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ABSTRACT lengths that scale appropriately with 1/e. Committee selection is

We study the problem of committee selection in the context of proof-
of-stake consensus mechanisms or distributed ledgers. These set-
tings determine a family of participating parties—each of which
has been assigned a non-negative “stake”—and are subject to an
adversary that may corrupt a subset of the parties. The challenge
is to select a committee of participants that accurately reflects the
proportion of corrupt and honest parties, as measured by stake, in
the full population. The trade-off between committee size and the
probability of selecting a committee that over-represents the cor-
rupt parties is a fundamental factor in both security and efficiency
of proof-of-stake consensus, as well as committee-run layer-two
protocols.

We propose and analyze several new committee selection schemes
that improve upon existing techniques by adopting low-variance as-
signment of certain committee members that hold significant stake.
These schemes provide notable improvements to the size-security
trade-off arising from the stake distributions of many deployed
ledgers.

1 INTRODUCTION

We study the problem of committee selection in the context of proof-
of-stake consensus mechanisms or distributed ledgers. These set-
tings determine a family P of participating parties, with each p € P
assigned a non-negative stake S(p). An unknown subset A C P
of the parties have been corrupted by an adversary, with the only
constraint that a strict minority of total stake is corrupted, which
is to say that

D Sp)<a- ) S, (1)
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for a parameter a < 1/2. Committee selection is the problem of
choosing a committee C C P with the property that less than a
(a+e€)-fraction of its members are corrupt, for a (related) parameter
€ € [0, 1— ). Intuitively, such a committee permits a small number
of parties to inherit—with small distortion e—the desirable adver-
sarial proportionality of the entire population, which can provide
important efficiency or algorithmic advantages.

Committee selection is a natural—and often fundamental—aspect
of proof-of-stake consensus mechanisms, with various settings of
interest placing differing demands on «, €, the size of the com-
mittee, and the probability of failure. In particular, “Iterated BFT”
mechanisms operate by directly electing sequences of such com-
mittees; Algorand [5], for example, falls into this category, requires
a + € < 1/3, and demands committee sizes that scale appropriately
with 1/e. Committee selection likewise occurs, in some cases indi-
rectly, in “Nakamoto-style” proof-of-stake consensus protocols; the
Ouroboros blockchains [6, 11], for example, implicitly elect such
committees in each epoch, require @ + € < 1/2, and demand epoch

also instrumental in common “layer two” infrastructure that is
bootstrapped by a distributed ledger. In these cases, a committee is
selected according to a stake distribution determined by an under-
lying distributed ledger and is then pressed into service for external
purposes. Examples include maintaining a secondary blockchain (a
“sidechain”), bridge, or payment or state channel, tallying and certi-
fying an off-chain governance vote, and providing oracle services
to on-chain smart contracts—we refer to these tasks collectively as
committee-run layer-two protocols. In all these settings, one must
balance the efficiency advantages of small committees against the
security penalties: in particular, smaller committees increase the
probability of disproportionate representation of adversarial par-
ties. In the examples mentioned above the relationship between
committee size and security (that is, the probability of such dispro-
portionate representation) is of first order importance for security
and efficiency.

There are two standard approaches to committee selection: the
first calls for drawing n members—independently and proportion-
ally to stake—for a suitably selected n; the second calls for indepen-
dently including each participant (perhaps with multiplicity) with
a probability that scales with its stake so as to yield a committee of
expected size n. In this article, we show that when there are parties
holding approximately a 1/n fraction of stake, committee selec-
tion can exploit this to provide an improved relationship between
committee size and failure probability. Applying our techniques
to the concrete stake distributions arising in currently deployed
proof-of-stake ledgers, we observe striking improvements in the
committee size required in order to achieve various error thresholds
of interest. Considering Ethereum, for example, our approach leads
to committees of size 300 with better security characteristics than
existing approaches achieve even with size 1000. We compare some
of the schemes we develop against classical techniques in Figure 1.

Conventional committee selection. We assume throughout that
the adversary determines the set A of corrupt parties with full
knowledge of the procedure that will be used to select the commit-
tee. If the procedure is deterministic, the adversary may select A
with foresight so as to corrupt certain committee members with cer-
tainty; if, furthermore, the aggregate stake assigned to the commit-
tee members is a small fraction of total stake, the entire committee
can be corrupted outright. Incorporating randomness in the pro-
cedure is the ready countermeasure to such “precognition attacks,”
and in this context the distribution obtained by selecting parties
with probability proportional to stake plays a central role. For this
reason, we assume throughout that stake assignments are scaled
so that Y ,cp S(p) = 1 and refer to S as the “stake distribution.”
Observe that when a committee member ¢ € P is selected according



to the distribution S,
Pr[c is corrupt] =Pr[c € A] < «a

for any adversarial choice of A so long as it satisfies the corruption
budget of (1). This motivates one of the standard approaches to
committee selection, which defines the committee C to consist
of n parties cy, ..., ¢, independently chosen according to S for a
suitably large n; we denote this method IID. (Note that this process
defines a multiset, in general, as individual parties may be drawn
multiple times by this process.) It follows that the expected fraction
of the resulting committee that is corrupt is no more than «, where
committee members are weighted according to the number of times
they have been selected. Standard Chernoff-Hoeffding bounds for
the tails of the binomial distribution can then be applied to estimate
the probability of a significant deviation: For example, a committee
of size n will contain (« + €)n corrupt parties—overrepresenting
the corrupt fraction of players by en—with probability

5= exp(~Q(ne?)). @)

Returning to the practical cases highlighted above, § is a critical
quantity that features prominently in the final security guarantees
of the protocol while n features prominently in the efficiency of the
protocol.

Motivating fait accompli committee selection. The approach in
this article is motivated by the fact that—in certain unusual cases—
committee selection can, in fact, be carried out deterministically and
with zero probability of failure. Consider, for example, the setting
with n parties and the uniform stake distribution S(p) = 1/n for
each p € P. Then the committee consisting of P itself will clearly
have no more than a a-fraction of corrupt players for any subset A
satisfying (1). This example suggests that optimal committee selec-
tion should exploit structural properties of the stake distribution to
reduce variance. Our main result realizes this intuition, showing
how to account for the structure of S during committee selection
in order to achieve an improved relationship between committee
size and probability of failure. In general, these methods provide
improved performance when max,ep S(p) X 1/n and, specifically,
provide improvements determined by the ability of functions that
take values in the set %No ={0,1/n,2/n,...} to approximate the
distribution S for suitable choices of n. In more detail, if there is a
function f < & taking values in the set %No that covers all but a 7
portion of the probability mass of S then the resulting committee
of size n will suffer from an en overrepresentation of corrupt parties
with probability

5 = exp(~Q(ne? /1)) 3)

(cf. (2)). It is interesting to observe that the ability of functions
taking values in %No to approximate S obviously improves with
n, which is to say that 7 — 0 as n increases. In particular, the
fundamental scaling above improves as n — co. In this context, we
will be interested in the smallest choice of n for which the resulting
error ¢ is driven below a desired probability of failure.

A summary of the results. We begin in Section 3 by focusing on
the unweighted setting outlined above, where the proportion of
corrupt players in the final committee is measured by cardinality.
We there describe and analyze two schemes (FA1 and FA2) that
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provide security that scales with the ability of various families of
functions to approximate S.

We also focus on a second family of “local sortition schemes.” To
appreciate their importance, recall the second classical approach
mentioned in passing above: Participants are individually elected
to the committee independently (and perhaps with multiplicity)
depending on their stake. While this approach has some addi-
tional complexity—e.g., the size of the committee itself is a random
variable—by introducing public-key cryptographic tools (verifiable
random functions [13]) a public seed can be used by the participants
to privately and locally determine whether they are a member of
the committee. This design grants such schemes an important fea-
ture: security against adaptive adversaries that may choose which
participants to corrupt based on the public seed. We introduce a
local-sortition variant of FA1 that achieves such adaptive security
and hence can serve as a drop-in replacement for standard local
sortition in protocols where this property is desired.

In Section 4 we turn our attention to weighted schemes, in which
each committee member is assigned a non-negative weight and
the corrupt proportion is measured according to weight. We find
that this additional degree of freedom has a rather remarkable ef-
fect on security: in particular, our weighted scheme wFA squarely
outperforms its unweighted counterparts: in many settings of prac-
tical interest, it provides orders of magnitude improvement in the
resulting security guarantee.

We remark that the applicability of weighted schemes in practice
depends on the setting: in circumstances where the job of the com-
mittee is to support a straightforward casting of votes, weighted
schemes appear sufficient. On the other hand, for settings that re-
quire sophisticated cryptographic aggregation of votes or shares,
such as secret sharing or threshold signatures, weighting may be
unattractive.

Intuition for the main results and analysis. The core idea of fait
accompli committee selection is to identify portions of the stake
distribution with total probability 1/n that have low minimum
entropy—for example, are all assigned to a single party—and use
these to guide committee selection. To illustrate the basic idea,
consider the following simple procedure FA1(P, S, n), which selects
a committee of size n for a stake distribution S on P.

FA1(P,S,n) :
If max,ep S(p) > 1/n: Let p* be a party for which S(p*) > 1/n.
Add p* to the committee and define
n S(p)-1/n ifp =p*,
n-1 (S(p) otherwise.

S'(p) =

It is easy to verify that S’ is a probability distribution. The
rest of the committee is determined recursively as

FA1(P,S',n - 1).

If max,cp S(p) < 1/n: The committee is determined by indepen-
dently drawing n members according to S.

To return to the intuition above, note that when there is a party
for which S(p) > 1/n, the party is added to the committee and a
1/n slice of the distribution associated with this party is removed
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from consideration; indeed, the residual distribution S’ arises pre-
cisely by conditioning on the complement of this slice. Thus this
committee member “perfectly represents” this portion of the dis-
tribution regardless of the adversary’s selection of A and such a
selection generates zero variance in the final family of random
variables that reflect the corrupt portion of the committee. In the
other case, members are selected according to the distribution as
usual, generating variance around the current mean. In fact, this
simple procedure yields the improved bound (3).

To concretely illustrate the benefits of the above procedure FA1
compared to the conventional IID method, consider a toy example
where the stake is distributed in the following way: a single party
Phig controls 1/3 of all stake, while the rest is uniformly distributed
among a large number of tiny stakeholders. A committee of size n =
30 is to be chosen, and the adversary is capable of corrupting parties
controlling 1/3 of all stake in total (i.e., he may either corrupt pyg, or
one half of all the tiny stakeholders). The goal of the adversary is to
control at least 1/2 of the selected committee; i.e., this corresponds
tothecasea = 1/3and € = 1/6.If 11D is used to select the committee,
it is easy to see that the adversary achieves his goal with probability

Pr[B(30,1/3) > 15] ~ 4% , )

where B(n, p) is a random variable having binomial distribution
with n independent trials, each successful with probability p. On
the other hand, if FAT is used for the committee selection, the party
Phig is deterministically assigned 10 of the 30 committee seats, and
the rest is distributed in the standard way to the minor stakeholders.
In this situation, it is clearly disadvantageous for the adversary to
corrupt pyig, as this would certainly prevent him from achieving his
goal: his representation within the committee would be guaranteed
to be a 1/3 fraction. Corrupting the maximum allowed number of
the minor stakeholders instead (amounting to 1/3 of total stake,
which is 1/2 of all minor stakeholders), the probability that the
adversary now achieves his goal is

Pr[B(20,1/2) > 15] ~ 2% ,

as this requires that at least 15 out of the remaining 20 seats assigned
by the standard method would end up controlled by a corrupted
party. Put differently, it is easy to verify that if FA1 is used in this
scenario, a committee of size 21 is sufficient to keep the probability
of adversarial success below (4). This already illustrates a concrete
advantage of FA1 over IID.

While the above example is encouraging and, in general, it seems
plausible that the “perfect representation” of a 1/n portion of stake
by a single, deterministically assigned, committee member p* (as
in the FA1 algorithm above) could be advantageous, the concrete
probabilistic phenomenon arising by this procedure involves two
competing effects and deserves some further discussion. Continu-
ing at this same level of informality, the standard large-deviation
bounds assert that a committee drawn independently from the stake
distribution will suffer from a en excess in empirically observed
corrupt members with probability no more than

exp(—2¢%n) . (5)

Deterministic assignment of a single committee member as above
has two contrary effects: the first effect reduces the number of
randomly selected parties to n — 1, which is clearly unfavorable

in the context of (5); the second effect conditions the probability
space from which these remaining members are selected so that the
error margin comprises a larger portion of the sample space—this
generates a favorable increase in the effective € to en/(n — 1). The
combined effect is favorable, owing to the quadratic dependence
on ¢; specifically, the tail bound (5) is replaced with

o 225" 0-0) = (o (25))
=exp (—Zezn . (1 + 9(1/71))) s

which indicates a rather striking linear advantage in terms of the
1/n portion of the committee that has been deterministically as-
signed.

Relevance to practice. As the performance of our schemes crit-
ically depends on the considered stake distribution, we evaluate
our schemes on real-world stake distributions of major proof-of-
stake blockchains Ethereum, Cardano, Solana, and Algorand. More
concretely, for each blockchain we consider the distribution that
best reflects the “distribution of power” within the consensus pro-
tocol, as this is arguably the most suitable candidate distribution
for any selection of a committee for some committee-run layer-two
protocol within each blockchain’s ecosystem.

Explicit evaluation demonstrates that our methods provide orders-
of-magnitude improvement in failure probability for all considered
blockchains, even for modest committee sizes. As an illustrative ex-
ample, Figure 1 considers the Ethereum blockchain, and shows the
probabilities of electing a committee of size n that contains at least
n/10 more corrupt members than expected based on the corrup-
tion level of the underlying population; for standard independent
sampling (11D) and our new schemes FA1 and wFA. For example, in
this setting, the failure probabilities of IID for committees of size
100, 500 and 1000 are achieved by FA1 by sizes 44, 164, and 273,
respectively. If the character of the committee’s task allows for a
weighted committee, wFA can provide the same failure probability
at committee sizes 22, 50, and 74, respectively.

Related work. Committee selection is an essential part of the
design of any distributed ledger protocol where—for efficiency
reasons—consensus is maintained by a selected subset of all partici-
pants as opposed to the whole population. Algorand [5] proposes a
committee selection method that provides adaptive security. Their
approach, based on verifiable random functions [12], has since
became standard and, along with the independent stake-based sam-
pling of the committee members, the folklore approach to using a
natively permissioned, fixed-population consensus protocol (such
as [2-4, 14, 16]) in a permissionless proof-of-stake setting.

Committee selection also appears in the context of sharding.
David et al. [7] study sharding of a distributed ledger into small
shards run by independently selected committees. They consider
the standard approach of independently sampling each member
of the committee from the underlying population, and observe
that the security—efficiency tradeoff leads to impractical committee
sizes. Assuming a stake distribution over the underlying population
amenable to the fait accompli approach, our results would provide
a drop-in replacement for the committee-selection part of their
scheme with immediate efficiency benefits.
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Figure 1: Comparing the probability of electing a commit-
tee of size n with e-disproportionate overrepresentation of
corrupt parties using the standard independent sampling
(1ID) and our new schemes FA1'® and wFA'"® providing a
uniform-weight and a weighted committee respectively; for
the Ethereum stake distribution and € = 0.1.

Benhaim et al. [1] study the problem of committee selection
within the blockchain setting, but focus on using voting schemes
for this purpose. These mechanisms allow for smaller committees
in their model, as the failure probability vanishes with increasing
number of voters as opposed to increasing committee size in case of
lottery-based committee selection considered here. However, this
approach is significantly more heavyweight as votes need to be
collected and tallied.

Finally, Dimitri [8] considers several variants of the Algorand
committee-selection mechanism, but evaluates these on the basis
of goals different from ours.

Survey. We formally describe the problem of stake-based com-
mittee selection in the next section and give the full version of
the fait accompli algorithm in Section 3. In Section 4 we explore
the additional power afforded by assigning weights to the selected
committee members. We then discuss the relevance to practice in
Section 5.

2 STAKE-BASED COMMITTEE SELECTION:
FORMAL DESCRIPTION AND STANDARD
APPROACHES

We begin by more formally defining the setting described in the
introduction.

Notation, conventions, and the basic model. Let N = {1,2,...}
and Ny = N U {0}. Consider a set of parties P along with a staking
function S : P — [0,00) C R describing the stake of each party
in P. For convenience, we normalize S so that it forms a probabil-
ity distribution—which is to say that 3,cp S(p) = 1—and hence
refer to S as the stake distribution over P. The general goal is to
select a committee from the set P that suitably reflects the stake
distribution S.
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Committees are treated as multisets, permitting the possibility
that they may contain individual parties p € P multiple times; such
parties are then weighted accordingly in terms of the final deter-
mination of the fraction of corrupt committee members. To reflect
this notationally, we treat a committee of size n as an (ordered)
sequence (cq, . . ., ¢p); while the ordering present in this notation is
irrelevant—that is, any permutation of this vector determines the
same committee—it’s convenient for various aspects of our presen-
tation and, in particular, we sometimes refer to each position in the
committee as a seat. For such a committee C we define |C| = n.

A committee-selection scheme F is a randomized procedure for
selecting a committee from P based on S. It takes as input P, S, and
the desired committee size n (where typically n < |P|), and outputs
a tuple C = (c1,...,¢m) € P™ describing the committee where
E[|C|] = n. We also study the more restrictive setting where m = n
with certainty, which is to say that the scheme always produces a
committee of size exactly n. For any fixed tuple of input data, the
output of such a scheme is thus entirely described by a probability
distribution on P*, the set of all tuples of parties.

In practice, a committee-selection scheme F is used in the context
of an adversary controlling stake ¢ < 1/2 and it is desired to find
the smallest committee size n such that a fraction a +€ of committee
members are corrupt with probability at most §. In that setting, n
would be a function of @ € (0,1/2),¢ € (0,1 - «),5 € [0,1) and
will depend on S.

Security. We consider an adversary corrupting parties in P in
order to gain a disproportionate representation in a committee
sampled by F. More concretely, given full knowledge of P, S, n and
the scheme F itself, the adversary corrupts a subset of parties A C P.
After that, a committee C = (cy,...,cm) < F(P,S,n) is sampled
according to F.

For a committee C = (cy,...,¢) and a party p € P, let

#p(C) = {i € [IC] | ei = p}|

denote the number of seats in C assigned to p; we overload this
notation to apply to sets of parties: in particular

#4(C) = [{i € [IC[] [ ¢ € A}|

denotes the number of seats in C assigned to parties in A C P. If
#4(C) < (S(A) +¢) - |C|, in other words, if the corrupt parties are
overrepresented on the committee C by less than an e-fraction of the
whole committee, then we say that C is a good committee; otherwise
the committee is bad. The figure of merit—for the procedure F as
described above—is the worst-case probability of failure (electing
a bad committee), taken over all subsets A. This motivates the
following definition.

Definition 2.1 (Security of committee selection). For a party set P,
a stake distribution S : P — R, a committee-selection scheme F,
some n € N and € > 0, define

E,‘EE[F] = max Pr

ACP C—F(P,S,n) [#4(C) = (S(A) +¢) - |C]] .

We overload the notation to indicate the error generated by the
optimal procedure for selecting committees of expected size n:

ES(n) = inf EqelFl.
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The definition above somewhat simplifies the treatment of pa-
rameters outlined earlier in this section. In particular, rather than
treating « as a parameter of interest, the figure of merit E;S is simply
maximized over all possible choices of « (as it is maximizes over all
A C P). Thus, E“ES establishes a bound that applies simultaneously to
all values of a. This anticipates the structure of our analysis, where
is it convenient to maintain control over all possible adversarial
subsets of subsidiary stake distributions that arise naturally in the
course of our methods and permits our analysis to focus on a single
quantity. We remark that for large n the worst-case o converges
to 1/2; as this is often in the range of interest for practice, this for-
mulation may not substantially interfere with the tightness of our
results in these settings. On the other hand, for circumstances that
warrant small @, it may be possible to establish stronger bounds by
carrying this constraint into the analysis.

2.1 Independent and perfect schemes

We identify some special cases of committee-selection schemes. A
scheme F is fixed-size if it always samples a committee of the same
size, ie, for all P, S, n € N we have Prep(psp) [IC| =n] = 1.
A fixed-size committee-selection scheme is called independent if,
for all P, S, n € N, the n random variables (cy, ..., cy) resulting
from F(P,S,n) are independent. Finally, a committee-selection
scheme F is perfect if for all P, S, n € N and parties p € P we
have Ec_f(p,s,n) [#p(C)] = S(p) - n.

We now record a general security bound for all independent and
perfect schemes.

LEMMA 2.2 (SECURITY OF PERFECT INDEPENDENT SCHEMES). Let
F be a perfect and independent committee-selection scheme. For any
party set P, stake distribution S over P, and n € N, we have

Ef,e[F] < exp(—2ne?).

Proor. Fix (P, S, n) and a subset of corrupt parties A C P. Let
c1,...,cn be the committee members chosen independently accord-
ingtoF,ie, (c1,...,cn) < F(P,S,n). Define X; to be the indicator
random variable for the event that ¢; € A; then X; are independent
as F is an independent scheme, and

C<—FE£, Sm) [#4(C) = (S(A) +€)n]

= Pr Xi = (S(A) +eé)n
C—F(P,S;n) i;] iz (S@)+e)

= C<—FFI£,S,n) Z X; —E[X;] = en| < exp(—2ne?) ,

i€[n]
where we used that };c(,] E[Xi] = S(A) - n as F is perfect. The
last inequality is a direct application of the Hoeffding bound (Theo-
rem A.1 in Appendix A) to the random variables X, ..., X, with
A:=¢en>0. m

2.2 LID. sampling

One classical approach to the committee selection problem is to
adopt i.i.d. sampling to determine C = (cy, ..., ¢p), where each ¢;
is drawn independently from the distribution S, as described in
Figure 2. We denote this scheme by IID. It has the advantage that

Scheme IID(P, S, n) : }

Select committee C = (cy, ..., cp) as follows:
(1) For each i € [n], independently sample ¢; «— S.
(2) Return C = (cq,...,c¢n).

Figure 2: The standard committee-selection scheme IID.

it is simple, generic, has performance that is independent of S, it
produces a fixed-size committee, and is both perfect and indepen-
dent, hence Lemma 2.2 applies to it. In fact, we have the following
slightly more precise bound.

LEMMA 2.3 (SECURITY OF LI.D. SAMPLING). For any party set P,
stake distribution S over P, and n € N, we have

Ef’e[llD] < sup B(n,0;k), (6)

0€[0.1] k> (re)n

where B(n, ; k) = (Z)pk(l - /J)”_k is the binomial distribution.

Proor. Fix (P, S, n) and a subset of corrupt parties A C P. Let
(c1,...,¢n) < lIID(P,S,n) and as before, let X; be the indicator
random variable for the event that ¢; € A; then the X; are inde-
pendent and Pr[X; = 1] = S(A). Then }}; X; follows the binomial
distribution with mean y = S(A) - n, hence the event that at least
an (S(A) + e)-fraction of the committee is corrupt has probability
2k>(S(A)+e)n B(n,S(A); k). We have S(A) € [0, 1], this hence
justifies the lemma. O

2.3 Local sortition

Another standard approach to committee selection is one that we
will call local sortition (LS). In this method, each party p € P is
included on the committee independently based on a local biased-
coin toss, with the bias reflecting the party’s stake in S.

In proof-of-stake protocols such as [5, 6], local sortition is often
deployed with further features that are orthogonal to our discus-
sion here: the sampling of the local random variables is typically
implemented via verifiable random functions [12] so as to provide
both privacy and public verifiability of the sortition.

For convenience, we model local sortition as a Poisson process,
and describe it in Fig. 3. Notice that the sortition procedure of [5]
(as described in [9, Section 5.1]) converges to our Poisson-based
description as the total stake in the system goes to infinity.

It is easy to see that local sortition is not a fixed-size committee-
selection scheme, yet it is perfect.

LEMMA 2.4 (SECURITY OF LOCAL SORTITION). For any party set P,
stake distribution S over P, and n € N, we have

etis< (H ()" (L)) o

e\l+e¢ e\l—¢

Proor. Observe that it suffices that #4(C) < (S(A) + €)n and
for #57(C) > ((1-8(A)) —€)n, where we use the notation #z7(C) =
ICl — #4(C) (equal to #7(C)) to denote the number of “honest”



Scheme LS(P, S, n) : }

Select committee C = (e, . . ., ¢|c|) as follows:
(1) For each p € P, sample an independent random vari-
able X, from a Poisson distribution with rate S(p) - n.
(2) Return arbitrary C satisfying #,(C) = X, forallp € P.

Figure 3: The standard committee-selection scheme LS.

committee members, as the ratio #4(C)/|C| is then no more than
(S(A)+¢€)n
[(1-8(A) —€ln+[S(A) +€]n
Let P4 denote the Poisson distributed random variable reflecting the
total number of committee members in A and, likewise, define Py
to denote the Poisson distributed number of committee members
in A. Defining @ = S(A), note that E[P4] = an, E[Py] = (1 — a)n,
and that < 1 by assumption.
In light of the bounds for the tails of the Poisson distribution
recorded in Appendix A, we note that

=8S(A) +e.

—an

ea \(a+e)n
Pr[P4 > (a+€)n] < ((x+e)

(a+e) _ \"
_ ((aeje) “, ) ,

(i7"

as this tail is maximized when « = 1. A similar calculation yields

e(1-a)n (1-a—e€)n
(1-a- e)n)

s

as this tail is maximized when « = 0. The probability that either of
these events occurs is no more than the sum of the probabilities,
which yields the statement of the theorem. O

Pr[Pg < (1-a—-¢€)n] < ( e~ (1-a)n

3 UNIFORM-WEIGHT FAIT ACCOMPLI
COMMITTEES

We begin with a detailed presentation and analysis of the scheme
discussed in the introduction. While we will later formulate schemes
with improved performance, several technical features of the analy-
sis will be useful during the subsequent development. Furthermore,
we also present a local-sortition variant of this scheme which is of
particular interest when we consider committee selection in the
setting of an adaptive adversary.

In general, the performance of the schemes we study in this
section are reflected by the ability of functions taking values in
the set %No ={0,1/n,2/n,...} to accurately approximate the stake
distribution. Two different, but closely related, notions shall in fact
be of interest.

Definition 3.1. Let P be a finite set. We say that a function f :
P — R is n-integral if f(p) € %No = {0,1/n,2/n,...} for each
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r—[ Scheme FA1F(P,S, n) : }

Select committee C = (cy, ..., cm) as follows:
(1) LetS, : P — %NO witness 7, (S; n). In particular

S - 150

For each p € P, assign Sj,(p) - n seats to p. Let
(c1,¢2,...,¢n,) be the ny = ||Sy]l - n < n seats as-
signed in this way.

(2) If nq < n, define a distribution S;: P — [0,1] as

Si(p) = (S(p) = Sy (p)) /7,(S:n)

and let (cn,+1, - - > Cny4ny) < F(P,S1,n = n1);
otherwise set ny = 0.
(3) Return C = (cy, ..., cm) with m = ny + na.

Figure 4: Committee-selection scheme FA1 parametrized by
a fallback scheme F.

p € P. For a probability distribution S : P — R we define
71(8;n) = min  ||S - f]|,and
f:P— 1N

=g

lIfl<1
7,(S;n) = min

f:PHﬁNo

<8

IS =11l

where the notation f < S means that f(p) < S(p) for eachp € P,
and ||f|| denotes the 1-norm: ||f]| = ZpeP Lf(p)I.

Witnesses. In the context of a particular function S : P — R, we
say that f : P — %No witnesses 711 if it achieves the minimum
that defines 7;. We use this same terminology for 7, (with the
understanding that f meets the criteria for 7,: f < S).

Note that for any distribution S we have
11(S;n) < 1,(S;n)

as the set of functions over which 71 minimizes contains that of z,.

3.1 Scheme FA1

Returning to the scheme presented in the introduction, note that
the scheme has two logical “phases,” the first in which deterministic
assignments are made for parties for which S(p) > 1/n, and the
second “fallback phase” in which stochastic assignments for the
rest of the committee are made. We note that the fallback phase
can in fact be instantiated with either of the two conventional
committee selection schemes defined in the last section. A detailed
description of this committee-selection scheme FAT is given in
Figure 4, parametrized by a fallback scheme F which, by itself, must
also be a committee-selection procedure. In a nutshell, FA1 provides
benefits over the standard methods for any stake distribution that
contains parties controlling at least a 1/n-fraction of stake; if no
such parties exist, FAT" invokes the fallback scheme F.
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THEOREM 3.2 (SECURITY OF FAT''P). Let P be a party set, S be a
stake distribution over P, and n € N. Let 7 = 7,(S, n). If = 0 then

ES(n) = ES. [FA1”D] =0;
otherwise
Ef(n) < Eie [FA1”D] < exp(—2n€2/1') .
This follows from the following lemma.

LEMMA 3.3. Let P be a party set, S be a stake distribution over P,
and n € N. Define

01 = 50

andt=1- Y ,ep Sy (p). Then v = 1,(S; n) and, moreover, if r > 0
then for any fixed-size committee-selection scheme F, we have

Eae |[FAT] < £ TR ®)

ne/t

Proor. Fix some (P, S, n) and observe that

S(p) - 1/n < S,(p) < S(p)

for all p and that S, takes values in %NO 2 {k/n | k € Ny}, hence

S, = argmax > f(p),
f:PH%NopeP
<S8

establishing 7 = 7;,(S; n); below we assume 7 > 0.

Let F be any fixed-size committee-selection scheme. Let S; de-
note the distribution (S - §;))/7, and let C and C* denote the
output distributions of FA1F(P, S, n) and F(P, 81, Tn), respectively.
Let A C P be the set witnessing E;?:e [FA1F], i.e., the one maximizing
the probability Pr,_ s [#;(C) > (S (A) +¢€) - nl.

First, observe that we can without loss of generality assume
that each party p € P satisfies either S(p) € %N ={1/n,2/n,...}
or S(p) < 1/n. This is because any party that does not satisfy
any of these two conditions can be “split” into two virtual parties
p1 and pp such that S(p1) = S, (p) and S(p2) = S(p) - S (p).
resulting in two parties that both satisfy the above condition. Note
that this replacement can only make the adversary stronger, as the
two virtual parties can now be corrupted independently.

Given the above assumption, let P; = {p eP|S(p) e %N} and
Py 2 {p € P| S(p) < 1/n}, then P can be partitioned as P = P;UP;.
Denote A; = AN P; for both i € {1,2}.

We first observe that for any p; € P1, according to step (1) of FAT,
pi will be assigned exactly Sy, (p;) - n committee seats. Therefore,
for any C « C we have

#4(0)=S(A) -n. ©)

On the other hand, by definition of S, for any p € P, we have
S1(p) = S(p)/7, and hence

Si(A2) = S(Az) /7 . (10)

Using these observations, we have

ESe [FATT] Y b 1,00 > (SG)+e) ]
CC

® . [# (C) = (S(Ap) +€) ]

= I e = €)'n
gl A 2

© , )

= P [#4,(C) = (Si(Ar)r+e)-nf

= JPr [#4,(0) = (Si(Ay) + e/ o]

S
< Erri,e/r[F] >
where (a) follows from the definition of A; (b) uses (9) and the fact
that A can be partitioned as A; U Ay; and (c) follows from (10). O

Theorem 3.2 can now be easily obtained by applying Lemma 3.3
to FAT''D and subsequently invoking Lemmas 2.2 for [1D. Moreover,
it is easy to observe that if 7,(S,n) = 0 then E;Ee [FA1F] = 0 for
any F and € > 0; in particular if F is a fixed-size scheme, then
Eg’e [FA1F] = 0 holds for any 7, < €.

We now analyze an adaptively secure variant of FA1, obtained
by using LS as the fallback scheme.

THEOREM 3.4 (SECURITY OF FATSS). Let P be a party set, S be a
stake distribution over P, and n € N. Let v = 7;,(S, n). Then

et < 3 (5 ) (F ) )

et \t+¢ e? \t—¢€

unless T < €, in which case the second term should be treated as zero.

PROOF. As in the proof of Lemma 2.4, we note that it suffices
for #4(C) < (S(A) + ¢)n and for #5(C) > ((1 — S(A)) — e)n,
referring to the final committee C chosen by the scheme. (We again
use the notation #(C) = |C| — #4(C).) After the deterministic
assignment of committee members is complete—determining an
initial committee C;—the local sortition scheme LS is called upon
to draw a committee Cy with expected size 7n; C is then the union
of the two committees. As the scheme guarantees that

E[#4(C1) +#4(C2)] = S(A)n
and Cj is deterministic,
E[#4(C2)] = S(A)n — #4(C1)

and we define an = E[#4(C2)]; clearly an < n, as 7n is the
expected size of Cy.

As |Cy] is fixed, any deviation in the statistics #4(C) and #g(C)
from their expected values are determined by Cy, which is to say
that

#4(C) 2 E[#4(0)] +¢ & #4(C2) 2 E[#4(C2)] +¢;

the same can be said for deviations of #z(C). We may thus expand
the tail bounds of interest around the Poisson distributed random
variables #4 (Cz) and #1(Cz).



In light of the bounds for the tails of the Poisson distribution
recorded in Appendix A, we note that

e—(Xrl

Pr[#4(C2)] = (a +€)n] < (aefe)(aﬂ)n

er \(z+€) "
()
T+e
as this tail is maximized when « = 7. A similar calculation yields

e(t—a)n o~ (T-a)n

)(r—a—e)n

Pr(#g(C2) < (t—a—¢€)n] < (
(t—a-¢€)n

(E

as this tail is maximized when « = 0. Observe that the probability
of this tail is zero (for any a) when 7 < €. The probability that either
of these events occurs is no more than the sum of the probabilities,
which yields the statement of the theorem. O

3.2 Scheme FA2

We now describe a more refined algorithm FA2, given in Figure 5.
While the algorithm asymptotically improves on FA1, demonstrat-
ing that security can scale with 7y (rather than the larger value 7;,),
we are not aware of sufficiently strong large deviation bounds
parametrized by variance to yield effective improvements in prac-
tice. For this reason, we primarily include this for theoretical inter-
est.

THEOREM 3.5 (SECURITY OF FA2). LetS : P — R be a probability
distribution. Let 71 = 71(S; n) and define o? =31, /4. Ift) = 0 then
E;?:E [FA2] = 0, otherwise

€+O'2 n

- 3 _1-€

ES_[FA2] < ((1 + iz) vt (1 _¢) 1+52) , (12)
? o

PROOF. Asin the description of the scheme, let f be an n-integral
function witnessing 71 (S, n) and define, for each p € P,

Sy(p) = [nS(p)l/n  and  S*(p) = [nS(p)1/n.

Then §, < S < S* and, as ISyl < S]] < 1, it’s easy to see
that any witness function f for 7 satisfies S, < f and, in fact,
Vp, f(p) € {Sy(p), S*(p)}. We then write S = f + a — f where
a,f : P — R are non-negative functions with disjoint supports
(which is to say that they are never both positive). Then the support
of fis the set Pr = {p € P | f(p) > S(p)} and, if f is nonzero on
p, it takes the value S ﬂ(p) — S(p); similarly, if @ is nonzero on p,
it takes the value S(p) — S, (p). Finally, we note that

1 = IS = fIl = llall + {181l -

To prepare for the remainder of the analysis, we identify the
(committee seat) random variables defined in the scheme and es-
tablish that the scheme is indeed perfect.

e The scheme calls (in step (2)) for ny = ||S;||n seats to be
assigned deterministically according to S}, (so that the num-
ber of seats assigned to p is exactly S, (p)n). Fixing a par-
ticular ordering for these and treating these deterministic
choices as probability distributions with a single nonzero
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,—[ Scheme FA2(P, S, n) : }

Select committee C = (cy, ..., cp) as follows:
(1) Determine a function f witnessing 71 (S;n), i.e., such
that
f= argmin ||S-f],
fi: P>ENy,
lIfll<1

and let

Pr={peP|f(p)>Sp)}.

Define, also, S, (p) = [nS(p)|/nand ny =n-||S;||.

(2) Assign np seats (cq,...,cn,) as in FA1. That is, if
nS;, (p) = k, assign k of these seats to p.

(3) For each p € Py, assign a seat to p with probability
1-(f(p) —S(p)) - n, otherwise leave it unassigned.
Let (cny+1,Cny42, - - -» Cny+ny) be the ny < |Pg| seats
assigned in this way.

(4) If ny+ny <n,letr = Zpépf(S(p) — f(p)), define a
distribution Sz: P — [0,1] as

0 if p € Pg,
Sa(p) = . pety
(Sp) - f(p) /r ifpé¢ Py,
and let (cn;+ny+1s - - - Cnytngtny) < ID(P, Sa,n—ny—
ny), otherwise set n3 = 0.
(5) Return C = (cq,...,cp); note n = ny + ny + ns.

Figure 5: Committee-selection scheme FA2.

value, let Cy, . . ., Cp, denote the associated probability dis-
tributions (on P) for these first nj seats. We remark that
(1) 51 Ci = S,

e The scheme then assigns |Pr| additional seats, out of which
ny are assigned in step (3) and the rest is filled in step (4). We
begin by verifying that n; + |Pr| < n. Noting that f = St
for all p € Py, it follows that || f|| = [|S; || + (1/n) - |Pf| and
hence that n > n||fll > nl|S || + |Pg| = n1 + |Pyl.

Recall that for each p € Pf, a committee member is indepen-
dently assigned according to the probability distribution
Cp defined so that p is selected with probability

1= B(p) -n=1-n(S*p) - S(p) = n(S(p) - Sy (p))

and, otherwise, is drawn from the distribution a/||«|| sup-
ported on P_f As a matter of bookkeeping, we write Py =
{p1,-.. ,p‘pf|} and, for each i € {1,..., |Py|}, define Cp,+;
to be Cp,.

We remark that for any p € Py,

ni+|Pr| [Pyl

w2 GOI=SE D G

i=1
=S8, (p) + (S(p) = Sy (p)) = S(p),

as p has nonzero contribution from exactly one C; with
ng <i<n+ |Pf|. Restricted to the set Py, each Cp, is
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proportional to & and hence the sum (1/n) }; Ci(p) above
is Sy, + ca, for a scalar c.

e Finally, the remaining members are chosen from the distri-
bution «/||a|| in step (4). Continuing the naming conven-
tion, we define C; = a/|||| for ny + |Pf| < i < n.In light
of the running calculations above (of the sums }}; C;), we
conclude that (1/n) - 3}; C; = S, as desired; the scheme is
perfect.

Let ¢; (for 0 < i < n) denote independent random variables
taking values in P, each distributed according to C;. For a particular
set A C P of parties (corrupted by the adversary) let 14 denote the
characteristic function for A and consider the random variables

Xi=1a(ci) = {

We let S(A) denote ) ,c 4 S(a) and note that that ), E[X;] = S(A)
as the scheme is perfect.

To complete the proof, we apply a large deviation bound for
independent random variables parametrized by variance due to
Hoeffding [10]. (A detailed description of the inequality appears in
Appendix A.) We recall that for a {0, 1}-valued random variable Z,
the variance V[Z] = E[(Z — E[Z])?] is equal to E[Z](1 — E[Z]).
We consider the variance of the random variables X;:

e V[Xq] =--- =V[Xy,] =0, as these random variables are
constants.

o Recalling that Xy, +; = 14(p;) with probability 1 — S(p;)n,
we see that V[ Xy 4] < f(pi)n- (1-B(pi)n) < f(pi)n (for
0 <i < |Py|). Here we continue to use the notation above:
Pr=A{p1,....p|p| }-

e Finally, for the remaining random variables X, ,|p |+ We

1 if¢; is corrupt,

0 otherwise.

invoke the trivial bound, true for all {0, 1}-valued random
variables: V[X;] < 1/4. Observe that the total probability
mass of the |Pf| — ny variables selected in the second phase
that is not assigned to the “target” p; but rather drawn from
a/||la|| is exactly n|| §||. It follows that there are n(||a||—||5]|)
random variables of this third type.

The total variance is thus bounded by

> nB)+ 2 (llell = 181D < nllBll + % el = 181

PEPr

3n 3nty
< —(lla]| + = .
7 (lall+ 181 = =

Finally, we apply the Hoeffding inequality mentioned above (The-
orem A.3 of Appendix A). Define Z; = X; — E[X;] and note that
E[Zi] = 0, E[Z}] = V[X;] and that }; Z; - E[X; Zi] = X;Z; =
> Xi —E[X; Xil. Applying the inequality to the Z; yields

€ - 1-€ n
< ((1+ -) (g —e)*m)
[

for v := 371 /4, as desired. O

Pr

Zx,— —nS(A) > en
i

4 WEIGHTED COMMITTEES

In this section we consider an extension of the basic setting of
Section 2 in which we allow committees to be weighted: intuitively,
a committee C = (c1, ..., ¢|c|) is now a set of parties with associ-
ated weights that sum up to 1; the weight w (i) of the committee

member ¢; describes her “voting power” in the committee. In other
words, assigning a seat ¢; with weight w (i) to a party p is meant to
have the same effect as assigning a (wc(i)/2; we (j))-fraction of
all committee seats to this party in the uniform setting of Section 2.

4.1 Model

Notation. As before, we consider a set of parties P and a stake
distribution S : P — [0, ®) satisfying 3 ,cp S(p) = 1. A weighted
committee is a pair (C, wc), where C C P is the set of committee
members, and we: [|C|] — [0, 1] is a weight function assigning a
weight to each seat of the committee. We again permit randomized
committee-selection procedures that produce variable-sized com-
mittees, as long as the expected committee size can be controlled,;
similarly, for convenience we also ask that the expected sum of
weights in a committee is 1.

More formally, a weighted committee-selection scheme W is a
randomized procedure for selecting a committee from P based on
S. It takes as input P, S, and n, and outputs a tuple (C, we) where
C=(c1,-..5¢)) € PIC! satisfies E[|C|] = n; and we: [|C]] —
[0, 1] satisfies E [Zie[|C\] wc(i)] = 1. The adversary can again
corrupt an arbitrary subset A C P of parties, with full knowledge
of the above procedure. Finally, a weighted committee (C, w¢) «
W(P, S, n) is sampled according to W.

Security. The definition below is an analogue of Def. 2.1 for
the weighted-committee case. For convenience, we overload the
notation to also apply wc(+) to sets of parties B C P, so that

weB) = > weli),
i€[|C]]
c;i€B

hence w¢(P) denotes the total sum of weights in the committee.
Definition 4.1 (Security; the weighted case). For party set P, a

stake distribution S : P — R, a weighted committee-selection
scheme W, some n € N and € > 0, define

=S

E W] = P A) > (S(A) +e) - P)],
nelWI e T W [we(A) 2 (S(A) +¢) - we(P)]

where C = (cy, ..., c|c|). We again overload the notation by defin-
ing

=S . =S
E. (n) = 1\1)3/f Ene[WI].

Observe that the uniform-weight setting defined in Section 2 is
in fact a special case of the weighted setting. In this section, we
will refer to schemes of the special type defined in Section 2 as
uniform-weight schemes.

4.2 Weighted schemes via aggregation

As a warm-up, we briefly discuss a class of weighted schemes that
can be obtained from any uniform-weight scheme F by a transfor-
mation that we refer to as party aggregation. In a nutshell, the idea
is to invoke the scheme F to obtain a uniform-weight committee C*,
and then aggregate all seats in C* that were assigned to the same
party p into a single seat in the resulting weighted committee C,
with weight proportional to the number of seats that p was holding
in the original committee C*.



f—[ Scheme AF(P,S,n): }

Select weighted committee (C, w¢) with C = (c1, ..., ¢|c|) as
follows:
(1) Choose largest n* > n such that
E distinct(C*)|| < n. 13
C*—F(P,S,n*) | Call (13)

If such n* is undefined, let n* be smallest such that
S .
Eve [F] is acceptably small.
(2) Let C* « F(P,S,n*). Let C := distinct(C*) and for
each i € [|C]], let we (i) = #¢, (C*)/|C*|.
(3) Return (C,w¢).

Figure 6: Weighted committee-selection scheme AF obtained
by aggregation from a (uniform-weight) scheme F.

This simple transformation is described in Figure 6. Here we use
the notation distinct(C) to denote a committee containing the same
parties as a given committee C, but each of them only once. In other
words, |distinct(C)| is equal to the number of distinct parties in C
and the tuple distinct(C) contains no repetition; the order of parties
in distinct(C) will again be irrelevant. Note that for simplicity, we
do not fully specify in step (1) in Figure 6 the selection of n* in case
the choice using condition (13) fails, as this choice might in practice
depend on aspects outside of our model.

The main effect of party aggregation is an improvement of the
size-security tradeoff of the underlying scheme F: the aggregated
scheme AF using (expected) committee size n achieves the same
security as provided by F when used with a larger (expected) com-
mittee size n*, i.e.,

=S
Ec[AT1=EJ [F].

Note that the more “centralized” the stake distribution S is, the more
significant is the achieved efficiency improvement. The downside
of the transformation is that it produces a weighted committee,
which might not be suitable for some applications.

Given the above, a natural way to construct a weighted committee-
selection scheme exploiting the idea of deterministic seat assign-
ments in fait accompli schemes would be to simply apply aggrega-
tion to the uniform-weight schemes FA1 and FA2 from Section 3.
However, in the following section, we do not follow this approach
and rather present a standalone scheme wFA, which is very close to
AFAT but allows for simpler presentation and analysis, and achieves
a slightly better tradeoft.

4.3 Scheme wFA

We now present our committee-selection scheme for the weighted
setting, denoted wFA, which is given in Figure 7.

The scheme is, as before, parametrized by a “fallback” uniform-
weight committee-selection scheme F. In essence, wFA proceeds as
follows: it considers individual parties p € P in a non-increasing
order with respect to their stake S(p) by gradually picking up the
largest-stake yet-unprocessed party p; and assigning it a seat ¢; on
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r—[ Scheme wFAF(P,S,n): }

Select weighted committee (C, we) with C = (cq, ..
follows:

(1) Let (p1,...,pp|) be an ordering of the set P that is

non-increasing with respect to stake S(-). For each

ie[n-1],letp; = Zy:l. S(pj). Let i* be the smallest

.,c‘c‘) as

1

i € N such that either p; =0 or
N\ 2 .
(1 B S(pl)) S noi

pi T n—-i+1’
note that i* < n.Foreachi € [i*—1], assign the seat ¢;
to party p; (i.e., set c; = p;) and set we (i) = S(p;). Let
(c1,¢2,...,¢cn,) be the ny =i* — 1 < n seats assigned
in this way.
(2) Denote

(14)

p=pir (15)
and if p > 0, define a distribution S3: P — [0,1] as
0 ifi <ny,
S3(pi) = . (16)
S(pi)/p otherwise,
and let (¢py+1,. .., Cny4n,) < F(P,S3,n —nyp). For all
ie{n+1,...,n1+ny}, set we(i) = p/ns.
(3) Return (C,wc) where C = (cy,...,¢|c)) with |C| =
ni + na.

Figure 7: Weighted committee-selection scheme wFA
parametrized by a fallback (uniform-weight) scheme F.

the weighted committee, with a weight S(p;) equal to its stake in
the stake distribution S. This process continues as long as the stake
of p; is sufficient to not trigger a particular stopping condition
expressed in (14). After the stopping condition is triggered, the
remaining seats on the committee are assigned using the fallback
scheme F, attributing uniform weights to the committee members
assigned in this second step.

Let us illustrate the gains provided by wFA'® compared to both
11D and FA1"P using the same toy example we considered in the in-
troduction. Continuing with that scenario, if wFA is used to choose
a committee of size n = 30, it would assign the first seat in that com-
mittee to the party py,;; with weight we(1) = S(ppig) = 1/3,and the
remaining 29 seats would be assigned using IID to the minor stake-
holders with the remaining weight distributed evenly, i.e., each of
the 29 committee seats would come with weight (1-1/3)/29 = 2/87.
Just like in the case of FA1 discussed in the introduction, it would be
counterproductive for the adversary to corrupt pp;g, hence his best
strategy is to corrupt 1/2 of all the minor stakeholders, amount-
ing to 1/3 of total stake. Then the probability that the adversary
achieves his goal is

Pr[B(29,1/2) > 22] ~ 0.4%,

as this requires that at least 22 out of the 29 seats assigned by 11D
would end up controlled by a corrupted party—since, recall, the
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weight of each of these seats is 2/87. This error probability com-
pares favorably to the 4% (resp. 2%) adversarial success probability
obtained by using 1D (resp., FAT"'P). Moreover, one can easily ver-
ify that when using wFA, committee size n = 12 is sufficient to keep
the probability of adversarial success smaller than (4), the error of
the 11D method obtained for committee size n = 30.

The intuition behind the stopping condition (14) is to determine
in each iteration whether the currently considered party p; has
enough stake to warrant assigning it a seat on the committee de-
terministically, as opposed to using a simple scheme such as 1ID
to conclude the committee selection. Namely, if we approximate
the error E, ¢ of the 11D invoked to assign n seats by exp(—2ne?)
(cf. Lemmas 2.2 and 2.3), transitioning to 11D in the i-th iteration
entails an error of

e =exp(—2(n—i+ 1)€?),

while assigning the i-th party p; a seat deterministically and then
invoking 11D in the subsequent iteration i + 1 would lead to an error

2
<
1- S(Pi)/Pi) ) ’
as the remaining stake would get re-scaled by the factor 1-S(p;)/p;
after removing the party p;. Asking whether e; < e;41 translates
exactly to the condition (14). Note that the stopping condition will
be satisfied at latest when i = n, as

2
(1_M) >0=
Pn

and hence the scheme F will be left to assign at least one seat.
The security of wFA is stated in the following theorem.

ei+1 = exp (—Z(n —1i) (

n-n
n-n+1’

THEOREM 4.2 (SECURITY OF WFA!'P). Let P be a party set, S be a
stake distribution over P, and n € N. Let ny and p be as determined

in Figure 7. If p = 0 then Ees(n) = Eis [wFA”D] = 0; otherwise we
have

E’f(n) <E,. [WFA“D] < exp(=2(n—ny)e?/p?) .

Theorem 4.2 follows easily from the following lemma, which we
prove first.

LEMMA 4.3. Let P be a party set, S be a stake distribution over P,
and n € N. Forny, p, Sz as in Figure 7 and for any uniform-weight,
fixed-size committee-selection scheme F, if p > 0 then we have

. [wFAF] < [F.

n-nye/p

Proor. Fix some (P, S, n) and let F be any uniform-weight fixed-
size committee-selection scheme; assume p > 0. It is easy to ob-
serve from the description of wFA that as long as F is a fixed-size
scheme, so is wFAF. Moreover, for fixed-size F the scheme wFAF
also achieves wc (P) = 1 with probability 1, as step (1) assigns seats
of total weight 1 — p, and step (2) assigns ny seats of weight p/n2
each.

For brevity, let ‘W and C denote the output distributions of
wFAF(P, S, n) and F(P,S3,n — ny), respectively. Let A C P be the

. . =S . R -
set witnessing E,, . [WFAF], i.e., the one maximizing the probability

Pr we(4) = S(A) +€] .
(C,wc)<—W[ c(A) (A) +¢]

17)

11

As in the description of wFA in Figure 7, for convenience we
will assume (without loss of generality) that the parties in P are
indexed in a non-increasing order with respect to their stake in S,
ie i< j=S(pi) = S(pj).

Consider a partition of the party set P into two subsets P; and Py,
where P; = {p; € P|i < ny1} and P, = {p; € P | i > n1}. The cru-
cial property motivating this partitioning is that while parties in P;
are deterministically assigned a seat on the committee in step (1) of
the scheme wFA in Fig. 7, for parties in P, their memberhip on the
committee is decided later in step (2) and is deferred to the fallback
scheme F. Denote A; = A N P; for both i € {1, 2}, hence A1 UA, is
a partition of A.

We first observe that for any p; € Pj, according to step (1) of
WFA, p; will be assigned exactly one committee seat ¢; with we (i) =

S(pi)- Therefore, for any (C, w¢) «— W with C = (c1,...,¢|)),
we have
we(d) = Y S(e) =S(A). (18)
iici€A;
On the other hand, notice that for any p € Py, (16) gives us
S3(p) = S(p)/p and hence
S3(A2) = S(A2)/p . (19)

Using these observations, we finally get

)
ES [WFA ] ek L [wed) = S +e]
(b) . .
= Pr [WC(Az) > S(Ay) + 6]
(Cwe) =W

(C) .
#; (C') > S3(Az)p+e

Eee |
mem@@nﬂwﬂ

S [F]

n—nye/p

= Pr
C'e

The above computation is justified as follows: (a) comes from the
definition of A and the fact that w¢ (P) = 1; while (b) uses (18) and
the fact that A can be partitioned as A; U A. The interesting step is
(c): as we know that the committee-membership (and weight) of any
party in A, is decided in step (2) of wFA via F, we can restrict our
attention to the output of F, and hence the distribution C. Moreover,
note that any party assigned a seat c; in step (2) of wFA is assigned
weight we (i) = p/nz, hence we have

we(Ap) = 4,(C) =

-_— . - 4

&7 )

as the size of the committee C’ (output by F) is ng, since F is a fixed-
size scheme.. Moreover, step (c) also employs (19). This concludes
the proof of the lemma. O

It is now easy to establish Theorem 4.2 by directly applying
Lemma 4.3 to wFA!'P| and subsequently invoking Lemmas 2.2
for IID.

Relationship to AFAT Ag mentioned in Section 4.2, the scheme
wFA is very similar in spirit to an aggregation A™A" of the uniform-
weight scheme FAT from Section 3.1. One difference putting these
two variants apart is that while in wFA the weights assigned to
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Figure 8: Cardano stake distribution, ¢ = 0.1.

committee seats are reflecting the underlying stake distribution
and hence might be arbitrary in principle, in AFAT these weights
are all multiples of 1/n* for the parameter n* used to invoke the
underlying scheme FAT1. This difference allows the scheme wFA to
provide a slightly better size-security tradeoff; on the other hand,
it might make A" more suitable for some applications that can
exploit this structure in the weight distribution.

5 EVALUATION

To provide evidence of the practical benefits achieved by our ap-
proach to committee-selection, in this section we evaluate our
schemes on several real-world stake distributions of major proof-
of-stake blockchains.

5.1 Stake distribution data

We have collected real-world stake distributions from three major
proof-of-stake blockchains: Ethereum, Cardano, and Solana. These
projects are respectively the second, seventh, and tenth largest cryp-
tocurrencies by market capitalization at the time of writing,! and
represent some of the largest and most decentralized proof-of-stake
projects. Additionally, we also consider the stake distribution of Al-
gorand, and a variant of the Cardano stake distribution with pools
aggregated by owner, for reasons discussed in Section 5.3. Some ba-
sic statistics and inequality measures about the stake distributions
we collected are summarized in Table 1.

To illustrate the effect of changing €, in Figures 10 and 11 we
provide two additional plots for Ethereum, analogous to Figure 1
but using € = 0.05 and € = 0.2, respectively.

We remark that due to the idiosyncrasies of the considered
blockchains and their staking mechanisms, the data we use de-
scribe a slightly different population within each ecosystem, with
the intention to always capture the “distribution of power” in the
consensus mechanism. In other words, we select the stake distribu-
tion that is used by the consensus mechanism to attribute security-
critical roles in the protocol, and this is typically the distribution

!Source: https://coinmarketcap.com.
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Figure 10: Ethereum stake distribution, ¢ = 0.05.

that must be assumed to contain a certain fraction of honest stake
for the protocol’s security argument.

Note that while some of the considered blockchains contain com-
mittee selection as an integral part of their consensus protocols, and
in these protocols the committee-selection part can be immediately
improved by our schemes, other considered blockchains do not
employ a consensus of this type. Nonetheless, the reason why we
consider these blockchains is that any layer-two committee-run
protocol on top of any of these blockchains, if designed so as to
derive its security from the same honest-majority assumption on
stake that the underlying blockchain is making, would be sampling
its committee from the respective distribution. This is the case irre-
spectively of whether the underlying layer-one consensus directly
involves committee-sampling.

Concretely, for Ethereum the data describes the population of
validators aggregated by entities running them, along with the nor-
malized distribution of amounts they stake (each validator is staking
exactly 32 ETH). For Cardano, we consider the population of the
so-called stake pools operators (SPOs), which are the parties running


https://coinmarketcap.com

Fait Accompli Committee Selection: Improving the Size-Security Tradeoff of Stake-Based Committees

Blockchain Population size  Variation Coefficient Gini coefficient Theil index
Ethereum (ETH) 8674 31.59 0.95 5.2
Cardano (ADA) 3270 2.11 0.82 1.46
Cardano (ADA), aggregated 2028 7.22 0.92 2.62
Solana (SOL) 2443 3.6 0.76 1.64
Algorand (ALGO) 186 2.07 0.82 1.46

Table 1: Basic statistics about the considered real-world stake distributions.
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Figure 11: Ethereum stake distribution, € = 0.2.

stake pools and participating in the consensus protocol by creating
blocks. The stake distribution here is the normalized distribution
of stake “delegated” to these pools by regular holders of ADA. For
Solana, we consider the total population of block-producing valida-
tors, along with the normalized distribution of amounts they stake.
Finally, for Algorand we consider the population of accounts that
were online and participating in the consensus over a 7-day period,
along with the normalized stake distribution.

To obtain the stake distribution data, we ran Selenium crawlers of
web-based explorers for the considered chains and to query Dune
analytics. The aggregation of Ethereum validators into entities
is taken from Dune.? The Cardano data is obtained from their
dbSync tool, and the aggregation of Cardano pools by owner is using
cexplorer’s group identification heuristics.®> The data for Solana
and Algorand come from a web-based explorer. 4 > All the data was
collected in the first half of March, 2023.

5.2 Methodology

We upper-bound the error of our committee-selection schemes on
each considered stake distribution S as follows:

11D: We exactly evaluate the upper bound on E,‘ze [1ID] established
in Lemma 2.3. To do this efficiently, observe that due to the
properties of the Binomial distribution CDF, it suffices to

Zhttps://dune.com/queries/1933086/3188561
3https:/cexplorer.io
“https://solanabeach.io/validators
Shttps://algoexplorer.io/top-accounts
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consider at most n + 1 values of 0 to find the supremum
in (6), rather than the whole interval [0, 1]. Note that this
bound is independent of the distribution S.

LS: We evaluate the bound (7) obtained in Lemma 2.4. However,
as we only evaluate LS in the context of Algorand which re-
quires a below-1/3 corruption threshold (in the committee),
we make the bounds more specific by upper-bounding the
adversarial corruption « (in the underlying population) by
1/3—e. This bound is also independent of the distribution S.

FA1'D: We exactly evaluate the bound (8) from Lemma 3.3. Namely,
given the distribution S, we determine S),, 7, and compute

E(S_Sb)/T[llD] as above.

e/t
FA1SS: We exactly evaluate the bound (11) from Lemma 3.4.
wFA!ID: Similarly, here we also evaluate the bound (17) obtained in
Lemma 4.3. Namely, given the distribution S, we determine

S3 [1ID] as

n1, o, and S as in Fig. 7, and compute En—nl,e/a

above.

Note that all provided estimates are upper bounds of the studied
errors of interest. We choose to provide upper bounds for two
reasons: we believe they are in most cases sufficiently tight for
practice, and expect that any prudent parametrization of a deployed
system (e.g., the choice of committee size) would be done based on
upper bounds of the failure probability.

5.3 Results

Our results for Ethereum, Cardano and Solana are presented in
Figures 1, 8, and 9, respectively. More concretely, each of these fig-
ures depicts an upper bound on the failure probability Ef’e [F] for

F € {lID, FA1"®} and EiE[wFA“D] for values of n € {1,...,1000}
and € = 0.1, with S being the stake distribution of the respective
blockchain (Ethereum, Cardano, or Solana) as described in Sec-
tion 5.1, and the bounds are obtained as outlined in Section 5.2.
To maintain a scale that allows for comparison of all considered
methods, we only display data points from the interval 278, 1].

Algorand and local sortition. Algorand natively uses committee
selection as a critical part of its consensus algorithm, employing lo-
cal (so-called private) sortition to provide adaptive security. Despite
the smaller population size, we hence choose Algorand to showcase
the local-sortition variant of our algorithm FA1. In Figure 12 we de-
pict upper bounds (as detailed in Section 5.2) on the failure probabil-
ity of LS and FA1LS, again for valuesof n € {1,...,1000} and € = 0.1.
As the failure probability of LS vanishes relatively slowly with in-
creasing n, Algorand uses committees of sizes n € {500, ..., 6000}
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Figure 12: Algorand stake distribution, € = 0.1.
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Figure 13: Fraction of stake assigned in step (1) of FA1''D
applied to the Cardano stake distribution (individual pools
vs. aggregated).

for various tasks within the protocol, depending on their critical-
ity.  As Figure 12 illustrates, replacing LS by FA1'S would lead to
comparable security levels with significantly smaller committees.
However, note that the Algorand implementation of LS uses party
aggregation [9] as described in Section 4.2, providing substantial
efficiency savings in their concrete setting with |P| < n* (using
notation from Section 4.2). Interestingly, note that in such a setting
one could also use a trivial weighted-committee scheme replicat-
ing the full stake distribution and achieving zero error; this is also
achieved by our weighted scheme wFA for n > 42 as Figure 12 also
illustrates.

Specifics of Cardano stake distribution; aggregation by owner. The
error plot for FA1"P based on the Cardano stake distribution (in
Fig. 8) looks distinctly different from the cases of Ethereum and
Solana, as FA1 brings no advantage over the plain [ID method up to
almost n = 400. The reason for this is that Cardano has an incentive

6See https://github.com/algorand/go-algorand/blob/master/config/consensus.go#L818.
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Figure 14: Cardano stake distribution (aggregated by pool
owner), € = 0.1.

mechanism built into its reward-sharing scheme” that incentivizes
stakeholders not to delegate to pools which already have roughly
1/400 = 0.25% of stake delegated to them, as a measure to prevent
centralization. Entities controlling more than this amount of stake
typically resort to running several pools.

As a result, very few pools have more than 0.25% of stake dele-
gated to them, and hence FA1 has very little to no effect for values
of n < 400. We visualize this in Figure 13 which illustrates that
FA1 does not assign almost any committee seats “deterministically”
until n ~ 400.

To account for this point, we also provide an alternative plot
for Cardano in Figure 14, where we use best-effort heuristics to
aggregate pools that appear to have the same owner (based on
metadata provided about the pool by its operator). This illustrates
that if a reliable way to perform such aggregation existed within
the ecosystem, this would significantly improve the performance
of our schemes.
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A LARGE DEVIATION BOUNDS

THEOREM A.1 (THE HOEFFDING BOUND). Let Xi,...,X;, be a
family of independent random variables taking values in {0, 1}. Let
S =i Xi —E[X;]. Then for any A > 0,

Pr[S > A] < exp(—2A%/n).

THEOREM A.2 (POISSON TAIL BOUND [15]). Let P be a Poisson-
distributed random variable with parameter A. Then for any x > A,

x,—A
pr[p > x] < M7
xx

and for any x < A

x,=A
Pr[P < x] < % .

THEOREM A.3 (HOEFFDING’S INEQUALITY, VARIANCE-DEPENDENT
VERSION; [10, (2.8)]). Let X1, ...,Xp be independent random vari-
ables with zero mean and finite variance such that X; < 1 (al-
most surely). Let v = (1/n) ZiE[XiZ] and S = }; X;. Then for any
0<e<1,

Pr[S > en] < ((l+ S) "1 _6)_11%5)" .
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