
Waffle: An Online Oblivious Datastore for Protecting Data
Access Patterns

Sujaya Maiyya

University of Waterloo

Sharath Vemula

UC Santa Barbara

Divyakant Agrawal

UC Santa Barbara

Amr El Abbadi

UC Santa Barbara

Florian Kerschbaum

University of Waterloo

ABSTRACT
We present Waffle, a datastore that protects an application’s data

access patterns from a passive persistent adversary. Waffle achieves

this without prior knowledge of the input data access distribution,

making it the first of its kind to adaptively handle input sequences

under a passive persistent adversary. Waffle maintains a constant

bandwidth and client-side storage overhead, which can be adjusted

to suit the application owner’s preferences. This flexibility allows

the owner to fine-tune system parameters and strike a balance

between security and performance. Our evaluation, utilizing the

Yahoo! Cloud Serving Benchmark (YCSB) benchmark and Redis

as the backend storage, demonstrates promising results. The inse-

cure baseline outperforms Waffle by a mere 5-6x, whereas Waffle

outperforms Pancake—a state-of-the-art oblivious datastore under

passive persistent adversaries—by 45-57%, and a concurrent ORAM

system, TaoStore, by 102x.

1 INTRODUCTION
More than 94% of current enterprises – including 83% of health

care organizations [21] – rely on cloud services, especially for their

infrastructure and data storage needs [9]. Organizations outsource

their storage to third party cloud providers because of the high cost

associated with owning and maintaining an on-premise storage

or compute fleet. However, outsourcing an application’s data in

plaintext can reveal sensitive information to a potentially non-

trustworthy cloud provider. While encrypting the data forms the

first obvious solution to ensure data privacy, a growing body of

attacks [7, 14, 18–20, 23–26, 37, 38, 44, 56] exploit access patterns

(e.g., access frequency or duration) on encrypted data to uncover

plaintext data. Such attacks are called access pattern attacks.
Oblivious RAM [16], or ORAM, is a well known cryptographic

technique that mitigates access pattern attacks. While a large num-

ber of datastores have integrated ORAM to guarantee obliviousness

(e.g., [8, 11, 34, 47, 48, 50, 51]), all these systems incur a lower bound

bandwidth overhead of 𝑙𝑜𝑔𝑁 [16, 31, 41]. The lower bound implies

that for each client request accessing a single object, the ORAM

schemes require Ω(𝑙𝑜𝑔𝑁 ) bandwidth overhead, where𝑁 is the data-

base size. This overhead can easily throttle system performance

when the database size grows to billions of records or when clients

send thousands of concurrent requests. These lower bounds exist

because ORAM assumes an active (but non-malicious) adversary

who can not only observe accesses to encrypted data, but also in-

ject queries. Although this adversarial model captures sophisticated

adversaries, it hinders performance.

Work to appear in SIGMOD 2024.

Pancake [17] introduced the notion of a passive persistent ad-
versary who can persistently view ongoing accesses on encrypted

data but cannot inject queries; Pancake ensures obliviousness un-

der this threat model. By assuming a less stringent yet realistic

adversarial model, Pancake achieves 229x higher performance than

PathORAM [51], a well known ORAM scheme.

However, Pancake has several limitations. First, Pancake achieves,

what we term, offline obliviousness: the scheme requires (near) ac-

curate prior knowledge of the original access distribution based on

which it creates uniform frequency distribution over all outsourced

data objects. Any changes in the distribution must be detected im-

mediately to guarantee security. Second, Pancake requires an𝑂 (𝑁 )
cache at the client side, i.e, at a trusted proxy, where for certain

distributions, the cache may store close-to 𝑁 objects locally (§2

provides details). Third, Pancake’s security model assumes that

client requests are drawn independently from a known distribu-

tion; it fails to capture scenarios when clients query from unknown

distributions or send correlated queries. Because of this, Pancake

can only handle single maps where each object has a single value

(contrary to relational data where each object can have multiple

attribute values). Fourth, Pancake’s obliviousness algorithm cannot

be easily tweaked to weaken the security in a controlled fashion in

exchange for potentially better performance.

In terms of obliviousness, Pancake provides obliviousness of

access frequencies. On the contrary, ORAM provides obliviousness

of access sequences. This means that given specific sequences, i.e.,

queries drawn independently from a known distribution, Pancake

ensures that the access frequency of each outsourced object is 1/𝑁 ′,
where 𝑁 ′ is the outsourced database size. In fact, for small 𝑁 ′s,
Pancake’s security can be compromised when the input sequence

has correlated queries [38]. Meanwhile, ORAM takes any sequence

of accesses and generates server accesses distributed uniformly over
the outsourced objects.

Our goal is to design an algorithm that ensures obliviousness

of access sequences, in-line with ORAM, under a passive persis-

tent adversarial model. But providing completely uniform accesses

on the server is expensive, as proven in the ORAM’s 𝑙𝑜𝑔𝑁 lower

bounds [16, 31, 41]. Therefore, we weaken this complete uniformity

to ‘somewhat’ uniformity and provide a concrete definition and

bounds on the term ‘somewhat’.
Overall, our goal is to design an algorithm and build a system that

(i) provides online obliviousness of access sequences by adapting

to any input sequence, (ii) allows tuning security in exchange for

performance, (iii) uses a bounded cache, and (iv) achieves the above

properties with constant bandwidth overhead.

Our contributions: We make three contributions in this work:



(1) We define a new security model by introducing a new data

access uniformity definition called 𝛼, 𝛽-uniform. At a high

level, this definition captures how uniform are the accesses to

the server. As one of our main design rationales is to provide

more flexibility to the application owner and allow them to

tune system parameters to trade-off security for performance,

the new security definition captures these system parameters

such that the extent of the obliviousness guarantees depend

on the values set for these parameters.

(2) We design and build Waffle, an oblivious datastore that guar-

antees 𝛼, 𝛽 uniformity and provides online obliviousness
for queries drawn from any adversarial chosen sequence of
requests. Waffle is the first system to make no assumptions

about input access distributions under passive persistent

adversaries. Waffle requires a constant-size cache and has

a constant bandwidth overhead, both of which can be con-

figured by the application owner. Moreover, Waffle can be

easily extended to handle multi-maps wherein each object

can have multiple associated values (e.g., relational data).

(3) We extensively analyze Waffle by conducting a variety of

experiments, which indicate that withWaffle’s system param-

eters mirroring that of Pancake, Waffle performs 45.5-57.7%
better than Pancake and 102x better than TaoStore, while

the insecure baseline performs 5.8x and 6.04x better than

Waffle. We also analyze Waffle’s security vs. performance

trade-offs and show that Waffle protects against correlated

query attack [38] that Pancake is vulnerable to.

2 BACKGROUND
This section provides a background on access pattern attacks and a

high level description of Pancake [17] and PathORAM [51].

Terminology: We first explain the meaning of the commonly

used terminologies in the paper. Query is a get/put request issued

by clients. The terms query and request are used interchangeably.

Plaintext query distribution or real distribution corresponds to the

distribution from which the client queries are drawn. Ciphertext
query distribution corresponds to the access distribution observable

by an adversary on the encrypted objects stored at the server. Pop-
ular (or unpopular) objects are plaintext objects that have a high (or

low) probability of being requested by clients. We interchangeably

use object 𝑘𝑖 or key 𝑘𝑖 to refer to an object whose identifier is 𝑘𝑖 .

Access pattern attacks: A growing number of attacks from the

security and privacy community [3, 7, 14, 18–20, 23–27, 32, 36–38,

44, 56] have shown that the access pattern of outsourced data, even

after encryption, can help an adversary uncover the underlying

plaintext data or even the plaintext queries issued by the application.

These attacks apply techniques such as frequency analysis and 𝑙𝑝 -
optimization [27, 32, 36] on deterministically encrypted databases

such as CryptDB [45] to uncover the plaintext data. Note that

most encrypted databases encrypt the data object identifiers (e.g.,

primary keys) using deterministic encryption so as to retrieve the

appropriate object from the external server.

The frequency analysis attack, a fundamental inference attack

technique, relies on the ciphertext space C and the message space

M. The attack operates by correlating or assigning the most fre-

quently occurring elements in a deterministically encrypted column

𝑐 over C with the most frequently occurring elements in an auxil-

iary dataset𝑚 overM.

Pancake: obliviousness of access frequencies. Pancake [17] mit-

igates access pattern attacks by employing frequency smoothing
to flatten and make the ciphertext access frequency distribution

uniform. Pancake requires (i) prior knowledge of the plaintext ac-

cess distribution and (ii) the queries to be drawn independently, to

ensure obliviousness. It employs two main techniques: 1). Replicate

popular objects such that the system accesses different replicas

each time a client queries popular objects; and 2). Add fake queries

to real queries to increase the access probabilities of unpopular

objects.

Although Pancake presents a mechanism to handle changing

distributions, the new distribution must be learnt before ensuring

frequency smoothing. We call this offline obliviousness because
Pancake’s two strategies for frequency smoothing can only be ap-

plied for a known input distribution. Moreover, because it replicates

popular objects, propagating updates to all replicas of an object

requires Pancake to maintain a datastructure, updateCache, that
can grow to size 𝑁 , wherein in the worst-case all data objects and
their values must be stored locally at the proxy.

Because Pancake only hides access frequencies, it uses static
key assignment, i.e., a plaintext key 𝑘 (or object identifier) always

maps to the same storage identifier 𝑒𝑘 used to query the object from

the server. For small datasets, static key assignments are vulnerable

to attacks when the input distribution consists of correlated queries

[38] (e.g., an adversary that picks correlated queries to 𝑘1 and

𝑘2 in the input distribution observes that 𝑒𝑘1 and 𝑒𝑘2 are accessed

together with a high probability). However, we note that for settings

that hold Pancake’s assumption of queries drawn independently

from a known distribution, it effectively hides user access patterns.

ORAM: obliviousness of access sequences. Because Waffle’s ad-

versarial model differs from ORAM’s (in which an adversary can

inject queries and note the resulting access pattern), we provide a

high level discussion of PathORAM [51], a popular ORAM scheme,

on only those details that are relevant toWaffle. At inception, PathO-

RAM initializes the external storage in a binary tree by assigning

objects to randomly chosen paths. PathORAMmaintains a position-
Map that stores object ids to path ids on which the object resides –

this is the plaintext identifier to storage identifier in PathORAM.

Each request to an object results in PathORAM fetching the en-

tire path where the object resides. After each access to an object 𝑖 ,

PathORAM deletes 𝑖 from its previous path and writes it to another

randomly chosen path and updates the mapping in the positionMap.
This way, each time 𝑖 is accessed, the adversary observes access to

a random path, thus breaking correlations between plaintext object

ids to their storage ids. We call this a non-static assignment of
plaintext object identifiers to storage identifiers because after
each access to an object, its storage identifier, which is a path id,

changes. This non-static assignment helps ORAMhide the server ac-

cess patterns for any input sequence, including correlated queries.
However, this incurs 𝑙𝑜𝑔𝑁 bandwidth overhead [16, 31, 41]. For

example, PathORAM reads and writes an entire path of a binary

tree consisting of 𝑙𝑜𝑔𝑁 nodes to serve each client request.

2



3 SYSTEM AND THREAT MODEL
3.1 System Model
We present Waffle as a key-value store that supports single object

get, put, or delete operations. However, Waffle’s design can be easily

applied to other types of database that support similar single-object

operations. Waffle stores the data in an external untrusted storage

server and executes requests from clients by routing the queries

through a trusted proxy. The use of a trusted proxy is a commonly

employed technique [11, 17, 34, 45, 48, 50, 51]. Waffle’s design and

security guarantees also hold for a systemwith a single client and no

proxy. However, we use the proxy model to support multiple clients

requesting data concurrently. The proxy is a stateful entity assumed

to be highly available (which can be ensuredwith techniques such as

a primary-secondary replication [15] or a quorum replication [29];

however, this choice is orthogonal to Waffle’s goals).

The clients and the proxy reside within the same trusted admin-

istrative domain. This is a reasonable assumption as the application,

which may not possess enough resources to host and manage all of

its data, may host a proxy with significantly lower storage space

compared to the server.

Each plaintext data object consists of a key 𝑘 and a value 𝑣 . Be-

causeWaffle can handle correlated queries, it can be easily extended

to support multimaps wherein each key has multiple associated

values (we discuss correlated queries in §8.3.2). The proxy encodes a

key 𝑘 using pseudo random functions (PRFs) 𝑝𝑟 𝑓 (𝑘, 𝑎𝑘 ), where 𝑎𝑘 is

auxiliary information of 𝑘 . 𝑝𝑟 𝑓 (𝑘, 𝑎𝑘 ) acts as the storage identifier
for 𝑘 . The proxy encrypts the values using authenticated encryption

𝐸 (𝑣). PRFs are deterministic functions, i.e., invoking a PRF with

the same input any number of times will result in the same output.

However, invoking the same PRF with different inputs generates

random output strings. The proxy stores the secret-keys used for

𝑝𝑟 𝑓 (𝑘, 𝑎𝑘 ) and 𝐸 (𝑣). To avoid attacks based on the length of the

object values, we consider all values to be of equal length.

3.2 Threat Model
Waffle assumes the adversary A to be semi-honest (or honest-but-

curious) but non-malicious who can observe and/or record request

patterns. A can use any prior knowledge and the observed access

patterns to launch inference attacks. We further assume that the

communication layer is unreliable, asynchronous, and insecure.

The adversary can view or delay, but eventually delivers, encrypted

messages exchanged between the trusted and untrusted domains.

The communication layer uses TLS [53] to prevent data tampering

or eavesdropping from an attacker who intercepts communication

channels. Waffle assumes that the adversary cannot inject queries

or manipulate data in transit or storage.

Non-goals: Waffle tolerates no malicious adversaries (such as in

blockchain settings) nor ‘active’ adversaries (as in ORAM) who can

inject queries. Waffle also does not aim to protect an application

from timing based side channel attacks or implementation based

backdoor attacks.

4 WAFFLE OVERVIEW
In this section, we provide a rationale for Waffle’s design choices

and an overview of the system. The four goals of Waffle are to: i)

ensure obliviousness under a passive persistent adversarial model

for any sequence of accesses, without requiring prior knowledge

of the input distribution; ii) enable the application owner to have

more control over the datastore and allow trading security for

performance; iii) use a bounded cache, and (iv) have a constant

bandwidth overhead.

At a high level, Waffle achieves obliviousness by padding real

requests with fake requests. We first consider a simple strawman

design where the proxy is stateless (except to store the encryption-

keys) and stores no data objects or meta-data. All objects are en-

crypted before being stored at the server, and every client request

accesses the requested object from the server, along with the ob-

jects padded for fake queries. The naive solution assumes a static

assignment of plaintext object ids to storage ids (similar to Pancake).

By adding ‘enough’ fake queries per real query and by picking the

‘right’ objects for fake queries, this naive solution can ensure oblivi-

ousness. We next discuss the challenges of achieving obliviousness

in the strawman that led to the design choices of Waffle.

Challenge 1: Batching real queries with fake queries. The
naive solution stores all data objects in the server and each client

request has to access the data from the server. Accessing a single

data object from the server in each server access allows an adversary

to distinguish between real vs. fake queries (e.g., the first request

made to the server after a period of rest likely corresponds to a real

request). Hence, we need to batch real and fake queries together

and perform batched server accesses. Deciding a secure yet efficient

batch size forms the first challenge of the naive solution.

Solution: Given our goal of providing the application owner with

more control over the data system, Waffle allows the application

to choose the batch size, 𝐵 (> 1). Because the proxy and the server

reside in different trust domains, higher system performance favors

reducing proxy to server communications. Therefore, Waffle waits

to receive 𝑅 (≥ 1) client requests before creating a batch of 𝐵

requests to be sent to the server. However, accessing the same

object multiple times in the same batch leaks information on data

contention. Waffle hides this by deduplicating and only adding

requests to unique objects in𝑅, whose size is represented by 𝑟 , to the

batch. Waffle further allows an application to initialize the database

with 𝐷 (≥ 0) dummy data objects (we explain the advantage of

having dummy objects in Challenge 3). Waffle then appends 𝑓𝐷
(≥ 0) fake queries on dummy objects and 𝑓𝑅 = 𝐵 − (𝑟 + 𝑓𝐷 ) fake
queries on real objects to the batch. Essentially, each batch sent to

the server consists of 𝑟 real queries on real objects, 𝑓𝑅 fake queries

on real objects, and 𝑓𝐷 fake queries on dummy objects, and the

parameter values of 𝐵, 𝑅, and 𝑓𝐷 are all chosen by the application.

Having discussed how Waffle constructs a batch, we next discuss

what objects to choose for fake queries in a batch.

Challenge 2: Choosing objects for fake requests. Apart from
replicating popular objects (§2), Pancake [17] primarily relies on

fake queries to ensure obliviousness. Because Pancake knows the

real query distribution, it inverts the distribution and chooses ob-

jects for fake queries from this inverted distribution. However,

since Waffle assumes nothing about real query distribution, decid-

ing what objects to choose for fake queries is challenging because

picking popular objects for fake queries can aggravate the access

probability imbalance between popular and unpopular objects.

3



Solution: Waffle adapts a dynamic approach of continually main-

taining how recently a given object was accessed using (integer)

timestamps. It chooses least recently accessed objects, i.e., objects

with the least timestamps, for fake queries while creating a batch.

Note that maintaining the timestamp information makes the proxy

stateful. Each access to an object on the server, either as a real or a

fake query, updates its access timestamp. Waffle uses a balanced

binary search tree (BST) to maintain access timestamps because

it efficiently supports search and update operations: an object

with minimum timestamp object can be found in constant time

and its timestamp can be updated in 𝑙𝑜𝑔𝑁 time. While tracking

access timestamps in a binary search tree helps pick least recently

accessed objects for fake queries, ensuring obliviousness for highly

skewed accesses remains an open challenge.

Challenge 3: Handling highly skewed accesses. Real-world
accesses typically exhibit highly skewed access patterns [1, 10, 42]

where most user requests access a small subset of data. Because

the naive solution stores all the data objects only at the server,

ensuring obliviousness will require adding a prohibitively large

number of fake queries. For example, consider an extreme case

where all user requests are to a single data object, 𝑜𝑖 , out of a

million objects. Ensuring any sense of uniform access will require

adding many fake queries per real request; otherwise (encrypted)

𝑜𝑖 will be accessed significantly more often than the rest, rendering

this solution insecure.

Solution: Waffle employs client-side caching, i.e., at the proxy,

to mitigate the above challenge. Essentially, Waffle caches all real

objects (𝑟 + 𝑓𝑅 ) accessed in a batch and serves user requests from the

local state if the requested object resides in the cache.When popular

objects reside in the cache, 𝑟 reduces and 𝑓𝑅 increases, causing

more unpopular objects to be accessed per batch, thus improving

security (because no object remains un-accessed for long). This

implies that larger cache ensures higher security. Reiterating our

goals of providing more control to the application, Waffle allows

the application to choose the cache size and ensures that the cache

size remains bounded, in line with our other desired goal (this is

unlike Pancake whose cache size can grow to 𝑂 (𝑁 )).
Waffle uses a least-recently-used (LRU) cache to retain frequently

accessed objects in the cache (we explain what happens to evicted

objects in Challenge 4). To retain popular objects in the cache,Waffle

adds dummy objects to the database and access 𝑓𝐷 of them in each

batch. This reduces the number of real objects accessed in each

batch, in-turn reducing the number of cache evictions necessary

to cache real objects. Moreover, dummy objects introduce another

layer of security since an attacker must first distinguish between

real and dummy objects before performing inference attacks.

Challenge 4: Ensuring online obliviousness with bounded
cache. Even when popular objects are cached, certain access se-

quences can violate obliviousness due to the static assignment of

plaintext object ids to storage ids. We explain this security chal-

lenges with a simple example where the database consists of 𝑁

objects, the cache size is 3, and the users access objects 𝑜1, 𝑜2, 𝑜3, 𝑜4
in a repeated sequence. In such request patterns where the size of

popular objects is slightly larger than the cache size, every client

request will result in a cache miss, needing to fetch the object from

the server. Hence, the frequency of these 4 (encrypted) objects on

server will be higher that the rest. The adversary can perform an

attack by choosing similar access sequences and can essentially

identify the plaintext object id to storage id mappings. We note

that even if we allow the cache size to grow dynamically instead

of fixing the size, similar attacks can be performed depending on

the cache eviction policy unless we either make assumptions about

knowing the real distribution or storing all accessed objects in the

cache without ever evicting them.

Solution: We address this challenge by making the plaintext id to

storage id assignments non-static, similar to ORAM schemes (§2).

Essentially, Waffle updates a key 𝑘’s storage id after each access to

𝑘 , which means, each object stored at the server is written and then

read at most once before its storage id changes (the old object

can be deleted after reading it to save storage space; however, this

choice has no impact on security).

Waffle achieves this as follows: (i) To access each outsourced

object, it generates the storage id by invoking the PRF with both

the object’s plaintext key 𝑘 and its current access timestamp 𝑡𝑠𝑘
maintained in the BST, i.e., 𝑒𝑘 = 𝑝𝑟 𝑓 (𝑘, 𝑡𝑠𝑘 ). At initialization, 𝑡𝑠𝑘 =

0. (ii) After each access to 𝑘 , Waffle updates its access timestamp

to 𝑡𝑠 ′
𝑘
in the BST and stores the retrieved object locally in the

cache. To save storage space, Waffle deletes the object with id 𝑒𝑘
from the server. (iii) If and when the cache evicts object 𝑘 , the

proxy writes 𝑒 ′
𝑘
= 𝑝𝑟 𝑓 (𝑘, 𝑡𝑠 ′

𝑘
) along with 𝑘’s encrypted value to

the server. The server cannot distinguish if 𝑒 ′
𝑘
and 𝑒𝑘 correspond

to the same plaintext key 𝑘 . This technique implies that an object

either only resides in the cache or at the server. To push the evicted

objects back to the server, Waffle always reads 𝐵 objects and writes

𝐵 objects (but not necessarily the same objects). This technique of

reading and writing objects accessed by clients is a commonly used

method [11, 17, 34, 48, 50, 51].

Summary: To summarize, Waffle (i) relies on non-static assign-

ment of plaintext ids to storage ids and accesses each storage id,

and hence each encrypted object, at most once for security, (ii)

accesses objects in batches consisting of real and fake queries on

real and dummy objects, (iii) picks objects for fake queries based on

the recency of access, and (iv) caches popular objects to reduce the

number of fake queries necessary to ensure obliviousness. Having

provided an overview of Waffle’s design choices, we next present

the formal security definition of Waffle.

5 SECURITY MODEL
Waffle employs the same adversarial model defined in Pancake [17]:

passive persistent adversary. The adversary can observe all accesses

to the outsourced encrypted data, but it cannot inject its own

queries. The adversary can record the access patterns over time and

use it to perform inference attacks. The adversary can choose the

plaintext query distribution or sequence of accesses from which

client queries are drawn from, and it can arbitrarily change the

distribution (however, the adversary cannot compromise clients to

realize individual queries picked from the input distribution).

The persistent passive adversarial model is weaker than that of

ORAM’s [16], in which adversaries can also inject queries. On the

other hand, this model is stronger than the snapshot security model

where the adversaries can only access snapshots of the database

without persistently observing query accesses [28, 39, 43].

4



Figure 1: 𝑟 and 𝑤 indicate reads and writes; values are omitted for
brevity. (i) depicts a fully uniform access sequencewhereas ii(a)-ii(c)
depict a somewhat uniform access sequence.

Waffle aims to hide access sequences and not just access frequen-

cies (see discussion in §2) by employing a non-static assignment of

plaintext ids to storage ids, i.e., Waffle updates an object’s storage

id after each access to the object. Essentially, each object stored at

the server is written and then read at most once before its storage
id changes (to minimize storage, Waffle deletes the old id and its

object). This implies a smooth access frequency of one write and one
read per object on the server. However, an adversary can still ob-

serve the number of accesses between the write and the subsequent

read of an object. This can lead to attacks wherein an adversary

can map the encrypted objects written at initialization but never

accessed to the plaintext objects not accessed in the (adversary

chosen) input sequence.

To be oblivious under a passive persistent adversary, a data sys-

tem must bound the number of server accesses within which a

written object must be read. This generates a somewhat uniform ac-

cess since every outsourced object is accessed in at most a bounded
number of accesses, 𝛼 , after it was written. On the contrary, a

completely uniform access would guarantee that every outsourced

object is accessed exactly at some 𝛼 ′ accesses after it was written.
Figure 1 depicts the difference between complete vs. somewhat

uniform server accesses. Consider a database with 3 objects, with

plaintext keys 𝑘1 to 𝑘3. 𝑒
𝑖
𝑘 𝑗

represents the storage id generated us-

ing 𝑝𝑟 𝑓𝑖 (𝑘 𝑗 ) = 𝑝𝑟 𝑓 (𝑘 𝑗 , 𝑡𝑠𝑖 ), i.e., the 𝑖𝑡ℎ access of 𝑘 𝑗 . Figure 1(i) is

completely uniform because each written object is read after exactly

𝛼 ′ = 2 accesses. This ensures complete obliviousness because each

outsourced object is accessed exactly at the 𝛼 ′𝑡ℎ access from when

it was written, generating a uniform server access pattern regard-

less of the client request pattern. Whereas, Figures 1 (iia) to (iic)

depict somewhat uniformity, wherein a written object is accessed

in at most 𝛼 = 4 accesses. This opens up different combinations of

accesses, especially for large 𝛼 values, yet ensures (a weaker notion

of) obliviousness because every written object will be accessed

within 𝛼 accesses. However, larger 𝛼s leak more information on

the timing of accesses visible to an adversary, and is less secure. We

next formally define this notion of somewhat uniform.

5.1 𝛼, 𝛽 uniformity definition
Let read(𝑘, 𝑣) and write(𝑘, 𝑣) be accesses. For brevity we drop 𝑣 in

our notation for security analysis, since an encrypted 𝑣 is a random

bit string, and use 𝜏 (𝑘) to denote either a read or write access,

where 𝜏 ∈ {read,write}. Let 𝑆𝑃𝑟𝑜𝑥𝑦 be the sequence of accesses

𝜏1 (𝑘1), 𝜏2 (𝑘2), . . . received by the proxy from clients. Let 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 be

the sequence of accesses 𝜏 ′
1
(𝑝𝑟 𝑓1 (𝑘1)), 𝜏 ′

2
(𝑝𝑟 𝑓2 (𝑘2)), . . . received by

the server from the proxy, where 𝑝𝑟 𝑓𝑖 denotes the 𝑖
𝑡ℎ

invocation

of the PRF (i.e., 𝑝𝑟 𝑓𝑖 (𝑘) = 𝑝𝑟 𝑓 (𝑘 | |𝑡𝑠𝑖 ) where 𝑡𝑠𝑖 is 𝑘’s timestamp

after 𝑖 accesses). The server sequence generated by the proxy can (i)

omit accesses from the client if objects reside locally in the proxy;

and (ii) insert accesses not requested by clients (e.g., fake queries).

The proposed uniformity-based security definition called 𝛼, 𝛽-

uniformity bounds the maximum number of server accesses, 𝛼 , after

which a written object will be read, and the minimum number of

server accesses, 𝛽 , after which a read object can be written. We

call any sequence of accesses that satisfies the 𝛼 and 𝛽 bounds

𝛼, 𝛽-uniform. We present the formal definition below.

Definition 1. Let 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 be the (infinite) sequence of accesses
𝜏 ′
1
(𝑝𝑟 𝑓1 (𝑘1)), 𝜏 ′

2
(𝑝𝑟 𝑓2 (𝑘2)), . . . received by the server from the proxy.

We say 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 is 𝛼, 𝛽-uniform if
(1) For any 𝑒𝑖

𝑘
= 𝑝𝑟 𝑓𝑖 (𝑘) : 𝜏 ′𝑖 = 𝑤𝑟𝑖𝑡𝑒 (𝑒

𝑖
𝑘
) in 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 , there exists

a 𝑗𝑡ℎ access 𝜏 ′
𝑗
= 𝑟𝑒𝑎𝑑 (𝑒𝑖

𝑘
) in 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 with 𝑖 < 𝑗 ≤ 𝑖 + 𝛼 + 1.

No 𝜏 ′
𝑘
that reads or writes 𝑘 exists with 𝑖 < 𝑘 < 𝑗 .

(2) For any 𝜏 ′
𝑖
= 𝑟𝑒𝑎𝑑 (𝑝𝑟 𝑓𝑖 (𝑘)), 𝜏 ′𝑗 = 𝑤𝑟𝑖𝑡𝑒 (𝑝𝑟 𝑓𝑗 (𝑘)), with 𝑖 < 𝑗

in 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 , 𝑖 + 𝛽 < 𝑗 holds. No 𝜏 ′
𝑘
that reads or writes 𝑘 exists

with 𝑖 < 𝑘 < 𝑗 .
𝑆𝑆𝑒𝑟𝑣𝑒𝑟 is 𝛼, 𝛽-uniform if the bounds hold for all keys 𝑘 ∈ 𝑁 .

This definition implies a two-way bound: in the sequence of

accesses 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 received by the server (1) if the 𝑖𝑡ℎ access wrote a

key 𝑝𝑟 𝑓𝑖 (𝑘), then between 𝑖 + 1 and 𝑖 + 𝛼 + 1, a 𝑗𝑡ℎ access will read

that key; and (2) if the 𝑖𝑡ℎ access read 𝑝𝑟 𝑓𝑖 (𝑘), then the next write

request, 𝑝𝑟 𝑓𝑗 (𝑘) (where 𝑗 > 𝑖) occurs at least after 𝛽 accesses from

𝑖 . In an 𝛼, 𝛽-uniform sequence, there exists a write between two

subsequent reads of an object and vice versa. The values of 𝛼 and

𝛽 correspond to the overall number of proxy to server accesses. If

the proxy accesses objects in batches, 𝛼, 𝛽, 𝑖 , and 𝑗 correspond to

the respective batched server accesses (and not individual object

accesses).

Note that in the definition, 𝛼 is an upper bound and 𝛽 a lower

bound (whose values for Waffle are discussed in §7). The lower

bound for 𝛼 is 0 because an object written in one round can be

accessed in the next round. We chose not to provide an upper

bound for 𝛽 because a proxy design may cache popular objects

indefinitely in the cache. Also, Waffle maintains that each key 𝑒𝑖
𝑘

at the server is written and read exactly once; deleting 𝑒𝑖
𝑘
from

the server after reading it has no security implications. The choice

of the parameters 𝛼 and 𝛽 allows the administrator to tune the

trade-off between security and privacy. We next discuss why an

𝛼, 𝛽-uniform sequence ensures obliviousness using a theorem.

Theorem 5.1. If a sequence of accesses, 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 , generated by a
proxy is 𝛼, 𝛽-uniform with 𝛼 = 0 and 𝛽 = (𝑁 − 1), then 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 hides
the client access pattern, ensuring complete obliviousness.

Proof. Since 𝛼 dictates the maximum number of accesses after

which a written objectmust be read, minimizing 𝛼 enhances obliv-

iousness (as even unpopular objects will be read sooner for lower

values of 𝛼). On the flip side, we want to maximize the 𝛽 value,

5



which dictates the minimal interval guaranteed between reading

and writing back an object. Maximizing 𝛽 reduces the frequency

with which an object is accessed on the server (i.e., if we delay

writing back an object, we can delay reading it). The minimum

value of 𝛼 is 0; whereas the maximum value of 𝛽 is (𝑁 − 1) because
the maximum a proxy can delay writing back a read object, 𝑘1, is

after accessing, i.e., reading and writing, the other 𝑁 − 1 objects.
This generates an access sequence such as (with 𝛼 and 𝛽 marked

for 𝑘1 and keys represented as plaintext for readability):

⟨...,w(k1)⟩, ⟨r(k1),𝑤 (𝑘2)⟩︸                       ︷︷                       ︸
𝛼=0

, ⟨𝑟 (𝑘2),𝑤 (𝑘3)⟩, · · · , ⟨𝑟 (𝑘𝑛),w(k1)⟩︸                                        ︷︷                                        ︸
𝛽=(𝑁−1)

Note that 𝑘1 to 𝑘𝑛 can be any permutation of the 𝑁 keys and that

this theorem assumes a batch size of 1, hence each server access

reads and writes one object, indicated as ⟨𝑟 (𝑘𝑖 ),𝑤 (𝑘 𝑗 )⟩.
For 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 to be 𝛼, 𝛽-uniform with 𝛼 = 0 and 𝛽 = (𝑁 − 1), the

sequencemust continue this pattern of writing and then reading

the 𝑁 objects in the same order, irrespective of what objects the
clients request. Not immediately reading after writing 𝑘𝑖 will violate

the 𝛼 = 0 bound; whereas, writing 𝑘𝑖 within (𝑁 − 1) accesses after
reading it will violate the 𝛽 = (𝑁 − 1) bound. Such a sequence

ensures complete obliviousness because (i) it is independent of the

client request pattern, and (ii) the adversary controlling the server

observes a deterministic data access pattern where an encrypted

object is read exactly in the next access after it was written (similar

to Figure 1(i)). □

While setting 𝛼 = 0 and 𝛽 = (𝑁 −1) provides complete oblivious-

ness, this is impractical for two reasons: (i) client requests cannot be

served within a reasonable time because some requests may have

to wait for 𝑁 server accesses; (ii) the proxy temporarily needs to

store all 𝑁 read objects before it can write them back. Waffle aims

to maximize security while still being a practical data system by

generating somewhat uniform accesses. Specifically, Waffle allows

an administrator to choose system parameters that can enhance

security at the cost of performance/proxy storage and vice versa.

We give a detailed analysis of 𝛼 and 𝛽 in §7 and prove that Waffle

is 𝛼, 𝛽-uniform, both theoretically §7 and experimentally §8.3.

6 WAFFLE
This section explains Waffle in detail. Table 1 lists all the variables

used in explaining the protocol. All variables in Table 1 except 𝑓𝑅
are fixed system parameters set by the application owner.

6.1 Initialization
At inception,Waffle receives a set of𝑁 key-value pairs, ⟨𝑘𝑒𝑦𝑠, 𝑣𝑎𝑙𝑢𝑒𝑠⟩,
from the application and initializes both the stateful data structures

at the proxy and the data itself at the server as follows.

Binary search trees (proxy): The proxy first generates 𝐷 ran-

dom dummy keys (that are unique) and values of the same length as

that of real objects. The proxy initializes two balanced binary search

trees (BSTs): one for 𝑁 real objects and one for 𝐷 dummy objects.

The BSTs are initialized by setting the access timestamps, 𝑡𝑠 , of all

keys to 0. The trees are balanced on ⟨𝑡𝑠 : 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡_𝑘𝑒𝑦⟩. Note that
although the BSTs are 𝑂 (𝑁 ) data structures, storing them on the

Symbol Meaning

𝐷 Number of dummy objects in the system

𝐵 Batch size of requests sent to the server

𝑅 Maximum no. of real queries on real objects in each batch

𝑓𝑅 Number of fake queries to real objects in each batch

𝑓𝐷 Number of fake queries for dummy objects in each batch

𝐶 Cache size

Table 1: Variables used in Waffle.

proxy incurs low storage overhead since they only store constant-

size timestamps and not object values (e.g., storing timestamps for

1M objects requires 8MB of storage at the proxy.

Cache (proxy):Next, the proxy randomly chooses a set of𝐶 (the

preset cache size) key-value pairs from ⟨𝑘𝑒𝑦𝑠, 𝑣𝑎𝑙𝑢𝑒𝑠⟩ and initializes
the cache with these objects. Although the cache size can be 0, a

meaningful minimum cache size is 𝑅 + 𝑓𝑅 to allow storing all the

real objects accessed in a batch.

Database (server): The proxy merges the remaining 𝑁 −𝐶 ob-

jects and the 𝐷 dummy objects and shuffles them. It then encodes

each key-value pair, ⟨𝑘, 𝑣⟩, as: ⟨𝑝𝑟 𝑓 (𝑘, 𝑡𝑠𝑘 ), 𝐸 (𝑣))⟩, where 𝑡𝑠𝑘 is 𝑘’s

access timestamps (=0) and 𝐸 is any authenticated symmetric-key

encryption scheme. The proxy then initializes the database in the

server with the encoded key-value pairs. Waffle incurs a storage

overhead of 𝐷 compared to its plaintext counterparts.

6.2 Protocol
After the initialization process, Waffle can start serving client re-

quests. Algorithm 1 explains how Waffle serves client requests. At

a high level, upon receiving 𝑅 unique requests but not necessarily

to unique objects, the algorithm executes a batched read (lines 2-29)

followed by a batched write (lines 30-44). Processing each batch of

𝑅 requests increments Waffle’s global timestamp, 𝑡𝑠 (line 5). This is

used to identify the least recently accessed objects for fake queries.

The algorithm relies on two temporary data structures, 𝑐𝑙𝑖𝑅𝑒𝑠𝑝

and 𝑑𝑒𝑑𝑢𝑝𝑅𝑒𝑞𝑠 to serve client queries. 𝑐𝑙𝑖𝑅𝑒𝑠𝑝 helps map client

request ids (which are unique) to their responses. For security, each

batch must access unique objects; otherwise the number of repeated

accesses to an object can leak information. 𝑑𝑒𝑑𝑢𝑝𝑅𝑒𝑞𝑠 stores the

deduplicated requests for each unique object in the current batch

to ensure a response is sent to these requests.

Read phase: This phase creates a batch of unique (encoded)

keys to be read from the server. For each of the 𝑅 requests, if the

cache contains the requested object, then the algorithm serves read

requests from the cache and updates the cached value for write

requests. If a request results in a cache miss, the algorithm adds

this request to 𝑑𝑒𝑑𝑢𝑝𝑅𝑒𝑞𝑠 to track any future duplicates. However,

for each cache-missed read request, the algorithm notes that this

request needs a response from the server (line 10), whereas for

write requests, the algorithm marks the 𝑛𝑒𝑒𝑑_𝑟𝑒𝑠𝑝 flag as false (line

13) because write requests do not need a response from the server.

Note that if a written object is not in the cache, the algorithm adds

it to the cache (line 13).

Adding a written object to the cache even before the object is

fetched from the server is important to ensure linearizability [22]

– a database consistency guarantee that implies operations on an

object appear to take place instantaneously and all operations ap-

pear linear. This means a read of an object after a write on that

6



object must reflect the updated value, even when the two requests

are within the same batch. Waffle ensures this by caching an un-

cached written object and reading the cached value for subsequent

read requests in that batch (line 7). Storing written objects in cache

also implies that while a batch is being processed, an object may
reside both at the proxy and the server. In such cases, the cache

always stores the latest value of an object. This also implies that

temporarily the cache size can grow to at most 𝐶 + 𝑅 objects.

After processing 𝑅 client requests, the algorithm identifies the

𝑟 (≤ 𝑅) unique plaintext keyswhose valuesmust be fetched from the

server and encodes them by invoking the pseudo-random function

with the plaintext key 𝑘 and its current access timestamp, 𝑡𝑠𝑘 , i.e.,

𝑝𝑟 𝑓 (𝑘, 𝑡𝑠𝑘 ). This is the index or the identifier based on whichWaffle

accesses objects on the server. The algorithm tracks these encoded

keys in 𝑟𝑒𝑎𝑑𝐵𝑎𝑡𝑐ℎ (line 18).

The algorithm then adds two sets of fake queries to the batch:

one set for dummy objects and another for real objects. In particular,

it adds a fixed number, 𝑓𝐷 , of fake queries to dummy objects and a

variable number, 𝑓𝑅 of fake queries to real objects. 𝑓𝑅 depends on 𝑟 ,

the number of unique real objects that need to be fetched from the

server. Since our batch size is fixed to 𝐵, 𝑓𝑅 = 𝐵− (𝑟 + 𝑓𝐷 ). Note that,
as mentioned in Challenge 2, the algorithm uses the BSTs to pick

real or dummy objects with least access timestamps for fake queries

(lines 21 and 26) and each time it accesses an object from the server

as part of a real or a fake query, the algorithm updates the access

timestamp of that object to the current timestamp (lines 19, 23, and

28). For dummy objects, however, the algorithm sets the timestamps

of all 𝐷 objects to the latest timestamp 𝑡𝑠 after every 𝐷
𝑓𝐷

batches,

i.e, each time all 𝐷 objects are accessed. This randomizes the order

in which dummy objects are picked for the next set of
𝐷
𝑓𝐷

batches.

After appending encoded keys for fake queries to 𝑟𝑒𝑎𝑑𝐵𝑎𝑡𝑐ℎ, the

algorithm reads a batch of 𝐵 objects from the server. As explained

in Challenge 4, for security, Waffle can access each outsourced

object at most once before updating its identifier (achieved via

invoking the PRF with updated access timestamps). Because of this,

a background thread deletes the 𝐵 accessed objects from the server

after receiving the read response. Note that deleting these objects

has no security implications; Waffle deletes these objects to bound

the database size to 𝑂 (𝑁 ).
Write phase: This phase processes all the received responses

from the server and creates a batch of encoded-key to encrypted-

value pairs to be written on the server. First, the algorithm generates

responses to the deduplicated requests whose object values were

retrieved from the server (lines 33-36). Next, the algorithm proceeds

to cache all the 𝑟 + 𝑓𝑅 real objects accessed in the batch (lines 37-41).

Because Waffle employs a bounded cache, the algorithm first evicts

an object from the cache before adding a new object. All evicted

objects must be written back to the server but with new storage

ids (or encoded keys). Waffle guarantees this because whenever the

objects being evicted were read, the read phase would have updated

their timestamps. Therefore, invoking GetIndex in line 39 pro-

duces new encoded keys, which are written back to the server along

with their (re-)encrypted values using𝑤𝑟𝑖𝑡𝑒𝐵𝑎𝑡𝑐ℎ.𝑤𝑟𝑖𝑡𝑒𝐵𝑎𝑡𝑐ℎ also

includes the same dummy objects accessed in 𝑟𝑒𝑎𝑑𝐵𝑎𝑡𝑐ℎ but with

re-encrypted dummy values (line 43).

Algorithm 1 The algorithm employed in Waffle to obliviously

serve client requests. 𝑅, 𝐵, 𝑓𝐷 are system parameters of type integer.

Assumption: Cache size is at least 𝐵 − 𝑓𝐷 + 𝑅 and is initialized with

𝐵 − 𝑓𝐷 random objects.

1: procedure HandleReqests()

2: upon receiving 𝑅 client requests

3: 𝑐𝑙𝑖𝑅𝑒𝑠𝑝 ← {} ⊲ A map of request ids and their responses
4: 𝑑𝑒𝑑𝑢𝑝𝑅𝑒𝑞𝑠 ← {} ⊲ A map of keys and lists of requests
5: 𝑡𝑠 ← 𝑡𝑠 + 1
6: for (𝑟𝐼𝑑, 𝑜𝑝, 𝑘, 𝑣𝑎𝑙 ) in 𝑅 do
7: if 𝑜𝑝 = 𝑟𝑒𝑎𝑑 and 𝑘 in 𝑐𝑎𝑐ℎ𝑒 then
8: 𝑐𝑙𝑖𝑅𝑒𝑠𝑝 [𝑟𝐼𝑑] ← 𝑐𝑎𝑐ℎ𝑒 [𝑘]
9: else
10: 𝑑𝑒𝑑𝑢𝑝𝑅𝑒𝑞𝑠 [𝑘] ∪←− (𝑟𝐼𝑑, 𝑛𝑒𝑒𝑑_𝑟𝑒𝑠𝑝 = 𝑡𝑟𝑢𝑒)
11: if 𝑜𝑝 = 𝑤𝑟𝑖𝑡𝑒 then
12: if 𝑘 not in 𝑐𝑎𝑐ℎ𝑒 then
13: 𝑑𝑒𝑑𝑢𝑝𝑅𝑒𝑞𝑠 [𝑘] ∪←− (𝑟𝐼𝑑, 𝑛𝑒𝑒𝑑_𝑟𝑒𝑠𝑝 = 𝑓 𝑎𝑙𝑠𝑒)
14: 𝑐𝑎𝑐ℎ𝑒 [𝑘] ← 𝑣𝑎𝑙

15: 𝑐𝑙𝑖𝑅𝑒𝑠𝑝 [𝑟𝐼𝑑] ← 𝑐𝑎𝑐ℎ𝑒 [𝑘]
16: 𝑟𝑒𝑎𝑑𝐵𝑎𝑡𝑐ℎ ← {} ⊲ Amap of encoded keys and plaintext keys
17: for 𝑘 in 𝑑𝑒𝑑𝑢𝑝𝑅𝑒𝑞𝑠.𝑘𝑒𝑦𝑠 () do
18: 𝑟𝑒𝑎𝑑𝐵𝑎𝑡𝑐ℎ[𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥 (𝑘)] ← 𝑘

19: BST.setTimestamp(𝑘 , 𝑡𝑠)

⊲ Add fake queries to dummy and real objects
20: for 𝑖 = 1 to 𝑓𝐷 do
21: 𝑘 ← BST.getMinTimestampObj(𝑑𝑢𝑚𝑚𝑦)

22: 𝑟𝑒𝑎𝑑𝐵𝑎𝑡𝑐ℎ[𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥 (𝑘)] ← 𝑘

23: BST.setTimestamp(𝑘 , 𝑡𝑠) ⊲ Set all timestamps to ts
after picking all 𝐷 objects

24: 𝑟 ← 𝑑𝑒𝑑𝑢𝑝𝐾𝑒𝑦𝑠.𝑠𝑖𝑧𝑒 ()
25: for 𝑖 = 1 to 𝐵 − (𝑟 + 𝑓𝐷 ) do
26: 𝑘 ← BST.getMinTimestampObj(𝑟𝑒𝑎𝑙) ⊲ Ensure k is

not in 𝑐𝑎𝑐ℎ𝑒
27: 𝑟𝑒𝑎𝑑𝐵𝑎𝑡𝑐ℎ[𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥 (𝑘)] ← 𝑘

28: BST.setTimestamp(𝑘 , 𝑡𝑠)

29: send 𝑟𝑒𝑎𝑑𝐵𝑎𝑡𝑐ℎ.𝑘𝑒𝑦𝑠 () to server

⊲ upon receiving server’s response
30: 𝑤𝑟𝑖𝑡𝑒𝐵𝑎𝑡𝑐ℎ ← {}
31: for (𝑖𝑑𝑥, 𝑣𝑎𝑙) in 𝑟𝑒𝑠𝑝 do
32: 𝑘 ← 𝑟𝑒𝑎𝑑𝐵𝑎𝑡𝑐ℎ[𝑖𝑑𝑥]
33: if 𝑘 in 𝑑𝑒𝑑𝑢𝑝𝑅𝑒𝑞𝑠 then
34: for each (𝑟𝐼𝑑, 𝑛𝑒𝑒𝑑_𝑟𝑒𝑠𝑝) in 𝑑𝑒𝑑𝑢𝑝𝑅𝑒𝑞𝑠 [𝑘] do
35: if 𝑛𝑒𝑒𝑑_𝑟𝑒𝑠𝑝 = 𝑡𝑟𝑢𝑒 then
36: 𝑐𝑙𝑖𝑅𝑒𝑠𝑝 [𝑟𝐼𝑑] ← 𝑣𝑎𝑙

37: if objectIsReal(𝑘) then
38: 𝑘 ′, 𝑣 ′ ← 𝑐𝑎𝑐ℎ𝑒.𝑒𝑣𝑖𝑐𝑡 ()
39: 𝑤𝑟𝑖𝑡𝑒𝐵𝑎𝑡𝑐ℎ

∪←− (getIndex(𝑘 ′), 𝑣 ′)
40: 𝑣𝑎𝑙 ′ ← 𝑐𝑎𝑐ℎ𝑒 [𝑘] if 𝑘 in 𝑐𝑎𝑐ℎ𝑒 else 𝑣𝑎𝑙

41: 𝑐𝑎𝑐ℎ𝑒 [𝑘] ← 𝑣𝑎𝑙 ′

42: else
43: 𝑤𝑟𝑖𝑡𝑒𝐵𝑎𝑡𝑐ℎ

∪←− (getIndex(𝑘) ,∅) ⊲ Dummy object
44: Send𝑤𝑟𝑖𝑡𝑒𝐵𝑎𝑡𝑐ℎ to server

45: procedure getIndex(k)
46: return 𝑝𝑟 𝑓 (𝑘 , BST.getTimestamp(𝑘))7



A meaningful minimum cache size is 𝑅 + 𝑓𝑅 to store all real

objects accessed in a batch; for cache sizes smaller than 𝑅 + 𝑓𝑅 , the
algorithm will re-write the objects fetched from the server after

re-encrypting them. Note that the real objects written back in each

batch may not, and likely will not, correspond to the real objects

accessed in the read phase of that batch.

𝑓𝑅 plays a vital role in ensuring security as this is responsible

for accessing objects that are rarely queried in the input sequence.

Moreover, Waffle incurs a constant bandwidth overhead of (𝑓𝐷 +
𝑓𝑅)/𝑅 requests per real request and all 3 parameters can be tuned

by the application owner.

Supporting inserts and deletes: The discussions until now focused

only on supporting get/put requests. Depending on the number

of dummy objects, 𝐷 , configured by an application, Waffle can

support a limited number of insert and delete requests by swapping

dummy objects for real objects for inserts and vice versa for deletes.

However, this changes the 𝛼, 𝛽 bounds of the system (§7).

7 SECURITY OF WAFFLE
This section provides the bounds on 𝛼 and 𝛽 , which depend on the

system parameters of Algorithm 1. Informally, the 𝛼 upper bound

ensures that any object written to the server will be read (and

then deleted) after at most 𝛼 server accesses. The 𝛽 lower bound

guarantees that once an object is read (and then deleted) from the

server, it will be written back only after at least 𝛽 server accesses.

Theorem 7.1. When the proxy uses Algorithm 1, then

𝛼 =

⌈
max

(
(𝑁 −𝐶) − (𝐵 − 𝑓𝐷 )

𝐵 − 𝑅 − 𝑓𝐷
,
𝐷

𝑓𝐷

)⌉
Proof. Intuitively, deriving bounds for 𝛼 requires computing

the worst-case distance from when an object, real or dummy, is

written to the server and then read. Algorithm 1 ensures that objects

in the cache are not stored on the server once a batch’s processing

completes. Let write(𝑘) be an access to a real key 𝑘 on the server

(and hence it is no longer in the cache). Then that key is read

from the server when a client requests it. If no client requests it

(within 𝛼 access to the server), the proxy will request it in Line 26

of Algorithm 1 after at most (𝑁 − 𝐶) − (𝐵 − 𝑓𝐷 ) other real keys
have been accessed and their timestamps have been updated. This

is because the server stores 𝑁 −𝐶 real keys and each batch requests

𝐵− 𝑓𝐷 real objects. This ensures that 𝑘 is certainly the least recently

accessed key with the least timestamp in the BST. Since each batch

queries at least 𝑓𝑅 = 𝐵 − 𝑅 − 𝑓𝐷 real objects as fake queries, we

can derive an upper bound on 𝛼 for real keys of ⌈ (𝑁−𝐶)−(𝐵−𝑓𝐷 )
𝐵−𝑅−𝑓𝐷 ⌉.

Note that 𝛼 is an upper bound and hence we focus on real objects

accessed via fake queries; popular real objects residing on the server

will be accessed as real queries within 𝛼 server accesses.

Letwrite(𝑘) be an access to a dummy key 𝑘 on the server (which

is never stored in the cache). The proxy will request it in Line 21 of

Algorithm 1 after at most 𝐷 − 1 other dummy objects have been

accessed. Since at least 𝑓𝐷 fake queries to dummy keys occur per

batch, we can derive an upper bound 𝛼 for dummy keys of ⌈ (𝐷−1)
𝑓𝐷
⌉.

Since we allow 𝐷 = 𝑓𝐷 = 0, i.e., no dummy keys, which has no

impact on 𝛼 , we use the looser bound ⌈ 𝐷
𝑓𝐷
⌉ assuming

0

0
= 0. Note

that setting
(𝑁−𝐶)−(𝐵−𝑓𝐷 )

𝐵−𝑅−𝑓𝐷 = 𝐷
𝑓𝐷

produces stronger security.

Theorem 7.1 follows from the combination of the two bounds. □

Theorem 7.2. When the proxy uses Algorithm 1, then

𝛽 =

⌊
𝐶

𝐵 − 𝑓𝐷 + 𝑅
− 1

⌋
Proof. The value of 𝛽 dictates the minimum distance between

reads and the following writes of every object. All objects read

but not yet written are stored in the cache. Intuitively, deriving 𝛽

bounds requires us to calculate the earliest an object will be evicted

from the cache. To bound writes after reads, we do not need to care

about dummy keys, since they can be arbitrarily changed by the

proxy. Algorithm 1, which uses a least recently used (LRU) cache,

updates the recency position (or factor) of the elements in the cache

at two places: (i) in the read phase (lines 8 and 14), and (ii) in the

write phase (line 41). For the read phase, the algorithm updates

cache positions of at most 𝑅 elements, when all 𝑅 client requested

(unique) objects reside in the cache. The write phase updates the

cache positions of at most 𝐵 − 𝑓𝐷 elements, corresponding to all

the real objects accessed in that batch. Hence, the fastest an object

will be replaced under the LRU replacement strategy from the

cache is after at most
𝐶

𝐵−𝑓𝐷+𝑅 rounds of accesses and there are least

𝐶
𝐵−𝑓𝐷+𝑅 − 1 rounds between adding that object to the cache and

replacing it in the cache. Thus Theorem 7.2 follows. □

Theorem 7.3. For any sequence 𝑆𝑃𝑟𝑜𝑥𝑦 of accesses received by the
proxy from clients, the sequence 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 of accesses received by the
server, which is produced by Waffle’s proxy is 𝛼, 𝛽-uniform.

Proof. This proof is a simple deduction from Theorems 7.1

and 7.2. Waffle employs Algorithm 1 to generate server accesses,

𝑆𝑆𝑒𝑟𝑣𝑒𝑟 , for all client requests, 𝑆𝑃𝑟𝑜𝑥𝑦 . Theorems 7.1 and 7.2 prove

the bounds on 𝛼 and 𝛽 , respectively, on the server accesses, 𝑆𝑆𝑒𝑟𝑣𝑒𝑟 ,

generated by Algorithm 1. These bounds are independent of the

input sequence. Since Waffle uses the same algorithm, the sequence

generated by Waffle (i.e., the proxy) is 𝛼, 𝛽-uniform. □

8 EXPERIMENTAL EVALUATIONS
This section studies how Waffle performs both in comparison to

other baselines and to different system parameters. In particular,

we aim to answer the following questions through experimental

evaluations:

(§8.1) How does Waffle perform in comparison to an insecure base-

line (to evaluate the cost of privacy) and other oblivious

baselines, Pancake [17] and TaoStore [48]?

(§8.2) How does the various systems parameters of Waffle, as de-

fined in Table 1, affect its performance?

(§8.3) How to experimentally measure Waffle’s security? Can Waf-

fle handle correlated queries?

(§8.4) How to choose Waffle’s system parameters? What are the

security-vs-performance trade-off of Waffle?

Experimental Setup: Our setup consists of 3 machines one

each for a storage server, a proxy, and a (multi-threaded) client.

Eachmachine has 2x Intel E5-2620v2 CPSwith 12 cores, 32 GB RAM,

with 10 Gbps Ethernet connectivity. The server deploys Redis [46]

as an in-memory key-value store as the backend database. We

8



(a) Waffle vs. baselines (b) Waffle vs. baselines (c) Varying # of proxy cores (d) Varying cache % (of N)

Figure 2: (a) and (b) Throughput and latency ofWaffle in comparison to an insecure baseline, Pancake, and TaoStore. (c) When the number of
core increase from 1 to 4, Waffle’s performance increases. But the multi-threading overwhelms the proxy beyond 4 cores, degrading system
performance. (d) Counter-intuitive to expected behavior, Waffle’s performance degrades with the increase in cache size: although cache size
impacts security positively, the LRU strategy for large caches reduces its performance.

implemented Waffle in C++. The prototype implementation can be

found at: https://github.com/sharathvemula/waffle_test/

Baselines:We compare Waffle with three baselines:

1) An insecure baseline wherein the clients directly store and query

data from Redis. This baseline performs no data encryption nor

executes any algorithm to ensure obliviousness. This baseline helps

identify the performance penalty of achieving privacy.

2) Pancake [17], an oblivious datastore that ensures privacy under

a passive persistent adversary. This baseline compares Waffle with

the state-of-the-art oblivious datastore under a similar adversarial

model asWaffle.We also acknowledge thatWaffle’s implementation,

depending on the component, either builds on top of or reuses

Pancake’s implementation, which is open-sourced.

3) TaoStore [48], one of the state-of-the-art ORAM-based datas-

tore that can serve concurrent client requests (as compared to the

sequential solution of PathORAM). Because Waffle handles concur-

rent requests, the ORAM baseline must also handle concurrency for

a fair comparison. While Snoopy [12] is another recent concurrent-

ORAM system, we chose not to use it as a baseline since Snoopy

requires trusted hardware, making the comparison with Waffle

incompatible.

Workloads and default parameters:Waffle and the baselines

use YCSB [10], a standard benchmarking tool for key-value stores,

to evaluate their performances. All experiments use 2
20

(i.e., 1M)

key-value pairs with 8B keys and 1kB values. We compare the per-

formance with 2 YCSB workloads: Workload A consisting of 50%

reads and 50% writes and Workload C, with 100% reads, as these

two workloads represent the extreme read:write proportions in

YCSB. Unless noted otherwise, all our experiments use a Zipf factor

of 0.99 mimicking real-world workloads, which exhibit high skew-

ness [1, 10, 42]. Each experiment measures the average throughput

(measured for real object) and latency of the system being evaluated.

Waffle’s obliviousness algorithm relies heavily on many config-

urable system parameters (Table 1). We conduct extensive evalua-

tions to measure how these parameters affect system performance,

as will be discussed in §8.2. We note the default values used in

the experiments here and the reasoning behind these defaults is

explained in the following relevant sections: the plaintext data-

base size, 𝑁 = 2
20
; batch size, 𝐵 = 2500; maximum number of real

queries per batch, 𝑅 = 1000 (40% of 𝐵); dummy objects, 𝐷 = 350𝑘

(this setting helps maintain high security by keeping the two ratios

of 𝛼 equal); number of fake queries on dummy objects per batch,

𝑓𝐷 = 500 (20% of 𝐵); and the number of proxy cores set to 4.

8.1 Comparing with the baselines
This section compares Waffle’s performance with that of an inse-

cure baseline, Pancake, and TaoStore; Figures 2a and 2b depict the

throughput and latency. This experiment uses a single core proxy

for both Waffle and Pancake (we could not run a multi-core proxy

in our setup). The reason this experiment use a batch size of 2500 is

to be comparable with Pancake’s batch size. Although Pancake [17]

has an algorithm-level batch size of 3 server requests per client

request, their implementation internally batches many of these

server requests for added security. We measured the average size

of this batch sent to the server, which consisted of 2500 requests,

of which 1/2 correspond to real requests (their algorithm tosses a

coin and picks a real request with 𝛿 = 1/2 probability). Accordingly,
for Waffle, this experiment creates batches of (𝐵=) 2500 requests, at

most half of which correspond to real client requests, i.e., 𝑅 = 1250,

and 𝑓𝐷 = 500.

The results indicate that the insecure baseline performs between

5.8x and 6.04x higher than Waffle, highlighting the cost of achiev-

ing obliviousness. Waffle incurs ∼3x more latency than the inse-

cure baseline. Meanwhile, for the system configuration that mimics

Pancake’s, Waffle performs 45.5-57.7% better in throughput than

Pancake, while Pancake requires 45.7-58.6% higher latency on av-

erage to serve a client request. Compared to the concurrent-ORAM

baseline, TaoStore, Waffle’s throughput is 102x higher, and while

Waffle requires < 1ms to serve client requests, TaoStore requires

about 300ms.

8.2 Varying system parameters
This section studies how the different configurable parameters of

Waffle affect its performance. Each of the following experiments

keeps the default values for all parameters (as mentioned in §8)

except vary the parameter in consideration.

Varying the number of cores: Before evaluating Waffle’s behav-

ior when the system parameters vary, we first conduct an experi-

ment by changing the number of cores and measuring its impact

on Waffle’s performance. As seen in Figure 2c, when the number of

cores increases from 1 through 4, the system throughput increases

9

https://github.com/sharathvemula/waffle_test/


(a) Changing batch size 𝐵 (b) Changing 𝑅 (as a % of 𝐵). (c) Changing 𝑓𝐷 (as a % of 𝐵). (d) Changing D.

Figure 3: (a) Increasing the batch size has no performance improvement beyond a size of 400 as long as the percent of real and fake queries are
consistent across them. (b) Increasing the percent of real requests in a batch significantly improves performance due to accommodating more
client requests. (c) Increasing the ratio of fake queries on dummy objects, 𝑓𝐷 , improves performance because it reduces the cache insertions
and evictions that occur per batch. (d) Changing the number of dummy objects in the system has no impact on performance.

by 58.9% and the latency reduces by 37.2%, reaching the optimal

performance for this experiment. Performance declines beyond

4 cores with throughput plummeting by 40%. This indicates that

the overhead of multi-threading beyond 4 cores overwhelms the

proxy, adversely affecting its performance. Therefore, the following

experiments set the number of cores to 4.

Changing cache size: This experiment increases the cache size

as a percent of 𝑁 , the database size, starting with 1% up to 32%

(Figure 2d). The performance gradually degrades with the increase

in cache size, with the optimal performance, i.e., highest throughput

and lowest latency, at a cache size of 1% and 2%. This behavior is

counter-intuitive when compared to plaintext datastores, whose

performance typically increases with the increase in cache size. The

two reasons why Waffle’s performance favors smaller cache are: (i)

Waffle relies on the cache for security only (𝛽 directly depends on

the cache size §7) and not to enhance performance. Even when a

client requests an object residing in the cache, Algorithm 1 responds

to all batched requests at once for security. Hence, algorithmically,

cache size has no impact on performance. (ii) Waffle assumes that

the deployed cache uses the least recently used (LRU) strategy. The

cache needs to track the recency of all objects it stores. The larger

the cache size, the more information it tracks, reducing the system

performance. Because the 2% cache size is the largest cache size

with optimal performance, we set the default cache size to 2% in

the experimental setup.

Changing 𝐵: This experiment increases the size of the batch, 𝐵,

sent to the server while keeping 𝑅, the number of real requests, at

40% of 𝐵 and 𝑓𝐷 , the number of fake requests to dummy objects, at

20% of 𝐵. As seen in Figure 3a, Waffle’s performance remains nearly

unchanged (a 5% maximum difference) for batch sizes greater than

10 (which has the least performance). This experiment indicates

that, while batch size has security implications, it does not impact

performance. Since Waffle’s performance remains unaffected by

batch size, we keep 2500 as its default size, which mimics Pancake’s

experimental batch size.

Changing 𝑅: This experiment increases 𝑅, the number of real re-

quests in a batch, as a percentage of 𝐵(= 2500) starting from 10% to

80%, while 20% is reserved for 𝑓𝐷 . The results in Figure 3b indicate

that Waffle’s performance improves by 5.8x when 𝑅 changes from

10% to 80% of the batch size. This is expected behavior because a

larger 𝑅 incorporates more client requests and reduces the number

of fake requests to real objects, thus improving performance. How-

ever, Waffle’s security favors lower 𝑅 values (as will be discussed

in §8.3). Because of this trade-off, we set 𝑅 at 40% of 𝐵 as default.

Changing 𝑓𝐷 : This experiment changes 𝑓𝐷 , the number of fake

requests for dummy objects, as a percent of the batch (𝐵 = 2500)

by increasing 𝑓𝐷 from 10% to 60% (the rest 40% is reserved for

𝑅). As seen in Figure 3c, Waffle’s performance improves with the

increase in the number of dummy objects requested per batch. This

improvement occurs because the larger the number of dummy

objects accessed per batch, the fewer the real objects in the batch,

which in-turn reduces the number of cache insertions and evictions,

improving the performance. We choose 𝑓𝐷 = 500 (20% of 𝐵) as the

default to strike a balance between security and performance, since

the security parameter 𝛼 favors lower 𝑓𝐷 values.

Changing 𝐷 : This experiment studies the performance variation

of Waffle while increasing the number of dummy objects, 𝐷 , in the

system. We increase the value of 𝐷 from 20% of 𝑁 to 100% of 𝑁 ,

i.e., from 200k to 1M and Figure 3d highlights the results. As seen

in the figure, the value of 𝐷 has no significant effect on the system

performance. The reason for this is that except for the binary search

tree that maintains timestamps of dummy objects, no other data

structure or logic in Algorithm 1 is affected by the size of dummy

objects, and the algorithm does not cache these objects as well.

Because of this, Waffle’s performance remains independent of 𝐷 .

We set the default value of 𝐷 to 330k to achieve high security by

setting the two ratios of 𝛼 (see Theorem 7.1) equal:
𝑁−1

𝐵−𝑅−𝑓𝐷 = 𝐷
𝑓𝐷
.

The security analysis, which will be discussed in §8.3, indicated

that the most common 𝛼 value when the system is configured with

the defaults used in this section is between 690 and 710; therefore

we set 𝐷 = 700 ∗ 𝑓𝐷 = 350𝑘 as the default.

8.3 Security analysis
This section analyzes the security of Waffle experimentally for

various system configurations and studies the security vs. perfor-

mance trade-off. In particular, we evaluate the claim that Waffle

is 𝛼, 𝛽-uniform by first calculating the expected 𝛼 and 𝛽 values

using Theorems 7.1 and 7.2 and then measuring the actual 𝛼, 𝛽

values for each server request to verify the bounds. The values

of 𝛼 and 𝛽 depend on the system parameters defined in Table 1

(§7). Moreover, unlike Pancake, Waffle’s security claims to handle

10



Expected security

levels

Input

Distribution

𝐵 𝑅 𝑓𝐷
𝐶

(% of 𝑁 )

𝐷
Theoretical

𝛼

Observed

max 𝛼

Theoretical

𝛽

Observed

min 𝛽

Xput

(ops/s)

Highest security

Skewed 5k 0 4999 99.999 5000 1 1 999998 > 999998 1

Uniform 5k 0 4999 99.999 5000 1 1 999998 > 999998 1

Medium security

Skewed 2.5k 1k 500 2 350k 972 692 5 9 10.8k

Uniform 2.5k 1k 500 2 350k 972 713 5 9 11.2k

Lowest security

Skewed 2.5k 2k-1 500 1 350k 999899 – 1 – 21.7k

Uniform 2.5k 2k-1 500 1 350k 999899 – 1 – 22.4k

Table 2: Details of system parameters, the expected and observed 𝛼, 𝛽 values, and throughput for various security levels.

(a) High security: skewed
distribution

(b) High security: uniform
distribution

(c) Medium security: skewed
distribution

(d) Medium security: uniform
distribution

Figure 4: The histograms of the 𝛼 values visible to the adversary for two different security levels and two extreme distributions. For a given
security level, obliviousness stems from the similarity in the histograms for different input distributions.

correlated queries and not just independently drawn queries. There-

fore, this section first analyzes Waffle’s security when queries are

independently drawn to study the performance-security trade-off

(§8.3.1) and then analyzes Waffle’s behavior when client queries

are correlated (§8.3.2).

8.3.1 Independent queries. In analyzing Waffle’s security vs.

performance trade-off, we choose three sets of parameters yielding

highest, mid-level, and lowest security and observe (i) the corre-

sponding 𝛼, 𝛽 bounds and (ii) the performance for each. Note that

as shown in Theorem 5.1, the lower the value of 𝛼 and the higher

the value of 𝛽 , the higher is the system’s security.

Each experiment identifies parameters that yield different ex-

pected security levels and executes Waffle by generating ∼2.5 mil-

lion requests drawn from two extreme distributions: a highly skewed

distribution with a Zipf value of 0.99 and a uniform distribution.

For each security and skewness level, we first show that Waffle

maintains the 𝛼, 𝛽 bounds, indicating that the sequence generated

by Waffle is 𝛼, 𝛽-uniform, and then show for each security level

how Waffle ensures obliviousness regardless of input distributions.

Recall that 𝛼 is an upper bound dictating the maximum number

of server accesses (Waffle accesses in batches) from when an object

is written to when it is read next, whereas 𝛽 is a lower bound dic-

tating the minimum number of server accesses between reading

an object and subsequently writing it back. Because Waffle uses

a non-static assignment of plaintext keys to encoded keys, which

changes each time an object is read and written back to the server,
an adversary can only observe the 𝛼 values and not the 𝛽 values

(between the read and a subsequent write, the PRF would have

changed). Therefore, this experiment plots the histograms of an

adversary-observable 𝛼 values in Figures 4a to 4d. Meanwhile, Ta-

ble 2 tabulates the various system parameters, the expected (or

theoretical) and observed 𝛼, 𝛽 values, and the resulting throughput.

We discuss each of the results in detail below.

Highest security: As indicated in Theorem 5.1, highest security

requires 𝛼 to be 0 and 𝛽 to be 𝑁 −1. We conduct an experiment that

achieves (near) highest security of 𝛼 = 1 and 𝛽 = 𝑁 − 2 (essentially
due to a non-zero 𝑓𝐷 ), which requires the cache size to be ∼N and

𝑅 to be 0. Table 2 lists the system configurations that result in the

highest security.

A data system is oblivious if for any input sequence, it produces

a uniform output sequence because an adversary observing the

output sequence cannot distinguish between the differences in the

input sequence. Based on this, Waffle provides obliviousness for the

highest security level due to the fact that the adversary-observable

𝛼 values are completely indistinguishable for both distributions, as

seen in Figures 4a and 4b, which plot the histograms of the number

of requests that incurred unique 𝛼 values for skewed and uniform

input distributions, respectively.

As seen in the graphs, the theoretically expected value 𝛼 = 1

(which is independent of the input distribution) matches the ob-

served maximum of 1 for both distributions. Meanwhile, as shown

in Table 2, the expected 𝛽 value, a lower bound, is 𝑁 − 2, and no

request out of nearly 2.5M requests sent to the server observed a

lower 𝛽 for both distributions. These results prove that for the high

security setting, Waffle generates 𝛼, 𝛽-uniform accesses. However,

the performance for this setting as shown in Table 2, which is 1

op/s, as well as the parameter values such as𝐶 =∼ 𝑁 indicates that

this configuration is impractical.

Medium security: This security level uses the default parameters

set in §8.2, as shown in Table 2. As noted in Table 2 as well as

Figures 4c and 4d, the expected 𝛼 value is 972 and the observed

11



(a) R=20%: correlated queries (b) R=20%: independent queries (c) R=40%: correlated queries (d) R=40%: independent queries

Figure 5: The histograms of the 𝛼 values visible to the adversary for R=20% & 40% of B when queries are correlated vs. independently drawn.

values are 692 and 713 for skewed and uniform distributions, re-

spectively. Similarly, the observed minimum 𝛽 value of 9 is higher

than the expected minimum of 5. Similar to the high security level,

this highlights that Waffle guarantees 𝛼, 𝛽 bounds, thus produc-

ing 𝛼, 𝛽-uniform server accesses. With regard to obliviousness, the

adversary-observable 𝛼 value histograms in Figures 4c and 4d differ

marginally, with the average difference across different frequency

buckets of 25,024 (out of ∼ 2.5 million requests). Since only 1% of

the requests differ in their 𝛼s, this indicates that the output 𝛼 dis-

tribution remains fairly consistent for any input distribution. This

combined with Waffle’s design of changing the PRFs of plaintext

keys after each accesses, implies that this security level maintains

obliviousness. Moreover, this configuration yields a much higher

and practical throughput of ∼ 11k ops/s.

Lowest security: This experiment sets system parameters which

produce the highest throughput observed in §8.2, i.e. primarily by

setting 𝑅 = 0.8 ∗ 𝐵 − 1. This results in an extremely high expected

𝛼 of 999,899 (given 𝑁 = 1𝑀). Although in terms of performance,

this configuration executes ∼22k ops/s, this configuration is not
oblivious. This is because in the ∼2.5 million requests served by

the proxy in this experiment (in nearly 1200 batches of 2k real

requests each), the proxy accesses only about 1200 real objects

as fake queries since when 𝑅 = 0.8 ∗ 𝐵 − 1 and 𝑓𝐷 = 0.2 ∗ 𝐵, 𝑓𝑅
becomes 1. 𝑓𝑅 serves as the primary indicator of the obliviousness

by ensuring that even objects that are never requested by a client get

accessed by the proxy. However, since this configuration produces

such few fake queries on real objects, the unpopular objects can

reside on the server for extended periods of time (precisely up to

999,899 server accesses) before the proxy reads them. The adversary

may exploit this information to perform access pattern attacks.

Hence, this configuration is not oblivious, in spite of producing

high throughput. Note that we do not report 𝛼 or 𝛽 values or the

histograms for this experiment since many real objects remained

un-accessed, whose 𝛼 and 𝛽 values were unknown.

8.3.2 Correlated queries. Recall from §2 that Pancake’s secu-

rity requires client queries to be drawn independently. IHOP [38]

performed a security attack on Pancake highlighting that for small

datasets, an attacker can recover plaintext data when the input

queries are correlated. IHOP used a real-world Wikipedia Click-

stream [55] dataset that captures traversals across articles, which

exhibit a correlated pattern. IHOP identified top 500 articles in dif-

ferent categories and measured the traversal probabilities between

these articles to generate correlated queries. IHOP’s attack accuracy

is the highest for articles related to ‘privacy’ (i.e., articles on privacy)

wherein 500,000 correlated queries request 500 unique articles (i.e.,

objects). Hence, we use this dataset and the corresponding corre-

lated query workload in analyzing Waffle’s security for correlated

queries. Note that attack accuracy is higher for smaller datasets,

hence we adhere to IHOP’s attack setup.

In analyzing the security of Waffle for correlated queries, this

experiment measures 𝛼 values – the only measure visible to an

adversary – of each server request under two settings: (i) when

client queries have correlations (trace obtained from IHOP), and

(ii) when client queries are independent (obtained by randomizing

the correlated queries trace). Figure 5 plots the histograms of the

𝛼 values for correlated and independently drawn queries for two

different R values: R=20 (20% of B) and R=40 (40% of B). The other

parameters remain unchanged across the experiments, with N=500,

B=100, 𝑓𝐷=20 (20% of B), C=2%, and D=200 (proportionally similar

to the defaults of §8.2). We chose to run the experiment with two

different R values to highlight the security and performance trade-

off for the correlated query experiment.

As seen in Figures 5a and 5b, when the queries are correlated

vs. independently drawn while 𝑅=20, the 𝛼 values observed by

an adversary differ in ∼0.8% of the requests (19,445 out of 2.4M

server requests). R=20 yields a throughput of 8.3 kops/s. Meanwhile,

for R=40, the 𝛼 values differ for ∼3% of the requests (39164 out of

1.2M server requests) as shown in Figures 5c and 5d. R=40 yields a

higher throughput of 15.2 kops/s. However, R=40 has lower security

than R=20 because a higher percentage of requests differ in their

𝛼 values. Conceptually, lower R leads to higher 𝑓𝑅 , which directly

impacts security. Interestingly, for the medium security experiment

in §8.3.1 wherein queries are independently drawn from different

distributions, R=40% of B caused only 1% of the requests to differ

unlike the 3% in correlated queries.

This experiment leads to two conclusions: (i) Waffle can easily

adapt to handle correlated queries, and (ii) the system parameters

for high security may differ when queries are correlated vs. indepen-

dently drawn, with the correlated query parameters likely yielding

lower performance. This experiment also provides evidence that

Waffle can be extended handle multi-maps (which can help with

maintaining relational data).

8.4 Choosing system parameters
The conclusions from the correlated queries experiment leads to

an important question of how to choose the system parameters.

One way to identify the parameters that can yield high security

can be to deploy both an exhaustive grid or a random parameter

12



Figure 6: Security (measured using the theoretical max 𝛼 values)
vs. performance for various 𝑅 and 𝑓𝐷 values.

search techniques [33] that converges on parameter values with the

highest
𝛽
𝛼 value (because security increases for higher 𝛽 and lower

𝛼 values). The grid search approach can consider all (realistically)

possible values of each varying parameter and can pick the ones

that yield the highest
𝛽
𝛼 value; whereas a random search technique

randomly can pick parameter values for a preset number of runs

and identify the values with the highest
𝛽
𝛼 value.

Another alternative is to start with a set of parameters that pro-

vide acceptable performance, such as R=40% of B and 𝑓𝐷=20% of B,

as seen §8.2. The application can then perform the security analysis

by measuring the 𝛼 values on either a synthetic sample workload or

any historical workloads. Note that since the security analysis only

requires object keys and not values, it can be performed on local

low-storage machines prior to offloading the database. The applica-

tion can then iteratively fine-tune the parameters that will result

in the desired security. Even after deploying, an application can

monitor the 𝛼 values observable to an adversary and can fine-tune

parameters such as B, R, 𝑓𝐷 , or C.

Since §8.3.1 only provides three levels of security and the corre-

sponding performance trade-off, we conduct an experiment that

gradually improves security (by reducing the theoretical 𝛼 values)

and measure the performance, as shown in Figure 6. Note that

practically observed 𝛼 values tend to be lower than the theoret-

ical values, as seen in §8.3. This experiment changes R and 𝑓𝐷
parameters, while retaining the default values (§8.2) for the other

parameters. We only vary R and 𝑓𝐷 for this analysis because these

two parameters have the highest impact on performance (see Fig-

ures 3b and 3c) and the goal of this experiment is to study the

performance-security trade-off. As seen in Figure 6, lower values

of 𝛼 , which indicate higher security, entails low performance. This

trade-off allows an application to choose parameter values of R and

𝑓𝐷 , which have the highest impact of performance, that can strike

the desired balance between security and performance.

9 RELATEDWORK
ORAM-based datastores: To-date, the most popular approach to

ensure obliviousness is to use ORAM. A plethora of datastore

designs employ ORAM to build an oblivious database including

[2, 8, 11, 34, 48, 50, 51]. However, in spite of gaining much popu-

larity within the research community, ORAM datastores are yet

to be adopted by industry to build practical data systems. The

primary reason is the prohibitive overhead incurred by ORAM data-

stores, as shown in many recently established lower bound studies

[4, 6, 30, 31, 40, 41, 54]. The lower bound implies that for a database

with 𝑁 objects, each client request accessing a single object incurs

Ω(𝑙𝑜𝑔𝑁 ) bandwidth overhead. A Ω(𝑙𝑜𝑔𝑁 ) bandwidth overhead

can be unacceptable to support the scale of existing applications

that serve tens of millions of requests [1, 5, 13, 52]. Because ORAM

can handle active adversaries who can inject queries, hiding ac-

cess patterns in such cases inevitably incurs bandwidth or storage

overheads that depend on 𝑁 .

Frequency-hiding datastores: Pancake [17], discussed in detail in

§2, achieves obliviousness under a passive- persistent adversary by

smoothening the access frequencies of all outsourced objects. A

passive-persistent adversary only observes the access patterns on

the server and can choose the distribution fromwhich client queries

are sent but it cannot inject individual queries, like in ORAM. Since

we discuss how Waffle and Pancake compare throughout the paper,

we focus on other works here.

Mavroforakis et al.[35] assume a similar but slightly weaker

security model than Pancake and add fake queries based on the a
priori known access distribution (either uniform or periodic). While

the scheme presented in [35] can adapt to changing distributions,

similar to Pancake, learning the new distribution is vital for the

security of the system. Waffle on the other hand assumes nothing

about knowing or learning users’ access distribution. Sepehri [49]

et al. apply the idea of frequency hiding to obfuscate query patterns,
i.e., the keywords searched by users. The security of their scheme

holds if the client queries are drawn from a Zipf distribution, unlike

Waffle’s security which can hold for any sequence of accesses.

10 CONCLUSION
This work presents Waffle, a datastore that protects data access pat-

terns from a passive persistent adversaries. Wafflemakes four major

contributions: (i) it provides online obliviousness by adapting to

any input sequence and obfuscates server access sequences, (ii) it

empowers an application owner with more control over the data

system and allows tuning security in exchange for performance,

(iii) it uses a bounded cache, and (iv) it incurs constant bandwidth

overhead. Waffle is the first system to hide access sequences under

a passive persistent adversarial model. The evaluation of Waffle

indicate that it performs 45-57% better than Pancake, a state-of-the-

art oblivious datastore, when its system parameters mirror that of

Pancake;Waffle outperforms a concurrent-ORAM system, TaoStore,

by 102x, whereas an insecure datastore performs 5-6x better than

Waffle. We also present experimental security analysis to highlight

the tunable property ofWaffle and prove experimentally that Waffle

can handle correlated queries while maintaining obliviousness. As

future work, we aim to extend Waffle to add features including

scalability, fault tolerance, and handling relational data.

Acknowledgements:We gratefully acknowledge the support of

the Natural Sciences and Engineering Research Council (NSERC)

for grants RGPIN-2023-03448, RGPIN-05849, IRC-537591, and the

Royal Bank of Canada. Author Sujaya Maiyya was partially funded

by IBM PhD Fellowship.

13



REFERENCES
[1] Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., and Paleczny, M. Workload

analysis of a large-scale key-value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Measurement and Modeling
of Computer Systems (2012), pp. 53–64.

[2] Bindschaedler, V., Naveed, M., Pan, X., Wang, X., and Huang, Y. Practic-

ing oblivious access on cloud storage: the gap, the fallacy, and the new way

forward. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), pp. 837–849.

[3] Blackstone, L., Kamara, S., and Moataz, T. Revisiting leakage abuse attacks.

Cryptology ePrint Archive (2019).
[4] Boyle, E., and Naor, M. Is there an oblivious ram lower bound? In Proceedings

of the 2016 ACM Conference on Innovations in Theoretical Computer Science (2016),
pp. 357–368.

[5] Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris,

J., Giardullo, A., Kulkarni, S., Li, H., et al. Tao: Facebook’s distributed

data store for the social graph. In 2013 USENIX Annual Technical Conference
(USENIXATC 13) (2013), pp. 49–60.

[6] Cash, D., Drucker, A., and Hoover, A. A lower bound for one-round oblivious

ram. In Theory of Cryptography: 18th International Conference, TCC 2020, Durham,
NC, USA, November 16–19, 2020, Proceedings, Part I 18 (2020), Springer, pp. 457–
485.

[7] Cash, D., Grubbs, P., Perry, J., and Ristenpart, T. Leakage-abuse attacks

against searchable encryption. In Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security (2015), pp. 668–679.

[8] Chakraborti, A., and Sion, R. Concuroram: High-throughput stateless parallel

multi-client oram. arXiv preprint arXiv:1811.04366 (2018).
[9] Cloud Adoption Statistics. https://bit.ly/3ZdCzpt. Accessed Feb 10, 2023.

[10] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. Bench-

marking cloud serving systems with ycsb. In Proceedings of the 1st ACM sympo-
sium on Cloud computing (2010), pp. 143–154.

[11] Crooks, N., Burke, M., Cecchetti, E., Harel, S., Agarwal, R., and Alvisi,

L. Obladi: Oblivious serializable transactions in the cloud. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18) (2018),
pp. 727–743.

[12] Dauterman, E., Fang, V., Demertzis, I., Crooks, N., and Popa, R. A. Snoopy:

Surpassing the scalability bottleneck of oblivious storage. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (2021), pp. 655–671.

[13] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,

Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. Dynamo:

amazon’s highly available key-value store. ACM SIGOPS operating systems review
41, 6 (2007), 205–220.

[14] Demertzis, I., Papadopoulos, D., Papamanthou, C., and Shintre, S. Seal:

Attack mitigation for encrypted databases via adjustable leakage. In 29th USENIX
Security Symposium (USENIX Security 20) (2020), pp. 2433–2450.

[15] Ghemawat, S., Gobioff, H., and Leung, S.-T. The google file system. In

Proceedings of the nineteenth ACM symposium on Operating systems principles
(2003), pp. 29–43.

[16] Goldreich, O., and Ostrovsky, R. Software protection and simulation on

oblivious rams. J. ACM 43, 3 (May 1996), 431–473.

[17] Grubbs, P., Khandelwal, A., Lacharité, M.-S., Brown, L., Li, L., Agarwal, R.,

and Ristenpart, T. Pancake: Frequency smoothing for encrypted data stores.

In 29th USENIX Security Symposium (USENIX Security 20) (2020), pp. 2451–2468.
[18] Grubbs, P., Lacharité, M.-S., Minaud, B., and Paterson, K. G. Pump up

the volume: Practical database reconstruction from volume leakage on range

queries. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018), pp. 315–331.

[19] Grubbs, P., Lacharité, M.-S., Minaud, B., and Paterson, K. G. Learning to

reconstruct: Statistical learning theory and encrypted database attacks. In 2019
IEEE Symposium on Security and Privacy (SP) (2019), IEEE, pp. 1067–1083.

[20] Gui, Z., Johnson, O., and Warinschi, B. Encrypted databases: New volume

attacks against range queries. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (2019), pp. 361–378.

[21] Health Care Cloud Computing Trends. https://bit.ly/3ZyCWdI. Accessed

Feb 10, 2023.

[22] Herlihy, M. P., and Wing, J. M. Linearizability: A correctness condition for

concurrent objects. ACM Transactions on Programming Languages and Systems
(TOPLAS) 12, 3 (1990), 463–492.

[23] Islam, M. S., Kuzu, M., and Kantarcioglu, M. Access pattern disclosure on

searchable encryption: ramification, attack and mitigation. In Ndss (2012), vol. 20,
Citeseer, p. 12.

[24] Kellaris, G., Kollios, G., Nissim, K., and O’neill, A. Generic attacks on secure

outsourced databases. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (2016), pp. 1329–1340.

[25] Kornaropoulos, E. M., Papamanthou, C., and Tamassia, R. Data recovery

on encrypted databases with k-nearest neighbor query leakage. In 2019 IEEE
Symposium on Security and Privacy (SP) (2019), IEEE, pp. 1033–1050.

[26] Lacharité, M.-S., Minaud, B., and Paterson, K. G. Improved reconstruction

attacks on encrypted data using range query leakage. In 2018 IEEE Symposium
on Security and Privacy (SP) (2018), IEEE, pp. 297–314.

[27] Lacharité, M.-S., and Paterson, K. G. A note on the optimality of frequency

analysis vs. ℓ𝑝 -optimization. Cryptology ePrint Archive (2015).
[28] Lacharité, M.-S., and Paterson, K. G. Frequency-smoothing encryption: pre-

venting snapshot attacks on deterministically encrypted data. Cryptology ePrint
Archive (2017).

[29] Lamport, L. The part-time parliament. In Transactions on Computer Systems.
ACM, 1998, pp. 133–169.

[30] Larsen, K. G., Malkin, T., Weinstein, O., and Yeo, K. Lower bounds for

oblivious near-neighbor search. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (2020), SIAM, pp. 1116–1134.

[31] Larsen, K. G., and Nielsen, J. B. Yes, there is an oblivious ram lower bound! In

Annual International Cryptology Conference (2018), Springer, pp. 523–542.
[32] Li, J., Qin, C., Lee, P. P., and Zhang, X. Information leakage in encrypted

deduplication via frequency analysis. In 2017 47th Annual IEEE/IFIP international
conference on dependable systems and networks (DSN) (2017), IEEE, pp. 1–12.

[33] Liashchynskyi, P., and Liashchynskyi, P. Grid search, random search, genetic

algorithm: a big comparison for nas. arXiv preprint arXiv:1912.06059 (2019).
[34] Maiyya, S., Ibrahim, S., Scarberry, C., Agrawal, D., Abbadi, A. E., Lin, H.,

Tessaro, S., and Zakhary, V. QuORAM: A Quorum-Replicated fault tolerant

ORAM datastore. In 31st USENIX Security Symposium (USENIX Security 22)
(Boston, MA, Aug. 2022), USENIX Association, pp. 3665–3682.

[35] Mavroforakis, C., Chenette, N., O’Neill, A., Kollios, G., and Canetti, R.

Modular order-preserving encryption, revisited. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (2015), pp. 763–777.

[36] Naveed, M., Kamara, S., and Wright, C. V. Inference attacks on property-

preserving encrypted databases. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security (2015), pp. 644–655.

[37] Oya, S., and Kerschbaum, F. Hiding the access pattern is not enough: Exploiting

search pattern leakage in searchable encryption. In USENIX Security Symposium
(2021), pp. 127–142.

[38] Oya, S., and Kerschbaum, F. Ihop: Improved statistical query recovery against

searchable symmetric encryption through quadratic optimization. In 31st USENIX
Security Symposium (USENIX Security 22) (2022), pp. 2407–2424.

[39] Papadimitriou, A., Bhagwan, R., Chandran, N., Ramjee, R., Haeberlen, A.,

Singh, H., Modi, A., and Badrinarayanan, S. Big data analytics over encrypted

datasets with seabed. In OSDI (2016), vol. 16, pp. 587–602.
[40] Patel, S., Persiano, G., and Yeo, K. What storage access privacy is achievable

with small overhead? In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (2019), pp. 182–199.

[41] Persiano, G., and Yeo, K. Lower bounds for differentially private rams. In

Advances in Cryptology–EUROCRYPT 2019: 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19–23, 2019, Proceedings, Part I 38 (2019), Springer, pp. 404–434.

[42] Petersen, C., Simonsen, J. G., and Lioma, C. Power law distributions in infor-

mation retrieval. ACM Transactions on Information Systems (TOIS) 34, 2 (2016),
1–37.

[43] Poddar, R., Boelter, T., and Popa, R. A. Arx: an encrypted database using

semantically secure encryption. Cryptology ePrint Archive (2016).
[44] Poddar, R., Wang, S., Lu, J., and Popa, R. A. Practical volume-based attacks on

encrypted databases. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P) (2020), IEEE, pp. 354–369.

[45] Popa, R. A., Redfield, C. M., Zeldovich, N., and Balakrishnan, H. Cryptdb:

protecting confidentiality with encrypted query processing. In Proceedings of the
twenty-third ACM symposium on operating systems principles (2011), pp. 85–100.

[46] Redis. https://redis.io/. Accessed Feb 10, 2023.

[47] Ren, L., Fletcher, C., Kwon, A., Stefanov, E., Shi, E., Van Dijk, M., and

Devadas, S. Constants count: Practical improvements to oblivious ram. In 24th
USENIX Security Symposium (USENIX Security 15) (2015), pp. 415–430.

[48] Sahin, C., Zakhary, V., El Abbadi, A., Lin, H., and Tessaro, S. Taostore:

Overcoming asynchronicity in oblivious data storage. In 2016 IEEE Symposium
on Security and Privacy (SP) (2016), IEEE, pp. 198–217.

[49] Sepehri, M., and Kerschbaum, F. Low-cost hiding of the query pattern. In

Proceedings of the 2021 ACM Asia Conference on Computer and Communications
Security (2021), pp. 593–603.

[50] Stefanov, E., and Shi, E. Oblivistore: High performance oblivious cloud storage.

In 2013 IEEE Symposium on Security and Privacy (2013), IEEE, pp. 253–267.

[51] Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., and Devadas,

S. Path oram: an extremely simple oblivious ram protocol. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security (2013),

ACM, pp. 299–310.

[52] The Infrastructure Behind Twitter: Scale. https://bit.ly/3KJR7J1. Accessed

Feb 10, 2023.

[53] TLS. https://datatracker.ietf.org/doc/html/rfc5246. Accessed July 14, 2023.

[54] Weiss, M., and Wichs, D. Is there an oblivious ram lower bound for online

14

https://bit.ly/3ZdCzpt
https://bit.ly/3ZyCWdI
https://redis.io/
https://bit.ly/3KJR7J1
https://datatracker.ietf.org/doc/html/rfc5246


reads? Journal of Cryptology 34, 3 (2021), 18.
[55] Wikipedia ClickStream Dataset. https://dumps.wikimedia.org/other/

clickstream/. Accessed July 14, 2023.

[56] Zhang, Y., Katz, J., and Papamanthou, C. All your queries are belong to us:

The power of file-injection attacks on searchable encryption. In USENIX Security
Symposium (2016), vol. 2016, pp. 707–720.

15

https://dumps.wikimedia.org/other/clickstream/
https://dumps.wikimedia.org/other/clickstream/

	Abstract
	1 Introduction
	2 Background
	3 System and Threat Model
	3.1 System Model
	3.2 Threat Model

	4 Waffle Overview
	5 Security Model
	5.1 , uniformity definition

	6 Waffle
	6.1 Initialization
	6.2 Protocol

	7 Security of Waffle
	8 Experimental Evaluations
	8.1 Comparing with the baselines
	8.2 Varying system parameters
	8.3 Security analysis
	8.4 Choosing system parameters

	9 Related Work
	10 Conclusion
	References

