
Optimizing HE operations via
Level-aware Key-switching Framework ⋆

Intak Hwang1, Jinyeong Seo1, and Yongsoo Song1

Seoul National University, Republic of Korea
{intak.hwang, jinyeong.seo, y.song}@snu.ac.kr

Abstract. In lattice-based Homomorphic Encryption (HE) schemes, the key-switching procedure is
a core building block of non-linear operations but also a major performance bottleneck. The compu-
tational complexity of the operation is primarily determined by the so-called gadget decomposition,
which transforms a ciphertext entry into a tuple of small polynomials before being multiplied with
the corresponding evaluation key. However, the previous studies such as Halevi et al. (CT-RSA
2019) and Han and Ki (CT-RSA 2020) fix a decomposition function in the setup phase which is
applied commonly across all ciphertext levels, resulting in suboptimal performance.
In this paper, we introduce a novel key-switching framework for leveled HE schemes. We aim to
allow the use of different decomposition functions during the evaluation phase so that the opti-
mal decomposition method can be utilized at each level to achieve the best performance. A naive
solution might generate multiple key-switching keys corresponding to all possible decomposition
functions, and sends them to an evaluator. However, our solution can achieve the goal without such
communication overhead since it allows an evaluator to dynamically derive other key-switching keys
from a single key-switching key depending on the choice of gadget decomposition.
We implement our framework at a proof-of-concept level to provide concrete benchmark results.
Our experiments show that we achieve the optimal performance at every level while maintaining
the same computational capability and communication costs.

Keywords: Homomorphic Encryption, Gadget Decomposition, Key Switching.

1 Introduction

Homomorphic encryption (HE) is a cryptosystem that enables computation on encrypted data without
decrypting it. Since Gentry’s the first candidate scheme [15], lattice-based constructions have become a
popular method for designing HE schemes. Currently, HE schemes based on the Learning with Errors
(LWE) or its ring variant (RLWE) problem [5, 6, 10] are popularly used due to their efficiency and strong
security guarantees. These HE schemes introduce a small noise in the encryption algorithm to attain their
security which gradually increases after homomorphic operation but also needs to be sufficiently small for
correct decryption. To address this issue, the leveled structure has been utilized in several HE schemes
(e.g., [6, 10]) where the ciphertext modulus can change dynamically during homomorphic omputation to
reduce the noise growth.

Meanwhile, the key-switching operation is a commonly used technique for constructing non-linear HE
operations such as multiplication and automorphism. This operation involves multiplying a polynomial
(with a large size) and a public (evaluation) key. However, naively multiplying them results in significant
noise growth. To address this issue, a special decomposition technique is used, where the polynomial is
mapped to a vector of small-sized elements, and the public (evaluation) key is encrypted in a specific vector
form. This allows the inner product of the polynomial and the public (evaluation) key to produce the
desired result with small noise growth. The mapping and vector are referred to as a gadget decomposition
and gadget vector, respectively, and we also refer to the pair of them as a gadget toolkit in this paper.

⋆ This work was supported by Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) [NO.2022-0-01047, Development of statistical analysis
algorithm and module using homomorphic encryption based on real number operation].
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The Residue Number System (RNS) is widely used in HE implementations to support high-precision
arithmetic efficiently. For example, there have been several studies [3, 9, 16, 17] on RNS-friendly design
and implementation of the B/FV [5, 14] and CKKS [10] schemes, and these results form the basis of state-
of-the-art HE libraries (e.g., [1, 7, 26]). Yet, the key-switching operation remains the most time-consuming
part in HE operations.

Our Contributions. In this paper, we introduce a new key-switching method for leveled HE schemes,
which we call the level-aware key-switching framework. The main advantage of our algorithm is its ability
to select the appropriate gadget toolkit at each level, which was not possible in previously.

The existing method uses a single gadget toolkit for all levels despite the fact that the best-performing
gadget toolkit is different for each level. This is because manipulating the underlying gadget toolkit is
cumbersome, as the gadget vector part is present in an encrypted form entangled with noises. To handle
this issue, we observe the algebraic properties of gadget vectors, and devise a new way to manipulate
the underlying gadget vectors of public (evaluation) keys in an encrypted state. Consequently, leveraging
the newly observed properties, we build a new key-switching framework that can control the underlying
gadget toolkit based on the input ciphertext level.

Another way to address advantages of our framework is reduction in communication cost. In the pre-
vious framework, a key generator should send additional key-switching keys to an evaluator, incurring
additional communication costs, to achieve equivalent performance with ours. However, our framework
effectively eliminates this overhead, leading to better key-switching performance under the same commu-
nication cost during the key generation phase.

We note that our method is a pure algorithmic optimization, so it does not affect the security of the
underlying schemes. Moreover, our algorithm is not limited to the CKKS scheme, and can be applied
to other lattice-based leveled HE schemes, such as the BGV [6] and the leveled BFV [18] schemes.
Furthermore, our algorithm is compatible with RNS-based implementations, so one can directly apply
our method to the existing state-of-the-art HE libraries such as OpenFHE [1], SEAL [7], and Lattigo [26].

2 Preliminaries

Notations. Let N be a power of two and q be an integer. We denote by K = Q[X]/(XN +1) the (2N)-th
cyclotomic field, R = Z[X]/(XN +1) the ring of integers of K and Rq = Zq[X]/(XN +1) the residue ring
of R modulo q. We identify an element a =

∑
0≤i<N aiX

i of R (or Rq) with the vector of its coefficients

(a0, . . . , aN−1) in ZN (or ZN
q , resp). We use Z ∩ (−q/2, q/2] as a representative of Zq for an integer q,

and denote by [a]q the reduction of each coefficient of a ∈ R modulo q. For a ∈ R, we define ∥a∥∞ as the
ℓ∞-norm of its coefficient vector.

For a real number r, ⌊r⌉ denotes the nearest integer to r, rounding upwards in case of a tie. For a
distribution D, we use x ← D to denote the sampling x according to D. For a finite set S, we denote
the uniform distribution over S as U(S). For σ > 0, we denote by Dσ a distribution over R sampling N
coefficients independently from the discrete Gaussian distribution of variance σ2.

2.1 Ring Learning With Errors

Let N be a power of two, Q a positive integer, and χ and ψ be distributions over R. The ring learning
with errors (RLWE) assumption with respect to the parameter (N,Q, χ, ψ) is that given polynomially
many samples of either (b, a) or (−as+ e, a), where a, b← RQ, s← χ, e← ψ, it is computationally hard
to distinguish which is the case. The security of lattice-based homomorphic encryption (HE) schemes
such as BGV [6], B/FV [5, 14], and CKKS [10] relies on the hardness of the RLWE assumption.

Throughout this paper, we refer a pair (c0, c1) ∈ R2
Q as an RLWE ciphertext encrypted under s, if

c0 = −c1s+ µ+ e (mod Q) for some µ, s ∈ R and small e. Then, it admits c0 + c1s ≈ µ (mod Q).
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2.2 RNS and NTT

When implementing HE schemes, we need big-integer arithmetic as HE ciphertexts usually have large
modulus. To handle this issue, the Residue Number System (RNS) is popularly used, where a large integer
is represented as a tuple of small integers. There have been several literature [9, 16, 17, 18] regarding
efficient implementation of HE schemes based on the RNS representation. The RNS representation is
defined as follows. Let Q = q0 · · · qℓ−1 be a big integer where qi’s are pairwise coprime integers. Then, we
get an isomorphism RQ → Rq0×· · ·×Rqℓ−1

, a 7→ ([a]q0 , . . . , [a]qℓ−1
) from the Chinese remainder theorem.

We refer to the image ([a]q0 , . . . , [a]qℓ−1
) as the RNS representation of a. With qi set as word-size primes,

arithmetic operations over RQ can be efficiently instantiated using Rqi , avoiding the need for inefficient
high-precision arithmetic.

However, polynomial multiplications in Rqi still need to be optimized since its naive implementation
takes O(N2) complexity. Hence, to accelerate polynomial multiplications in Rqi , the discrete Fourier
transformation over Zqi , also known as Number Theoretic Transform (NTT), is frequently utilized. If
qi = 1 (mod 2N), there exists a (2N)-th root of unity ζi ∈ Zqi . Then, we obtain a ring isomorphism from
Rqi to ZN

qi defined by a 7→ (a(ζi), a(ζ
3
i ), . . . , a(ζ

2N−1
i )). This isomorphism is called the NTT conversion

modulo qi. We note that the NTT conversion (or its inverse) can be computed in O(N logN) arithmetic
operations over Zqi . Using this conversion, one can instantiate polynomial multiplication with O(N logN)
complexity as follows. First, transform operand polynomials to ZN

qi using the NTT, then apply point-wise

multiplication to them in ZN
qi , and finally, transform the result back to the polynomial ring Rqi using the

inverse NTT.

2.3 Gadget Decomposition and Key-switching

We first review the definition of the gadget toolkit, which is commonly used as building blocks for lattice-
based HE schemes [6, 14, 13, 10].

Definition 1 (Gadget Decomposition). For a modulus Q, a function h : RQ → Rd is called a gadget
decomposition if there exists a fixed vector g = (g0, g1, . . . , gd−1) ∈ Rd

Q and a real B > 0 such that the
following holds for any a ∈ RQ and its decomposition b = (b0, b1, . . . , bd−1)← h(a):∑

0≤i<d

bi · gi = a (mod Q) and ∥b∥∞ ≤ B.

We call g a gadget vector and B > 0 a bound of h.

Given a gadget toolkit over (h,g) over RQ, A gadget encryption of a plaintext µ ∈ R under a secret key
s and a special modulus P is defined as (u0,u1) ∈ Rd×2

PQ where u0 = −s · u1 + Pµ · g + e (mod PQ) for

some small e ∈ Rd. Then, for a ∈ RQ, we can compute a ciphertext

(c0, c1) =

⌊
1

P
(⟨h(a),u0⟩, ⟨h(a),u1⟩)

⌉
whose decryption is approximately equal to µ · a. This can be checked as follows.

c0 + c1 · s =
1

P
⟨h(a),u0 + s · u1⟩+ e0 + e1s (mod Q)

= µ · a+ 1

P
⟨h(a), e⟩+ e0 + e1s (mod Q) (1)

where e0 =
⌊

1
P ⟨h(a),u0⟩

⌉
− 1

P ⟨h(a),u0⟩ and e1 =
⌊

1
P ⟨h(a),u1⟩

⌉
− 1

P ⟨h(a),u1⟩ are errors from rounding.
Note that we have∥∥ 1
P ⟨h(a), e⟩

∥∥
∞ ≤

B
PN · ∥e∥∞, thus if P is large enough so that B/P is small, we obtain c0 + c1s ≈ µ · a

(mod Q).
The above procedure is referred as a key-switching operation, and is frequently utilized to construct

non-linear homomorphic operations in lattice-based HE schemes. We also call a gadget encryption as a
key-switching key.
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2.4 Leveled Homomorphic Encryption

We provide a brief description of CKKS [10] as an example of leveled HE scheme.

• CKKS.Setup(1λ): Given a security parameter λ, it chooses a RLWE parameter (N,PQ, χ, ψ). Addi-
tionally, it chooses a maximum level ℓmax, a chain of ciphertext moduli Q1|Q2 . . . |Qℓmax

= Q, a gadget
toolkit (h,g) for RQ, and a special modulus P , scaling factor ∆, then it outputs the public parameter
pp = (N,Q1, . . . , Qℓmax , P, h,g, χ, ψ,∆).

• CKKS.KeyGen(pp): Given a public parameter pp, it generates a secret key, a public key, a relinearization
key, and an automorphism key as follows.

– Sample s← χ and return the secret key sk = s.
– Sample p1 ← RPQ and ep ← Dσ, and let p = (p0, p1) ∈ R2

PQ where p0 = −p1s+ep (mod Q̃). Return
the public key pk = p.

– Sample r1 ← Rd
PQ and er ← Dd

σ. Generate the relinearization key as rlk ← (r0, r1) ∈ Rd×2
PQ where

r0 = −s · r1 + Ps2 · g + er (mod PQ).

• CKKS.Enc(pk;m): Given a public key pk and a message m ∈ R[X]/(XN + 1), it outputs a ciphertext

ct =
⌊

1
P ·

(
z · pk+ (e0, e1)

)⌉
+ (⌊∆m⌉ , 0) (mod Qℓ) of level ℓ where z ← χ and e0, e1 ← ψ.

• CKKS.Dec(s; ct): Given a ciphertext ct = (c0, c1) ∈ R2
Qℓ

and a secret key s ∈ R, it outputs a message

m = 1
∆ (c0 + s · c1 (mod Qℓ)) ∈ R[X]/(XN + 1).

• CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1) ∈ R2
Qℓ

of level ℓ, it outputs a ciphertext ct′ =

(
⌊
Qℓ−1

Qℓ
c0

⌉
,
⌊
Qℓ−1

Qℓ
c1

⌉
) ∈ R2

Qℓ−1
of level ℓ− 1.

• CKKS.Add(ct1, ct2): Given two ciphertexts ct1 ∈ R2
Qℓ1

, ct2 ∈ R2
Qℓ2

of level ℓ1 and ℓ2 respectively, it

outputs a ciphertext ctadd = ct1 + ct2 (mod Qℓ) of level ℓ where ℓ = min{ℓ1, ℓ2}.

• CKKS.Mult(rlk; ct1, ct2): Given two ciphertexts ct1 = (c0, c1) ∈ R2
Qℓ1

, ct2 = (c′0, c
′
1) ∈ R2

Qℓ2
of level

ℓ1 and ℓ2 respectively and a relinearization key rlk ∈ Rd×2
PQ , let d0 = c0c

′
0 (mod Qℓ), d1 = (c0c

′
1 + c′0c1)

(mod Qℓ), and d2 = c1c
′
1 (mod Qℓ) where ℓ = min{ℓ1, ℓ2}. Then, it outputs a ciphertext ctmul = (d0, d1)+⌊

1
P (⟨h(d2), rlk0⟩, ⟨h(d2), rlk1⟩)

⌉
(mod Qℓ) of level ℓ.

We note that the generation of relinearization key and the homomorphic multiplication algorithm
in the above implicitly involves gadet enrpytion and key-switching operation respectively. After the ho-
momorphic multiplication, the scaling factor of ctmul becomes ∆2, which is undesirable since repeated
multiplications would yield exponential blow-up of scaling factor. To overcome this problem, the rescaling
operation is performed after each multiplication. If we set ∆ ≈ Qℓ/Qℓ−1 in the setup phase, then the
rescaling operation reduces the scaling factor of plaintext by the factor of ∆ at the expense of one level.
For more details on the CKKS scheme such as homomorphic automorphism or the correctness proof, we
refer the reader to [10].

3 Revisiting RNS-based Decomposition

There have been several work [9, 16, 17, 18] that studied an efficient implementation of gadget toolkits
using RNS representation. These gadget toolkits are often referred to as RNS-based gadget toolkits due
to their compatibility with RNS representation. Since they provide efficient performance in real-world
implementations, they are popularly used in most HE libraries [7, 26, 1].

In this section, we revisit these RNS-based gadget toolkits and present our new observations regarding
them. In short, our observation is related to the transformation between RNS-based gadget toolkits. To
state it more clearly, we start by reviewing RNS-based gadget toolkits. Then, we demonstrate how an
RNS-based gadget toolkit can be transformed into another gadget toolkit through simple additions.
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3.1 Previous Method

To begin with, we define some notations regarding the RNS-based gadget toolkit. Let q0, q1, . . . , qℓ−1 be

a pairwise coprime integers and Q =
∏ℓ−1

i=0 qi. Let 0 = t0 < t1 < · · · < td−1 < td = ℓ be a sequence of

integers. For 0 ≤ j < d, we define the j-th digit as Dj :=
∏

tj≤i<tj+1
qi and write D̂j = Q/Dj . Then, the

RNS-based decomposition with respect to digits Dj is defined as

h(a) =
(
[D̂−1

0 · a]D0 , . . . , [D̂
−1
d−1 · a]Dd−1

)
.

We can show that h is a gadget decomposition corresponding to the gadget vector g = (D̂0, . . . , D̂d−1)
from the Chinese Remainder Theorem.

We note that h(a) can be computed in the RNS representation using the base conversion algorithm
from the following formula:

[D̂−1
j · a]Dj =

∑
tj≤i<tj+1

[(Q/qi)
−1 · a]qi · (Dj/qi)− rj ·Dj

where rj =
⌊∑

tj≤i<tj+1
q−1
i · [(Q/qi)−1 · a]qi

⌉
∈ R. We refer the reader to [17, 18] for more details.

3.2 Coalescing Gadget Vector

In this section, we present a variant of the RNS-based gadget decomposition method and explain its
properties. At a high level, we demonstrate how to trjnsform an RNS-based decomposition into another
with a different RNS basis and describe the relation between their gadget vectors.

To be precise, we show that performing simple additions between elements of an RNS-based gadget
vector leads to an efficient transformation that coalesce digits. Suppose that h is an RNS-based de-
composition with respect to a basis D0, . . . , Dd−1. For an integer k > 0, let D̄j =

∏
jk≤i<(j+1)kDi for

0 ≤ j < d̄ = ⌈d/k⌉. Then, the function h̄ : RQ → Rk̄ defined by

h̄(a) =

[( k−1∑
j=0

D̂j

)−1 · a
]
D̄0

, . . . ,

[( d−1∑
j=(d̄−1)k

D̂j

)−1 · a
]
D̄k̄−1


becomes a gadget decomposition corresponding to the vector

ḡ =

k−1∑
j=0

D̂j , . . . ,

d−1∑
j=(d̄−1)k

D̂j

 .

To verify our claim, we first remark that
∑(j+1)k−1

i=jk D̂i is invertible in ZD̄j
so the decomposition h̄ is

well-defined. In addition, we have
〈
h̄(a), ḡ

〉
= [a]D̄j

(mod D̄j) for 0 ≤ j < d̄, which implies
〈
h̄(a), ḡ

〉
= a

(mod Qℓ) from the Chinese Remainder Theorem. The above observation allows us to manipulate the
underlying structure of key-switching keys since key-switching keys are essentially encryptions of gadget
vectors multiplied with some messages. We elaborate on this discussion in the next section.

4 Level-aware Key-switching Framework

In this section, we present a new framework for key-switching operations in leveled HE schemes, which
we call level-aware key-switching framework. The main objective of this section is to investigate how we
can modify underlying structure of key-switching key, such as the special modulus or gadget vector.

In a nutshell, we aim to utilize the observation in Sec. 3.2 to enhance key-switching performance. As
previously discussed, one can modify the digits in an RNS-based gadget vector by simply adding each
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component. We apply a similar technique to key-switching keys to alter the digits in their underlying
gadget vectors, enabling us to derive a wide range of key-switching keys with different compositions
of digits. Consequently, this allows us to achieve more significant improvements in the performance of
key-switching operations in a leveled setting by selecting the best-performing key-switching key at each
level.

In the rest of this section, we first revisit the previous key-switching framework. Then, we discuss
how we can adapt the newly observed property to construct the new key-switching framework. We also
assume that q0, . . . , qL−1 are distinct, similar-sized primes, comprising a chain of moduli Qℓ =

∏ℓ−1
i=0 qi

for 0 ≤ ℓ < L. Additionally, we assume that an RLWE parameter is given as (N,QL, χ, ψ) with respect
to a security parameter λ.

4.1 Previous Key-switching Procedure

Below, we review the basics of the key-switching procedure utilized in previous literature.

• Setup(r): Given a digit length r, set the maximum ciphertext level ℓmax = L − r and the maximum

gadget dimension dmax = ⌈ℓmax/r⌉. Also, set the j-th digit as Dj =
∏(j+1)r−1

i=jr qi for 0 ≤ j < dmax, and
set the special modulus as P = QL/QL−r.

• KSKGen(µ; s): Given a message µ ∈ R and a secret key s ∈ R, output a key-switching key (u0,u1) ∈
Rdmax×2

QL
where u1 ← U(Rdmax

QL
), e ← ψdmax , and u0 = −s · u1 + µ ·

(
QL/D0, . . . , QL/Ddmax−1

)
+ e

(mod QL).

• KS(a; ksk): Given a polynomial a ∈ RQℓ
of level ℓ and a key-switching key ksk = (u0,u1), output a

ciphertext (c0, c1) of level ℓ computed as follows:

1. Parse ui as (ui,0, . . . , ui,dmax−1) for i = 0, 1, and set d = ⌈ℓ/r⌉.
2. b←

(
[(Qℓmax

/D0)
−1
a]D0

, . . . , [(Qℓmax
/Dd−1)

−1
a]Dd−1

)
.

3. vi ← ([ui,0]PQℓ
, . . . , [ui,d−1]PQℓ

) for i = 0, 1.
4. ci ←

⌊
1
P ⟨b,vi⟩

⌉
(mod Qℓ) for i = 0, 1.

At the setup phase, a key generator designates a digit length r that will be used throughout the whole
process. Then, the maximum ciphertext level ℓmax, a special modulus P , and digits Dj are determined
accordingly. For key-switching key generation, it essentially computes a gadget encryption of µ with

respect to the special modulus P = QL

Qℓmax
and a gadget vector

(
Qℓmax

D0
, . . . ,

Qℓmax

Ddmax−1

)
. Note that P ·Qℓmax

Dj
=

QL

Dj
, so we encrypt µ · QL

Dj
’s at the keygen phase. Finally, for key-switching operation, it first computes

the gadget decomposition with respect to the level of an input polynomial, takes modulo operations on
the input key-switching keys, and performs an inner product of them.

To present how the value of r affects the performance of key-switching, we provide a computational
complexity analysis of key-switching. In the analysis, we primarily count the number of two operations:
NTT (Number Theoretic Transform) or inverse NTT over Rqi and the Hadamard product (pointwise
product) over ZN

qi asthey dominate the overall elapsed time. Table 1 provides a summary of the analysis
obtained in [20]. For details, we refer to the reference.

NTT Hadamard Product

O(dℓ+ r) O(ℓ2 + dℓ)

Table 1: Computational complexity of each operation in key-switching. ℓ and r denotes input level and
digit length respectively, and d = ⌈ℓ/r⌉

We note that the previous key-switching algorithm KS adaptively adjusts the dimension of gadget
decomposition and the modulus of key-switching keys depending on the level of input ciphertexts. This
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improves key-switching performance by reducing the value of d since smaller d value gives better perfor-
mance as described in Table. 1. However, it does not lead to significant speed-up in key-switching since
impact of changes in d is small as r remains fixed.

To sum up, in the previous key-switching, the entire process is determined by the digit length chosen
during the setup phase by a key generator. As a result, an evaluator’s role in key-switching operations
is somewhat passive in that it simply applies modulo operations on key-switching keys depending on the
level of the input.

4.2 Coalescing Key-switching Key

Our new framework stems from the observation in Sec. 3.2, which shows that a gadget vector with larger
digits can be obtained by summing components of a gadget vector with smaller digits. A natural way to
apply this method to key-switching keys is to add each component of key-switching keys. However, this
may not result in well-formed key-switching keys as we need to adjust the special modulus with respect to
the changed digits for correct key-switching operations. To be precise, consider a key-switching key of the
previous framework generated with (u0,u1)← KSKGen(µ; s). It can be regarded as RLWE encryptions of

Pµ ·
(
Qℓmax

D0
, . . . ,

Qℓmax

Ddmax−1

)
.

where P = QL/Qℓmax
. Following the observation in Sec. 3.2, if we add k successive key-switching compo-

nents, it results in RLWE encryptions of

Pµ ·

k−1∑
j=0

Qℓmax

Dj
, . . . ,

dmax−1∑
j=(⌈dmax/k⌉−1)k

Qℓmax

Dj

 . (2)

Then, we obtain a key-switching key encrypted from the special modulus P and a gadget vector with a
kr-digit length. However, as the digit length grows from r to kr, an upper bound for gadget decomposition
grows as well. Thus, the special modulus P may not be sufficient for compensating key-switching noises.

To address this issue, we further observe the structure of key-switching keys and discover that unused
modulus of higher levels can be transferred to the special modulus at lower levels. To be precise, we
observe that each component of Eq. (2) can be represented as follows:

Pµ ·
∑
j

Qℓmax

Dj
=
PQℓmax

Qℓ
µ ·

∑
j

Qℓ

Dj

Hence, if we regard the maximum ciphertext level as ℓ, then Eq. (2) can be considered as a gadget encryp-

tion with the special modulus
PQℓmax

Qℓ
, where the unused modulus

Qℓmax

Qℓ
= qℓmax−1 · · · qℓ is transferred to

the special modulus.
This allows us to derive valid key-switching keys with different compositions of digits from the original

one as the level goes down. By leveraging this property, we come up with a new framework for key-
switching operations that dynamically selects the best-performing key-switching keys at each level, which
we call the level-aware framework.

4.3 Level-aware Key-switching Framework

Below, we present our new level-aware key-switching framework.

• Setup(·): For each digit length r, set the maximum ciphertext level ℓ
(r)
max = L − r and the maximum

gadget dimension d
(r)
max =

⌈
ℓ
(r)
max/r

⌉
. Also, set the j-th digit as D

(r)
j =

∏(j+1)r−1
i=jr qi for 0 ≤ j < d

(r)
max, and

set the special modulus as P (r) = QL/QL−r.
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• KSKGen(µ; s): Given a message µ ∈ R and a secret key s ∈ R, output a key-switching key (u0,u1) ∈
Rℓmax×2

QL
where u1 ← U(Rℓmax

QL
), e = (e0, . . . , eℓmax−1)← φℓmax , and u0 = −s·u1+µ·

(
QL/q0, . . . , QL/qℓmax−1

)
+

e (mod QL).

• Expand(ksk; I): Given a key-switching key ksk = (u0,u1) and an index map I, output expanded key-

switching keys {ksk(r) = (u
(r)
0 ,u

(r)
1 )}r∈ran(I) which are computed as follows:

1. Parse ui as (ui,0, . . . , ui,ℓmax−1) for i = 0, 1.

2. Set d = d
(r)
max, and Dj =

∏(j+1)r−1
k=jr qk for 0 ≤ j < d.

3. u
(r)
i ←

(∑r−1
k=0 ui,k, . . . ,

∑ℓmax−1
k=(d−1)r ui,k

)
for i = 0, 1.

• KS(a; {ksk(r)}r∈ran(I)): Given a polynomial a ∈ RQℓ
of level ℓ and expanded key-switching keys {ksk(r) =

(u
(r)
0 ,u

(r)
1 )}r∈ran(I), output a ciphertext (c0, c1) of level ℓ computed as follows:

1. Set the digit length r = I(ℓ) for the level ℓ ≤ ℓ(r)max

2. Parse u
(r)
i as

(
u
(r)
i,0 , . . . , u

(r)

i,d
(r)
max−1

)
for i = 0, 1, and d = ⌈ℓ/r⌉.

3. b←
([(∑r−1

k=0
QL−r

qk

)−1
a
]
D

(r)
0
, . . . ,

[(∑ℓ−1
k=(d−1)r

QL−r

qk

)−1
a
]
D

(r)
d−1

)
4. vi ← ([u

(r)
i,0 ]P (r)Qℓ

, . . . , [u
(r)
i,d−1]P (r)Qℓ

) for i = 0, 1.

5. ci ←
⌊

1
P (r) ⟨b,vi⟩

⌉
(mod Qℓ) for i = 0, 1.

The basic pipeline of our framework is as follows. At the setup phase, parameters such as the maximum
ciphertext level, digits, and the special modulus are computed for each digit length r since our framework
utilizes various digit lengths depending on the level. Then, a key generator generates initial key-switching
keys with a single digit so that an evaluator can freely obtain the best-performing key as needed.

Upon receiving initial key-switching keys from a key generator, an evaluator preprocesses these keys
before the evaluation phase. First, the evaluator investigates the best-performing digit lengths for each
level and constructs an index map I : [L] → [L], where I(ℓ) represents the optimal digit length for
the level ℓ. Subsequently, the evaluator expands the key-switching keys with respect to I using the key
expansion algorithm Expand, ensuring that the best-performing key-switching keys are prepared ahead
of the evaluation phase. Once the preprocessing is complete, the evaluator enters the evaluation phase
and executes the KS algorithm, which performs the key-switching operation using the best-performing
key-switching keys based on the input level.

Compared to the previous key-switching method, the computational complexity analysis remains
unchanged as our method does not alter the structure of the key-switching algorithm itself. However,
the main difference lies in the capability to alter the digit length r of the underlying gadget vector for
key-switching keys, which directly impacts the performance of key-switching operations, as shown in
Table 1.

Hence, the complexity analysis helps us to construct an index map I for optimal performance. For
example, when ℓ is sufficiently larger than the possible r values, a larger r results in better performance
since it effectively reduces the size of d. As a result, we can achieve a significant speed-up in key-switching
operations at high levels by mapping I(ℓ) to L − ℓ. However, for small ℓ values, asymptotic analysis is
not very helpful, so we empirically determine optimal I(ℓ) values based on benchmark results.

On the other hand, our framework requires an evaluator to execute a preprocessing procedure for key-
switching keys, incurring additional computational costs. However, in most cases, this preprocessing is
executed at most once since the derived key-switching keys can be reused throughout the entire evaluation
phase. Thus, the performance enhancements in the evaluation phase compensate for this initial overhead.
We elaborate on these discussions in the next section, along with concrete experimental results.

We end this section by providing a correctness proof and noise analysis on our new framework,
especially for the key expansion algorithm Expand and the key-switching algorithm KS.
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Correctness.We first show that for level ℓ < L and any digit length r satisfying ℓ+r ≤ L, a key-switching
key (u

(r)
0 ,u

(r)
1 ) expanded from (u0,u1) with the algorithm Expand provides correct key-switching func-

tionality when performed with the KS algorithm. Suppose (u0,u1) ← KSKGen(µ; s) for some µ, s ∈ R,

then (u
(r)
0 ,u

(r)
1 )← Expand((u0,u1); {r}) satisfies the following:

u
(r)
0 + s · u(r)

1 =P (r)µ ·

r−1∑
k=0

Q
ℓ
(r)
max

qk
, . . . ,

ℓ(r)max−1∑
k=(d

(r)
max−1)r

Q
ℓ
(r)
max

qk


+

r−1∑
k=0

ek, . . . ,

ℓ(r)max−1∑
k=(d

(r)
max−1)r

ek

 (mod QL)

Let us represent the gadget vector and the noise parts as ḡ = (ḡ0, . . . , ḡd(r)
max−1

) and e = (ē0, . . . , ēd(r)
max−1

),

respectively. Then, during the computation of KS(a; {(u(r)
0 ,u

(r)
1 )}), it satisfies that

⟨b, (ḡ0, . . . , ḡd−1)⟩ = a (mod Qℓ) (3)

v0 + s · v1 = P (r)µ · (ḡ0, . . . , ḡd−1) + (ē0, . . . , ēd−1) (mod P (r)Qℓ)

where Eq. (3) holds due to the observation in Sec. 3.2. Thus, (c0, c1) satisfies the followings:

c0 + c1s ≈
⌊

1

P (r)
⟨b,v0 + s · v1⟩

⌉
(4)

=

⌊
1

P (r)

〈
b, P (r)µ · (ḡ0, . . . , ḡd−1) + (ē0, . . . , ēd−1)

〉⌉
= aµ+

⌊
1

P (r)
⟨b, (ē0, . . . , ēd−1)⟩

⌉
≈ aµ (mod Qℓ) (5)

We note that Eq. (5) holds due to

∥b∥∞ ≤
1

2
max
0≤j<d

D
(r)
j ≈ 1

2
P (r)

since D
(r)
j and P (r) are products of r primes, and we set each prime qi to have a similar scale. Thus,

key-switching keys are well-formed and the key-switching algorithm correctly works in our new framework.

Noise Analysis. Finally, we analyze a precise upper bound for noise occurred during our key-switching
algorithm. We note that key-switching noise comes from Eq. (4) and (5). For Eq. (4), noise occurs due
to rounding operations, thus it is bounded as follows∥∥∥∥⌊ 1

P (r)
⟨b,v0 + s · v1⟩

⌉
−

⌊
1

P (r)
⟨b,v0⟩

⌉
− s ·

⌊
1

P (r)
⟨b,v1⟩

⌉∥∥∥∥
∞

≤ ∥erd,1 + erd,2 + s · erd,3∥∞ ≤ 1 +
N

2
∥s∥∞

where erd,i corresponds to the rounding error of the i-terms in the above for i = 1, 2, 3. For Eq. (5), the
noise is bounded as follows.∥∥∥∥⌊ 1

P (r)
⟨b, (ē0, . . . , ēd−1)⟩

⌉∥∥∥∥
∞
≤ 1

2
+
NL∥e∥∞

2
·
max

0≤j<d
(r)
max

D
(r)
j

P (r)

Then, the total bound is as follows:

3

2
+
N

2

∥s∥∞ + L∥e∥∞ ·
max

0≤j<d
(r)
max

D
(r)
j

P (r)


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We again note that an upper bound for key-switching noise is small since P (r) ≈ max
0≤j<d

(r)
max

Dj holds

for all r.

5 Experiment Results

In this section, we present practical aspects of our new framework through experimental results. We
first show how our framework optimizes key-switching performance at each level through benchmark
data. Then, we provide several implications of our framework concerning real-world applications based
on leveled HE schemes.

Our implementation is based on version 3.0.4 of the Lattigo library [26], which implements the CKKS
and BFV schemes in a full RNS manner. We conduct all benchmarks on a laptop machine equipped with
an Apple M2 CPU and 16GB of RAM, and all benchmarks are performed using a single thread. The
source code is available at https://github.com/SNUCP/level-aware-ksw.

5.1 Parameter Settings

We present parameter settings for our implementation. Basically, we follow the parameter settings of [2],
which provides standard parameter sets for lattice-based HE schemes. To be precise, the key distribution
χ samples each coefficient from {0,±1} with probability 1/3 for each element. The error distribution ψ
is set to the discrete Gaussian Dσ with σ = 3.2. We use the ring dimension N = 216 which provides large
enough depths for evaluating complex arithmetic circuits. We set ⌈logQL⌉ = 1760 which gives 128-bit
security with respect the forementioned RLWE parameters N,χ, ψ. We use the primes qi’s satisfying
qi = 1 (mod 2N) so that they can have a (2N)-th root of unity for NTT. Additionally, we fixed the total
number of prime factors as L = 40 and set the size of prime factors to be approximately 244 so that they
have roughly the same scale. Table 2 summarizes our parameter setting.

N ⌈logQL⌉ L ⌈log qi⌉

216 1760 40 44

Table 2: Parameters used in our experiments. L stands for the number of prime factors for Q.

5.2 Benchmark Results

To identify performance enhancement from our new framework, we measure the elapsed time of key-
switching operations at each level using both the new and previous framework. Each key-switching op-
eration is performed on random ciphertexts at levels 1 ≤ ℓ ≤ 39. In the benchmark, we use various digit
lengths r = 1, 2, 4, 8, and 16 to demonstrate the effect of digit lengths on key-switching performance. The
result is presented in Table 3 and Fig. 1.

In the previous framework, once a digit length is determined at the setup phase, it affects the maximum
ciphertext level and key-switching performance at all levels. For the maximum ciphertext level, it is
determined as L − r, so small r values are preferred. However, when it comes to the performance of
key-switching, a larger r usually gives better results at high levels, as shown in Table 3 when ℓ ≥ 28. This
is because the complexity of both NTT and Hadamard product involves an O(dℓ) factor, as presented in
Table 1, where d = ⌈ℓ/r⌉. On the contrary, in the case of low d values (i.e., the ratio between ℓ and r is
small), a larger r may degrade key-switching performance since the O(r) factor in NTT has a significant
impact in such cases, as shown in Table 3 when ℓ ≤ 12 or r = 16.

Hence, setting the proper r is in a trade-off relation with various factors, and it is crucial to find the
right balance between these factors in the previous framework. For example, when r = 1, we can achieve
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ℓ
Previous

Ours
r = 1 r = 2 r = 4 r = 8 r = 16

39 962 - - - 961

38 926 691 - - - 694

37 871 665 - - 664

36 825 623 417 - - 417

35 797 596 404 - - 403

34 741 557 390 - - 390

33 699 531 370 - - 371

32 660 494 338 266 - 265

28 513 376 267 230 - 230

24 384 281 204 174 202 173

20 274 203 150 145 172 145

16 183 140 107 102 114 102

12 110 88 72 79 96 71

8 55 48 43 48 73 43

4 19 20 21 32 52 19

Table 3: Benchmark results of previous and our key-switching algorithm. ℓ denotes the level of ciphertext.
We measure performance of previous key-switching operations with r = 1, 2, 4, 8, 16. Ours stands for our
algorithm with optimal r chosen from those values. Unit of all operations is milliseconds per operation.

28323639
0

200

400

600

800

1,000

Ciphertext Level (ℓ)

T
im

e
(m

s/
op

)

r = 1
r = 2
r = 4
r = 8
Ours

04812

0

20

40

60

80

100

120

Ciphertext Level (ℓ)

T
im

e
(m

s/
op

)

r = 1
r = 2
r = 4
r = 8
r = 16
Ours

Fig. 1: Performance of key-switching operation when N = 216. r = 1, 2, 4, 8, 16 stands for the previous
method with each r, and Ours stands for our new method.

the highest ciphertext level, but key-switching performance is slower than other r values in most levels.
On the contrary, when r = 8, we gain optimal performance in most levels, but we need to sacrifice 7
levels, which is about 18% of available levels. With r = 4, we obtain a somewhat balanced result between
the r = 1 and r = 8 cases at high levels, and it provides the best performance at low levels ℓ ≤ 12.

In the level-aware key-switching framework, we are free from such concerns, and we can always take
advantage of each r value by constructing an index map I according to the benchmark results. As
shown in Table 3 and Fig. 1, our framework matches the best-performing r in each level from previous
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key-switching framework. Hence, we can perform key-switching operations from ℓ = 39, and the key-
switching performance gets accelerated as level goes down since we can utilize more digit lengths. For
example, when ℓ = 32, our framework achieves about 2.5x speed-up compared to the previous framework
with r = 1. When we reach low levels (ℓ ≤ 12), we start to reduce digit lengths as small r values give
better performance in this case. As another example, when ℓ = 4, our framework achieves about 1.7x
speed-up compared to the previous framework with r = 8. Therefore, our framework always provides
optimal key-switching performance across all levels by dynamically adjusting digit lengths.

Degree
Evaluation Time (s)

Speedup
Previous Ours

8 7.77 5.67 1.37x

16 19.56 13.55 1.44x

32 48.74 31.28 1.55x

Table 4: Benchmark results for polynomial evaluation

To assess the impact of our framework in real-world applications, we measure the evaluation time for
random polynomials in Table 4. For the previous method, we fix r at 1, while for ours, we use the optimal
r values presented in Table 3 at each level. Both methods use input ciphertexts with level ℓ = 39. For
polynomials with degrees ranging from 8 to 32, our method achieves 1.37 to 1.55 times speed-up. Also,
as the degree of the polynomial increases, the speed-up factor improves. This is because the performance
improvement accelerates as the level decreases when ℓ = 32 ∼ 39, as presented in Fig. 1. Thus, our
framework can provide a significant speed-up when evaluating large-depth circuits, which often includes
the evaluation of large-degree polynomials.

Meanwhile, our framework requires to precompute several key-switching keys to enjoy such perfor-
mance enhancement. To analyze overheads from preprocessing for keys, we measure the elapsed time
for the key expansion algorithm in Table 5. Our experiments show that the extra runtime induced from
the key expansion algorithm is insignificant compared to the complexity improvements in key-switching
operations at high levels, such as ℓ = 28 ∼ 39. Additionally, this preprocessing is performed only once
throughout the entire evaluation phase. Hence, we conclude that our framework still offers better perfor-
mance compared to the previous one, even when considering the additional cost from preprocessing for
keys.

r Expansion Time (ms) Key Size (GB)

1 - 1.63

2 77 0.79

4 73 0.37

8 64 0.16

16 48 0.08

Table 5: Benchmark results for key expansion algorithm
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5.3 Implications

We end this section by providing several implications of our framework. As noted before, our framework
has a significant advantage when evaluating large-depth arithmetic circuits, as it allows for dynamic
adjustment of proper digit lengths at each level. This flexibility provides enhanced performance for various
applications of HE. For instance, our framework can be utilized to accelerate the homomorphic evaluation
of the CKKS bootstrapping circuit [8, 25, 24, 4], comparison function [11, 12], logistic regression [19, 21],
and convolutional neural networks [22, 23], all of which involve evaluating large-depth circuits. By applying
our level-aware key-switching framework to these computations, one can achieve enhanced performance,
making homomorphic encryption more practical for real-world applications with complex computations
and deep circuits.

One can assess our contribution in terms of saving communication costs since our framework enables
an evaluator to derive key-switching keys with various digits, which is equivalent to the scenario where
a key generator generates these key-switching keys and sends them to evaluators on demand. Therefore,
our framework eliminates the need for sending additional key-switching keys, resulting in communication
cost savings. Furthermore, in our framework, an evaluator does not need to maintain expanded keys
throughout the entire evaluation process, as they can be regenerated at any time. This also provides an
advantage in space utilization compared to the previous framework.

To be precise, for expanding key-switching keys to digits r = 2, 4, 8, 16, it takes about 262 milliseconds,
and the total blow-up is about 1.4 gigabytes (see Table 5). As a comparison, if we assume a key generator
transmits these additional keys with a speed of 1GBit/s, it takes 11.2 seconds, which is about 43 times
slower. This effect gets magnified when the number of initial key-switching keys becomes larger. For
example, in the Lattigo library [26], a key generator needs to send 48 key-switching (automorphism) keys
to an evaluator to perform CKKS bootstrapping. With our framework, we can save communication costs
of transmitting about 70 gigabytes in this case.

6 Conclusion and Future Work

In this paper, we present a new key-switching framework that allows choosing the optimal digit length at
each level. With the previous framework [17, 18], one has to fix the digit length during the setup phase,
which determined the maximum available level and key-switching performance at all levels. Moreover,
key-switching performance and available level is in a trade-off relationship. In our framework, by exploiting
the structure of the RNS-based gadget vector, we eliminate this trade-off, allowing one to convert digit
lengths of key-switching keys via simple additions. As a result, our framework achieves the optimal
key-switching performance at each level without compromising available levels.

One direction for further work is to apply our framework to a recent study by Kim et al. [20], which
improves the asymptotic complexity of the key-switching algorithm. Since their work also utilizes RNS-
based gadget toolkits, it is compatible with our framework. Moreover, as their optimization is orthogonal
to ours, we can potentially achieve even greater efficiency in key-switching operations by leveraging the
advantages of both works.
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