
1

Ransomware data recovery techniques

Irimia Alexandru-Vasile

Faculty of Computer Science, Alexandru Ioan Cuza University of Iasi,

Email: alexviirimia@gmail.com

Abstract

This article presents and explains methodologies that can be employed to recover information from

encrypted files generated by ransomware based on cryptanalytic techniques. By using cryptanalysis

and related knowledge as much as possible, the methodology's goal is to use static and dynamic

analysis as little as possible. We present three case studies that illustrate different approaches that can

be used to recover the encrypted data.

Keywords: cryptanalysis; ransomware; stolen information; encrypted data

1. Introduction

Nowadays, malware attacks are becoming more and more frequent to disrupt services, steal sensitive

information, block access to data and much more. In this article we will be talking about ransomware, a

certain type of malware that threatens its victims to destroy or block access to data or systems until a

ransom is paid.

Many companies, as well as individuals, are affected annually by this type of malware. According to [1],

in 2019, a new company was infected with ransomware every 14 seconds. The cost of these infections

is also high, as a ransom pay for a small business is on average $5,900 (see [3]), but it can be as high

as $50 million, the highest demand in history that Acer was requested in 2021 (see [4]). Most of the

time it is less costly to not pay the ransom, as seen in [2], in 2020 the average ransom pay was

$1,450,000, while the cost to recover from the attack without paying the ransom was $732,000. Even

mailto:alexviirimia@gmail.com

2

by paying the ransom, victims do not get all their data back. As seen in [2], files get corrupted in the

decryption process and only recover around 65 percent of data due to technical faults in the

ransomware itself. On the bright side, businesses affected by ransomware retrieved their data in 57

percent of cases utilizing backups. A further 8 percent of people recovered their data using other

methods. This results in a 97 percent data recovery rate when combined with the 32 percent who

actually paid the ransom (see [2]).

Ransomwares take various form, the most common being:

• Crypto ransomware or encryptors are the most well-known and the most damaging. They

encrypt files and data within a system, then ask the victim to pay a ransom to recover them.

• Lockers block computer functions such as being able to use your mouse and keyboard, or not

being able to access the desktop, making the computer inoperable until the ransom demands

are met.

• Scareware is fake software that claims to have detected an issue on the victim’s computer or a

virus and demands payment to solve those problems. Some of these malwares lock the

computer or flood the screen with pop-up alerts.

• Doxware\Leakware threatens to distribute sensitive or personal information online.

• Raas (Ransomware as a service) is a variant that is anonymously hosted by a “professional”

hacker that handles all aspects of the attack in return for a cut of the ransom.

In this article we will be talking about crypto ransomware and methodologies used to recover the

encrypted data based on cryptanalytic and reverse engineering techniques.

2. History of ransomware

The first ransomware was AIDS Trojan (see [5]), also known as PC Cyborg, created in 1989 by

Joseph Popp and was distributed to 20,000 attendees at the 1989 World Health Organization AIDS

conference, hence the name. The malware was distributed over a floppy disk, so it relied only on

researchers' interest about what was on the disk, not on any kind of exploit. There was a questionnaire

regarding AIDS on the floppy disk. The application was installed by researchers, and everything worked

as intended on their computers up to the 90th restart. The ransomware would encrypt the victim's

filenames, but not the contents of the files. It would also demand $189 in licensing fees for the PC

Cyborg Software, which were to be paid by cashier's check or international money order and sent to a

Panama P.O. Box, but later a decryptor called CLEARAID was developed that would restore the files

without paying the ransom.

3

Figure 1. AIDS Trojan ransom note

More than a decade later, in 2004, wave of ransomware infections starts taking place, beginning with

GPCoder identified by Symantec as a Trojan that in its September 2005 Internet Security Threat

Report “encrypts data files such as documents, spreadsheets, and database files on the compromised

computer,” although it was not labeled as ransomware. A note demanding $200 as ransom would be

left in each directory. The next year, the Archiveus Trojan tried a slightly different strategy in 2006.

Only the files in the "My Documents" folder would be encrypted. Victims had to purchase decryption

software from certain websites to access their files. It is fascinating to observe how much of the note

from the Archiveus Trojan has been directly appropriated by modern ransomware, including the

following passage:

“Do not try to search for a program that encrypted your information—it simply does not exist in

your hard disk anymore. System backup will not help you to restore files. Reporting to police

about a case will not help you, they do not know the password. Reporting somewhere about

our email account will not help you to restore files. Moreover, you and other people will lose

contact with us, and consequently, all the encrypted information."

Many other ransomwares would appear in waves from that point onward, that would try different

approaches to encrypt data and make its recovery more difficult, sometimes even managing to make it

virtually impossible. As time passes, more and more ransomware variants are appearing and the

damage costs they produce keep increasing. According to [1] and [9], in 2015 ransomware cost the

world $325 million, in 2021 around $20 billion and it is expected to rise to $265 billion by 2031.

4

3. Proposed methodology

The analysis of the file holding the encrypted stolen data is the first stage in the suggested approach,

the phases of which are shown in Figure 2. This may be done by simply opening it in a hexadecimal

editor to see if it is a text file or if there were any patterns that would suggest the file is a binary one, a

method of encoding, such as Base64, Radix-64, or something else. Once this verification receives a

favorable result, one should go on to the data decoding. Repeat this procedure until it is impossible to

recognize an output that contains encoded data.

Compression of the data can be used to determine its amount of redundancy, which can be used to

determine whether a traditional (or weak) cryptographic procedure is being employed. A good

encryption system should provide random-looking results, which indicates that compression should

result in a larger file, instead of a smaller one. This is because compression relies on a small number of

items appearing more frequently than others, which should not happen in a random stream when

considering a sample of appropriate size because each element typically appears around the same

number of times. Making a histogram of the file contents and looking for an uneven distribution of the

data is another method to verify this.

The cryptanalysis of a traditional algorithm may be done using a variety of methods. One may use

frequency analysis, which is based on certain facts, for basic substitution ciphers: in the ciphertext,

plaintext symbol frequencies are preserved, and each language has a unique symbol frequency

distribution. Given these details, the concept is straightforward by exchanging similar-frequency

characters from one alphabet for another. Language statistics, specifically those pertaining to the

frequency of digraphs and trigraphs, can also be used to crack transposition ciphers. Another idea

could be the usage of the frequency of diagrams and trigrams in the given language. One can use

Kasiski's [10] approach, which considers that a repeating sequence of symbols produces the same

ciphertext when encrypted with the same key locations, in the case of polyalphabetic mechanisms. This

determination of the key length k, which is sufficient to limit the original issue to the cryptanalysis of k

mono-alphabetic ciphers, is made possible by this observation. As an alternative, the index of

coincidence [10], which gauges the relative frequency of symbols in the ciphertext, can be used to

determine the period of the polyalphabetic cipher.

Typically, the encryption algorithm that produced a specific ciphertext should not be identifiable.

However, by looking at the encrypted data, one can at least attempt to gather some information about

the type of cipher that was used. One way to do that is by searching for known structures that might be

used in different ciphers. For instance, PC1 and PC2 matrices are often defined by DES [10]

implementations to be used in the key scheduling procedure, or the forward or inverse S-Boxes

matrices definitions, which are already in place, if we use AES [10] as another example. From here the

key can be found by looking at the code referencing that data. Another way to find the key would be

looking for it in the binary of the data. Hiding sensitive information in the source code is surely a

vulnerability, but malware creators usually do that. If this fails, Shamir’s technique [7] can be used,

which considers the entropy of a securely generated key. The idea is to look through a fixed-size

window for an area that has the greatest entropy by scanning the entire binary.

5

Figure 2. Proposed methodology (see [6])

6

4. Case studies

4.1. First Malware

The malware presented in this part only uses classical cryptography, therefore, to recover the original

data we only need to examine the output file. The name of this malware is systen.exe because this is

the name of the file found on its victim’s computer.

Figure 3. Encrypted sample of “system.exe”

As was already mentioned, one of the fundamental principles of a good encryption algorithm is that its

output should appear random, meaning that there should be no patterns in the ciphertext. The

encrypted file in this section does not comply with this requirement, which can be seen by the repeated

appearances of "ROBINHOOD". The histogram shown in Figure 3 clearly demonstrates a non-uniform

distribution, with values concentrated between 100 and 200. The histogram in Figure 4 may also be

used to visually identify the problem.

Now that we have established that a classic cryptographic scheme is used, we need to find out which

one. The first thing that might come to mind is that a constant number modulo 256 is being added to

each byte. We can check this, but it will not produce any meaningful output. By looking at the repeating

text “ROBINHOOD”, we see that it appears 198 (0xC6) bytes from the beginning of the file and 225

bytes after the first appearance, on position 0x195. Both 198 and 225 are divisible by 9, the length of

the text. This might mean that a Vigenère cipher [10] over an alphabet of 256 elements is used as the

encryption algorithm. From now on we can use different methods to break this cipher such as the

Kasisky method to find the key length, frequency tables or any other method described in [11]. For our

case, it is enough to guess the key by looking at the ciphertext. The text “ROBINHOOD” looks like a

good candidate for it since it is very possible that it was added to a series of null bytes from the original

text. Testing this theory, we obtain the result shown in Figure 5.

7

Figure 4. Histogram of byte values for the encrypted file

Figure 5. Decrypting the sample with key “ROBINHOOD”

8

4.2 Second Malware

The second malware is called TorrentLocker, also known as Crypt0L0cker [13]. It is a

ransomware tool that encrypts files and targets all versions of Windows, including Windows XP,

Windows Vista, Windows 7, and Windows 8 and it was released towards the end of August 2014. After

encryption, a ransom note like the one in Figure 6 will pop up on the victim’s machine. Starting at

roughly $550 USD, the ransom increases after about three days. Each infected user has a different

bitcoin address to which the ransom must be paid.

Figure 6. TorrentLocker ransom note

By just looking at the note we are not able to tell how the files are encrypted since it does not tell us anything

about it. The encrypted files suggest that a strong encryption algorithm is being used such as AES, DES etc.,

because of the randomness of the text (Figure 7).

9

Figure 7. TorrentLocker encrypted file sample and byte distribution

The only option we have now is to look through the binaries of the malware to try to find out how the

encryption is done. If we look at the strings found throughout the binary, we can see references to the

encryption process. The most valuable information we can extract from this is

“tomcrypt\nodes\ctr\ctr_encrypt.c” which is a cryptographic toolkit. The name of the path suggests the use of

AES in CTR mode.

Figure 8. Strings found in the malware binaries

Figure 10. AES CTR mode encryption (see [14])

10

We can notice another important thing if we look at other encrypted files. As seen in Figure 9, multiple files

seem to start with the same sequence of bytes. This might be because the encryption uses the same key and

nonce to encrypt all the files and the files shown in Figure 10 might be a certain type of files such as executables,

images, or anything else that has a certain format.

Figure 10. TorrentLocker encrypted samples

If we look at the encryption algorithm described in Figure 9, we can see a vulnerability in the

implementation of the ransomware: since the same key and nonce is being used, the algorithm will

output the same keystream at every encryption, therefore, we can use the following algorithm to

decrypt out files without even knowing the key:

A' = ENCRYPT(A) //the encrypted file
B = large plaintext of NULL bytes (size(B)>size(A))
B' = ENCRYPT(B)

KEYSTREAM = B XOR B'

return A' XOR KEYSTREAM

If we follow the described algorithm, we can encrypt out plaintext full of null bytes using the

ransomware itself and obtain the following result:

Figure 11. Decrypted file

11

4.3 Third malware

The third malware is called portsys.exe because this is the name of the file this malware is found on

the victim’s device. In Figure 12 we have a sample encrypted by this ransomware. At first glance it

seems that the file is Base64 encoded. If we decode it, we obtain the result from Figure 13 which

seems to be encrypted using a strong encryption algorithm.

Figure 12. Sample encrypted by portsys.exe

Figure 13. File after Base64 decoding

12

If we inspect the binaries of the malware, we cannot see anything useful regarding how the file was encrypted.

We could try to reverse engineer the file, but this will take some time. What we can do is try and find different

constants strong encryption algorithms use such as S-box matrices from AES.

After many searches, we can see the PC1 and PC2 matrices used in DES encryption algorithm as seen in Figure

14.

Figure 14. PC1 matrix found in malware binaries

Figure 15. DES matrices extracted from [10]

The next step would be to find the encryption key. Since the PC1 matrix was found hardcoded in the source code

of the malware, we might believe that the key is also hardcoded somewhere inside the binaries. As already

mentioned, the key should be randomly generated. Starting from this information, an idea that comes to mind is

to search for blocks of memory with high entropy. We can identify the locations of the keys by just looking at the

data in some suitable way because most of the data in programs have some organization, whereas we anticipate

seeing very little structure in key data.

We can find a key by breaking the data into smaller portions, measuring the entropy of each portion, and

displaying the areas with very high entropy because we know that key data has more entropy than non-key

data. Although obtaining a true measure of entropy is a difficult task, most program code has an entropy level

that makes counting the unique bytes in each block a particularly good and simple measurement for entropy.

After making some tests, we found that the entropy values for the majority of programs is similar to the one in

Figure 16 when taking block of 64 bytes.

13

Figure 16. Entropy of the majority of binaries

As we can see, most blocks have around 30-40 unique byte values. By applying this method on our malware

sample, we found 23 high entropy blocks, some of them being the blocks that contain PC1 and PC2 matrix, the

other containing other forms of random data. By trying to decrypt the sample using different possible keys in

these blocks, we found out key that correctly decrypts our file: 0xb34aa010811eb173.

5. Conclusions

In this post, we discussed a method for extracting data from malware-generated encrypted files with the

least amount of work necessary. Most of the methods employed to achieve that goal rely on

cryptanalysis rather than static and dynamic reverse engineering.

However, it should be noted that if cryptography is employed correctly in situations like the ones

described above, it is impossible to succeed without having access to a memory dump of the real-world

setting. A malware program that creates session keys to encrypt the stolen data and transfers it all

together while being secured by a public key cryptosystem is one example. There isn't much that can

be done to recover the original data if the criminal is the only one who has the private key. That would

require the task of obtaining the data encryption key via cracking a well-known asymmetric

cryptosystem.

14

References

[1] CV-HG-2019-Official-Annual-Cybercrime-Report.pdf (herjavecgroup.com)

[2] sophos-state-of-ransomware-2021-wp.pdf

[3] Datto2019_StateOfTheChannel_RansomwareReport.pdf

[4] The State of Ransomware in 2021 | BlackFog

[5] The History of Ransomware? Understand | Prevent | Recover

[6] “A Methodology for Retrieving Information from Malware Encrypted Output Files: Brazilian Case

Studies”, Future Internet 2013, 5, 140-167; doi:10.3390/fi5020140, Rua Dr. Ricardo Benetton Martins

[7] “Playing hide and seek with stored keys”, Adi Shamir and Nicko van Someren September 22, 1998

[8] Preparation_Instruction (mecs-press.org)

[9] Global Ransomware Damage Costs Predicted To Exceed $265 Billion By 2031

(cybersecurityventures.com)

[10] Menezes, A.; van Oorschot, P.; Vanstone, S. Handbook of Applied Cryptography, 5th ed.; CRC

Press: Boca Raton, FL, USA, 2001

[11] Five-ways-to-crack-a-Vigenere-cipher.pdf (cipherchallenge.org)

[12] https://www.virustotal.com/gui/

[13] https://www.welivesecurity.com/wp-content/uploads/2014/12/torrent_locker.pdf

[14] https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_(CTR)

https://www.herjavecgroup.com/wp-content/uploads/2018/12/CV-HG-2019-Official-Annual-Cybercrime-Report.pdf
https://assets.sophos.com/X24WTUEQ/at/k4qjqs73jk9256hffhqsmf/sophos-state-of-ransomware-2021-wp.pdf?cmp=120469
https://www.datto.com/resource-downloads/Datto2019_StateOfTheChannel_RansomwareReport.pdf
https://www.blackfog.com/the-state-of-ransomware-in-2021/
https://ransomware.org/what-is-ransomware/the-history-of-ransomware/#evolution-of-ransomware
https://www.mecs-press.org/ijitcs/ijitcs-v10-n1/IJITCS-V10-N1-5.pdf
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/
https://www.cipherchallenge.org/wp-content/uploads/2020/12/Five-ways-to-crack-a-Vigenere-cipher.pdf
https://www.virustotal.com/gui/
https://www.welivesecurity.com/wp-content/uploads/2014/12/torrent_locker.pdf

