize bidders to mount denial-

of-service attacks against each other. Another approach could be

to compensate the seller and users with bids in contention with

the forfeited self-opening rewards of abandoned bids. Of course,

the opportunity cost is dependent on the amount of the bid, and

since the bid amount is sealed, it seems difficult to set self-opening

rewards in a way to guarantee to proper compensation. We leave

further investigation to future work.

Credible auctions. Akbarpour and Li [AL20] introduce the notion
of credible auctions, a game-theoretic property roughly stating that

the auctioneer (or seller, in the decentralized setting) is disincen-

tivized from deviating from the protocol even in undetectable ways.

This includes, for example, submitting false bids under pseudonyms.

Ferreira and Weinberg [FW20] show that, when assuming hiding

and binding cryptographic commitments, it is possible to design

credible sealed-bid second-price auctions by setting a high enough

collateral to disincentivize abandoning bids while assuming certain

properties about the distribution of bid values.

While these prior works analyze auctions in a setting with pri-

vate communication, Chitra et al. [CFK23] show that the public

broadcast channel of blockchains allow for credible auctions us-

ing much weaker assumptions about the distribution of bid values.

A key requirement still is the sufficiently large upfront collateral

bidders must pay, which is again calculated using assumptions on

the distribution of bid values. However, as our auction protocols

provide “efficient collateralization” by leveraging the linearity of

the sealed-bid commitments to penalize abandoned bids for ex-

actly the bid amount, they may provide credibility under weaker

assumptions about the distribution of user bids. We leave a formal

game-theoretic analysis of this as future work.

ACKNOWLEDGMENTS
Nirvan Tyagi was supported by NSF grant CNS-2120651 and by

the Stanford Future of Digital Currency Initiative (FDCI); part of

this work was completed while he was a visiting student at Stan-

ford University. Cody Freitag’s work was partially done while at

NTT Research, and he is supported by the National Science Founda-

tion Graduate Research Fellowship under Grant No. DGE–2139899,

DARPA Award HR00110C0086, AFOSR Award FA9550-18-1-0267,

and NSF CNS-2128519. Arasu Arun and Joseph Bonneau were sup-

ported by DARPA under Agreement No. HR00112020022 and by

a16z crypto research. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the au-

thors and do not necessarily reflect the views of the United States

Government, DARPA, a16z, or any other supporting organization.

REFERENCES
[ABC22] Arasu Arun, Joseph Bonneau, and Jeremy Clark. Short-lived zero-

knowledge proofs and signatures. In ASIACRYPT (3), volume 13793

of Lecture Notes in Computer Science, pages 487–516. Springer, 2022.
[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and

Lukasz Mazurek. Secure multiparty computations on bitcoin. In 2014
IEEE Symposium on Security and Privacy, pages 443–458. IEEE, 2014.

[AEE
+
21] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi.

Generalized channels from limited blockchain scripts and adaptor sig-

natures. In ASIACRYPT (2), volume 13091 of Lecture Notes in Computer
Science, pages 635–664. Springer, 2021.

[AL20] Mohammad Akbarpour and Shengwu Li. Credible Auctions: A Trilemma.

Econometrica, 88(2):425–467, March 2020.

[AMG21] Hussein Abulkasim, Atefeh Mashatan, and Shohini Ghose. Quantum-

based privacy-preserving sealed-bid auction on the blockchain. Optik,
242, 2021.

[AN20] Ramiro Alvarez and Mehrdad Nojoumian. Comprehensive survey on

privacy-preserving protocols for sealed-bid auctions. Computers & Secu-
rity, 88:101502, 2020.

[ava] Avalanche. https://www.avalabs.org/.

[BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.

Zether: Towards privacy in a smart contract world. In Financial Cryptog-
raphy, volume 12059 of Lecture Notes in Computer Science, pages 423–443.
Springer, 2020.

[BBB
+
18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter

Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confidential

transactions and more. In IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society, 2018.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable

delay functions. IACR Cryptol. ePrint Arch., page 712, 2018.
[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for

accumulators with applications to iops and stateless blockchains. In

CRYPTO (1), volume 11692 of Lecture Notes in Computer Science, pages
561–586. Springer, 2019.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, YinonHoresh, andMichael Riabzev. Scalable

zero knowledge with no trusted setup. In CRYPTO (3), volume 11694 of

Lecture Notes in Computer Science, pages 701–732. Springer, 2019.
[BCD

+
09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,

Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus

Nielsen, Kurt Nielsen, Jakob Pagter, et al. Secure multiparty computation

goes live. In International Conference on Financial Cryptography and
Data Security, pages 325–343. Springer, 2009.

[BCD
+
21] Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper

Frederiksen, and Lorenzo Gentile. Sok: Mitigation of front-running in

decentralized finance. IACR Cryptol. ePrint Arch., page 1628, 2021.
[BCDB18] Chiara Braghin, Stelvio Cimato, Ernesto Damiani, and Michael

Baronchelli. Designing smart-contract based auctions. In International
Conference on Security with Intelligent Computing and Big-data Services,
2018.

[BCG
+
20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush

Mishra, and Howard Wu. ZEXE: enabling decentralized private compu-

tation. In IEEE Symposium on Security and Privacy, pages 947–964. IEEE,
2020.

[BCM05] Endre Bangerter, Jan Camenisch, and Ueli M. Maurer. Efficient proofs of

knowledge of discrete logarithms and representations in groups with

hidden order. In Public Key Cryptography, volume 3386 of Lecture Notes
in Computer Science, pages 154–171. Springer, 2005.

[BDTJ18] Lorenz Breidenbach, Philip Daian, Florian Tramer, and Ari Juels. Gasto-

ken: A journey through blockchain resource arbitrage. In CESC, 2018.
[BF21] Jeffrey Burdges and Luca De Feo. Delay encryption. In EUROCRYPT

(1), volume 12696 of Lecture Notes in Computer Science, pages 302–326.
Springer, 2021.

[BGB17] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. Proofs-of-delay

and randomness beacons in ethereum. In IEEE Workshop on Security and
Privacy on the Blockchain. IEEE Computer Society, 2017.

[BGG
+
20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo

Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public

blockchain keep a secret? In TCC (1), volume 12550 of Lecture Notes in
Computer Science, pages 260–290. Springer, 2020.

[BK18] Erik-Oliver Blass and Florian Kerschbaum. Strain: A secure auction for

blockchains. In European Symposium on Research in Computer Security,
2018.

[BK19] Sergiu Bursuc and Steve Kremer. Contingent payments on a public

ledger: Models and reductions for automated verification. In ESORICS
(1), volume 11735 of Lecture Notes in Computer Science, pages 361–382.
Springer, 2019.

https://www.avalabs.org/

Riggs: Decentralized Sealed-Bid Auctions

[BLS75] John Brillhart, Derrick H Lehmer, and John L Selfridge. New primality

criteria and factorizations of 2𝑚 ± 1. Mathematics of computation,
29(130):620–647, 1975.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In CRYPTO, volume

1880 of Lecture Notes in Computer Science, pages 236–254. Springer, 2000.
[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic

curves of prime order. In Selected Areas in Cryptography, volume 3897 of

Lecture Notes in Computer Science, pages 319–331. Springer, 2005.
[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an

interval. In EUROCRYPT, volume 1807 of Lecture Notes in Computer
Science, pages 431–444. Springer, 2000.

[BSL
+
21] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik

Nayak. Randpiper - reconfiguration-friendly random beacons with

quadratic communication. In CCS, pages 3502–3524. ACM, 2021.

[But] Vitalik Buterin. The dawn of hybrid layer 2 protocols. https://vitalik.ca/

general/2019/08/28/hybrid_layer_2.html.

[CC21] Theodoros Constantinides and John Cartlidge. Block Auction: A general

blockchain protocol for privacy-preserving and verifiable periodic double

auctions. In IEEE International Conference on Blockchain, 2021.
[CCL

+
20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico

Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In

Public Key Cryptography (2), volume 12111 of Lecture Notes in Computer
Science, pages 266–296. Springer, 2020.

[CCS08] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols

for set membership and range proofs. In ASIACRYPT, volume 5350 of

Lecture Notes in Computer Science, pages 234–252. Springer, 2008.
[CD17] Ignacio Cascudo and Bernardo David. SCRAPE: scalable randomness

attested by public entities. In ACNS, volume 10355 of Lecture Notes in
Computer Science, pages 537–556. Springer, 2017.

[CDK
+
21] Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, An-

ders K. Kristensen, and Jesper Buus Nielsen. Encryption to the future: A

paradigm for sending secret messages to future (anonymous) committees.

IACR Cryptol. ePrint Arch., page 1423, 2021.
[CFK23] Tarun Chitra, Matheus V. X. Ferreira, and Kshitij Kulkarni. Credible,

optimal auctions via blockchains, 2023.

[CFTP12] Christophe Clavier, Benoit Feix, Loïc Thierry, and Pascal Paillier. Gen-

erating provable primes efficiently on embedded devices. In Public Key
Cryptography, volume 7293 of Lecture Notes in Computer Science, pages
372–389. Springer, 2012.

[CGGN17] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Niz-

zardo. Zero-knowledge contingent payments revisited: Attacks and

payments for services. In CCS, pages 229–243. ACM, 2017.

[CHJ
+
20] HeeWon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and

Jae Hong Seo. Bulletproofs+: Shorter proofs for privacy-enhanced dis-

tributed ledger. IACR Cryptol. ePrint Arch., page 735, 2020.
[CHM

+
20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah

Vesely, and Nicholas P. Ward. Marlin: Preprocessing zksnarks with

universal and updatable SRS. In EUROCRYPT (1), volume 12105 of Lecture
Notes in Computer Science, pages 738–768. Springer, 2020.

[chr21] Welcome to the future. Digital Art: NFTs. https://www.christies.com/

auctions/christies-encrypted, Mar 2021.

[CKLR21] Geoffroy Couteau, Michael Klooß, Huang Lin, and Michael Reichle. Effi-

cient range proofs with transparent setup from bounded integer commit-

ments. In EUROCRYPT (3), volume 12698 of Lecture Notes in Computer
Science, pages 247–277. Springer, 2021.

[CLXW22] Biwen Chen, Xue Li, Tao Xiang, and Peng Wang. SBRAC: Blockchain-

based sealed-bid auction with bidding price privacy and public verifia-

bility. Journal of Information Security and Applications, 2022.
[CPP17] Geoffroy Couteau, Thomas Peters, and David Pointcheval. Removing

the strong RSA assumption from arguments over the integers. In EU-
ROCRYPT (2), volume 10211 of Lecture Notes in Computer Science, pages
321–350, 2017.

[DDM
+
20] Dominic Deuber, Nico Döttling, Bernardo Magri, Giulio Malavolta, and

Sri Aravinda Krishnan Thyagarajan. Minting mechanism for proof

of stake blockchains. In ACNS (1), volume 12146 of Lecture Notes in
Computer Science, pages 315–334. Springer, 2020.

[DF02] Ivan Damgård and Eiichiro Fujisaki. A statistically-hiding integer com-

mitment scheme based on groups with hidden order. In ASIACRYPT, vol-
ume 2501 of Lecture Notes in Computer Science, pages 125–142. Springer,
2002.

[DGK
+
20] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo

Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrun-

ning in decentralized exchanges, miner extractable value, and consensus

instability. In IEEE Symposium on Security and Privacy, pages 910–927.
IEEE, 2020.

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.

Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-

stake blockchain. In EUROCRYPT (2), volume 10821 of Lecture Notes in
Computer Science, pages 66–98. Springer, 2018.

[DHMW22] Nico Döttling, LucjanHanzlik, BernardoMagri, and StellaWohnig. Mcfly:

Verifiable encryption to the future made practical. IACR Cryptol. ePrint
Arch., page 433, 2022.

[Dia21] Benjamin E. Diamond. Many-out-of-many proofs and applications to

anonymous zether. In IEEE Symposium on Security and Privacy, pages
1800–1817. IEEE, 2021.

[DK21] Harsh Desai and Murat Kantarcioglu. SECAUCTEE: Securing Auction

Smart Contracts using Trusted Execution Environments. In 2021 IEEE
International Conference on Blockchain (Blockchain), 2021.

[DKIR21] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. SPURT:

scalable distributed randomness beacon with transparent setup. IACR
Cryptol. ePrint Arch., page 100, 2021.

[DKK19] HarshDesai, Murat Kantarcioglu, and Lalana Kagal. AHybrid Blockchain

Architecture for Privacy-Enabled and Accountable Auctions. In Interna-
tional Conference on Blockchain, 2019.

[Dra18] Justin Drake. Minimal VDF randomness beacon. Technical report,

Ethereum Research, 2018.

[eos] EOS. https://eos.io/.

[FKPS21] Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-

malleable time-lock puzzles and applications. In TCC (3), volume 13044

of Lecture Notes in Computer Science, pages 447–479. Springer, 2021.
[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge

protocols to prove modular polynomial relations. In CRYPTO, volume

1294 of Lecture Notes in Computer Science, pages 16–30. Springer, 1997.
[FR96] Matthew K Franklin and Michael K Reiter. The design and implementa-

tion of a secure auction service. IEEE Transactions on Software Engineer-
ing, 22(5), 1996.

[FW20] Matheus V. X. Ferreira and S. Matthew Weinberg. Credible, truthful, and

two-round (optimal) auctions via cryptographic commitments. In EC,
pages 683–712. ACM, 2020.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness

encryption and its applications. In STOC, pages 467–476. ACM, 2013.

[GHK
+
21] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus

Nielsen, Tal Rabin, and Sophia Yakoubov. YOSO: you only speak once

- secure MPC with stateless ephemeral roles. In CRYPTO (2), volume

12826 of Lecture Notes in Computer Science, pages 64–93. Springer, 2021.
[GHM

+
17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai

Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.

In SOSP, pages 51–68. ACM, 2017.

[GHM
+
21] Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and

Sophia Yakoubov. Random-index PIR and applications. In TCC (3),
volume 13044 of Lecture Notes in Computer Science, pages 32–61. Springer,
2021.

[GKM
+
22] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno,

and Yifan Song. Storing and retrieving secrets on a blockchain. In Public
Key Cryptography (1), volume 13177 of Lecture Notes in Computer Science,
pages 252–282. Springer, 2022.

[GKRN18] Steven Goldfeder, Harry Kalodner, Dillon Reisman, and Arvind

Narayanan. When the cookie meets the blockchain: Privacy risks of web

payments via cryptocurrencies. PETS, 2018.
[Goo23] Justice Department Sues Google for Monopolizing Digital Advertising

Technologies. The United States Department of Justice, Jan 2023.

[GOP
+
22] Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and

Daniel Tschudi. Fiat–shamir bulletproofs are non-malleable (in the

algebraic group model). In EUROCRYPT. Springer, 2022.
[Gro05] Jens Groth. Non-interactive zero-knowledge arguments for voting. In

ACNS, volume 3531 of Lecture Notes in Computer Science, pages 467–482,
2005.

[Gro11] Jens Groth. Efficient zero-knowledge arguments from two-tiered homo-

morphic commitments. In ASIACRYPT, volume 7073 of Lecture Notes in
Computer Science, pages 431–448. Springer, 2011.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In

EUROCRYPT (2), volume 9666 of Lecture Notes in Computer Science, pages
305–326. Springer, 2016.

[GT21] Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness

in the algebraic group model. In CRYPTO (3), volume 12827 of Lecture
Notes in Computer Science, pages 64–93. Springer, 2021.

[GV99] Sharon E Gillett and Ingo Vogelsang. Competition, regulation, and con-
vergence: current trends in telecommunications policy research. Routledge,
1999.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:

permutations over lagrange-bases for oecumenical noninteractive argu-

ments of knowledge. IACR Cryptol. ePrint Arch., 2019:953, 2019.

https://vitalik.ca/general/2019/08/28/hybrid_layer_2.html
https://vitalik.ca/general/2019/08/28/hybrid_layer_2.html
https://www.christies.com/auctions/christies-encrypted
https://www.christies.com/auctions/christies-encrypted
https://eos.io/

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

[GY18] Hisham S. Galal and Amr M. Youssef. Verifiable Sealed-Bid Auction on

the Ethereum Blockchain. Cryptology ePrint Archive, Paper 2018/704,

2018.

[GY19] Hisham S Galal and Amr M Youssef. Trustee: Full Privacy Preserving

Vickrey Auction on top of Ethereum. In Financial Crypto, 2019.
[KLX20] Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock

puzzles and timed commitments. In TCC (3), volume 12552 of Lecture
Notes in Computer Science, pages 390–413. Springer, 2020.

[KMS
+
16] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalam-

pos Papamanthou. Hawk: The blockchain model of cryptography and

privacy-preserving smart contracts. In 2016 IEEE symposium on security
and privacy (SP), pages 839–858. IEEE, 2016.

[KOR04] Jonathan Katz, Rafail Ostrovsky, and Michael O. Rabin. Identity-based

zero knowledge. In SCN, volume 3352 of Lecture Notes in Computer
Science, pages 180–192. Springer, 2004.

[KST
+
20] Michal Król, Alberto Sonnino, Argyrios Tasiopoulos, Ioannis Psaras, and

Etienne Rivière. PASTRAMI: privacy-preserving, auditable, Scalable

& Trustworthy Auctions for multiple items. In Proceedings of the 21st
International Middleware Conference, 2020.

[KYMM18] George Kappos, Haaroon Yousaf, Mary Maller, and SarahMeiklejohn. An

empirical analysis of anonymity in zcash. In USENIX Security Symposium,

pages 463–477. USENIX Association, 2018.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust

multi-party computation using a global transaction ledger. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 705–734. Springer, 2016.

[Lip03] Helger Lipmaa. On diophantine complexity and statistical zero-

knowledge arguments. In ASIACRYPT, volume 2894 of Lecture Notes in
Computer Science, pages 398–415. Springer, 2003.

[LJKW18] Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to build

time-lock encryption. Des. Codes Cryptogr., 86(11):2549–2586, 2018.
[LNPR18] Pascal Lafourcade, Mike Nopère, Daniela Pizzuti, and Étienne Roudeix.

Auctionity yellow paper. https://www.auctionity.com/wp-content/

uploads/2018/09/Auctionity-Yellow-Paper.pdf, 2018.

[LR00] David Lucking-Reiley. Vickrey auctions in practice: From nineteenth-

century philately to twenty-first-century e-commerce. Journal of eco-
nomic perspectives, 14(3):183–192, 2000.

[LW15] Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, uni-

corn, and trx. IACR Cryptol. ePrint Arch., page 366, 2015.
[LZL

+
21] Genhua Lu, Yi Zhang, Zhongxiang Lu, Jun Shao, and Guiyi Wei.

Blockchain-based sealed-bid domain name auction protocol. In EAI
International Conference on Applied Cryptography in Computer and Com-
munications, 2021.

[Max15] Gregory Maxwell. Zero knowledge contingent payment. Technical

report, Bitcoin Wiki, 2015.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zero-

coin: Anonymous distributed e-cash from bitcoin. In IEEE Symposium
on Security and Privacy, pages 397–411. IEEE Computer Society, 2013.

[MGZ22] Peyman Momeni, Sergey Gorbunov, and Bohan Zhang. Fairblock: Pre-

venting blockchain front-running with minimal overheads. IACR Cryptol.
ePrint Arch., page 1066, 2022.

[MMK
+
17] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei,

and Srivatsan Ravi. Concurrency and privacy with payment-channel

networks. In CCS, pages 455–471. ACM, 2017.

[MMS
+
19] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket

Kate, and Matteo Maffei. Anonymous multi-hop locks for blockchain

scalability and interoperability. In NDSS. The Internet Society, 2019.
[MÖS22] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savas. Low-latency ASIC

algorithms of modular squaring of large integers for VDF evaluation.

IEEE Trans. Computers, 71(1):107–120, 2022.
[MT19] GiulioMalavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic

time-lock puzzles and applications. In CRYPTO (1), volume 11692 of

Lecture Notes in Computer Science, pages 620–649. Springer, 2019.
[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving

auctions and mechanism design. In Proceedings of the 1st ACMConference
on Electronic Commerce, pages 129–139, 1999.

[NS93] Hannu Nurmi and Arto Salomaa. Cryptographic protocols for vickrey

auctions. Group Decision and Negotiation, 2(4), 1993.
[OWWB20] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. Scaling

verifiable computation using efficient set accumulators. In USENIX
Security Symposium, pages 2075–2092. USENIX Association, 2020.

[Özt20] Erdinç Öztürk. Design and implementation of a low-latency modular

multiplication algorithm. IEEE Trans. Circuits Syst. I Regul. Pap., 67-
I(6):1902–1911, 2020.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In EUROCRYPT, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. Springer, 1999.

[PD16] Joseph Poon and Thaddeus Dryja. The bitcoin lightnight network: Scal-

able off-chain instant payments. Technical report, Lightning Network,

2016.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure

verifiable secret sharing. In CRYPTO, volume 576 of Lecture Notes in
Computer Science, pages 129–140. Springer, 1991.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, andMariana Raykova. Pinocchio:

Nearly practical verifiable computation. In IEEE S&P, May 2013.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, volume

124 of LIPIcs, pages 60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019.

[RS20] Lior Rotem and Gil Segev. Generically speeding-up repeated squaring

is equivalent to factoring: sharp thresholds for all generic-ring delay

functions. In CRYPTO, 2020.
[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles

and timed-release crypto. Technical report, Massachusetts Institute of

Technology, 1996.

[RTK90] Michael H Rothkopf, Thomas J Teisberg, and Edward P Kahn. Why are

vickrey auctions rare? Journal of Political Economy, 98(1):94–109, 1990.
[Set20] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without

trusted setup. In CRYPTO (3), volume 12172 of Lecture Notes in Computer
Science, pages 704–737. Springer, 2020.

[SJH
+
21] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter,

and Edgar R.Weippl. Randrunner: Distributed randomness from trapdoor

vdfs with strong uniqueness. In NDSS. The Internet Society, 2021.
[SJK

+
17] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly,

Linus Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable

bias-resistant distributed randomness. In IEEE Symposium on Security
and Privacy, pages 444–460. IEEE Computer Society, 2017.

[SJSW20] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R.

Weippl. Hydrand: Efficient continuous distributed randomness. In

IEEE Symposium on Security and Privacy, pages 73–89. IEEE, 2020.
[SM21] Jan Christoph Schlegel and Akaki Mamageishvili. On-chain auctions

with deposits. arXiv preprint arXiv:2103.16681, 2021.
[sot21] Sotheby’s to Announce Live Bidding Increments in Ether (ETH) Cryp-

tocurrency for Banksy’s ‘Trolley Hunters’ and ‘Love Is In The Air’.

Sotheby’s press release, Nov 2021.

[SSV21] Cosimo Sguanci, Roberto Spatafora, and Andrea Mario Vergani. Layer 2

blockchain scaling: a survey. CoRR, abs/2107.10881, 2021.
[Sta96] Markus Stadler. Publicly verifiable secret sharing. In EUROCRYPT, vol-

ume 1070 of Lecture Notes in Computer Science, pages 190–199. Springer,
1996.

[SVS
+
21] Gaurav Sharma, Denis Verstraeten, Vishal Saraswat, Jean-Michel Dricot,

and Olivier Markowitch. Anonymous Sealed-Bid Auction on Ethereum.

Electronics, 10(19):2340, 2021.
[TBM

+
20] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta,

Nico Döttling, Aniket Kate, and Dominique Schröder. Verifiable timed

signatures made practical. In CCS, pages 1733–1750. ACM, 2020.

[TCLM21] Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabien Laguil-

laumie, and Giulio Malavolta. Efficient CCA timed commitments in class

groups. In CCS, pages 2663–2684. ACM, 2021.

[TGB
+
21] Sri Aravinda Krishnan Thyagarajan, Tiantian Gong, Adithya Bhat,

Aniket Kate, and Dominique Schröder. Opensquare: Decentralized re-

peated modular squaring service. In CCS, pages 3447–3464. ACM, 2021.

[Tha20] Justin Thaler. Proofs, arguments, and zero knowledge. https://people.cs.

georgetown.edu/jthaler/ProofsArgsAndZK.html, 2020.

[TKFJ22] Weizhao Tang, Lucianna Kiffer, Giulia Fanti, and Ari Juels. Strate-

gic latency reduction in blockchain peer-to-peer networks. CoRR,
abs/2205.06837, 2022.

[TYME21] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. MAD-

HTLC: because HTLC is crazy-cheap to attack. In IEEE Symposium on
Security and Privacy, pages 1230–1248. IEEE, 2021.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed

tenders. The Journal of finance, 16(1):8–37, 1961.
[WBJP20] Riad S. Wahby, Dan Boneh, Christopher Jeffrey, and Joseph Poon. An

airdrop that preserves recipient privacy. In Financial Cryptography, vol-
ume 12059 of Lecture Notes in Computer Science, pages 444–463. Springer,
2020.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In EURO-
CRYPT (3), volume 11478 of Lecture Notes in Computer Science, pages
379–407. Springer, 2019.

[WGH
+
] Barry Whitehat, Alex Gluchowski, HarryR, Yondon Fu, and Philippe

Castonguay. Roll up / roll back snark. https://ethresear.ch/t/roll-up-roll-

back-snark-side-chain-17000-tps/.

[XW19] Jie Xiong and Qi Wang. Anonymous Auction Protocol Based on

Time-Released Encryption atop Consortium Blockchain. arXiv preprint
arXiv:1903.03285, 2019.

https://www.auctionity.com/wp-content/uploads/2018/09/Auctionity-Yellow-Paper.pdf
https://www.auctionity.com/wp-content/uploads/2018/09/Auctionity-Yellow-Paper.pdf
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/
https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/

Riggs: Decentralized Sealed-Bid Auctions

[zca] ZCash. https://z.cash/.

[ZMEF22] Haoqian Zhang, Louis-Henri Merino, Vero Estrada-Galiñanes, and Bryan

Ford. F3B: A low-latency commit-and-reveal architecture to mitigate

blockchain front-running. CoRR, abs/2205.08529, 2022.

https://z.cash/

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

A SECURITY DEFINITIONS AND PROOFS FOR TTD
In Appendix A.1, we formally define the security properties for timed commitments. The properties for non-timed commitments are the same

while ignoring ForceOpen and the time bound 𝑡. Then, in Appendix A.2, we provide proofs for our main timed commitment construction

TTD given in Figure 1. In Appendix A.3, we discuss the functional non-malleability notion that we use in this work in greater detail,

including how it is used in context of decentralized auctions.

A.1 Timed Commitment Security Definitions
We say that a timed commitment, given by the algorithms (Setup,Comm,ForceOpen,VerOpen), is a secure timed commitment if it satisfies

the following properties. The definition below closely follows the definition of [FKPS21] extended to our setting.

• Full Correctness: For every 𝜆, 𝑡 ∈ N, pp ∈ Supp (Setup(𝜆, 𝑡)), and string com ∈ {0, 1}∗, the following hold:

• If (com, ·) ∈ Supp (Commpp (b)) for some b ∈ {0, 1}∗, then ForceOpenpp (com) = (b, ·).
• If (com, ·) ∉ Supp (Commpp (b)) for any b ∈ {0, 1}∗, then ForceOpenpp (com) = (⊥, ·).

• Completeness: For every 𝜆, 𝑡 ∈ N, pp ∈ Supp (Setup(𝜆, 𝑡)), and string com ∈ {0, 1}∗, the following hold:

• If (com, 𝜋Open) ∈ Supp (Commpp (b)) for any b ∈ {0, 1}∗, then VerOpenpp (com,b, 𝜋Open) = 1.

• If (b, 𝜋Open) ← ForceOpenpp (com), then VerOpenpp (com,b, 𝜋Open) = 1.

• If VerOpenpp (com,b, 𝜋Open) = 1 for any b, 𝜋Open ∈ {0, 1}∗, then (com, ·) ∈ Supp (Commpp (b)).
• Efficiency: For every polynomial 𝑞1, there exists a polynomial 𝑞2 such that for every 𝜆, 𝑡 ∈ N, pp ∈ Supp (Setup(𝜆, 𝑡)), and for inputs

bounded by length 𝑞1 (𝜆), Setup, Commpp
, and VerOpenpp run in time at most 𝑞2 (𝜆), and ForceOpenpp runs in time at most 𝑡 · 𝑞2 (𝜆).

• Binding: For every non-uniform PPT 𝐴, there exists a negligible function negl such that for all 𝜆, 𝑡 ∈ N,

Pr


pp←$ Setup(𝜆, 𝑡)
(com, (b0, 𝜋Open,0), (b1, 𝜋Open,1)) ← 𝐴(pp)

:

VerOpenpp (com,b0, 𝜋Open,0) = 1

∧ VerOpenpp (com,b1, 𝜋Open,1) = 1

∧ b0 ≠ b1

 ≤ negl(𝜆).

Note that b0 or b1 output by the adversary 𝐴 may be equal to ⊥.

Defining non-malleability. Let 𝐿 be a bound on the length of a bid, and let F be a class of functions that takes inputs of the form

(⊥ ∪ {0, 1}𝐿)∗. We next define the notion of functional non-malleability for the class of functions F , extending the definition of Freitag et

al. [FKPS21] to our setting. To define functional non-malleability, we introduce the notion of a meddler-in-the-middle (MIM) adversary. We

consider 1-many concurrent non-malleability, which is known to imply many-many concurrent non-malleability [FKPS21].

For any 𝜆, 𝑡 ∈ N, pp ∈ Supp (Setup(𝜆, 𝑡)), MIM adversary 𝐴, and bid b ∈ {0, 1}𝐿, we define the experiment mim𝐴 (pp,b) as follows.
An 𝑛-MIM adversary 𝐴 takes as input pp and com as given by Commpp (b). 𝐴 then outputs a sequence of 𝑛 values com𝑖 for 𝑖 ∈ [𝑛]. For
each 𝑖 ∈ [𝑛], we set b̂𝑖 equal to (b̂𝑖, ·) ← ForceOpenpp (com𝑖) if com𝑖 ≠ com. Otherwise, we set b̂𝑖 = ⊥. The output of the experiment

mim𝐴 (pp,b) is b̂1, . . . , b̂𝑛.
We say that (Setup,Comm,ForceOpen,VerOpen) satisfies (concurrent) functional non-malleability with respect to the class of functions

F if the following holds:

• Functional Non-Malleability: Let𝐿 be a bound on the bid length. For every function 𝑓 ∈ F and polynomial 𝑛, there exists a polynomial 𝛼
such that for all polynomial time bounds 𝑇 ≥ 𝛼, 𝑛-MIM adversary𝐴 running in parallel time less than 𝑇 (𝜆)/𝛼(𝜆), and polynomial-time

distinguisher𝐷, there exists a negligible function negl such that for all 𝜆 ∈ N, 𝑡 = 𝑇 (𝜆), bids b0 ≠ b1 ∈ {0, 1}𝐿, it holds that

Pr



pp←$ Setup(𝜆, 𝑡)
𝑖←$ {0, 1}
b0,b1 ← 𝐴(pp)
b̂1, . . . , b̂𝑛(𝜆) ← mim𝐴 (pp,b𝑖)
𝑖′ ← 𝐷(pp, b̂1, . . . , b̂𝑛(𝜆))

: 𝑖′ = 𝑖


≤ 1/2 + negl(𝜆).

Random oracle model formalism. We formalize timed commitments in the random oracle model by giving all algorithms oracle access to

a hash function H modeled as a random function. For each security parameter 𝜆 ∈ N, we assume that the hash function H has fixed input

and output length, bounded by a polynomial in 𝜆. Furthermore, we assume for simplicity that any two distinct inputs have a uniformly and

independently sampled output (to deal with concrete issues surrounding padding inputs to a fixed length). We require that the correctness

properties hold for any choice of hash function H, and we require that the security properties hold where the probability is additionally over

a uniformly sampled hash function H.

Riggs: Decentralized Sealed-Bid Auctions

A.2 Security Proofs for TTD
Before providing proofs, we first formally state the assumptions we need for our main claims.

Assumptions.We recall the repeated squaring assumption, based on the time-lock puzzle proposal of [RSW96], which we refer to as the RSW

assumption. Informally, the assumption states that no adversary, on input a random RSA group element 𝑥, can compute 𝑦 = 𝑥2
𝑡 (mod 𝑁)

while running in parallel time less than 𝑡. Our formal definition is modeled off of the definition of time-lock puzzles given in [FKPS21].

Definition A.1 (The RSW Assumption). Let𝐵 be a function of the security parameter. We say that the RSW assumption holds against𝐵(𝜆)-
time attackers if there is a positive polynomial 𝛼 such that for all polynomial time bounds 𝑇 ≥ 𝛼, non-uniform 𝐵(𝜆)-time pre-processing

algorithms 𝐴1, and non-uniform online adversaries 𝐴2 running in parallel time less than 𝑇 (𝜆)/𝛼(𝜆) and total time less than 𝐵(𝜆), there
exists a negligible function negl such that for all 𝜆 ∈ N, 𝑡 = 𝑇 (𝜆),

Pr


(·, ·, 𝑁,G, 𝑔, ·) ←$ RSAGGen(𝜆)
𝜌← 𝐴1 (𝜆,𝑁)
𝑧 ← 𝐴2 (𝑔, 𝜌)

: 𝑧 = 𝑔2
𝑡

(mod 𝑁)

 ≤
negl(𝜆)
𝐵(𝜆) .

Next, we define the properties we need for our underlying encryption scheme. In addition to semantic security, we require a simulatable

variant of IND-CCA security. First, we recall that definition of semantic security as follows.

Definition A.2. We say that an encryption scheme (Keygen,Enc,Dec) is semantically secure if for every pair of non-uniform PPT

algorithms 𝐴 = (𝐴1, 𝐴2), there exists a negligible function negl such that for all 𝜆 ∈ N, it holds that

Pr



k ← Keygen(𝜆)
(𝑚0,𝑚1, 𝜌) ← 𝐴1

𝑖←$ {0, 1}
ct← Enc(k,𝑚𝑖)
𝑖′ ← 𝐴2 (ct, 𝜌)

:
𝑖′ = 𝑖

|𝑚0 | = |𝑚1 |


≤ negl(𝜆).

Informally, we rely on the fact that no attacker, on input a ciphertext for a random key, can produce any other valid ciphertext. We refer

to such a scheme as CCA-SIM-1-secure.

Definition A.3. We say that an encryption scheme (Keygen,Enc,Dec) is CCA-SIM-1-secure if it is a semantically secure encryption

scheme and the following holds. For every non-uniform PPT 𝐴, there exists a negligible function negl such that for all 𝜆 ∈ N,𝑚 ∈ {0, 1}∗, it
holds that

Pr


k ← Keygen(𝜆)
ct← Enc(k,𝑚)
ct′ ← 𝐴(ct)

:
Dec(k, ct′) ≠ ⊥
ct ≠ ct′

 ≤ negl(𝜆).

We note that the standard “encrypt-then-MAC” construction of a symmetric-key CCA-secure encryption scheme satisfies this stronger

property. However, it is not immediately implied by plain IND-CCA security (as there may exist fixed strings that are valid ciphertexts under

any key).

Security proofs.We provide full proofs for the security properties binding and functional non-malleability. However, the proofs for full

correctness, completeness, and efficiency are straightforward, so we omit the full details. We note that full correctness follows immediately

from the completeness of the underlying commitment scheme and the correctness of the encryption scheme. Completeness also follows from

completeness of the underlying commitment scheme and correctness of the encryption scheme, and additionally relies on the completeness

of the proof of exponentiation. Efficiency follows immediately from inspection of the algorithms.

We proceed to prove binding of our timed commitment scheme.

Lemma A.4. Assuming correctness of the encryption scheme CCA and soundness of the proof exponentiation PoE, TTD satisfies binding.

Proof. Suppose there exists a polynomial 𝑞 and a non-uniform PPT 𝐴 that on input pp←$ Setup(𝜆, 𝑡) outputs
(com, (b0, 𝜋Open,0), (b1, 𝜋Open,1)) and violates binding with probability at least 1/𝑞(𝜆).
Let com = (comC, (ℎ̂, ct)). Consider the event where the binding experiment outputs 1. For 𝑖 ∈ {0, 1}, let b′𝑖 be the bid value computed

via decryption by VerOpen(com,b𝑖, 𝜋Open,𝑖). As VerOpen outputs 1, it follows that b′𝑖 = b𝑖 and hence b′0 ≠ b′1. If both b0 and b1 are

non-⊥, binding follows immediately from binding of the underlying commitment scheme, but we still need to cover the case where one of

the bids is ⊥ and the other is non-⊥.
For 𝑖 ∈ {0, 1}, let 𝑦𝑖 be the element used to generate the corresponding encryption key k𝑖 = H(𝑦𝑖,pp) during VerOpen(com,b𝑖, 𝜋Open,𝑖).

Recall that if mode = force, 𝑦𝑖 is provided (with a proof of exponentiation) in 𝜋Open,𝑖, and if mode = committer, 𝑦𝑖 is computed as 𝑦𝛼𝑖

for a randomization exponent 𝛼𝑖 provided in 𝜋Open,𝑖.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

First, suppose that 𝑦0 = 𝑦1 in the event that the binding experiment outputs 1. This implies that the generated keys k0 and k1 are also

equal, so it holds that b0 = b1 by correctness of the encryption scheme, in contradiction. To analyze the case where 𝑦0 ≠ 𝑦1, we split the event
that the binding experiment outputs 1 into three sub-cases: (1) mode = committer for both 𝜋Open,0 and 𝜋Open,1, (2) mode = committer

for 𝜋Open,0 and mode = force for 𝜋Open,1 (or vice versa), and (3) mode = force for both 𝜋Open,0 and 𝜋Open,1. Thus, one of (1), (2), or (3)

must occur with probability at least 1/(3𝑞(𝜆)), which we show violates our assumptions.

In case (1), we have that mode = committer for 𝜋Open,0, so for some 𝛼0 provided in 𝜋Open,0, we have that 𝑦0 = 𝑧𝛼0 = (ℎ2𝑡)𝛼0 =

(ℎ𝛼0)2𝑡 = ℎ̂2
𝑡 (mod 𝑁). However, since mode = committer for 𝜋Open,1, it also holds that 𝑦1 = ℎ̂2

𝑡 (mod 𝑁), so 𝑦0 = 𝑦1, in
contradiction.

In case (2), mode = force for 𝜋Open,1, so 𝐴 provides an accepting proof of exponentiation that 𝑦1 is equal to ℎ̂2
𝑡 (mod 𝑁). However,

ℎ̂2
𝑡
= 𝑦0 by our analysis of case (1). So if 𝑦0 ≠ 𝑦1, this violates soundness of the proof of exponentiation. As 𝐴 is a non-uniform PPT

algorithm, this implies that case (2) cannot occur with 1/(3𝑞(𝜆)) probability.
For case (3), mode = force for both 𝜋Open,0 and 𝜋Open,1, and recall that 𝑦0 ≠ 𝑦1. This means that 𝐴 provides an accepting proof of

exponentiation that ℎ̂2
𝑡
is equal to both 𝑦0 and 𝑦1, but at least one of these values must not be correct. Thus, this violates soundness of the

proof of exponentiation and cannot occur with 1/(3𝑞(𝜆)) probability. □

We next prove that TTD satisfies functional non-malleability for the class of functions Fℓ that can be computed “in low depth” and have

output length bounded by ℓ(𝜆). At a high level, we require that any function 𝑓 ∈ Fℓ can be computed in parallel time less than the time

parameter 𝑡 used in our construction, for any (polynomial) number of participants 𝑛. We formalize this requirement to capture functions

that don’t depend on the time bound 𝑡 following [FKPS21]. Specifically, let 𝑓 ∈ Fℓ be a function. We require that there exists a polynomial 𝑑
such that for any polynomial 𝑛 representing the number of inputs to 𝑓 , 𝑓 can be computed in parallel time less than 𝑑(𝜆, log𝑛(𝜆)). This
ensures that for large enough (yet polynomial) time bounds 𝑇 (𝜆), 𝑓 can be computed in parallel time less than 𝑇 (𝜆) for any 𝑛(𝜆) ≤ 2𝜆.

Lemma A.5. Let ℓ be a function of the security parameter. Assuming the underlying encryption scheme CCA is CCA-SIM-1 secure, the RSW
assumption holds against 2ℓ(𝜆) · poly(𝜆)-time attackers, and C satisfies concurrent functional non-malleability for Fℓ, TTD satisfies concurrent
functional non-malleability for Fℓ.

Proof. For any MIM adversary 𝐴, distinguisher 𝐷, and function 𝑓 ∈ F , let 𝐺𝑖 be the game representing the output of 𝐷 in the

functional non-malleability security game when the bit 𝑖 is chosen. By way of contradiction, suppose there is a valid MIM adversary 𝐴 and a

polynomial-time distinguisher𝐷 that computes 𝑖′ = 𝑖 on game 𝐺𝑖 for a random 𝑖←$ {0, 1} with better than 1/2 + 1/𝑞(𝜆) probability for

some polynomial 𝑞. We define a sequence of hybrid games as follows for each 𝑖 ∈ {0, 1} as follows:
• Hybrid𝐻𝑖,0: This game is identical to 𝐺𝑖.

• Hybrid𝐻𝑖,1: This game is the same as hybrid𝐻𝑖,0, except instead of determining the bids b̂1, . . . , b̂𝑛 using

ForceOpen((com𝑖, (ℎ̂𝑖, ct𝑖))), we use the function OpenSim, defined as follows. OpenSim((com𝑖, (ℎ̂𝑖, ct𝑖))) checks if the ad-
versary has queried k𝑖 = 𝐻 (𝑧𝑖,pp) such that 𝑧𝑖 = (ℎ̂𝑖)2

𝑡 (mod 𝑁).
If so, it outputs b̃𝑖 if (b̃𝑖, 𝜋Open,𝑖) = CCA.Dec(k𝑖, ct𝑖) and C.VerOpen(com𝑖, b̃𝑖, 𝜋Open,𝑖) = 1. Otherwise, it outputs ⊥.

• Hybrid𝐻𝑖,2: In this hybrid, TTD.Comm computes the key k = 𝐻 (𝑟,pp) for a randomly chosen group element 𝑟.

• Hybrid𝐻𝑖,3: Same as𝐻𝑖,2, except TTD.Comm computes ct← CCA.Enc(k, ®0) such that |®0| = | (b, 𝜋Open) |.
• Hybrid𝐻𝑖,4: This hybrid is the same as𝐻𝑖,3, except TTD.Comm computes comC ← C.Comm(0𝐿).

Let 𝑝𝑖,𝑗 be the probability that 𝐷 outputs 1 in hybrid 𝐻𝑖,𝑗 . As 𝐻0,0, 𝐻1,0 correspond to the game when b0 or b1 are chosen, respectively,

this means that 𝑝1,0/2 + (1 − 𝑝0,0)/2 ≥ 1/2 + 1/𝑞(𝜆), which implies that |𝑝0,0/2 − 𝑝1,0/2| ≥ 1/𝑞(𝜆). As 𝐻0,4 and𝐻1,4 are independent

of b0 and b1, respectively, it follows that the games are identical so 𝑝0,4 = 𝑝1,4. So, it must be the case that |𝑝𝑖,𝑗/2 − 𝑝𝑖,𝑗+1/2| for some

𝑖 ∈ {0, 1} and 𝑗 ∈ {0, 1, 2, 3} must be at least 1/(8𝑞(𝜆)). In the following claims, we show that this must contradict our assumptions.

Without loss of generality, we prove the claims for 𝑖 = 0.

Claim 1. Assuming CCA is CCA-SIM-1 secure, |𝑝0,0/2 − 𝑝0,1/2| ≤ 1/(8𝑞(𝜆)).

Proof. For every 𝜆 ∈ N, we consider a sequence of 𝑛 + 1 additional hybrids 𝐽0, . . . , 𝐽𝑛, where 𝐽0 = 𝐻0,0 and 𝐽𝑛 = 𝐻0,1. In hybrid

𝐽𝑘 , the first 𝑛 − 𝑘 bids b̂𝑗 corresponding to commitments output by 𝐴 are computed using ForceOpen, and the remaining 𝑘 bids b̂𝑗 are

computed using OpenSim. Thus, 𝐽𝑘 and 𝐽𝑘+1 differ solely in the way that the 𝑘 + 1st bid b̂𝑘+1 is computed. We show that if, for any

𝑘 ∈ [0, 𝑛 − 1], 𝐴 distinguishes 𝐽𝑘 from 𝐽𝑘+1 with greater than 1/(8 · 𝑛 · 𝑞) probability, we can use 𝐴 to break the CCA-SIM-1 security of

the underlying encryption scheme CCA.

Consider any 𝑗 ∈ [0, 𝑛 − 1]. Let (com𝑗+1, (ℎ̂𝑗+1, ct𝑗+1)) be the 𝑗 + 1st commitment output by 𝐴. The output of the game is identically

distributed, unless ForceOpen andOpenSim compute different values for b̂𝑗+1, in which case we make no assumptions on the output of

the game.

Riggs: Decentralized Sealed-Bid Auctions

Suppose that OpenSim outputs a valid b̃𝑗+1 ≠ ⊥. By definition of OpenSim, this implies that (b̃𝑗+1, 𝜋Open,𝑗+1) = CCA.Dec(k, ct𝑗+1)
where 𝑧𝑗+1 = (ℎ̂𝑘+1)2

𝑡
, k = H(𝑧𝑗+1,pp), and C.VerOpen(com𝑗+1, b̃𝑗+1, 𝜋Open,𝑗+1) = 1. But this means that (com𝑗+1, (ℎ̂𝑗+1, ct𝑗+1)) is

a valid commitment for b̃𝑗+1, so ForceOpen outputs b̂𝑗+1 = b̃𝑗+1. Thus, the output of the game can only differ between 𝐽𝑗 and 𝐽𝑗+1 if

OpenSim outputs ⊥ and ForceOpen outputs a value b̂ ≠ ⊥.
SupposeOpenSim outputs ⊥ on the 𝑗 + 1st commitment even though (com𝑗+1, (ℎ̂𝑗+1, ct𝑗+1)) is a valid commitment for some value

b̂𝑗+1 ≠ ⊥. This implies that ct𝑗+1 is a valid encryption under the key k = H(𝑧𝑗+1,pp), but 𝐴 has not queried H on (𝑧𝑗+1,pp). Thus, k is a

uniformly random key. At most, 𝐴 has received a single ciphertext ct = CCA.Enc(k, (b0, 𝜋Open,0)) under this key (or has not received such

a ciphertext if the 𝑘 + 1st query happens before the challenge), and outputs a distinct valid ciphertext under k. By CCA-SIM-1 security, this

cannot happen with probability at least 1/(8 · 𝑛 · 𝑞), in contradiction. □

Claim 2. Assuming RSW assumption holds for 2ℓ(𝜆) · poly(𝜆)-time attackers, |𝑝0,1/2 − 𝑝0,2/2| ≤ 1/(8𝑞(𝜆)).

Proof. Using the MIM adversary 𝐴, the function 𝑓 ∈ Fℓ, and distinguisher𝐷, we construct an adversary 𝐵 = (𝐵1, 𝐵2) that wins the
RSW game with sufficient advantage. Furthermore, 𝐵 will run in total time at most 2ℓ(𝜆) · poly(𝜆) and 𝐵2 will run in low parallel time.

The pre-processing adversary 𝐵1 first receives as input the group description 𝑁 . It samples the remainder of the public parameters

pp for TTD.Setup(𝜆, 𝑡), including a random group element ℎ. It then computes 𝑧 = ℎ2
𝑡 (mod 𝑁) by computing 𝑡 squarings. 𝐵1 next

computes comC and ct for TTD.Commpp (b0), using k = H(𝑟,pp) for a random group element 𝑟. Next, 𝐵1 runs𝐷 on all possible ℓ(𝜆)-bit
inputs, querying H up to 2ℓ(𝜆) · poly(𝜆) times, and lets ®𝑦 denote the sequence of values 𝑦 such that𝐷 queried H(𝑦,pp). 𝐵1 outputs its

state 𝜌 = (pp, comC, ct, ®𝑦).
Next, the online adversary 𝐵2 receives a random group element 𝑥 and the state 𝜌 from 𝐵1. 𝐵2 runs 𝐴(comC, (𝑥, ct)) and gets the

output (com𝑖, (ℎ̂𝑖, ct𝑖)) for all 𝑖 ∈ [𝑛]. 𝐵2 computes b̂𝑖 ← OpenSim((com𝑖, (ℎ̂𝑖, ct𝑖))) for each output in parallel, and then 𝐵2 runs

𝑓 (b̂1, . . . , b̂𝑛). Let ®𝑦′ be the sequence of values 𝑦′ such that 𝐴 or 𝑓 queried H(𝑦′,pp). 𝐵2 chooses a random value 𝑦 from ®𝑦 or ®𝑦′ and
outputs 𝑦.

We first analyze the running time of 𝐵. 𝐵1 takes time 𝑡 · poly(𝜆) to compute 𝑧 and takes time 2ℓ(𝜆) · poly(𝜆) to compute ®𝑦, so for

polynomial time bounds 𝑇 (𝜆), 𝐵1 runs in time 2ℓ(𝜆) · poly(𝜆). The online adversary 𝐵2 runs 𝐴, invokes OpenSim on each output in

parallel, and then runs 𝑓 (b̂1, . . . , b̂𝑛). Let 𝑡𝐴 be the parallel running time of 𝐴. All OpenSim evaluations can be computed in parallel

time 𝑝1 (𝜆), for a polynomial 𝑝1 independent of the time parameter 𝑡. By assumption on Fℓ, 𝑓 can be computed in time 𝑑(𝜆, log𝑛(𝜆)). For
𝑛(𝜆) ≤ 2𝜆, this implies that 𝐵2 runs in time 𝑡𝐴 + 𝑝2 (𝜆) ≤ 𝑇 (𝜆)/𝛼(𝜆) + 𝑝2 (𝜆) for a fixed polynomial 𝑝2 independent of the time parameter

𝑡. For the running time of 𝐴, recall that for every positive polynomial 𝛼, there exists a polynomial 𝑇 ≥ 𝛼 such that 𝐴 succeeds and runs in

parallel time at most 𝑇 /𝛼. To show that 𝐵 violates our assumption on the running time, let 𝛼′ be an arbitrary positive polynomial. We

invoke the assumed adversary 𝐴 for the value 𝛼 = 2𝛼′ · 𝑝2, so 𝑇 ≥ 2𝛼′ · 𝑝2. Then, by our analysis above, 𝐵 runs in parallel time at most

𝑇 /𝛼 + 𝑝2 = (𝑇 +𝛼 · 𝑝2)/𝛼 ≤ 2𝑇 /𝛼 ≤ 𝑇 /𝛼′. Thus, 𝐵 has the appropriate parallel running time, and it remains to argue 𝐵 violates the RSW

assumption the required probability.

Consider a hypothetical experiment where 𝐵2 computes the key k for the challenge using 𝑦 = 𝑥2
𝑡 (mod 𝑁). This corresponds to hybrid

𝐻0,1, whereas𝐵2’s real behavior corresponds to hybrid𝐻0,2. However, the output of hybrids𝐻0,1 and𝐻0,2 are identically distributed unless

𝐴, 𝑓 , or𝐷 query the random oracle𝐻 on either (1) the input (𝑟,pp) where 𝑟 was the randomly chosen group element in the experiment

or (2) (𝑦,pp) for 𝑦 = 𝑥2
𝑡 (mod 𝑁). This is because in both cases, the challenge key k generated is uniformly random and identically

distributed in each hybrid. Let𝑚 ≤ 2ℓ(𝜆) ·poly(𝜆) be the number of queries in ®𝑦 or ®𝑦′. Case (1) happens with at most𝑚/2𝜆 probability since

𝑟 is a random, independently chosen group element, and there are at least 2𝜆 group elements in G. In case (2), 𝐵 succeeds in the RSW game

with probability at least 1/𝑚. Therefore,𝐵 succeeds with probability at least (|𝑝0,1/2− 𝑝0,2/2| −𝑚/2𝜆)/𝑚 > |𝑝0,1/2− 𝑝0,2/2|/𝑚− 1/2𝜆.
If |𝑝0,1/2 − 𝑝0,2/2| > 1/8𝑞, this implies the existence of a polynomial 𝑞′ such that 𝐵 succeeds with probability at least 1/(𝑞′ · 2ℓ(𝜆)),
contradicting our RSW assumption against 2ℓ(𝜆) · poly(𝜆)-time attackers, as required. □

Claim 3. Assuming CCA is semantically secure, |𝑝0,2/2 − 𝑝0,3/2| ≤ 1/(8𝑞(𝜆)).

Proof. Using the MIM adversary 𝐴, function 𝑓 , and distinguisher 𝐷 that distinguish hybrids 𝐻0,2 and 𝐻0,3, we construct an adversary

𝐵 = (𝐵1, 𝐵2) that breaks semantic security as follows.𝐵1 first samples public parameters pp forTTD. It then computes (comC, 𝜋Open,𝐶) ←
C.Comm(b0). 𝐵1 sends 𝑚0 = (b0, 𝜋Open,𝐶) and 𝑚1 = ®0 such that |®0| = | (b0, 𝜋Open,𝐶) | to the semantic security challenger. 𝐵2

receives ct corresponding to an encryption of 𝑚𝑖 for either 𝑖 = 0 or 𝑖 = 1. It then computes the commitment com = (comC, (ℎ̂, ct))
where ℎ̂ ← ℎ𝛼 (mod 𝑁) for 𝛼←$ [22𝜆]. 𝐵2 runs 𝐴(pp, com) and gets commitments (com𝑖, (ℎ̂𝑖, ct𝑖)) for all 𝑖 ∈ [𝑛]. 𝐵 computes

b̂𝑖 ← OpenSim((com𝑖, (ℎ̂𝑖, ct𝑖))), and outputs 𝑖′ = 𝐷(𝑓 (b̂1, . . . , b̂𝑛)).
𝐵 clearly runs in polynomial-time as the time bound 𝑡 = 𝑇 (𝜆) is polynomially bounded. For correctness, note that whenever the semantic

security challenger 𝑖 = 0, ct corresponds to the message (b0, 𝜋Open,C), so the output of the game is identical to hybrid𝐻0,2 since the key k
chosen by the semantic security challenger is uniformly random. Similarly, whenever 𝑖 = 1 is chosen, the output of the game is identical to

hybrid𝐻0,3. Thus, 𝐵’s distinguishing advantage is |𝑝0,2/2 − 𝑝0,3/2|, which violates semantic security of the underlying encryption scheme

if |𝑝0,2/2 − 𝑝0,3/2| > 1/8𝑞. □

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

Claim 4. Assuming C satisfies functional non-malleability for Fℓ, |𝑝0,3/2 − 𝑝0,4/2| ≤ 1/(8𝑞(𝜆)).

Proof. Given the MIM adversary 𝐴, we construct a MIM adversary 𝐵 for the functional non-malleability game for the underlying

commitment scheme C for the function 𝑓 on messages 𝑚0 = b0 or 𝑚1 = 0𝐿 as follows. 𝐵 receives as input public parameters ppC and

a commitment comC ← C.CommppC (𝑚𝑖) for some 𝑖←$ {0, 1}. It then samples the remainder of the public parameters for TTD as well

as a value ℎ̂ and ct = CCA.Enc(k, ®0) as in hybrid 𝐻0,3. It runs 𝐴(pp, (comC, (ℎ̂, ct))) and gets outputs (com𝑖, (ℎ̂𝑖, ct𝑖)) for all 𝑖 ∈ [𝑛].
𝐵 computes b̂𝑖 ← OpenSim((com𝑖, (ℎ̂𝑖, ct𝑖))) for each 𝑖 ∈ [𝑛] in parallel, and sets ĉom𝑖 = com𝑖 if b̂𝑖 ≠ ⊥ and ĉom𝑖 = ⊥ otherwise. 𝐵
then outputs (ĉom1, . . . , ĉom𝑛).

For the running time analysis, we note that 𝐵 runs 𝐴 and then additionally runs in parallel running time 𝑝1 (𝜆), for a polynomial 𝑝1
independent of the time parameter 𝑡. It follows that 𝐵 runs in the appropriate parallel running time for a MIM adversary to break the

non-malleability game; see the analysis in Claim 2 for full details.

For correctness, we note that if 𝑖 = 0 and 𝐵 receives a commitment for 𝑚0 = b0, then 𝐴’s view is identical to hybrid 𝐻0,3. Similarly, if

𝑖 = 1 and 𝐵 receives a commitment for 𝑚1 = 0𝐿, then 𝐴’s view is identical to hybrid 𝐻0,4. So the outputs (com𝑖, (ℎ̂𝑖, ct𝑖)) for 𝑖 ∈ [𝑛] are
distributed exactly according to𝐻0,3 when 𝑖 = 0 and according to𝐻0,4 when 𝑖 = 1. Furthermore, 𝐵 can compute the bids b̂𝑖 underlying
com𝑖 that are fed into 𝑓 and then the distinguisher𝐷 by runningOpenSim identically as in hybrids𝐻0,3 and𝐻0,4. It then sets commitments

ĉom𝑖 to open to the same b̂𝑖 values. It follows that the MIM experiment for 𝐵 outputs 1 with probability 𝑝0,3 whenever 𝑖 = 0 and with

probability 𝑝0,4 whenever 𝑖 = 1. Therefore,𝐷 distinguishes𝑚0 = 𝑏0 and𝑚1 = 0 for the MIM adversary 𝐵 with function 𝑓 with probability

|𝑝0,3 − 𝑝0,4 |, which is a contradiction if |𝑝0,3/2 − 𝑝0,4/2| > 1/(8𝑞(𝜆)), as required. □

This completes the proof of the lemma. □

A.3 Discussion of Functional Non-Malleability
For non-malleability, we follow the treatment of Freitag et al. [FKPS21] by going through functional non-malleability as fully concurrent

non-malleability is impossible to achieve in the timed setting. Specifically, for a suitable function 𝑓 , we show that any meddler-in-the-

middle (MIM) attacker running in time less than the time parameter 𝑡 cannot maul a timed commitment com for a bid b into a sequence

of commitments com1, . . . , com𝑛 with underlying values b1, . . . ,b𝑛 such that 𝑓 (b1, . . . ,b𝑛) is related to b. We consider the class of

functions Fℓ that can be computed in low parallel time and have bounded output length ℓ. The reason this bound ℓ is seemingly necessary is

to prevent the adversary from encoding the original timed commitment com into the output of 𝑓 (b1, . . . ,b𝑛), as it has full control over
b1, . . . ,b𝑛. For this reason, it is useful to consider functions with output length ℓ which is smaller than the size of the timed commitments

com.

We briefly compare with the non-malleability notion proposed in Katz et al. [KLX20]. They consider a CCA-style notion and require that

no attacker running in time less than 𝑡 can distinguish commitments to b0 from commitments to b1, even with oracle access to a ForceOpen
oracle (that naively requires at least 𝑡 time to run). The reason we do not consider this definition is because it doesn’t provide a meaningful

guarantee of security after 𝑡 time has elapsed. In fact, it is argued in [FKPS21] that this notion (without oracle access to ForceOpen) is
equivalent to functional non-malleability for the class of low depth function F1 with 1 bit output—essentially, the function 𝑓 plays the role

of the CCA adversary 𝐴 that outputs a single bit.

In context of our application to decentralized auctions, functional non-malleability provides the following guarantee. Suppose an honest

participant submits a timed commitment com for a bid b. A MIM adversary tries to bias the output of the protocol as a function of b in

the following way. It computes a series of commitments com1, . . . , com𝑛 for underlying bids b1, . . . ,b𝑛. The function 𝑓 in functional

non-malleability represents the contribution that the values the attacker commits to can affect the final outcome in the protocol. So, for

second-priced sealed-bid auctions, 𝑓 would output the top two bid values from the attacker and the index of the highest bid, which could

then be used to determine the output of the protocol. For such an auction, this information is very small, so intuitively, this says that the

attacker is very limited in how much it could adversarially influence the result of the auction as a function of another participant’s original

bid b.
Consider a (𝑘 + 1)-priced auction where the top 𝑘 bidders receive a copy of the item, and pay the (𝑘 + 1)st price. If 𝑘 is large enough, a

MIM attacker could bid large values to ensure that participants 𝑖1, 𝑖2, . . . , 𝑖𝑘 win the auction, but simultaneously have it be the case that the

concatenation of 𝑖1 | . . . |𝑖𝑘 ∈ {0, 1}∗ as a string write out the bit string for a timed commitment com for a bid b that another participant

provided. This means that the attacker forced the output of the protocol to non-trivially depend on one of the bids b from another honest

participant, technically violating fairness for the auction! While this counterexample is somewhat contrived—and very likely is not financially

in the attacker’s interest—it highlights the subtlety and care required to guarantee a meaningful notion of security for decentralized auctions.

In summary, we decide to formalize our non-malleability guarantees using functional non-malleability for the class of length bounded

functions, following [FKPS21]. We believe this captures a broad class of auction-types and also provides a framework to understand specific

auctions as needed. Furthermore, we note that instead of looking at the outcome of the auction protocol as a whole, we could instead

consider the outcome for any particular participant, which is likely to have short representation and therefore cannot be biased based on

their submitted bid by our analysis. For this reason, we believe any counterexamples to fairness in natural protocols are likely contrived and

also likely not game-theoretically (i.e. financially) realistic.

Riggs: Decentralized Sealed-Bid Auctions

HTC.Setup(𝜆, 𝑡)
(𝑞1, 𝑞2,𝑁,G, 𝑔, ℎ) ←$ RSAGGen(𝜆)
𝑧 ← ℎ(2𝑡 mod 𝜙(𝑁)) (mod 𝑁)
Return pp = (𝑁,ℎ, 𝑧, 𝑡)

HTC.Commpp (b)
𝛼←$ [22𝜆]
ℎ̂← ℎ𝛼 (mod 𝑁) ; 𝑧 ← 𝑧𝛼 (mod 𝑁)
k ← H(𝑧,pp)
ct←$ CCA.Enc(k,b)
Return (com = (ℎ̂, ct), 𝜋Open = (committer, 𝛼))

HTC.ForceOpenpp (com = (ℎ̂, ct))

𝑧 ← ℎ̂2𝑡 (mod 𝑁)
𝜋PoE←$ PoE.Prove(𝑁, ℎ̂, 𝑧, 𝑡)
k ← H(𝑧,pp)
b← CCA.Dec(k, ct) ; 𝜋Open ← (𝑧, 𝜋PoE)
Return (b, (force, 𝜋Open))

HTC.VerOpenpp (com = (ℎ̂, ct),b, 𝜋Open = (mode, 𝜋))
If mode = force

..... Parse 𝜋 = (𝑧, 𝜋PoE)

..... k ← 𝐻 (𝑧,pp) ; b′ ← CCA.Dec(k, ct)

..... Return PoE.Ver((𝑁, ℎ̂, 𝑧, 𝑡), 𝜋PoE) = 1 ∧ b ≠ b′

Else if mode = committer

..... Parse 𝜋 = 𝛼 ; 𝑧 ← 𝑧𝛼 (mod 𝑁)

..... k ← 𝐻 (𝑧,pp) ; b′ ← CCA.Dec(k, ct)

..... Return ℎ̂ = ℎ𝛼 (mod 𝑁) ∧ b = b′

Protocol: Synchronous Auction House with Timed Commitments

Initialization: The auction house is initialized with public parameters for a timed commitment

scheme C and delay parameter 𝑡. The auction house stores the following for each associated user:

– bal: Account collateral balance of the user.

– active: List of active bids in the current epoch for the user.

Auctions proceed in synchronous, sequential epochs, in which each epoch may run many auctions.

An epoch consists of the following phases:

Phase 0: Auction registration: An auctioneer may register an auction with the auction house for

the upcoming epoch. This registration phase may be pipelined with previous epochs

Phase 1: Bid collection and balance updates

(1) The auction house runs a separate instance of the auction protocol from Figure 2 (with some

minor changes) for each registered auction. Call this the beginning of the epoch (time 𝑡0).

(2) Users may place a bid on any auction. The user’s collateral is updated to remove the locked

opening rewards, bal ← bal − rwdOpen − rwdForce . If a user’s balance is not sufficient for

locking rewards, the bid is not accepted. Any accepted bid is added to a user’s list of active bids,

active.

(3) Users may also transfer funds in and out of their account. The account collateral is updated

accordingly.

(4) The auction house ends bid collection and locks account collaterals at time 𝑡0 + 𝑡.
Phase 2: Bid opening and auction results

(1) Bids are opened following the mechanisms of Figure 2 (Phases 2 and 3). However, the results of

the auction are not yet determined.

(2) If a user’s bid is abandoned in any auction in the non-timed commitment setting, the user’s

collateral is forfeited: bal ← 0. In the timed commitment setting, the next step does not begin

until all bids for all registered auctions are opened.

(3) For each user, the auction house sums the user’s opened bids (across auctions). If the sum is

greater than the user’s collateral bal, all the user’s bids for the epoch are marked as invalid,

and the user forfeits their rewards had they self-opened.

(4) Auction results are determined by the remaining valid opened bids. Bid amounts that are

determined to be transacted as part of the auction results are subtracted from user collaterals.

(5) Lists of active bids for each user are reset in preparation for the next epoch.

Figure 7: (Left) The HTC non-malleable timed commitment protocol parameterized by a proof of exponentiation protocol PoE. The hash
function H is modeled as a random oracle. HTC is the timed commitment used within TTD as the timed trapdoor to the C commitment scheme.
(Right) Epoch-based auction house protocol to support multiple simultaneous auctions without the use of range proofs.

B EPOCH-BASED SYNCHRONOUS AUCTION HOUSE
We expand on a proposal for an epoch-based synchronous auction house, outlined in Section 3.2. The protocol allows for an efficient auction

house that does not incur the overhead of range proofs as in Riggs-RP and Riggs-TC. However, it comes at the disadvantage of requiring

auctions to proceed in synchronous epochs with synchronized start and end times.

B.1 HTC: Simple Hash-based Non-Malleable Timed Commitment
Recall the design of the timed commitment TTD used by Riggs-RP and Riggs-TC: The bid is enclosed using a second non-timed commitment

scheme C that is amenable to range proofs, and then the opening to the commitment of C is enclosed as a “timed trapdoor”. Since the

synchronous auction house does not require range proofs, we can simplify this construction, and extract out the “timed trapdoor” component

of TTD as a separate timed commitment scheme which we call HTC.
We provide pseudocode for HTC in Figure 7 (left). We provide the following corollaries for the security of HTC that follow from the

security proofs of TTD in Appendix A.2.

Corollary B.1. Assuming correctness of the encryption scheme CCA and soundness of the proof exponentiation PoE, HTC satisfies binding.

Corollary B.2. Let ℓ be a function of the security parameter. Assuming the underlying encryption scheme CCA is CCA-SIM-1 secure and
the RSW assumption holds against 2ℓ(𝜆) · poly(𝜆)-time attackers, HTC satisfies concurrent functional non-malleability for Fℓ.

B.2 Synchronous Auctions without Range Proofs
As in Riggs-RP, each user is associated with a collateral that is used to back all bids to auctions a user participates in during a particular

epoch. Auctions may be registered ahead of time to take place in a particular epoch. Once an epoch begins, auctions proceed in two phases

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières

(detailed in Figure 7). In the first phase, bids are collected for ongoing auctions and, in the case of timed commitments, opening rewards are

locked up. The bid collection phase ends synchronously for all auctions in the epoch, and after this point, importantly, user collaterals are

locked for the entirety of the second phase. This ensures that users cannot adaptively change their collateral during bid opening to validate

or invalidate their bids across auctions.

In the second phase, bids are opened (with a self-open phase, followed by a force-open phase in the case of timed commitments). Without

DoS protection from timed commitments, if a user fails to self-open a bid, their full collateral is forfeited. In the case of timed commitments,

the results of auctions are not determined until all bids from all auctions have been opened. All of a user’s opened bids across auctions are

summed and compared to their locked collateral. If their collateral covers their bids, then the bids are deemed valid, otherwise all the user’s
bids are discarded. This all-or-none validity property is important to ensure users cannot selectively invalidate bids. Lastly, the remaining

valid bids are used to determine the results of each auction, and the process is repeated for the auctions slated for the next epoch.

	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 Overview
	3.1 Auction Setting and Threat Model
	3.2 Technical Overview

	4 Non-Malleable Timed Commitments
	4.1 Non-interactive Commitments
	4.2 Timed Commitments
	4.3 TTD: Timed Trapdoor Construction

	5 Decentralized Sealed-Bid Auctions
	5.1 Range Proofs for Concurrent Auctions
	5.2 Timed Commitments for DoS Protection
	5.3 Security

	6 Implementation
	7 Evaluation
	8 Related Work
	9 Concluding Discussion
	References
	A Security Definitions and Proofs for TTD
	A.1 Timed Commitment Security Definitions
	A.2 Security Proofs for TTD
	A.3 Discussion of Functional Non-Malleability

	B Epoch-based Synchronous Auction House
	B.1 HTC: Simple Hash-based Non-Malleable Timed Commitment
	B.2 Synchronous Auctions without Range Proofs

