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Abstract. Quantum attacks using superposition queries are known to break many
classically secure modes of operation. While these attacks do not necessarily threaten
the security of the modes themselves, since they rely on a strong adversary model,
they help us to draw limits on their provable security.
Typically these attacks use the structure of the mode (stream cipher, MAC or
authenticated encryption scheme) to embed a period-finding problem, which can be
solved with a dedicated quantum algorithm. The hidden period can be recovered
with a few superposition queries (e.g., O(n) for Simon’s algorithm), leading to state
or key-recovery attacks. However, this strategy breaks down if the period changes at
each query, e.g., if it depends on a nonce.
In this paper, we focus on this case and give dedicated state-recovery attacks on
the authenticated encryption schemes Rocca, Rocca-S, Tiaoxin-346 and AEGIS-
128L. These attacks rely on a procedure to find a Boolean hidden shift with a
single superposition query, which overcomes the change of nonce at each query.
This approach has the drawback of a lower success probability, meaning multiple
independent (and parallelizable) runs are needed.
We stress that these attacks do not break any security claim of the authors, and do
not threaten the schemes if the adversary only makes classical queries.
Keywords: Quantum cryptanalysis, Quantum Fourier Transform, Authenticated
encryption, Boolean hidden shift, Rocca, Tiaoxin, AEGIS

1 Introduction
Since Shor’s algorithm [Sho94], the enhanced computational power of quantum devices has
been known to impact the security of public-key cryptosystems. Nowadays, post-quantum
(public-key) cryptography is structured around several computational problems (e.g., lattice
sieving, decoding random codes. . . ) which are believed to remain intractable.

The situation is more favorable in symmetric (secret-key) cryptography, since most of
it is expected to remain secure. Generic attacks on primitives are now well understood,
for example Grover’s quantum search [Gro96] that accelerates the recovery of a secret key
from a time O(2κ) to O

(
2κ/2), or the BHT algorithm [BHT98] which accelerates n-bit

collision search from O
(
2n/2) to O

(
2n/3). Many dedicated quantum attacks have also

been introduced, whether on block ciphers [BNS19, KLLN16b] or hash functions [HS20].
Most of the time, these attacks reach at most a quadratic speedup (like Grover’s search).
In this paper, we focus on superposition attacks on modes of operation, which are known
to allow super-quadratic speedups or sometimes total breaks of classically-secure schemes.

Superposition Queries. The literature separates quantum attacks on symmetric schemes
in two categories. In the Q1 setting, the adversary has only classical access to the attacked
function, typically an encryption scheme or MAC which contains secret information (the
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key or internal states). Such attacks follow the main threat model of post-quantum
cryptography, where the adversary records computations to decrypt them later in time.
In the Q2 setting, also named superposition query model, the adversary can query the
function as a quantum oracle, i.e., from within a quantum computation. Obviously,
this cannot model a “store now, decrypt later” scenario anymore. Despite this lack of
practical applications, Q2 attacks are still a relevant source of information on the quantum
security of these schemes, as they are known to break many classically secure modes of
operation [KM10, KM12, KLLN16a, LM17]. On the one hand, they can be used as a
starting point or motivation for improved Q1 attacks [BHN+19, BSS22]. On the other
hand, they can be seen as impossibility results, showing that any security proof must
consider an adversary making classical queries to the scheme [ABKM22].

Principle of Q2 Breaks. Consider a symmetric scheme EK : {0, 1}n → {0, 1}m with a
secret key K, to which we have quantum access.

Typically, Q2 attacks will combine some pre-processing function f and post-processing
function g so that the function g ◦ EK ◦ f has some property that can be exploited. For
example, the Even-Mansour cipher: Ek1,k2 : x 7→ k1 ⊕ Π(k2 ⊕ x) , where Π is a public
permutation, can be attacked by noticing that Ek1,k2 ⊕Π is a periodic function on Fn

2 , of
period k2 [KM12]. Simon’s algorithm [Sim97] can recover this period in O(n) quantum
queries. Other attacks (for example in [BLNS21], using a non-trivial f) may target an
internal state instead. In MACs and authenticated encryption (AE) schemes, this can lead
to forgeries.

A typical limitation of Q2 attacks is when the construction EK admits a nonce N ,
like many MACs and AE schemes. It is indeed common [ATTU16] to assume that nonces
remain classical values, and that they are not repeated from one Q2 query to another.
While many attacks can also bypass the use of nonces [Bon17, BLNS21], they cannot apply
in a situation where we would query: EK,N (x) = f(x⊕ s(K,N)) where the secret internal
state s depends on K and N .

New Strategy. In this paper, we use a hidden shift algorithm with a single query
from [ORR13]. It follows a well-known strategy in quantum computing which was previously
applied in [vDHI06, Röt10] and requires, in our case, a combination with a state preparation
technique [SLSB19].

We consider several AE schemes, where the recovery of the internal state leads to
forgery or key-recovery attacks. Our strategy is to perform a superposition query with
several message blocks which, with proper post-processing, can be turned into an oracle:

|x⟩ |0⟩ 7→ |x⟩ g(x⊕ s′) |s⟩ ,

where g is a function to {−1, 1}, and s and s′ are values which, together, allow to determine
a whole internal state. We measure s immediately, but we cannot use Simon’s algorithm
to obtain s′ since it depends on the nonce, and will change at the next query.

Instead, we use the hidden shift algorithm from [ORR13]. This algorithm performs a
Hadamard transform:

1
2n/2

∑
x

g(x⊕ s′) |x⟩ H7−→ 1
2n

∑
y

(−1)s′·y ĝ(y) |y⟩ ,

with ĝ the Walsh-Hadamard transform of g. It then computes a multiplication by 1/ĝ(y)
in the amplitudes of this state. Such a multiplication cannot succeed with probability 1.
In fact, the attack will require many trials, using each time a new random nonce, and
even possibly a new secret key. When the multiplication succeeds, we obtain

∑
(−1)s′·y |y⟩

which, after another Hadamard transform, gives us s′. With s and s′, we solve a system of
equations which gives us the full internal state of the scheme.
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Table 1: New quantum attacks and comparison with generic attacks (“Grover”). “Toffoli”
is an approximate count of the total number of Toffoli gates applied during the attack,
derived from the Toffoli count of AES. Approximately 103 to 104 qubits are required for
all attacks, since the internal state of the schemes is of order 103 bits.

Target Type Setting Queries
per trial

Independent
trials Toffoli Classical

time Method

Rocca

key Q1 1 (encr.) 1 2145 negl. Grover

forgery Q2
264 (decr.) 1 280 negl. Grover
1 (encr.) 259 281 negl. Subsection 4.1
1 (encr.) 246.4 268.4 2125.4 Subsection 4.1

Rocca-S
key Q1 1 (encr.) 1 2145 negl. Grover

forgery Q2 1 (encr.) 230 2101 negl. Subsection 4.3
1 (encr.) 265 287 negl. Subsection 4.3

Tiaoxin key
Q1 1 (encr.) 1 281 negl. Grover
Q2 1 (encr.) 234 256 negl. Subsection 4.4

AEGIS-128L
key Q1 1 (encr.) 1 281 negl. Grover

forgery Q2 233 (decr.)
+1 (encr.)

227

+256 278 negl. Subsection 4.5

The resulting attacks are summarized in Table 1. While we compare them with the
gate and query counts of Grover search, one of their features is that the independent trials
can be perfectly parallelized. It is well-known that reducing the depth of a Grover search
by a factor S increases the computational cost by the same factor S. Therefore, under a
limitation in depth, the advantage of our attacks becomes more significant.

Outline. We detail the targeted authenticated encryption schemes in Section 2. In Sec-
tion 3, we give and analyze the quantum building blocks of linear post-processing, amplitude
transduction and single-query hidden shift. In Section 4 we present our attacks. The
SageMath [The24] and Python scripts that we used to write down formulas and compute
the complexities in our applications are available at: gitlab.inria.fr/capsule/
single-query-hidden-shift .

2 Description of the Schemes
In this section, we recall the Authenticated Encryption with Associated Data (AEAD)
schemes AEGIS-128L [WP13b], Tiaoxin-346 [Nik16], Rocca [SLN+21] and Rocca-S [NFI].
Some details which are not relevant to our analysis will be omitted. In particular, we omit
the processing of Associated Data and the padding of input messages.

The levels of security against key-recovery and forgery are set according to the generic
attacks:

• Key-recovery: using a single classical known-plaintext query, an adversary can
always find the κ-bit key in O(2κ) computations (O

(
2κ/2) in the quantum setting

using Grover’s algorithm [Gro96]);
• Forgery: with a t-bit tag, an adversary that can make decryption queries can create

a forgery in O(2t) queries classically. This attack can be accelerated quantumly if
one has access to a quantum decryption oracle. This would cost O

(
2t/2) quantum

gitlab.inria.fr/capsule/single-query-hidden-shift
gitlab.inria.fr/capsule/single-query-hidden-shift
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Table 2: Summary of parameters for studied AE schemes and their bits of security
(nonce-respecting) in the classical setting.

Cipher Key size Nonce size Tag size Forgeries Key-recovery
AEGIS-128L 128 128 128 128 128
Tiaoxin-346 128 128 128 128 128

Rocca 256 128 128 128 256
Rocca-S 256 128 256 256 256

queries using Grover’s algorithm. Classically or quantumly, this attack is relevant
only if the key is larger than the tag.

The designs we study are known to be insecure in the nonce-misuse scenario, i.e., if the
adversary is allowed to perform multiple chosen-plaintext queries with the same nonce.

2.1 AEGIS-128L
AEGIS was originally published at SAC [WP13a], and later submitted to the CAESAR
competition [WP16]. We will focus here on the variant AEGIS-128L, which can be found
in [WP13b]. In the CAESAR competition, AEGIS-128 appeared in the final portfolio for
use case 2 (high-performance applications), and AEGIS-128L was a finalist for this use
case.

All variants of AEGIS use a large internal state, made of several 128-bit registers, and
a simple round function which updates this state and mixes it with additional registers of
input (e.g., the message blocks). This round function is based on the block cipher standard
AES [Nat01].

The AES Round. We denote the AES round function as: A = MC ◦ SR ◦ SB . It applies
on a state of 128 bits, represented as a 4×4 matrix of bytes, where the bytes are numbered
from 0 to 15, top to bottom and left to right. SB (SubBytes) applies the AES S-Box
(denoted SBox) in parallel to all bytes. SR (ShiftRows) shifts row number i in the matrix
by i positions left. MC (MixColumns) multiplies each column by the AES MDS matrix.

AEGIS-128L Algorithm. AEGIS-128L accepts a key and a nonce of 128 bits each. The
internal state is made of eight 128-bit registers denoted S[i], 0 ≤ i ≤ 7. The round function
R takes two additional 128-bit inputs X0, X1 and outputs S′ = R(S,X0, X1) as:

S′[0] = X0 ⊕ S[0]⊕A(S[7]) S′[4] = X1 ⊕ S[4]⊕A(S[3])
S′[1] = S[1]⊕A(S[0]) S′[5] = S[5]⊕A(S[4])
S′[2] = S[2]⊕A(S[1]) S′[6] = S[6]⊕A(S[5])
S′[3] = S[3]⊕A(S[2]) S′[7] = S[7]⊕A(S[6])

Without AD, the algorithm has the following phases:

• Initialization: after loading the key K and nonce N into the state, we run 10 round
updates R(S,N,K)

• Encryption: each round of encryption takes two plaintext blocks Mi,M
′
i and returns

two ciphertext blocks Ci, C
′
i. For all i = 0 to m− 1:

Ci = Mi ⊕ S[1]⊕ S[6]⊕AND(S[2], S[3])
C ′

i = M ′
i ⊕ S[2]⊕ S[5]⊕AND(S[6], S[7])

S ← R(S,Mi,M
′
i)

(1)
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Figure 1: Round function of Tiaoxin-346.

where AND denotes the bit-wise Boolean AND.
• Finalization: the state update function is called 6 times with X0, X1 depending on

the AD length and message length. The authentication tag is obtained by XORing
the 7 first registers.

Security. Third-party cryptanalysis has shown that AEGIS is insecure under nonce misuse
[KEM17] and that it exhibits linear keystream biases [ENP19]. However, these attacks
did not contradict its security claims. To the best of our knowledge, there has been no
quantum security analysis of AEGIS.

2.2 Tiaoxin-346
Tiaoxin-346 was submitted to the CAESAR competition [Nik16] where it reached the third
round. It accepts 128-bit keys and 128-bit tags. The internal state T is made of thirteen
128-bit registers separated into substates T3, T4, T6 with 3, 4 and 6 registers respectively
denoted as Tj [i]. The round function R(T,X0, X1, X2) takes a 3-register input X0, X1, X2
and updates the state as shown on Figure 1. In particular, it can be noted that the round
function processes independently the substates Tj .

In the initialization phase, the key and nonce are loaded in T , then, 15 rounds of
the round function R(T,Z0, Z1, Z0) are applied where Z0 and Z1 are constants. In the
encryption phase, message blocks are also encrypted by pairs Mi,M

′
i . For all i = 0 to

m− 1: 
T ← R(T,Mi,M

′
i ,Mi ⊕M ′

i)
Ci = T3[0]⊕ T3[2]⊕ T4[1]⊕AND(T6[3], T4[3])
C ′

i = T6[0]⊕ T4[2]⊕ T3[1]⊕AND(T6[5], T3[2])
(2)

It can be noted that the state update is performed before outputting the ciphertexts, and
not after like the other designs in this section. Finally, the finalization performs 20 unkeyed
rounds R(T,Z1, Z0, Z1) and outputs the tag as the XOR of all registers Tj [i].

Security. An important difference between Tiaoxin and AEGIS is that the round function
of Tiaoxin is invertible, as well as the initialization phase. Thus, recovering the internal
state at any point of the ciphering process leads to a key-recovery. Furthermore it is
enough to recover a single substate Tj .
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Figure 2: Round function of Rocca.

A few third-party works have studied the security: a key-recovery attack in a nonce-
misuse scenario has been proposed [KEM17], and Tiaoxin reduced to 8 rounds of initializa-
tion has been shown to have weak keys [LIMS21]. To the best of our knowledge, there has
been no quantum security analysis of Tiaoxin.

2.3 Rocca
Rocca is an AEAD for beyond-5G applications. As such, it also aims at quantum security
and uses keys of 256 bits. The internal state S is made of eight 128-bit registers denoted
S[i], 0 ≤ i ≤ 7. The round function R (Figure 2) takes two additional 128-bit inputs
X0, X1 and outputs S′ = R(S,X0, X1) defined as:

S′[0] = S[7]⊕X0 S′[4] = S[3]⊕X1

S′[1] = A(S[0])⊕ S[7] S′[5] = A(S[4])⊕ S[3]
S′[2] = S[1]⊕ S[6] S′[6] = A(S[5])⊕ S[4]
S′[3] = A(S[2])⊕ S[1] S[7] = S[0]⊕ S[6]

Algorithm. The specification that we give here is from the latest version (2023-03-16) of
the ePrint report [SLN+22]. After the publication of the conference version [SLN+21] and
subsequent third-party cryptanalysis [HII+22], the authors added a key feedforward in
the initialization phase to make it non-invertible, which was not present in the conference
version.

The key is divided into two 128-bit key blocks K0,K1. The scheme also uses a pair of
constants Z0, Z1. Rocca (without AD) runs as follows:

• Initialization phase: the state S is initialized using the nonce and key. Then, 20
rounds R(S,Z0, Z1) are applied. Then, K0,K1 are XORed to S[0], S[4] respectively.

• Encryption: message blocks are encrypted by pairs (Mi,M
′
i) into pairs of ciphertexts

(Ci, C
′
i). For all i from 0 to m− 1:

Ci = A(S[1])⊕ S[5]⊕Mi

C ′
i = A(S[0]⊕ S[4])⊕ S[2]⊕M ′

i

S ← R(S,Mi,M
′
i)

• Finalization: the state is updated 20 times using R(S, |AD|, |M |), where |AD|
and |M | are the respective lengths of the AD and message, and the 128-bit tag is
computed as the XOR of all state registers.
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Figure 3: Round function of Rocca-S.

Classical Security. The authors of Rocca claimed 128-bit security against forgery attacks
and 256-bit security against key-recovery attacks. Importantly, they did not make any
claims in the nonce-misuse setting.

In [HII+22], Hosoyamada et al. introduced a nonce-misuse attack that could recover
the internal state using only one nonce-repeated pair. It follows a strategy of introducing
a difference in certain message blocks, in order to observe some output differences, and
solving the obtained equations to recover state values. Since the finalization function is
key-less, recovering the state allows to create forgeries.

They then observed that one could turn this attack into a nonce-respecting one, by
making decryption queries (which are authorized to repeat the nonces). After making a
first nonce-respecting query to the encryption oracle, the adversary introduces a difference
in the obtained ciphertext and tries to decrypt by trying all possible tags. If the number
of decryption queries is not limited, this will eventually succeed after 2128 such queries,
leading to a recovery of the state. In the first version of Rocca, where the initialization
phase was invertible, the state recovery led to a key-recovery attack, breaking the claims.
However, with the modified initialization, a recovery of the state does not lead to a recovery
of the key.

Quantum Security. The authors of Rocca made no claim against Q2 attacks. Anand
and Isobe studied specifically the quantum security of Rocca [AI23] and found a forgery
attack that requires 275 superposition queries. This attack is nonce-respecting and makes
Q2 decryption queries.

2.4 Rocca-S
Rocca-S is a new version of Rocca which was proposed for standardization by the IETF [NFI].
We refer to the version of the draft standard which is the latest one at the time of writing
(published March 2nd, 2023).

Round Function. The internal state of Rocca-S is made of 7 registers of 128 bits. The
round function S′ = R(S,X0, X1) (Figure 3) updates this state as follows:

S′[0] = S[6]⊕ S[1] S′[4] = A(S[3])⊕X1

S′[1] = A(S[0])⊕X0 S′[5] = A(S[4])⊕ S[3]
S′[2] = A(S[1])⊕ S[0] S′[6] = A(S[5])⊕ S[4]
S′[3] = A(S[2])⊕ S[6]

Algorithm. The algorithm (without AD) runs as follows:

• Initialization: after loading the key K0,K1 and nonce, 16 rounds of R(S,Z0, Z1)
are applied, followed by a key addition in all state registers.
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• Encryption: for all i = 0 to m− 1:
Ci = A(S[3]⊕ S[5])⊕ S[0]⊕Mi

C ′
i = A(S[4]⊕ S[6])⊕ S[2]⊕M ′

i

S ← R(S,Mi,M
′
i)

(3)

• Finalization: the round function R(S, |AD|, |M |) is iterated 16 times. Then, the
256-bit tag is computed as:

T = (S[0]⊕ S[1]⊕ S[2]⊕ S[3])∥(S[4]⊕ S[5]⊕ S[6]) . (4)

Security. The increased tag size allows the authors of Rocca-S to claim 256 bits of security
against forgery, state and key-recovery attacks (nonce-respecting). In the quantum setting,
they claim 128 bits of security against nonce-respecting forgery and key-recovery attacks.
However, like Rocca, they did not consider attacks in the Q2 setting and did not make
security claims in this model. To the best of our knowledge, Rocca-S remains secure in the
Q1 setting.

3 Tools
In this section we give the main algorithmic tools of our attacks. These tools are gathered
from previous works in quantum cryptanalysis [BBC+21] and quantum computing [ORR13]
and adapted here to our setting. To the best of our knowledge, the case of “smaller
correlation” (Theorem 2) is new.

We assume basic knowledge of the quantum circuit model [NC02] (Toffoli / CNOT
/ Hadamard gates, ket |·⟩ notations). As is commonly done in previous works [Bon17,
CHLS20, KLLN16a], we query AE schemes using a standard oracle. However, in our main
quantum algorithm, we need a phase oracle.

Definition 1 (Standard oracle). For f : {0, 1}n → {0, 1}m, a standard oracle for f is a
quantum circuit Of that maps |x⟩ |y⟩ to |x⟩ |y ⊕ f(x)⟩.

Definition 2 (Phase oracle). For f : {0, 1}n → {0, 1}m, a phase oracle for f is a quantum
circuit O′

f that maps |x⟩ |y⟩ to (−1)y·f(x) |x⟩ |y⟩.

Both oracles are equivalent by composing with a Hadamard transform. Also, if one
knows a classical circuit that implements f , both oracles are easy to construct.

These AE schemes are nonce-based. While the nonce can be chosen by the adversary,
it cannot be repeated between two queries. Since Q2 queries are merely an extension of
classical queries, the same can be said in the quantum setting. Therefore, we impose that
each of the Q2 queries is answered using a different, classical nonce. Using a classical
nonce or randomness is common in proofs of quantum security for encryption and AE
modes [ATTU16, BBC+21].

That is, the adversary has access to a family of oracles: ON,m for different nonces N
and message lengths m (we assume that the AD is empty), and they cannot make two
queries with the same nonce.

Each oracle encrypts several (pairs of) message blocks (Mi,M
′
i), depending on the

selected length, and returns the corresponding (pairs of) ciphertexts (Ci, C
′
i), and the tag:

ON,m : |M0,M
′
0, . . . ,Mm−1,M

′
m−1⟩ |y0, y

′
0, . . . , ym−1, y

′
m−1, y⟩

7→ |M0,M
′
0, . . . ,Mm−1,M

′
m−1⟩

|y0 ⊕ C0, y
′
0 ⊕ C ′

0, . . . , ym−1 ⊕ Cm−1, y
′
m−1 ⊕ C ′

m−1, y ⊕ T ⟩ .
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Quantum Search. Grover’s exhaustive search algorithm [Gro96] is a procedure to find a
“good” element in a search space of size 2n in

⌊
π
4 2n/2⌋ iterates; each iterate queries a phase

oracle that flips only the phase of this good element. Amplitude amplification [BHMT02]
generalizes this to any algorithm A (even a quantum algorithm) that outputs a good
element with probability p. It then makes about π

4
1√
p iterates, with two calls to A and

one query to the oracle per iterate, to succeed with overwhelming probability.

Grover Search Cost Estimates. All AE schemes studied in this paper are based on the
AES round function. Quantum attacks on them require to implement AES components.
Since the scope of this paper is only to demonstrate the existence of attacks, we will use
approximate quantum gate and query counts (by a factor 2 at best). For example, Table 4
in [JBS+22] gives a count 12240 = 213.58 Toffoli gates for a full (10-round) AES-128. We
use this to assume that a single round of AES can be implemented with 210 Toffoli gates
(we focus only on Toffoli counts for simplicity).

For all four schemes, implementing Grover’s exhaustive key search requires to recompute
the initialization of the scheme. The number of iterates depends on the key size (128 or
256 bits) and the cost of the Grover iterate is dominated by this initialization function
which, in turn, can be estimated using the number of AES rounds it contains. These
estimates are summarized in Table 3.

At some point in our algorithms, we also need to solve AES S-Box differential equations
of the form: S(x⊕∆)⊕ S(x) = ∆′. This can be done using a small Grover search on x,
costing 26 S-Boxes at most, i.e., 4 rounds of AES, or 212 Toffoli gates.

Table 3: Toffoli count of Grover’s key search for studied schemes. As the exponent
is rounded to the nearest integer, the Toffoli gate counts for some schemes can appear
identical even though the number of AES rounds necessary to compute an output differs
between them.

Cipher Key length AES rounds Toffoli count
Rocca 256 4× 20 = 80 2145

Rocca-S 256 6× 16 = 96 2145

Tiaoxin 128 6× 15 = 90 281

AEGIS-128L 128 8× 10 = 80 281

Toffoli Counts of Arithmetic Operations. Since the complexities of our attacks will be
clearly below those of exhaustive search, we give only imprecise upper bounds on the cost
of quantum circuits for arithmetic operations. Using the addition circuit of [CDKM04], an
n-bit addition costs 2n Toffoli gates, and a controlled variant can be implemented with 4n
Toffoli gates. Using a simple implementation as a series of controlled additions, an n-bit
product can be implemented with 4n2 Toffoli gates. A table lookup circuit, implementing
|i⟩ |0⟩ 7→ |i⟩ |ci⟩ where the ci are classically stored values, takes 4 × 2n ×m Toffoli and
CNOT gates when ci is on m bits and i is on n bits. Finally, a Euclidean division of an
n-bit integer by an m-bit integer costs about 4nm Toffoli gates using a sequence of n
conditional subtractions.

3.1 Linear Post-processing
The generic approach to post-process the output of an oracle requires two identical calls,
due to the reversibility of quantum computations. This is not doable in our case since
we only query the oracle once. Fortunately, truncations [HS18] and more generally linear
functions [BBC+21] can be computed from a single call.
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For our purposes, we need to separate the linear function in two parts, one of which goes
directly into the phase. This can be obtained using [BBC+21, Lemma 2] as a black-box,
but we give the whole proof (adapted directly from [BBC+21]) to be self-contained.

Lemma 1 (Extended linear post-processing, adapted from [BBC+21]). Let f : {0, 1}n →
{0, 1}m be a function, let Of be a standard oracle for f : |x⟩ |0⟩ 7→ |x⟩ |f(x)⟩. Let g :
{0, 1}m → {0, 1}ℓ and h : {0, 1}m → {0, 1} be two linear functions, i.e., ∀x, y, g(x⊕ y) =
g(x)⊕ g(y), h(x⊕ y) = h(x)⊕ h(y), with standard oracles Og and Oh. Then there exists a
circuit implementing the operator:

|x⟩ |y⟩ 7→ (−1)h(f(x)) |x⟩ |y ⊕ g(f(x))⟩ ,

which makes a single query to Of , two queries to Og and two queries to Oh.

Proof. On input |x⟩ |y⟩, create the uniform superposition over outputs z and append a
qubit in the state H |1⟩ = 1√

2 (|0⟩ − |1⟩):

|x⟩ |y⟩ 1
2m/2

∑
z∈Fm

2

|z⟩ (H |1⟩)

Compute Oh with register z as input and the last qubit as output; compute Og with
register z as input and y as output:

|x⟩ 1
2m/2

∑
z∈Fm

2

|y ⊕ g(z)⟩ |z⟩ (−1)h(z) (H |1⟩)

Notice that the result of h appears in the phase now, because we used H |1⟩ as its output
register. Now, apply Of with register x as input and z as output:

|x⟩ 1
2m/2

∑
z∈Fm

2

(−1)h(z) |y ⊕ g(z)⟩ |z ⊕ f(x)⟩ (H |1⟩)

Redo the computations of Oh and Og:

|x⟩ 1
2m/2

∑
z∈Fm

2

(−1)h(z)+h(z⊕f(x)) |y ⊕ g(z)⊕ g(z ⊕ f(x))⟩ |z ⊕ f(x)⟩ (H |1⟩)

Erase the qubit (H |1⟩) and use the linearity of g, h to rewrite:

|x⟩ 1
2m/2

∑
z∈Fm

2

(−1)h(f(x)) |y ⊕ g(f(x))⟩ |z ⊕ f(x)⟩

= (−1)h(f(x)) |x⟩ |y ⊕ g(f(x))⟩ 1
2m/2

∑
z∈Fm

2

|z ⊕ f(x)⟩ .

The last register becomes disentangled and always contains a uniform superposition over
{0, 1}m, which we can erase, leading to the result.

In particular, we can truncate the output of a stream cipher and separate it in two
parts, one that remains in the computational basis state, and one that goes into the phase.
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3.2 Properties of the Walsh Transform

Let f : {0, 1}n → {−1, 1} be a function. The Walsh-Hadamard transform of f is defined
as: f̂(y) =

∑
x∈{0,1}n(−1)x·yf(x). It corresponds to the Fourier transform in the group

Zn
2 . The quantum Hadamard transform H⊗n computes a (normalized) Walsh-Hadamard

transform on the amplitudes of its n-qubit input state. That is:

1
2n/2

∑
x

f(x) |x⟩ H⊗n

7−−−→ 1
2n

∑
y

f̂(y) |y⟩ .

In the following, we need the following important properties of the Walsh transform.

Proposition 1. 1. (Shift) Let s ∈ {0, 1}n be a constant and g : x 7→ f(x⊕ s). Then
for all x, ĝ(x) = (−1)x·sf̂(x) .

2. (Convolution theorem) Let f, g : {0, 1}n → {−1, 1}. Then for all x, ̂̂fĝ(x) =
2n
∑

y f(y)g(x⊕ y) .

3. (Product) Let g1, . . . , gn be functions of codomain {−1, 1}. Then the Walsh transform
of (x1, . . . , xn) 7→

∏
i gi(xi) is (x1, . . . , xn) 7→

∏
i ĝi(xi) .

3.3 Amplitude Transduction

Quantum rejection sampling is the process of transforming a quantum state into another
one, by modifying its amplitudes – in a way similar to classical rejection sampling which
transforms probability distributions.

Suppose that we have a quantum state of the form:
∑

x ux |x⟩ |αx⟩, where 0 ≤ αx < 2n

is an integer. (Therefore |αx⟩ is indeed a basis state). We want to transform this into a
state

∑
x ux

αx

2n |x⟩ |αx⟩, i.e., move αx into the amplitude (up to renormalization).
A typical way to do this is to append a qubit register starting in state |0⟩, which is

transformed into a superposition of the form: αx

2n |0⟩+ |ψαx
⟩ where |ψ⟩ is a superposition of

non-zero basis states. This step is called amplitude transduction. Then, the state becomes:∑
x ux |x⟩ |αx⟩

(
αx

2n |0⟩+ |ψαx
⟩
)
. Measuring |0⟩ in the last register collapses the state on

the wanted superposition.
We use the amplitude transduction algorithm of [SLSB19].

Lemma 2 ([SLSB19]). There exists a quantum algorithm that, on input |α⟩ |0n+1⟩ where
0 ≤ α < 2n is an integer, returns |α⟩

(
α
2n |0n+1⟩+ |ψα⟩

)
where |ψα⟩ is a superposition of

non-zero basis states. This algorithm uses O(n) basis gates.

Proof. The algorithm runs as follows. First, we apply a Hadamard transform on n qubits:

|α⟩

 1
2n/2

∑
0≤y≤2n−1

|y⟩

 |0⟩ .
We perform a comparison between y and α, which costs O(n) gates, and write the result
in the last qubit:

|α⟩ 1
2n/2

 ∑
0≤y<α

|y⟩ |0⟩+
∑

α≤y<2n

|y⟩ |1⟩

 .
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We apply a Hadamard transform on the register holding y, obtaining:

|α⟩ 1
2n

 ∑
0≤y<α

∑
z

(−1)y·z |z⟩ |0⟩+
∑

α≤y<2n

∑
z

(−1)y·z |z⟩ |1⟩


= |α⟩

 α

2n
|0n⟩ |0⟩+ 1

2n

∑
z ̸=0
|z⟩

 ∑
0≤y<α

(−1)y·z

 |0⟩+

 ∑
α≤y<2n

(−1)y·z

 |1⟩
 ,

where we recover a state with the form claimed. The exact form of |ψα⟩ depends only on
the value of α and is not relevant for the rest of our study.

Approximation. In the context of this paper, the value αx

2n will be a fixed-point approx-
imation of the amplitude that we actually want. Since the approximation error will be
at most 2−n, if n is large enough, the resulting quantum state will be close to our target
state, and the algorithm will run without failure.

In particular, let α′
x be the “exact” amplitude and assume that our approximation

satisfies: αx = ⌊2nα′
x⌋ =⇒ 2nα′

x − 1 < αx ≤ 2nα′
x. Let |ψi⟩ be the “ideal” state after

transduction success and |ψr⟩ the “real” one, respectively:

|ψi⟩ := 1√∑
x |αxux2−n|2

∑
x

αx2−nux |x⟩ , |ψr⟩ := 1√∑
x |α′

xux|2
∑

x

α′
xux |x⟩ . (5)

Here
∑

x |αxux2−n|2 ≤
∑

x |α′
xux|2. The Euclidean distance between them can be bounded

as follows:

∥ |ψi⟩ − |ψr⟩ ∥2 = 2− 2 ⟨ψi|ψr⟩

= 2− 2 1√∑
x |αxux2−n|2

√∑
x |α′

xux|2
∑

x

αx2−n|ux|2α′
x

≤ 2− 2
∑

x αx2−nα′
x|ux|2∑

x |α′
xux|2

using αx ≤ 2nα′
x

≤
∑

x 2−n+1α′
x|ux|2∑

x |α′
xux|2

using 2nα′
x − αx < 1

≤ 2−n+1
∑

x |ux|2∑
x |α′

xux|2
≤ 2−n+1 1∑

x |α′
xux|2

.

Let p =
∑

x |α′
xux|2 be the “ideal” probability to succeed in the transduction. We have:

∥ |ψi⟩ − |ψr⟩ ∥2 ≤ 2−n+1/p . (6)

Consider an algorithm (e.g., Algorithm 1, that we will define later) that uses trans-
duction once, succeeds here with probability p, does further operations, measures and
succeeds with probability p′

r (resp. p′
i). By Lemma 3.6 in [BV97], the total variation

distance between the two probability distributions resulting from the “ideal” and “real”
states is at most 4∥ |ψi⟩ − |ψr⟩ ∥. Consequently:

p′
r ≥ p′

i − 4∥ |ψi⟩ − |ψr⟩ ∥ ≥ p′
i − 4

√
2−n+1/p . (7)

If we ensure p ≫ 2−n, it is enough to study the approximated version. This will be
the case in the attacks studied in this paper, as we typically use more than 300 bits of
precision to approximate the amplitudes, while the success probability is bigger than 2−50.
More generally, while increasing this precision may require more costly arithmetic circuits,
we haven’t encountered a case where this limits the attacks.



12 Single-query Quantum Hidden Shift Attacks

3.4 Quantum Hidden Shift Algorithm with a Single Query
We want to solve the following problem.

Problem 1 (Hidden shift). Let g : {0, 1}n → {−1, 1} be a function that can be computed
in polynomial time. Given access to a quantum oracle for f : x 7→ g(x⊕ s), where s is a
secret value, find s.

The algorithm that we present here (Algorithm 1) is from [ORR13], and uses quantum
rejection sampling. Several special cases have appeared before in cryptanalysis: for example,
shifted multiplicative characters [vDHI06] and bent functions [Röt10]. In both cases, the
algorithm avoids the rejection sampling by considering a situation in which the Fourier
transform of the shifted function is easy to compute: in the former case, it’s a multiplicative
character, and in the latter, a constant.

In our case, we are interested in the probability to succeed after making a single phase
query to the function f .

Ideas of Algorithm 1. The first step is to query f and to perform a Hadamard transform.
This places the Walsh coefficients of f into the amplitudes of the state. Next, we remark
that by Proposition 1, these coefficients are actually those of g, multiplied by (−1)x·s. If
we had the state 1

2n/2

∑
x(−1)x·s |x⟩, we could immediately do a Hadamard transform and

obtain |s⟩. The Walsh coefficients of g prevent us to do that.
Thus, the next step is to correct the amplitudes by multiplying them by 1/ĝ(x), using

amplitude transduction (Subsection 3.3). Ideally, we would obtain the wanted state∑
(−1)x·s |x⟩. However, the product operation is not possible if ĝ(x) = 0. Furthermore,

if the smallest values of ĝ(x) are very small compared to the average, the probability to
measure 0 (and succeed) gets smaller. Thus, the best strategy, as suggested in [ORR13], is
to dismiss the small Walsh coefficients of g. We introduce a bound M in the algorithm
and only multiply by M

ĝ(x)
if |ĝ(x)| ≥M , and otherwise, by 0 (meaning that we eliminate

the coordinate).

Theorem 1. Let M be a bound and G = #{x, |ĝ(x)| ≥ M}. Define p := GM2

22n and
p′ := G

2n . Then: • the probability to measure 0 in Step 11 of Algorithm 1 is bigger than
p − 2−n/2+1; • the probability to measure s at the end of the algorithm is bigger than
pp′ − 2−n/2+1. The algorithm makes one phase query to f , two computations of ĝ, and
uses O

(
n2) additional Toffoli gates.

Proof. Following Algorithm 1 until Step 5, we obtain the state:

1
2n

∑
x

(−1)x·sĝ(x) |x⟩ |αx⟩ .

Here αx = ⌊2nM/|ĝ|(x)⌋ if |ĝ(x)| ≥M and 0 otherwise. Recall that |ĝ(x)| is, by definition,
an integer between 0 and 2n. We first compute it, then compare the result with M , and
perform a Euclidean division of 2nM (a constant) by |ĝ(x)|. This costs O

(
n2) gates.

Since we have computed ĝ(x), we know its sign, and we can handle it immediately.
We perform a controlled phase flip by sgn(ĝ(x)), which will cancel the sign of ĝ(x) in the
phase, obtaining the state:

1
2n

∑
x

(−1)x·s|ĝ(x)| |x⟩ |αx⟩ .

The next steps realize amplitude transduction following Lemma 2. In the n+ 1-qubit
ancillary register, the amplitude on 0n+1 is equal to αx

2n , for all x. This includes the cases
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where αx = 0, where there is simply no amplitude on 0n+1. Therefore, the probability to
measure 0n+1 at Step 10 is equal to:

∑
x

(
1
2n

(−1)x·s|ĝ(x)|αx

2n

)2
≥ 1

22n

∑
x,|̂g(x)|≥M

(
|ĝ(x)|

(
M

|ĝ(x)| − 2−n

))2

≥ 1
22n

∑
x,|̂g(x)|≥M

M2

|ĝ(x)|2 |ĝ(x)|2 − 1
22n

∑
x,|̂g(x)|≥M

|ĝ(x)|M2−n+1 .

While the first term is equal to GM2

22n = p, the second can be shown to be negligible. First,
we have |ĝ(x)| ≤ 2n by definition, so the sum can be bounded as:

1
22n

∑
x,|̂g(x)|≥M

|ĝ(x)|M2−n+1 ≤ MG

22n−1 .

Furthermore, we know that G ≤ 2n and:

GM2 ≤
∑

x,|̂g(x)|≥M

ĝ(x)2 ≤
∑

x

ĝ(x)2 = 2n
∑

x

g(x)2 = 22n .

Consequently, M2G2 ≤ 23n =⇒ MG ≤ 23n/2 which bounds the second term by 2−n/2+1.
Assuming that we succeeded at Step 11 (i.e., we measure 0n+1), the state collapses and

becomes proportional to
∑

x(−1)x·s|ĝ(x)|αx |x⟩ .
Following the discussion in Subsection 3.3, the state is close to:

1√
G

∑
x,|̂g(x)|≥M

(−1)x·s |x⟩ ,

as long as p≫ 2−n (which is the case here since p > 2−n/2). We then apply H:

1√
2nG

∑
y

∑
x,|̂g(x)|≥M

(−1)x·s+x·y |y⟩ .

Afterwards, the probability to measure y = s is:

p′ := 1
2nG

×G2 = G

2n
= Prx(|ĝ(x)| ≥M) . (8)

All in all, the total probability to succeed is: pp′ − 2−n/2+1 where pp′ = M2G22−3n ,
completing the proof.

Remark 1. The condition p≫ 2−n/2 might appear as a strong limitation of Theorem 1.
However, the values of n encountered in this paper range from 384 to 640, since we are
recovering large hidden shifts, while the mere condition of having a valid attack imposes
us p > 2−128.

In order to use Theorem 1, we need an efficient algorithm to compute ĝ. In order to
maximize the success probability, we need to know the distribution of the Walsh coefficients
to choose M appropriately. Both will be possible in the cases we are interested in, because
g will be the product of many small-range independent functions. Then ĝ is easy to
compute by taking the product of Walsh coefficients (see Proposition 1).
Remark 2 (Global phase). If we have access to ±g(x⊕ s), where the leading sign is not
known, it turns into a global phase that is irrelevant for the algorithm. At the final step,
we will still measure s.
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Algorithm 1 Quantum hidden shift with rejection sampling and the technique of [SLSB19].
Input: Quantum access to f(x) = g(x⊕ s) for a known g, a bound M
Output: s, with probability pp′

1: Start from n qubits initialized to 0 ▷ |0n⟩
2: Apply H⊗n ▷ 1

2n/2

∑
x |x⟩

3: Query f in the phase ▷ 1
2n/2

∑
x f(x) |x⟩

4: Apply H⊗n ▷ 1
2n

∑
x f̂(x) |x⟩ = 1

2n

∑
x(−1)x·sĝ(x) |x⟩

5: Compute the amplitude multiplier:

αx :=
{
⌊2nM/|ĝ(x)|⌋ if |ĝ(x)| ≥M
0 otherwise

(9)

where 0 ≤ αx ≤ 1 in an additional register ▷ 1
2n

∑
x(−1)x·sĝ(x) |x⟩ |αx⟩

6: Compute the sign sgn(ĝ(x)) in the phase ▷ 1
2n

∑
x(−1)x·s|ĝ(x)| |x⟩ |αx⟩

7: Append an ancilla register |0n⟩ and apply H⊗n on it

1
2n

∑
x

(−1)x·s|ĝ(x)| |x⟩ |αx⟩
1

2n/2

∑
y

|y⟩ (10)

8: Perform a comparison between y and αx and store the result in a new ancilla qubit

1
2n

∑
x

(−1)x·s|ĝ(x)| |x⟩ |αx⟩
1

2n/2

 ∑
0≤y<αx

|y⟩ |0⟩+
∑

αx≤y<2n

|y⟩ |1⟩

 (11)

9: Apply H⊗n on the register holding y: the amplitude on the |0n+1⟩ component is αx

2n

10: Erase |αx⟩
11: Measure the last register. If the obtained value is different from 0n+1, abort
12: Otherwise, the state has collapsed and is close to:

1√
G

∑
x,|̂g(x)|≥M

(−1)x·s |x⟩ (12)

13: Apply H⊗n, measure and return the result.
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Remark 3 (Self-correlation). A technique similar to this algorithm appeared also in [Sch23],
where instead of dividing by the Walsh coefficient, one multiplies by it. This would compute
the discrete convolution: (f ∗ g)(y) =

∑
x f(x⊕ y)g(x) in the amplitudes of the state, and

lead to a similar result since (f ∗ g)(y) is greater for y = s. However the analysis when
cutting off the small Walsh coefficients is more difficult, so we settled for the easier method.

Related Quantum algorithms. Problem 1 is very similar to Simon’s problem [Sim97].
Indeed, it would be possible to solve it with Simon’s algorithm, which is now a fairly
standard approach in quantum cryptanalysis. The main issue is that Simon’s algorithm
requires O(n) queries to the function, while we can only afford one query to it. Hidden shift
attacks can also refer to the approach of [BN18]. The problem there is slightly different, as
the shift is with a modular addition and not an XOR. Moreover, as with Simon’s approach,
multiple queries must be performed.

3.5 Hidden Shift with Smaller Correlation
For the attack on AEGIS-128L (Subsection 4.5), we need to solve a more difficult variant
of Problem 1, in which the function that we query is multiplied by a highly biased function
h, which is unknown. We model this function as selected uniformly at random among
Boolean functions of the same Hamming weight.

Problem 2 (Correlated hidden shift). Let g : {0, 1}n → {−1, 1} be a function that can be
computed in polynomial time. Let h : {0, 1}n → {−1, 1} be a function selected uniformly at
random in Hc =

{
h ∈ {0, 1}n → {−1, 1}

∣∣Prx[h(x) = −1] = 1
2 (1 + c)

}
for some 0 < c ≤ 1.

Given access to a quantum oracle for f : x 7→ h(x)g(x⊕ s), where s is a secret value; find
s.

It can be noticed that Problem 1 corresponds to the case c = 1. When c is 0, we cannot
hope to recover the secret s as the function queried will be completely random. However,
if c is large enough, we can still use Algorithm 1.

Theorem 2. Consider the setting of Problem 2. On average over h, applying Algorithm 1
on f with g as the known function will recover s with probability greater than pc2p′−2−n/2,
where pc2 = M2Gc2

22n is the probability to measure 0 at Step 11 and p′ = G
2n is the probability

to succeed in the second step.

Proof. By similar bounds as in the proof of Theorem 1, in the following we can assume
that the quantum rejection sampling works exactly, by subtracting a term 2−n/2 in the
probability of success.

Following Algorithm 1, the state after Step 10 is:

|ψ⟩ |1⟩+ 1
2n

∑
x,|̂g(x)|≥M

M

ĝ(x) f̂(x) |x⟩ |0⟩ .

If we postpone the measurement of Step 11 at the end of the algorithm, we have the
state:

H |ψ⟩ |1⟩+ M

23n/2

∑
y

∑
x,|̂g(x)|≥M

(−1)x·y f̂(x)
ĝ(x) |y⟩ |0⟩ . (13)

We will now estimate the amplitude of |s⟩ |0⟩. We start by rewriting f̂(x) using the
convolution theorem:

f̂(x) = 2−n
∑

z

(−1)z·sĝ(z)ĥ(x⊕ z) .
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Note that if h is constant and equal to 1, it has a single nonzero Walsh coefficient in 0
(z = x), equal to 2n, and we recover the equality f̂(x) = (−1)x·sĝ(x) (and the rest of the
proof of Theorem 1). The amplitude is

M

25n/2

∑
x,|̂g(x)|≥M

(−1)x·s 1
ĝ(x)

(∑
z

(−1)z·sĝ(z)ĥ(x⊕ z)
)

. (14)

We separate the term z = x from the rest, noticing that ĥ(0) =
∑

x h(x) = 2nc by our
definition of c:

M

25n/2

 ∑
x,|̂g(x)|≥M

(−1)x·s 1
ĝ(x)

∑
z ̸=x

(−1)z·sĝ(z)ĥ(x⊕ z)

+Gc2n

 . (15)

where G := #{x, |ĝ(x)| ≥M}.
Now, we can use the fact that the terms that depend on h in this amplitude (and

the Walsh-Hadamard transform) are linear in h, meaning that the average over h of this
amplitude is the amplitude for the average function h∗(x) = 1

|Hc|
∑

h∈Hc
h(x). Now, as

Hc is a symmetric distribution over the input values, h∗ will be a constant function. This
means that for all x ̸= 0, ĥ∗(x) = 0. Thus, the average amplitude is simply the isolated
part, MGc

23n/2 .
Note that we need to estimate the probability, that is, the average of the square of the

amplitude. We use the well-known fact that this is always greater than the square of the
average (the gap between the two being the variance), and obtain that the probablity to
measure |s⟩ |0⟩ is, on average over h, greater than (MGc)2

23n .
For the probability to measure 0 at Step 11, it has the expression:

M2

24n

∑
x,|̂g(x)|≥M

∣∣∣∣∣∣2nc+ 1
ĝ(x)

∑
z ̸=x

(−1)z·sĝ(z)ĥ(x⊕ z)

∣∣∣∣∣∣
2

. (16)

We can use the same argument: the average over h is bigger than GM2c2

22n .
Finally, taking into account the failure probability of rejection sampling, we obtain the

desired probabilities.

4 Applications
Our attack combines Algorithm 1 with linear post-processing to recover the internal
state. Recall that the nonce and key are fixed classical values, which means that after
initialization, in all targeted designs, the internal state is a fixed value. We want to recover
it (or part of it).

4.1 State-recovery on Rocca: Hidden Shifts
Assume that we encrypt a couple of fixed message blocks (e.g., 0), then the internal state S
remains a fixed value. Our goal is to recover this S. We encrypt 5 pairs of message blocks
in superposition and unroll several of the corresponding ciphertexts. Some ciphertexts are
linear in the message, and thus directly give a constant that depend on the initial state
(denoted by Ei). The important part of these ciphertexts are places that contain both a
linear combination of the input messages (denoted by Xi) and a function of some state
values (denoted by Vi).

C0 = M0 ⊕ S[5]⊕A(S[1])︸ ︷︷ ︸
:=E0
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C ′
0 = M ′

0 ⊕ S[2]⊕A(S[0]⊕ S[4])︸ ︷︷ ︸
:=E1

C1 = M1 ⊕ S[3]⊕A(S[4])⊕A(S[7]⊕A(S[0]))︸ ︷︷ ︸
:=E2

C ′
1 = M ′

1 ⊕ S[1]⊕ S[6]⊕A(M0 ⊕M ′
0︸ ︷︷ ︸

:=X0

⊕ S[3]⊕ S[7]︸ ︷︷ ︸
:=V0

)

C ′
2 = M ′

2 ⊕ S[4]⊕ S[7]⊕A(S[0])⊕A(S[5])
⊕A(M1 ⊕M ′

1︸ ︷︷ ︸
:=X1

⊕ S[0]⊕ S[1]⊕ S[6]⊕A(S[2])︸ ︷︷ ︸
:=V1

)

C4 = M4 ⊕ S[0]⊕ S[6]⊕A( M0︸︷︷︸
:=X2

⊕ S[7]︸︷︷︸
:=V2

)⊕A
[
M ′

2︸︷︷︸
:=X3

⊕ S[7]⊕A(S[0])⊕A(S[1]⊕ S[6])︸ ︷︷ ︸
:=V3

]
⊕A

[
S[4]⊕ S[7]⊕A(S[0])⊕A(S[5])

]
⊕A

[
M1 ⊕M ′

0︸ ︷︷ ︸
:=X4

⊕ S[0]⊕ S[3]⊕ S[6]⊕A(M0 ⊕M2︸ ︷︷ ︸
=0

⊕ S[4]⊕ S[7]⊕A(S[5]))⊕A(S[3]⊕A(S[4]))

︸ ︷︷ ︸
:=V4

]
.

Note that V4 depends on M0 ⊕M2. As M2 is a free variable (it is not involved in any
Xi), we can ensure that M0 ⊕M2 = 0, so that V4 only depends on initial state variables.

From these formulas, we can see that accessing C0, C ′
0, C1 directly gives E0, E1 and E2,

while the other ciphertexts are, up to constants and a plaintext block, sums of functions of
the form A(Xi ⊕ Vi).

We now describe the quantum oracle we will construct from the query oracle. The
inputs will be the 128-bit variables X0, . . . , X4 and the message blocks for the query depend
on them as follows (the others are simply put to 0):

M0 = X2, M ′
0 = X0 ⊕X2, M1 = X0 ⊕X2 ⊕X4

M ′
1 = X0 ⊕X2 ⊕X4 ⊕X1, M2 = X2, M ′

2 = X3

From these equations, it is easy to see that we have

M0 ⊕M ′
0 = X0, M1 ⊕M ′

1 = X1, M0 = X2

M ′
2 = X3, M1 ⊕M ′

0 = X4, M0 ⊕M2 = 0 ,

which is what we need.
Because the message blocks are either constant, or linear functions of the Xi variables,

we can add Mi/M
′
i to the ciphertexts Ci/C

′
i. Next, we use a linear post-processing

(Lemma 1) in order to construct the following oracle:

|X0, . . . , X4⟩ |0⟩
7→ |X0, . . . , X4⟩ |C0 ⊕M0︸ ︷︷ ︸

E0

, C ′
0 ⊕M ′

0︸ ︷︷ ︸
E1

, C1 ⊕M1︸ ︷︷ ︸
E2

⟩ (−1)F (C′
1⊕M ′

1,C′
2⊕M ′

2,C4⊕M4) ,

where F is a linear function.

Remark 4. The Ei are values that are also available in classical attack scenarios. The
quantum advantage comes from the ability to retrieve the Vi to recover the state.
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Table 4: Number of occurrences of Walsh coefficients with given absolute value for a
column of the AES S-Box’s LAT.

|LAT coefficient| 0 22 2× 22 3× 22 4× 22 5× 22 6× 22 7× 22 8× 22

Occurences 17 48 36 40 34 24 36 16 5

Hidden Shift Problem. Now we define the function F . Recall that A is a single AES
round, of the form: A = MC ◦ SR ◦ SB. In order to transform the output into a single bit,
we will take the dot-product with an appropriate 128-bit mask; we construct this mask
with 16 copies of a single 8-bit mask β.

From now on, we choose an arbitrary β. While there is no particular constraint in the
case of Rocca, the choice of the mask is more important in the cases of Tiaoxin and AEGIS
(it will also be different for them).

On input a 128-bit AES state Z = (z0, . . . , z15), we define the function: L(Z) =
∑

i β ·zi.
Then, the function F is simply: F (Z1, Z2, Z3) =

⊕
i L ◦MC−1(Zi). In other words, it

removes the last MC layer, uses a linear mask on each byte and XORs them all. By
definition:

F (C ′
1 ⊕M ′

1, C
′
2 ⊕M ′

2, C4 ⊕M4) = L ◦MC−1(S[1]⊕ S[6])⊕ L ◦MC−1 ◦A(X0 ⊕ V0)
⊕ L ◦MC−1(A(S[0])⊕A(S[5])⊕ S[4]⊕ S[7])⊕ L ◦MC−1 ◦A(X1 ⊕ V1)

⊕ L ◦MC−1(S[0]⊕ S[6]⊕A(S[4]⊕ S[7]⊕A(S[0])⊕A(S[5]))
⊕ L ◦MC−1 ◦A(X2 ⊕ V2)⊕ L ◦MC−1 ◦A(X3 ⊕ V3)⊕ L ◦MC−1 ◦A(X4 ⊕ V4) .

Notice that L ◦MC−1 ◦A(X) = L ◦SB(X) since L is invariant by permutation of the bytes.
Next, we define the functions g and f :{

g(X0, . . . , X4) := (−1)
∑

i<5
L(SB(Xi))

f(X0, . . . , X4) := (−1)F (C′
1⊕M ′

1,C′
2⊕M ′

2,C4⊕M4) = ±g(X0 ⊕ V0, . . . , X4 ⊕ V4) ,

where f has a leading unknown bit depending on the constant terms.
We will now retrieve the hidden shift V0, . . . , V4 using Algorithm 1. We rename the

individual bytes of X0, . . . , X4 as x0, . . . , x79 and rewrite g as:

g(x0, . . . , x79) =
79∏

i=0
(−1)β·SBox(xi) . (17)

In particular, f is still a shifted version of this function. Now, to bound the runtime and
success probability of Algorithm 1, we need to analyze the Walsh coefficients of g.

Analysis of ĝ. Since g is the product of 80 individual functions of one byte: gβ :
x 7→ (−1)β·SBox(x), we can use Proposition 1 and compute ĝ as a product of ĝβ . By
definition, ĝβ(x) is, up to a constant, the coefficient at column β and row x in the Linear
Approximation Table of the SBox. Thus, ĝβ corresponds to one column of the LAT.
Moreover, we are interested only in the distribution of Walsh coefficients, and for the AES
SBox, all non-zero columns are equivalent. Thus, any non-zero mask β gives the same
result. The distribution is given in Table 4.

It could be a priori difficult to compute the Walsh spectrum of g, since it has a 640-bit
input. However, by representing the distribution of Walsh coefficients as a table like
in Table 4, we can compute the exact distribution, which is actually quite sparse. For 80
S-Boxes, the table contains approximately 7.5 million non-zero coefficients.
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To run Algorithm 1, we need to select the threshold M maximizing the success
probability. Recall that it is the product pp′, where G := #{x, |ĝ(x)| ≥ M}, p = M2

22nG

is the success in the first step (which we can detect) and p′ = G
2n is the success in the

second step. Since we know the entire Walsh spectrum of g, we select M to maximize
pp′ = M2G22−3n:

M := 2326.23, G = 2610.60, p = 2−16.94, p′ = 2−29.40, pp′ = 2−46.34 .

These parameters will minimize the query complexity of the attack, however they might
not be the best if we want to minimize the time complexity, as we will see below.

Quantum Arithmetic. Finally, we must design a quantum circuit that computes ĝ(x),
compares |ĝ(x)| with M and computes ⌊2nM/|ĝ(x)|⌋. First, we notice that we can compute
|ĝ(x)| exactly. The computation of each ĝβ requires a circuit with approximately 28× 8× 4
Toffoli and CNOT gates that, for each i, compares its input with i, and writes the
corresponding output value. We do this 80 times in parallel. Overall, this costs ≤ 220

Toffoli gates. Afterwards, we take the product of all coefficients, two by two: the bit-length
of the numbers that we multiply increases at each product. This step costs ≤ 217 Toffoli
gates.

In the end |ĝ(x)| is an integer between 0 and 280×5 = 2400. The comparison with M is
done with about 2× 400 Toffoli gates (see Section 3). The computation of ⌊2nM/|ĝ(x)|⌋,
which is required for amplitude transduction, is a Euclidean division of a 980-bit constant
number by a 400-bit one, which is done with about 4× 980× 400 = 220.6 Toffoli gates. In
total, the overhead in Algorithm 1 with respect to the query of f can be upper bounded
by 222 Toffoli gates (we did not count the additional CNOT gates, but their numbers are
of the same order).

4.2 State-recovery on Rocca: Recovering the State
When Algorithm 1 succeeds in both steps (rejection sampling and final measurement), we
obtain the values for all hidden shifts V0, . . . , V4, byte by byte, which we combine with the
Ei that we can directly measure. We have the knowledge of:

S[5]⊕A(S[1])
S[2]⊕A(S[0]⊕ S[4])
S[3]⊕A(S[4])⊕A(S[7]⊕A(S[0]))
S[3]⊕ S[7]
S[0]⊕ S[1]⊕ S[6]⊕A(S[2])
S[7]
S[7]⊕A(S[0])⊕A(S[1]⊕ S[6])
S[0]⊕ S[3]⊕ S[6]⊕A(S[4]⊕ S[7]⊕A(S[5]))⊕A(S[3]⊕A(S[4]))

This gives us a system of equations that we need to solve.

Preliminaries on AES-like Equation Systems. It is important to recall here that A =
MC ◦ SR ◦ SB is a keyless AES round, where the SR operation shifts the bytes in row i by
i positions left. This is represented in Figure 4. In particular, if we know a diagonal of S,
then we can deduce a column of A(S) (and the converse). However, knowing a column of
S only allows to deduce an antidiagonal of SR ◦ SB(S).
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SB SR MC

SB SR MC

Figure 4: Mapping of known bytes by A.

Solving the System: Step 1. First, we obtain directly S[3] and S[7]. We then consider
the smaller system:

(E1) S[5]⊕A(S[1])
(E2) S[2]⊕A(S[0]⊕ S[4])
(E3) A(S[4])⊕A(S[7]⊕A(S[0]))
(E4) S[0]⊕ S[1]⊕ S[6]⊕A(S[2])
(E5) A(S[0])⊕A(S[1]⊕ S[6])
(E6) S[0]⊕ S[6]⊕A(S[4]⊕ S[7]⊕A(S[5]))⊕A(S[3]⊕A(S[4]))

Focusing on (E2) to (E5), we deduce the following, where ∗ are known values: S[2]⊕A(S[0]⊕ S[4]) = ∗
A(S[4])⊕A(∗ ⊕A(S[0])) = ∗

A(S[0])⊕A(S[0]⊕A(S[2])⊕ ∗) = ∗
i.e.

 S[2]⊕A(S[0]⊕ S[4]) = ∗
SB(S[4])⊕ SB(∗ ⊕A(S[0])) = ∗

SB(S[0])⊕ SB(S[0]⊕A(S[2])⊕ ∗) = ∗

In particular, the third inequality is obtained by replacing S[1]⊕S[6] in (E5) by A(S[2])⊕
S[0]⊕ ∗ from (E4). This implies: S[4] = SB−1 (SB(∗ ⊕A(S[0]))⊕ ∗)

S[2] = ∗ ⊕A [S[0]⊕ S[4]]
SB(S[0])⊕ SB (S[0]⊕A(S[2])⊕ ∗) = ∗

(18)

This sub-system in S[0], S[2], S[4] admits on average one solution, and we can solve it in
time 296 by the following strategy:

• Guess two columns and two diagonals of S[0]. Obtain two columns of S[4] by the
first equation (see Figure 5)

• Deduce two columns of S[0]⊕ S[4].
• Obtain two columns and two diagonals of A(S[2]) by the third equation (see Figure 5)
• Deduce two diagonals of S[2].
• Using the second equation, solve the obtained linear system in the 2 remaining

diagonals of S[2]; obtain the whole S[2] (on average one solution)
• Using the third equation, obtain S[0]. Each S-Box equation of the form SBox(∗ ⊕
x)⊕ SBox(∗ ⊕ x) = ∗ has on average one solution; half of the time they have zero
solutions and half of the time, they have two solutions. So, if one of these equations
has no solution, we backtrack.

• Otherwise, we have found 216 possibilities for S[0]. We use the first equation to
compute S[4] and we check that all equations are satisfied.

Though we need to examine 216 solutions for S[0], this will be done only 296−16 times,
so overall the time to solve the sub-system is 296. For each guess there are a few AES
rounds to compute and 16 S-Box differential equations to solve.
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A

S[0]

⊕∗
SB

A(S[0])
⊕∗

SB−1

S[4]

SB−1

SB(S[0]) ⊕ ∗
⊕∗

⊕S[0]

A(S[2])

Figure 5: Representation of the first (top) and third (bottom) equations in Equation 18,
and the bytes that we guessed. (*) denotes a known state.

Solving the System: Step 2. Having obtained S[0], S[2], S[3], S[4], S[7], three equations
remain:  S[5]⊕A(S[1]) = ∗

S[1]⊕ S[6] = ∗
S[6]⊕A(∗ ⊕A(S[5])) = ∗

=⇒
{

S[5]⊕A(S[1]) = ∗
S[1]⊕A(∗ ⊕A(S[5])) = ∗ (19)

We solve this remaining sub-system as follows. We guess two diagonals of S[5] (i.e.,
two columns of A(S[5])) and two diagonals of A(S[5]), for a total of 12 bytes, which are
represented in Figure 6.

Next, we solve a linear system in Y := SR ◦ SB(S[1]). Indeed, by the first line in Equa-
tion 19, we have two diagonals of A(S[1]) = MC(Y ), e.g., the bytes (0, 5, 10, 15, 4, 9, 14, 3)
if we follow the pattern of the figure. By the second line, we have two columns of S[1], e.g.,
the bytes (0, 1, 2, 3, 4, 5, 6, 7), which give the bytes (0, 7, 10, 13, 1, 4, 11, 14) of Y . It appears
that for each column of Y , we know two bytes before and after the MC operation. Though
the positions of these bytes differ for each column, thanks to the MDS property of the MC
matrix, we can always express the two unknown bytes of Y as a linear combination of the
four known ones.

Having obtained Y , we deduce S[1], and check if both equations are satisfied. The
time complexity of this step is therefore slightly smaller than the first one, since it does
not require to solve S-Box differential equations.

A

S[5]
⊕∗
A

⊕∗

A(S[5])
A

⊕∗

S[1] S[5]

Figure 6: Representation of Equation 19, and the bytes that we guessed. (*) denotes a
know state.

Summary: Hybrid Attack. So far we are using a classical algorithm for the state-recovery
part. With the selection of M that minimizes the number of superposition queries, the
adversary queries its oracle for Rocca a total of 246.34 times on average. After each query,
they perform the amplitude product, costing 222 Toffoli gates, and succeed in the first step
229.40 times on average. For each of these successes, they retrieve a candidate value for
the hidden shift and solve the equation system. Once the system is solved, the candidate
internal state can be tested by computing backwards a few rounds and checking the
ciphertexts.
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Overall, this first hybrid attack costs 246.34 superposition queries, 296+29.4 = 2125.4

classical time to solve the system, and 268.34 additional Toffoli gates.

Quantum Attack. We can accelerate the attack by using quantum search to speedup the
system solving. To solve the first subsystem in S[0], S[2], S[4], we proceed as follows: we
create a quantum algorithm that samples a valid S[0], i.e., a value of S[0] that passes the
S-Box differential equation, then tests if one of the 216 possibilities solves the entire system.
As seen in Section 3, the S-Box differential equation can be solved in 212 Toffoli gates, and
we have 16 of them to solve. Computing the remaining AES rounds costs less than 216.

Then this algorithm is a sequence of two Grover searches with Toffoli count:(π
2 216/2 + π

2 216/2
)

216 ≃ 226 .

On the output of this algorithm, we use amplitude amplification [BHMT02]. By design,
the probability that one of the possibilities for S[0] solves the system is 216−96, so there
are around π

4 2(96−16)/2 iterates to make, and the total time is:

π

2 2(96−16)/2 × 226 ≃ 267 .

At this point, our quantum attack requires 246.34 superposition queries and 267+29.4 =
296.4 Toffoli gates. We can optimize this by noticing how the (average) Toffoli count
depends on the probabilities p and p′ to succeed in both steps of Algorithm 1:

1
p′

[
1
p

(
222)+ 267

]
. (20)

Since we know the entire distribution of the Walsh coefficients, we can solve this
minimization problem on M and G, and we adopt:

M = 2304.56, G = 2625.89, p = M2

22n
G = 2−45.00, p′ = G

2n
= 2−14.11 (21)

which gives a complexity of 1/(pp′) = 259.11 Q2 encryption queries and

214.11 (222+45 + 267) ≃ 281

Toffoli gates. If we count that Q2 queries should have at least the same Toffoli cost as
quantum implementations of Rocca, the gate count is comparable to the generic forgery
attack in 264 Q2 queries, though we do not require decryption queries anymore.

4.3 State-recovery on Rocca-S

The attack on Rocca-S is very similar to the one on Rocca. We have the same strategy:
combine Algorithm 1 with linear post-processing to recover enough information on the
internal state with a single query, and obtain this internal state by solving a simple system
of equations.

Starting from an internal state S, we encrypt several message blocks and focus on the
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following outputs:

C0 = M0 ⊕ S[0]⊕A (S[3]⊕ S[5])︸ ︷︷ ︸
:=E0

C ′
0 = M ′

0 ⊕ S[2]⊕A (S[4]⊕ S[6])︸ ︷︷ ︸
:=E1

C1 = M1 ⊕ S[1]⊕ S[6]⊕A (S[3]⊕ S[6]⊕A (S[2])⊕A (S[4]))︸ ︷︷ ︸
:=E2

C ′
1 = M ′

1 ⊕ S[0]⊕A (M ′
0 ⊕ S[4]⊕A (S[3])⊕A (S[5]))⊕A (S[1])︸ ︷︷ ︸

:=E3

C ′
2 = M ′

2 ⊕ S[1]⊕ S[6]⊕A
(
M0︸︷︷︸

:=X0

⊕A (S[0])︸ ︷︷ ︸
:=V0

)
⊕

A
(
M ′

0 ⊕M ′
1︸ ︷︷ ︸

:=X1

⊕A (S[3]⊕A (S[4]))⊕A (S[3])⊕A (S[6]⊕A (S[2]))︸ ︷︷ ︸
:=V1

)
C ′

3 = M ′
3 ⊕M0 ⊕ S[4]⊕A

(
M1︸︷︷︸

:=X2

⊕A (S[1]⊕ S[6])︸ ︷︷ ︸
:=V2

)
⊕A (S[0])⊕A (S[5])⊕

A
[
M ′

1 ⊕M ′
2︸ ︷︷ ︸

=0

⊕A (S[4]⊕A (S[0]⊕A (S[1]))⊕A (S[5]))⊕

A

(
S[6]⊕A

(
M ′

0︸︷︷︸
=0

⊕A (S[3])
)
⊕A (S[2])

)
⊕A (S[6]⊕A (S[2]))

]
Similarly as before, we set 3 input variables X0, X1, X2 such that:

M ′
0 = 0, M ′

1 ⊕M ′
2 = 0

X0 = M0, X1 = M ′
0 ⊕M ′

1, X2 = M1 ,

and the other plaintext blocks are fixed to 0. We also define the three corresponding
hidden shifts:

V0 := A(S[0])
V1 := A (S[3]⊕A (S[4]))⊕A (S[3])⊕A (S[6]⊕A (S[2]))
V2 := A (S[1]⊕ S[6])

With this input, the expression of C0 ⊕M0, C
′
0 ⊕M ′

0, C1 ⊕M1 and C ′
1 ⊕M ′

1 becomes
constant, so we can immediately retrieve 4 values depending on the state S:

E0 := S[0]⊕A (S[3]⊕ S[5])
E1 := S[2]⊕A (S[4]⊕ S[6])
E2 := S[1]⊕ S[6]⊕A (S[3]⊕ S[6]⊕A (S[2])⊕A (S[4]))
E3 := S[0]⊕A (S[4]⊕A (S[3])⊕A (S[5]))⊕A (S[1])

(22)

Alongside, we compute a linear function of (C ′
2 ⊕M ′

2, C
′
3 ⊕M ′

3 ⊕M0 which inverts
MixColumns, multiplies each S-Box by an arbitrary mask β, and XORs the results. The
situation is similar to Rocca except that we only combine 3 × 16 = 48 S-Boxes instead
of 80. This reduces somewhat the gate count overhead for arithmetic operations, which
we can still upper bound at 222 Toffoli gates. More importantly, it modifies the values of
M,G, p and p′.
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When Algorithm 1 succeeds in both steps, we obtain the values of V0, V1, V2. The first
one gives S[0] immediately, so now we know:

S[0]
S[3]⊕ S[5]
S[2]⊕A (S[4]⊕ S[6])
S[3]⊕ S[6]⊕A (S[2])⊕A (S[4])
A (S[4]⊕A (S[3])⊕A (S[5]))⊕A (S[1])
A (S[3]⊕A (S[4]))⊕A (S[3])⊕A (S[6]⊕A (S[2]))
S[1]⊕ S[6]

We will solve this system in about 264 quantum (or 2128 classical) computations. First,
we guess S[3] and deduce S[5]. We use the fourth and sixth equations of above, where ∗
denotes a known value:{

S[6]⊕A(S[2])⊕A(S[4]) = ∗
A(∗ ⊕A(S[4]))⊕A(S[6]⊕A(S[2])) = ∗

(23)

which implies A(∗ ⊕ A(S[4])) ⊕ A(∗ ⊕ A(S[4])) = ∗. We can compose by the inverse of
the AES linear layer to retrieve 16 independent differential S-Box equations of the form:
SB(∗ ⊕ x)⊕ SB(∗ ⊕ x) = ∗, where the variable to recover is A(S[4]) (byte by byte). Like
before, these equations have two solutions half of the time, and otherwise zero. So we need
to try on average 216 values of S[3] until all 16 equations have solutions, and in that case,
we need to check the 216 different obtained values of A(S[4]). We will deduce the whole
internal state and check the equations.

Again, checking S[3] costs about 216 Toffoli gates and checking a given solution costs
less. We use amplitude amplification [BHMT02] over an algorithm that: finds a valid S[3],
then, searches through the corresponding solutions using a Grover search. We will find the
internal state in time:

π

2 2(128−16)/2
(π

2 216/2 + π

2 216/2
)

216 ≃ 282.3 .

Summary of the Attack and Optimization. We propose two optimizations of this attack:
one that minimizes the number of Q2 queries (i.e., maximizes pp′), and one that minimizes
the total time complexity. In the first case, we set:

M = 2195.40, G = 2365.62, p = 2−11.58, p′ = 2−18.37, pp′ = 2−29.95 . (24)

The adversary queries its oracle for Rocca-S a total of 229.95 ≃ 230 times on average
before encountering a success. The quantum arithmetic requires an additional time of
229.95 × 222 ≃ 252 Toffoli gates. Solving the equation system happens only if the first step
(amplitude product) succeeded, so 218.37 times. We can solve it quantumly, for a total
Toffoli count 218.37 × 282.3 ≃ 2101.

However, the average Toffoli count can be expressed as:

1
p′

[
1
p

(222) + 282.3
]
. (25)

By minimizing this expression instead, we obtain the following choice:

M = 2164.34, G = 2379.02, p = 2−60.30, p′ = 2−4.98, pp′ = 2−65.28 . (26)

which gives a complexity of ≃ 265 Q2 encryption queries and ≃ 287 Toffoli gates.
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4.4 Key-recovery on Tiaoxin
Our method allows to recover the state T3 at some point of the encryption phase. After-
wards, we can invert the round function on T3, and the initialization phase, and recover
the key which was loaded in the initial state.

Let us fix the state T3[0, 1, 2] at the beginning of the encryption phase and unroll a few
ciphertexts:

C0 = M0 ⊕ T3[0]⊕ T3[1]⊕A(T3[2])⊕A(T4[0])⊕AND(T6[2], T4[2])
C ′

0 = M0 ⊕M ′
0 ⊕ T4[1]⊕ T6[0]⊕A(T3[0])⊕A(T6[5])⊕AND(T6[4], T3[1])

C ′
1 = M0 ⊕M1 ⊕M ′

0 ⊕M ′
1 ⊕ T6[0]⊕A( M0︸︷︷︸

:=X0

⊕ T3[0]⊕A(T3[2])︸ ︷︷ ︸
:=V0

)⊕

A(T6[4])⊕A(T6[5])⊕A(T4[0])⊕AND(T6[3], A(T3[0]))
C ′

3 = M0 ⊕M1 ⊕M2 ⊕M3 ⊕M ′
0 ⊕M ′

1 ⊕M ′
2 ⊕M ′

3⊕
T6[0]⊕A(T6[3])⊕A(T6[4])⊕A(T6[5])⊕A(T6[2])
A
[
M0 ⊕M1 ⊕M2︸ ︷︷ ︸

:=X2

⊕ T3[0]⊕A(T3[1])⊕A(T3[2])⊕A(A(T3[0]))︸ ︷︷ ︸
:=V2

]
⊕

A
[
M ′

0 ⊕M ′
1 ⊕ T4[0]⊕A(T4[2])⊕A(T4[3])

]
⊕

AND(T6[1], A(M0 ⊕M1︸ ︷︷ ︸
:=X1

⊕ T3[0]⊕A(T3[1])⊕A(T3[2])︸ ︷︷ ︸
:=V1

))

We set the following as variables: X0 = M0, X1 = M0⊕M1, X2 = M0⊕M1⊕M2. The
rest is fixed. We focus on C ′

1 and C ′
3, and define the shift values:

V0 := T3[0]⊕A(T3[2])
V1 := T3[0]⊕A(T3[1])⊕A(T3[2])
V2 := T3[0]⊕A(T3[1])⊕A(T3[2])⊕A(A(T3[0]))

(27)

We then observe the XOR of C ′
1 and C ′

3. More precisely, let L be the function that
selects one bit in each column of the state and XORs them. We assume that on these 4
bits, T6[1] = 1.
Remark 5. Notice that the outputs of the S-Boxes are processed with different masks
than before. While the choice of mask was inconsequential for Rocca and Rocca-S, here it
becomes quite important, as we have to ensure that T6[1] = 1 at each bit position selected
by the mask. A similar constraint occurs for AEGIS-128L in the next section.

Then we have:

L [AND(T6[1], A(M0 ⊕M1 ⊕ T3[0]⊕A(T3[1])⊕A(T3[2])))]
= L ◦A(M0 ⊕M1 ⊕ T3[0]⊕A(T3[1])⊕A(T3[2])) ,

and we define the function:

F (C ′
1 ⊕M0 ⊕M1 ⊕M ′

0 ⊕M ′
1, C

′
3 ⊕M0 ⊕M1 ⊕M2 ⊕M3 ⊕M ′

0 ⊕M ′
1 ⊕M ′

2 ⊕M ′
3)

= b⊕ L ◦A(M0 ⊕ V0)⊕ L ◦A(M0 ⊕M1 ⊕ V1)⊕ L ◦A(M0 ⊕M1 ⊕M2 ⊕ V2) ,

where b is an unknown bit depending on T . We have L◦A = (L◦MC◦SR)◦SB, so column
by column, we have a one-bit function of the S-Box outputs, which can be rewritten as:
(x0, x1, x2, x3) 7→

⊕
i αi · SB(xi) for well-chosen masks α0, . . . , α3.

The situation is thus the same as before, since the distribution of Walsh coefficients
is independent of the mask αi (as long as it’s nonzero). Recovering the entire state
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T3[0, 1, 2] from the shifts V0, V1, V2 is trivial and costs only a few AES rounds. Afterwards,
we compute backwards through the 15 rounds of initialization on the state T3 (30 AES
rounds), and obtain a candidate key K that we can immediately check. All of this can be
done classically.

Since there are 16 × 3 = 48 S-Boxes in the function, we optimize the probability
similarly to Rocca-S and obtain pp′ ≃ 2−30. The Toffoli cost of the entire attack is roughly
230 × 222 = 252 and it contains 230 Q2 queries. Note that we need to multiply these
numbers by 24, since we assumed to have guessed correctly 4 bits of T6[1].

4.5 State-recovery on AEGIS-128L
Contrary to the rest of this section, the attack on AEGIS-128L uses a function of smaller
correlation: we use Theorem 2.

Starting from an initial state S, we encrypt pairs of message blocks (Mi,M
′
i) with

M ′
i = 0. To simplify the notations, we will express the ciphertext blocks in function of T ,

the state after one update, that is, T [i] = S[i]⊕A(S[i− 1]). Our aim is to recover T . As
they cannot be expressed from T , we ignore the first pair of ciphertext blocks and focus
on:

C1 = M1 ⊕ T [1]⊕ T [6]⊕AND (T [2], T [3])
C ′

1 = M ′
1 ⊕ T [2]⊕ T [5]⊕AND (T [6], T [7])

C ′
2 = M ′

2 ⊕ T [2]⊕ T [5]⊕A (M ′
0 ⊕ T [4])⊕A (T [1])

⊕AND (T [6]⊕A (T [5]) , T [7]⊕A (T [6]))

C6 = M6 ⊕A
[
M0 ⊕M1 ⊕M2 ⊕M3 ⊕M4 ⊕ T [0]⊕A (T [7]⊕A (T [6]))

⊕A (T [7])⊕A (T [7]⊕A (T [6]⊕A (T [5]))⊕A (T [6]))

⊕A
(
T [7]⊕A (T [6]⊕A (T [5]⊕A (M ′

0 ⊕ T [4]))⊕A (T [5]))

⊕A (T [6]⊕A (T [5]))⊕A (T [6])
)]

⊕A
[
M0 ⊕M1 ⊕M2 ⊕M3 ⊕ T [0]⊕A (T [7]⊕A (T [6]))⊕A (T [7])

⊕A (T [7]⊕A (T [6]⊕A (T [5]))⊕A (T [6]))
]

⊕A
[
M0 ⊕M1 ⊕M2 ⊕ T [0]⊕A (T [7]⊕A (T [6]))⊕A (T [7])

]
⊕A

[
M0 ⊕M1 ⊕ T [0]⊕A (T [7])

]
⊕A (M0 ⊕ T [0])⊕ Y ⊕AND(h′(M0,M1,M2,M3), h′′(M0,M1,M2)) ,

where h′ and h′′ are two functions whose exact expression is irrelevant here, and Y is a
constant (an expression in which only T and M ′

i intervene). Similarly to Tiaoxin, we use a
linear post-processing which truncates C6 to only 4 bits. Therefore, though it is completely
unknown (and depends on the unknown state T ), the AND term will become a function
h with correlation 2−4. Heuristically, we model this function (that will change for each
query) as a random one, and we use Theorem 2.

By making M0 to M4 vary, we obtain 5 shifts which give us:

T [0] from the M0 shift
T [7] from the M1 shift, knowing T [0]
T [6] from the M2 shift, knowing T [0, 7]
T [5] from the M3 shift, knowing T [0, 6, 7]
T [4] from the M4 shift, knowing T [0, 5, 6, 7]
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Next, we focus on the ciphertext blocks C1 to C ′
2 which we have also obtained. Thanks

to C ′
1 and all the state registers that we know, we obtain T [2]. Next, thanks to C ′

2, we
obtain T [1]. The only register of T that we are missing is T [3]. We can find half of it using
the expression of C1: indeed, from the known T [i] we can compute AND(T [2], T [3]). We
can expect half the bits of T [2] to be one, which gives us the the corresponding bits of
T [3].

State-recovery Attack. After performing this partial state-recovery, we can do a Grover
search on the remaining 64 bits of the state. However, checking if we have obtained a
valid internal state is not trivial. Indeed, the round function of AEGIS is not invertible, so
we cannot compute backwards and check with previous ciphertexts. In fact, there do not
seem to be other ciphertext equations that we can exploit (either we have already used
them, or they depend on the varying Mi).

Consequently, we do a Grover search using superposition decryption queries to test our
guess of the state. That is, starting from the recovered internal state, we compute the tag
(approximately 6× 8 AES rounds, i.e., ≤ 216 Toffoli gates) and we try to decipher with
an oracle. If the internal state is guessed correctly, the oracle will accept. This operation
requires approximately: π

2 232 × 216 ≤ 249 gates and 233 decryption queries.
Since the number of S-Boxes is the same as in Rocca, the hidden shift algorithm is

actually the same. We keep the same p and p′, but introduce the correlation c = 2−4. The
Toffoli count and the number of queries are respectively:

2
p′

(
1
p

1
c2 222 + 249

)
and 2

p′

(
1
p

1
c2 + 233

)
. (28)

If we optimize the Toffoli count, we get the following parameters:

M = 2324.23, G = 2612.54, p = 2−19.00, p′ = 2−27.46 , (29)

which give 277.46 Toffolis, smaller than the cost of Grover search (281), and 2×233

p′ ≤ 262

decryption queries, which is also smaller than a forgery attack using a Grover search. We
also use 2

pp′c2 ≤ 256 encryption queries.

5 Discussion
In all instances of our attack, the AE scheme (Rocca, Rocca-S, Tiaoxin, AEGIS) is believed
to be secure regarding guess-and-determine attacks that aim at recovering the state.
Indeed, when one only observes the ciphertext blocks, the obtained system of equations is
intractable.

Our quantum attack works because we can observe hidden shifts in addition to the
ciphertexts. This allows us to reduce the state-recovery to a simpler system of equations
(the simplest being Tiaoxin-346 which only relies on three shifts). However, there are
limitations to this approach. Notably, if we have a ciphertext C = S0 ⊕A(S1 ⊕M1), we
have only two choices: either make M1 = 0 a constant, and observe S0 ⊕A(S1), or make
M1 a variable, and observe S1. In the latter case, S0 is lost. Besides, we can only use
one variable for one shift, i.e., if we have C = A(S1 ⊕M1) and C ′ = A(S2 ⊕M1), we
must drop one of the ciphertext blocks. Another problematic case is when we observe
A(S0 ⊕A(S1 ⊕M1)). Though we do have a shifted function, the function is now unknown
(it depends on S0) and more complex (two rounds of AES instead of one). The attack can
proceed by guessing enough bits of S0, but becomes more difficult.

In our examples, the choice of the shifts was done by hand, trying to obtain the simplest
equation system. More clever choices might still exist. Conversely, making the schemes
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secure against this attack means ensuring that none of the equation systems resulting from
a combination of ciphertexts and shifts can be tractable.

Previously, some Q2 quantum attacks have been linked to more efficient Q1 at-
tacks [BHN+19]. However such methods do not appear to work in this scenario, as
classical queries will have different nonces, and cannot be brought together to emulate a
single quantum query. To the best of our knowledge, all the schemes studied in this paper
remain secure against Q1 attacks.

As a final remark, we note that the attacks presented in this paper have time and
query complexities below those of exhaustive search, without taking parallelization into
account. However, the generic attacks are instances of quantum search, while the trials
in our attacks can be parallelized perfectly. As a consequence, there might exist other
targets than those given in this paper, on which an advantage against exhaustive search is
reached under some depth constraint.
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