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Abstract. With the increasing interest for advanced protocols for Multi-
Party Computation, Fully-Homomorphic Encryption or Zero-Knowledge
proofs, a need for cryptographic algorithms with new constraints has
emerged. These algorithms, called Arithmetization-Oriented ciphers, seek
to minimize the number of field multiplications in large finite fields F2n

or Fp. Among them, Ciminion is an encryption algorithm proposed by
Dobraunig et al. at Eurocrypt 2021.
In this paper, we focus on the limited-data instance of Ciminion; the
parameters of this instance were chosen to provide s-bit security against
an attacker that has access to at most 2s/2 data. We present a new
univariate modeling of Ciminion and show that the designers choice to
reduce the number of rounds under this data constraint leads to full-
round attacks for security levels s ≥ 93. We also propose some slight
modifications of Ciminion that would overcome this vulnerability.

Keywords: Cryptanalysis · Algebraic attack · Univariate polynomial
solving · Ciminion · Arithmetization-oriented

1 Introduction

Recent advanced protocols for applications such as Multi-Party Computation
(MPC), Fully-Homomorphic Encryption (FHE) or Zero-Knowledge (ZK) proofs
have become the object of attention in modern cryptography. Some ZK proof
systems and MPC protocols operate on large finite fields Fq with q prime or
power of 2 [10,15,16,7]. In such protocols, the cost is tightly linked to the num-
ber of field multiplications required by the ZK proof or the MPC function to
evaluate. Moreover, these protocols rely on different symmetric cryptography
primitives: ZK proof protocols often involve cryptographic hash functions, and
MPC protocols make use of symmetric-key encryptions to improve the data stor-
age and transfer, as discussed in [22]. A first approach is to convert standard
bit-oriented cryptography primitives to sequences of finite field operations over
the native field Fq of the protocol under consideration, with a preferably low
number of multiplications. In this context, multiple works were conducted to
reduce the implementation cost of AES [14,22].

In 2015, LowMC was the first cryptographic design aiming at minimizing
the number of boolean multiplications [3]. The next year, the family of block
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ciphers and hash functions MiMC [2] was introduced, operating directly on the
native finite field Fq (where q ≥ 264) of the protocol. This stategy allowed
to significantly reduce the number of field multiplications; such primitives are
now known as Arithmetization-Oriented (AO). This paved the way for a wide
range of other AO families, such as Jarvis [5], Vision, Rescue [4], Poseidon [20],
Ciminion [17], Anemoi [11], Griffin [19] or Hydra [21]. For most AO designs, the
security relies on the large size q of the field, which is considered too big to be
exhausted in practice. Their designers often claim a security level s ≤ log(q),
such that no attack with complexity less than 2s equivalent cipher encryptions
exists.

AO primitives usually use finite field multiplications to provide non-linearity.
Finite field multiplications are known to have strong differential and linear prop-
erties: for instance, for any 2 ≤ α ≤ q−1, the mapping x→ xα has a differential
uniformity of at most α − 1 on the large field. Consequently, statistical attacks
often perform poorly against AO primitives, and the most threatening attacks
become algebraic attacks, as highlighted by different works [1,6]. Algebraic at-
tacks exploit the simple algebraic representation of AO primitives to derive alge-
braic relations in Fq between the input, the output and sometimes the key. These
relations form a polynomial system that the attacker can solve, for instance to
find a preimage of a hash function or to recover the key of a cipher.

In this paper, we study an algebraic attack against the MPC-friendly AO
stream cipher Ciminion [17], which was already subject to algebraic cryptanal-
ysis in several works. Bariant et al. showed an algebraic representation of the
cipher breaking security claims for very large security levels [6]. Zhang et al.
provided a cryptanalysis of Ciminion against higher order differential and inte-
gral attacks [27]. In addition, they showed that under weak round constants, a
subkey recovery attack can be mounted on Aiminion, an aggressive evolution of
Ciminion.

Contribution. In this paper, we present a new univariate modeling of Ciminion,
representing the nonce as a polynomial of the first unkown truncated output
(in Fq). In the limited-data instance of Ciminion, an instance proposed by the
designers where the security level is s up to 2

s
2 data queries, this polynomial is

of degree roughly d ≈ 2
3s
4 . Unlike integral or higher-order attacks which usually

require a large amount of data queries, we show that this new modeling leads to
a low-data attack in complexity quasi-linear in d, using univariate solving. This
attack breaks the security claims of the designers for s ≥ 93. We then suggest a
patch to apply to Ciminion in order to avoid the attack.

Outline. Section 2 presents the cipher Ciminion. Section 3 presents our uni-
variate attack against Ciminion. We eventually present in Section 4 some mod-
ifications of Ciminion to avoid the attack.

2 Ciminion

Ciminion is an Arithmetization-Oriented stream cipher presented at Eurocrypt
2021 [17], operating on large fields Fq with q ≥ 264. Ciminion is based on a
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Fig. 1. The Ciminion stream cipher over Fp (replace + by ⊕ over F2n).

modified version of the Farfalle construction [8]: it takes as input two master
keys MK1,MK2 ∈ Fq, a nonce ℵ ∈ Fq, and outputs some keystream elements
in S1, S2, . . . , each in Fq and of arbitrary length. These keystream elements are
then added to plaintext elements to yield the ciphertext. As a precomputation,
the master keys MK1,MK2 are expanded into subkeys K1,K2, . . .K2l, which
are stored and re-used directly with different nonces. Since this key expansion is
performed only once, the designers used a strong and costly key expansion based
on the Sponge construction [9]. The specification of Ciminion is highlighted in
Figure 1.

The state of Ciminion is composed of three elements of Fq. Two permutations
are employed: pC and pE , both iterating the round function fi. At round i, fi
uses the round constants RC1i, RC2i, RC3i, RC4i in Fq, where RC4i is assumed
to be different from 0 or 1. pC = fN ◦ · · · ◦ f1 is composed of N rounds, and
pE = fR+N ◦ · · · ◦ fN+1 is composed of R rounds1. The round function and the
rol function are based on Toffoli gates and are of degree 2. Because both these

1 For readability, the indexing of fi and of the round constants slightly differs from
the original specification of Ciminion.
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Fig. 3. Ciminion round function fi.

Instance N R

Standard s + 6 d s+37
12
e

Limited-data d 2(s+6)
3
e d s+37

12
e

Conservative s + 6 d 3
2
· s+37

12
e

Table 1. Number of rounds N of pC and R of pE for the instances proposed by the
designers of Ciminion, for a security level of 64 ≤ s ≤ log(q). The limited-data instance
restricts the attacker to at most 2s/2 data.

functions use Toffoli gates rather than low degree Sboxes, the inverse of these
functions are also of degree 2. They are depicted in Figure 2 and Figure 3.

Ciminion truncates one output element of each permutation pE , to prevent
the recovery of intermediate states. Since the knowledge of a truncated element
allows to recover the intermediate states and thus the round keys K1 and K2,
the security of Ciminion cannot exceed log(q) by design. The designers claim a
security level of 64 ≤ s ≤ log(q) for three instances presented in Table 1, where
the numbers of rounds N and R depend on the security level s. In particular,
the limited-data instance limits the attacker to at most 2s/2 oracle queries and
has fewer rounds than the standard and conservative instances.

As it is the case in other Arithmetization-Oriented ciphers, statistical attacks
perform poorly because of the strong cryptographic properties (e.g. linear, dif-
ferential . . . ) of the multiplication in large fields. The number of rounds of the
Ciminion instances was therefore chosen to provide security against algebraic
attacks, by ensuring that the best known algebraic attack exceeds 2s in time
complexity.

On the security of the limited-data instance of Ciminion. In the security
analysis of Ciminion in the limited-data instance [18, Appendix F], the designers
derive the number of rounds from Gröbner basis and interpolation attacks. The
Gröbner basis attack on Ciminion only requires a few keystream elements2, and
involves only the ‘right’ part of the cipher, with the permutation pE . For this
reason, the designers apply the same analysis as in the standard instance, and
choose the same number of rounds for pE as in the standard instance. On the

2 In their analysis, the designers only use S1, S2, S3, S4 to attack a modified Ciminion,
while [6] use S1, S2, S3, S4 under two different nonces to attack the real Ciminion.
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other hand, in the interpolation attack, the attacker queries d keystream elements
Si1 under different nonces ℵi, for i ∈ {1, . . . d}. If S1 can be expressed with a key-
dependant polynomial of the nonce QK(ℵ) of degree at most d− 1, the attacker
can perform a Lagrange interpolation from d pairs (ℵi, QK(ℵi)) to recover the
coefficients of the polynomial QK and thus entirely know the mapping from the
nonce to the first keystream element S1. The drawback of this attack is the large
number of data needed by the attacker to mount the attack. Because of this
very reason, the designers of Ciminion suggested that if the attacker is limited
to 2s/2 data, the number of rounds can be reduced as long as the degree of the
polynomial QK(ℵ) exceeds 2s/2 [18, Appendix F], for a security level s. In the
setting chosen by the designers, the polynomial QK(ℵ) (representing S1) is of

degree 2d
2(s+6)

3 e+d s+37
12 e−1 ≈ 2

3s
4 +7; it is less than 2s for large security levels s.

3 Our attack using univariate polynomial solving

Generally, a polynomial solving algebraic attack on an AO cipher can be decom-
posed into two main steps:

– Modeling: The attacker models the cipher with a system of polynomial
equations in Fq, such that a solution of the polynomial system contains
secret data (e.g. the encryption key or an internal state).

– System solving: The attacker solves the polynomial system using state-of-
the-art techniques, such as root finding algorithms for univariate polynomials
or Gröbner basis algorithms for multivariate systems.

Both steps should be carefully analyzed when mounting an algebraic attack.
On the one hand, the modeling step is highly cipher dependant, and heavily im-
pacts the complexity of the attack. Some ciphers might possess different model-
ings with different solving time complexities, such as Anemoi [11], or Griffin [19].
Efficient modelings are found through cryptanalysis. On the other hand, the sys-
tem solving step often relies on existing generic algorithms and the complexity
of such algorithms is hard to improve upon.

3.1 Univariate polynomial solving attacks

In univariate polynomial systems, the system that we want to solve is a unique
polynomial equation of degree d in Fq:

P (X) = 0.

Advanced algorithms for polynomial operations. First, let us recall the
complexity of the main operations on polynomials over an arbitrary field F.

Let P,Q be two polynomials of degree d over a field F. Näıvely, the element-
wise multiplication P ×Q costs d2 multiplications over F. However, faster poly-
nomial multiplication algorithms exist, using Fast Fourier Transform (FFT) [25].
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Proposition 1 ([12]). Two polynomials of degree at most d over a field F can be
multiplied with O(d log(d)) multiplications and O(d log(d) log(log(d))) additions
in F.

The fast polynomial multiplications can even be sped up to O(d log(d)) op-
erations if a primitive root of unity is known in F, as discussed in [12]. Many
other polynomial operations achieve quasi-linear complexities with the same
techniques. They are all based on fast polynomial multiplication, which is why a
factor log(log(d)) appears in the complexity, in the case where no primitive root
of unity is known in F.

Proposition 2 ([26]). The Euclidian division of two polynomials of degree at
most d over a field F can be performed in O(d log(d) log(log(d))) operations.

Proposition 3 ([24, Corollary 2]). The Greatest Common Divisor (GCD) of
two polynomials of degree at most d over a field F can be computed in
O(d log(d)2 log(log(d))) operations.

In particular, all the algorithms mentioned above hold in finite fields Fq. The
following propositions only hold for finite fields Fq.

Proposition 4 ([13,23]). A polynomial P of degree d over Fq can be factored
in O(d1.815 log(q)) operations.

Proposition 5. Let P be a polynomial of degree d in Fq. Let us suppose that P
has a few roots in Fq. The roots of P in Fq can be recovered in

O(d log(d)(log(d) + log(q)) log(log(d)))

operations.

Proof. The proof comes from the following well-known algorithm, described
in [6].

1. Compute Q = Xq−X mod P . The computation is performed with a double-
and-add algortihm to compute Xk mod P . At each step, we multiply two
polynomials of degree d with O(d log(d) log(log(d))) field operations (Propo-
sition 1), and compute the remainder of a polynomial of degree 2d by P (of
degree d) in O(d log(d) log(log(d))) field operations (Proposition 2). There
are log(q) steps, therefore this costs O(d log(q) log(d) log(log(d))) field oper-
ations.

2. Compute R = gcd(P,Q). R has the same roots as P in the field Fq since R =
gcd(P,Xq−X), but its degree is much lower (it is exactly the number of roots
in Fq). This requires O(d log(d)2 log(log(d))) field operations (Proposition 3).

3. Factor R. This costs deg(R)1.815 log(q) operations (Proposition 4). Since the
degree of R is exactly the number of roots of P in Fq, as long as P has less

than
(
d log(d)2

log(q)

) 1
1.815

roots in Fq, this step has a negligible complexity.

Proposition 5 gives a bound on the solving complexity of the univariate sys-
tem composed of the equation P (X) = 0 in Fq.
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3.2 Our attack

This attack breaks the security claims of the designers in the limited-data in-
stance for large security levels, in which the attacker cannot query more than
2s/2 data. It is an equivalent key-recovery attack in the sense that it allows to
recover an arbitrary number of subkeys K1,K2 . . . but does not allow to recover
the master key MK1,MK2, since the subkey generation is performed with a
non-invertible sponge construction. The recovery of the subkeys is enough for an
attacker to compute keystream blocks under different nonces, and thus breaks
the security of the cipher.

Attack principle. In the big picture, our univariate modeling is represented
on Figure 4. This attack is a known-plaintext attack using two keystream blocks
S1 and S2 under a nonce ℵ. The variable X represents the truncated output of
the first branch pE . Our attack is based on the observation that the nonce ℵ
can be represented as a polynomial QS1,S2(X) of relatively small degree, whose
coefficients only depend on the known keystream values S1 and S2. Using the
queried keystream values S1 and S2, the attacker may compute and solve the
polynomial equation QS1,S2

(X)−ℵ = 0 in Fq to recover a few possible candidates
for X.

Generation of the polynomial QS1,S2(X). The two first keystream blocks
S1 and S2 are considered known to the attacker. First, let us note that pE ◦pC =
fN+R ◦ · · ·◦f1 is composed N+R round function iterations. We start from three
polynomials representing the output of pE ◦ pC :

TN+R
S1,S2

(X) = S1, UN+R
S1,S2

(X) = S2, V N+R
S1,S2

(X) = X.

Then, for i = N+R, . . . 1, we compute the polynomials T i−1S1,S2
(X), U i−1S1,S2

(X),

and V i−1S1,S2
(X) from T iS1,S2

(X), U iS1,S2
(X), and V iS1,S2

(X) using the algebraic
representation of the round function fi, as highlighted in Figure 5:

T i−1S1,S2
(X) = U iS1,S2

(X)−RC1i −RC4i(V
i
S1,S2

(X)−RC2i),

U i−1S1,S2
(X) = V iS1,S2

(X)−RC2i − T iS1,S2
(X) +RC3i,

V i−1S1,S2
(X) = T iS1,S2

(X)−RC3i − T i−1S1,S2
(X)× U i−1S1,S2

(X).
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By induction on i = N +R− 1, . . . 0, we can easily deduce the degrees of the
polynomials:

∀i ∈ {0, . . . N +R− 1},


deg

(
T iS1,S2

(X)
)

= 2N+R−i−1,

deg
(
U iS1,S2

(X)
)

= 2N+R−i−1,

deg
(
V iS1,S2

(X)
)

= 2N+R−i.

This implies that the polynomialQS1,S2(X) = T 0
S1,S2

(X) is of degree 2N+R−1.
At round i, the complexity of computing the polynomials is dominated by the
multiplication T i−1S1,S2

(X) × U i−1S1,S2
(X), of two polynomials of degree 2N+R−i,

which costs
O(2N+R−i(N +R− i)(log(N +R− i)))

field operations (Proposition 1). In total, generating QS1,S2(X) costs:

O

(
N+R∑
i=1

2N+R−i(N +R− i) log(N +R− i)

)
= O(2N+R(N +R) log(N +R)).

This is negligible compared to the complexity of the rest of the attack.

Solving the univariate equation. The equation QS1,S2(X) − ℵ = 0 is of
degree 2N+R−1 and we expect it to have a few roots in Fq, therefore we can use
Proposition 5 to bound the complexity of computing its roots in Fq to:

O
(
2N+R−1(N +R− 1)(N +R− 1 + log(q)) log(N +R)

)
.

Recovery of the subkeys. For each candidate for the truncated output X,
the attacker can deduce candidates for K1 and K2 by inverting pE ◦ pC :

(ℵ,K1,K2) = p−1C ◦ p
−1
E (S1, S2, X).

The right candidate for (K1,K2) may be confirmed with an extra query under
a different nonce. After the recovery of K1 and K2, the attacker can query further
keystream elements Si for i ≥ 3, under the same nonce ℵ. The inner state before
the first branch pE is known, as depicted in green and dotted in Figure 6. We
denote Y the truncated output of the second branch pE . We can compute the
polynomial Q̃S3,S4(Y ) representing the first inner state element, which is known
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Fig. 6. Recovery of keystream elements K3 and K4. The green dotted wires denote the
known internal state elements from the recovery of K1 and K2.

from the recovery of K1 and K2; We denote its value α. The truncated output
of the second pE is a root of Q̃S3,S4(Y ) − α, which is a polynomial of degree
2R + 2R−1 ≈ 2R+0.6. The recovery of Y is of negligible complexity compared to
the rest of the attack. This allows to recover the inner state before the second
branch pE and therefore to recover K3 and K4.

Ultimately, (K2i+1,K2i+2) for i ≥ 2 can be recovered in a similar manner if
the keystream is long enough.

Complexity of our attack. For a security level of s, the designers chose the
following parameters in the limited-data variant:

N = d2(s+ 6)

3
e,

R = ds+ 37

12
e,

which gives, asymptotically, N + R ≈ 3s
4 + 7. The complexity of our attack is

dominated by the univariate polynomial solving. It has a time complexity of

T = 2N+R−1(N +R− 1)(N +R− 1 + log(q)) log(N +R)

equivalent Ciminion encryptions3.

3 It is a common assumption to consider that the constant behind the O corresponds
to a cipher encryption. In [6], the authors used the same algorithm to compute the
roots of a polynomial of degree 228.5 in 23 hours on 1 core of an Intel XeonE7-4860,
suggesting that the constant behind the O is indeed relatively low.
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Fig. 7. Complexity of our attack for different security levels s with s = log(q).

For large security levels s, our attack runs faster than 2s operations: the com-
plexity is quasi-linear in 2

3s
4 , and we can verify that T ≤ 2s for s = log(q) ≥ 93.

The complexity of our attack for different security levels is plotted on Figure 7. In
particular, T = 2217.4 for s = log(q) = 256, and T = 2120.3 for s = log(q) = 128.

Aiminion. Aiminion is an aggressive evolution of Ciminion presented in ap-
pendix of the Ciminion paper [18]. Since it uses a key addition right before
outputting the keystream, it is impossible to express the nonce only with the
keystreams S1, S2 and the truncated element X. Instead, the unkown subkeys
K3 and K4 would be involved in the formula. We did not manage to overcome
this difficulty to mount an attack.

Comparison with other attacks. Our attack exploits the links between the
nonce and the keystream elements, therefore it only holds if both pC and pE
are weak permutations. The Gröbner basis attack of [6] instead derives relations
between multiple keystream elements (under two different nonces) to recover the
truncated outputs. Their attack only exploit the weakness of pE . For that reason,
their attack succeeds in the standard and limited-data instances which have the
same number of rounds R for pE , while ours only succeeds in the limited-data
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Attack type Generic N,R Full-instance attacks Reference

Data Time Standard Limited-data

Gröbner basis (SKR) 8 O(24Rω) s ≥ 587 s ≥ 587 [6]
Integral (dist.) O(2N+R) O(2N+R) - - [27]

Univariate (SKR) 2 Õ(2N+R) - s ≥ 93 Section 3

Table 2. Comparison of existing attacks against generic Ciminion parameters and
full Ciminion instances with s-bit security. N and R are respectively the number of
rounds of pC and pE . 2.41 ≤ ω ≤ 3 is the linear algebra exponent. SKR denotes subkey
recovery.

instance, which has a lower number of round N for pC . The attack of [27] use the
low degree of the forward function pE ◦pC to derive an integral attack. However,
the integral attack requires a large amount of data, which is the reason why
they do not threaten the limited-data instance of Ciminion. These attacks are
compared in Table 2.

4 Suggested modifications of Ciminion

Protection against our attack. The univariate solving attack presented in
Section 3 relies on the backward computation of pC from the single guess of the
first truncated output value. To provide protection against this attack in the
limited-data instance, a cheap modification is to perform a feedforward after pC ,
by XORing at least one key elements K0, K1 or both to one or several outputs
of pC . A variant of this feedforward would be to add new key elements to the
output of pC , although this costs extra key scheduling. This way, it is no longer
possible to compute pC backward with the sole knowledge of the first truncated
output value.

Another possible protection is to increase the number of rounds of pC , in
which case we recommend to use the parameters of the standard Ciminion in-
stance.

On the security of conservative and the standard instances. The security
of the standard and conservative instances is not threatened by this attack, since
the number of rounds is sufficient to guarantee that the degree of the involved
univariate polynomial exceeds 2s.

Acknowledgement This work was supported by the French DGA. We would
like to thank Gaëtan Leurent for the insightful discussions regarding this result.
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