
Hashing into quadratic residues
modulo a safe prime composite

Sietse Ringers

February 25, 2021

Set n = pq, and set p′, q′ such that p = 2p′ + 1 and q = 2q′ + 1. Suppose
p, q are safe primes, i.e., p′ and q′ are also prime. Call a function H a
cryptographic hash function if it is (second) pre-image resistant and collision
resistant. Given a cryptographic hash function H whose output is sufficiently
long, it is possible to define another hash function Hn as the composition of
H and squaring modulo n. This document proves in section 1 that then Hn

is also a cryptographic hash function, after first showing three preliminary
propositions that we use in our proof. Then in section 2 we provide an
explicit description of the hash function Hn in pseudocode.

We write Z∗
n for (Z/nZ)∗, the multiplicative group of the integers modulo

n having an inverse (i.e. 0 < x < n with gcd(x, n) = 1). Additionally we
write QRn = (Z∗

n)
2 = {x2 | x ∈ Z∗

n} for the group of quadratic residues
modulo n.

1 Proving security
Proposition 1. Z∗

n contains exactly four square roots of 1, i.e. elements X
such that X2 = 1, namely:

• 1 mod n

• n− 1 mod n

• R := Pp−Qq mod n, where P , Q are the integers such that Pp+Qq =
1, given by the extended Euclidean algorithm

• n−R mod n

1

Proof. It is clear that 1 and n − 1 square to 1 mod n. Due to the Chinese
Remainder Theorem (CRT), Z∗

n is isomorphic to Z∗
p × Z∗

q. The order of the
two group factors is p− 1 = 2p′ and q − 1 = 2q′ respectively. Both of those
groups have a subgroup of order 2, namely the ones generated by −1 mod p
and −1 mod q respectively, and because of Lagrange’s theorem those must
be the only such subgroups. Therefore because of the CRT isomorphism, Z∗

n

has two distinct subgroups of order two, generated by (1,−1) and (−1, 1).
Under the inverse of that isomorphism these are R = Pp − Qq mod n and
−R = n−R mod n.

Proposition 2. Any quadratic residue Y = X2 mod n ∈ QRn unequal to 1
has exactly four square roots in Z∗

n, namely X mod n, n−X mod n, RX mod
n and n−RX mod n. Two of these have representatives smaller than or equal
to (n− 1)/2.

Proof. That the mentioned numbers square to Y is easily seen using direct
computation. Furthermore, if X and Z have the same square mod n, then
X/Z mod n squares to 1 mod n, so if any Y had more than four distinct
roots then this would yield a fifth square root of one which does not exist.

As to the second claim of the proposition, one of X and n − X must
be smaller than or equal to (n − 1)/2, and then the other will be larger.
The same must hold of the smallest representatives of RX mod n and n −
RX mod n.

Proposition 3. If one knows one of the nontrivial square roots of 1 ∈ QRn

(i.e. not 1 or n− 1), then one can factor n.

Proof. Denote the square root again with R. Since R2 = 1 mod n we have
R2 − 1 = (R + 1)(R− 1) = 0 mod n; i.e. for some integer a, (R + 1)(R− 1)
is of the form (R + 1)(R − 1) = an = apq, with a ̸= 0 since R ̸= 1. Now
since p is prime, it must divide one of the two factors, R+ 1 or R− 1. Since
R + 1 ̸= pq = n (as we assumed the square root was nontrivial), it follows
that q must divide the other factor. So the factors of n are gcd(n,R−1) and
gcd(n,R + 1).

Since p = 2p′ + 1 and q = 2q′ + 1 are safe primes, the order of Z∗
n is ϕ(n) =

(p − 1)(q − 1) = 4p′q′. Then it is easy to see that the order or QRn equals
p′q′. For example, using CRT, the fact that Z∗

p and Z∗
q are cyclic, and then

CRT again, we have

Z∗
n
∼= Z∗

p × Z∗
q
∼= Z2p′ × Z2q′

∼= Z2 × Z2 × Zp′ × Zq′

Then the quadratic residues in Z∗
n are those whose two components in the

two group factors Z2 equal 0. This means that the order of QRn is indeed
p′q′.

2

Theorem 1. If f : {0, 1}∗ → QRn is any function such that f(x) = 1 does
not happen or happens with negligible probability, and if factoring is hard,
then its output will be a generator of QRn with overwhelming probability.

Proof. Suppose G = f(x) is not a generator; that is, its order is not the
maximal order p′q′. Without loss of generality let its order be p′, so that
1 = Gp′ mod n. Since n = pq, reducing modulo p gives the identity

1 = Gp′ mod q = (G mod q)p
′
mod q.

Now G mod q is an element of Z∗
q, whose group order is 2q′, and since G is

a quadratic residue the order of G mod q cannot be 2q′, so it must be either
1 or q′. In the latter case, our identity (G mod q)p

′
= 1 mod q would imply

that q′ divides p′ which is impossible because p′ is prime. Therefore, the
order of G mod q in Z∗

q is 1, i.e. G = 1 mod q. This implies that G− 1 = aq
for some a, i.e., gcd(n,G− 1) = q.

Theorem 2. Let H : {0, 1}∗ → [2, (n−1)/2] be a cryptographic hash function
(i.e. it is collision resistant and (second) pre-image resistant). Define Hn :
{0, 1}∗ → QRn by Hn(x) = H(x)2 mod n. If factoring is hard, then Hn is
also a cryptographic hash function, which outputs generators of QRn with
overwhelming probability.

Proof. First note that the output of H will have with overwhelming proba-
bility a multiplicative inverse mod n, i.e. gcd(H(x), n) = 1, because if not,
then gcd(H(x), n) will factor n. So with some abuse of notation, we may
consider the range of H to be a subset of Z∗

n, so that the range of Hn is
indeed QRn.

Suppose Hn is not collision resistant, so let x1 ̸= x2 be such that Hn(x1) =
Hn(x2) mod n. Then by Proposition 2, H(x1) equals H(x2) or n−H(x2) or
RH(x2) mod n or n − RH(x2) mod n. It cannot be n − H(x2) since that
exceeds (n − 1)/2. Similarly, of RH(x2) mod n and n − RH(x2) mod n,
only one will have a smallest representative that is smaller than (n − 1)/2.
Suppose without loss of generality that it is RH(x2). Summarizing, then,
we have either H(x1) = H(x2) or H(x1) = RH(x2). Now in the latter case
we have H(x1)/H(x2) = R mod n: one of the nontrivial square roots of 1
(since 1 < H(·) < n − 1). So if the latter case holds with non-negligible
probability, then we have a non-negligible chance of being able to factor n,
by Proposition 3. Thus we must have H(x1) = H(x2). So any algorithm
that breaks collision resistance of Hn can be used to break that of H, which
is impossible since we assumed H to be collision resistance.

Collision resistance implies second pre-image resistance. Ordinary pre-
image resistance can be proven with an almost identical argument as above.

3

The fact that Hn outputs generators with overwhelming probability is
proven in the previous theorem.

Because the hash function is the composition of H and squaring modulo n,
and because for each integer smaller than or equal to (n − 1)/2 there is ex-
actly one other such integer that squares to the same quadratic residue by
Proposition 2, Hn has exactly twice as much collisions as H itself. This is to
be expected, however, since the range of Hn is half as large as the maximal
range of H (which we take to be the lower half of Z∗

n, as above). Addition-
ally, the fact that all quadratic residues have exactly two roots smaller than
the upper bound ensures that this non-injectiveness of the square function
does not cause particular values of QRn to be returned by Hn more often
than others. Summarizing, the output of Hn “appears as random” as can be
expected.

2 Instantiation and implementation
In this section we describe the cryptographic hash function Hn in more de-
tail. For convenience, we interpret the output of our hash functions as large
integers; that is, we assume an implicit conversion of the output bytes to
integers.

Generally the construction below can be done for any hash function H
of sufficiently long output length, but for concreteness we take H(x) =
SHAKE256(x, d). Here SHAKE256 from the SHA3 function family is a so-
called Extendible Output Function (XOF): a function that has variable out-
put length, specified in bits as the second parameter d, with the property
that for any fixed d the function SHAKE256(·, d) is a cryptographic hash
function, and moreover if d′ > d then the first d bits of SHAKE256(·, d′)
coincide with SHAKE256(·, d).

Let Ln = |n| be the length in bits of the modulus (i.e. 1024, 2048 or 4096).
As the theorem above states, for the security of Hn it is important that
the cryptographic hash function H has the appropriate maximum output;
specifically, its output should be smaller than or equal to (n − 1)/2. Now
since SHAKE256(·, d) outputs d bits the upper limit of its output is 2d instead
of (n− 1)/2. Setting d = Ln − 1 = |(n− 1)/2|, our hash functions will thus
sometimes output an integer smaller than 2d but larger than (n− 1)/2. We
can “fix” that by prepending our input bytes with a counter i starting at 0,
i.e. when hashing x we return H(0||x) if that is below the upper bound,
and if it exceeds (n− 1)/2 we increment i until H(i||x) ≤ (n− 1)/2. We do
the same in the (unlikely) case that H outputs 0 or 1. To prevent attacks

4

where x is crafted with a specific i as its first few bits, one should use an
encoding such as DER-ASN1 for i||x. Note that this does not mean that an
implementation has to include a generic ASN1 parser; instead one can work
out once and then hardcode the bytes of a DER encoding of the following
ASN1 sequence:

HashInput ::= SEQUENCE {
i INTEGER,
x OCTET STRING

}

Finally, in implementations it might only be possible to specify the output
length of SHAKE256 in bytes instead of in bits. In this case, one can simply
request Ln/8 output bytes and then discard the rightmost bit to end up with
the required d = Ln − 1 bits.

A description of the algorithm computing Hn summarizing the above may
be found in pseudocode below. We assume there that SHAKE256 takes its
output length as the second parameter in bits.

Algorithm 1 Cryptographic hash function Hn : {0, 1}∗ → QRn

function Hn(x)
i← 0
repeat

O ← SHAKE256(DER-ASN1(i, x), Ln − 1)
i← i+ 1

until 1 < O ≤ (n− 1)/2
return O2 mod n

end function

5

