
Post-Quantum Single Secret Leader Election (SSLE)
From Publicly Re-randomizable Commitments

Dan Boneh, Aditi Partap, and Lior Rotem

Stanford University
{dabo,aditi712,lrotem}@cs.stanford.edu

Abstract

A Single Secret Leader Election (SSLE) enables a group of parties to randomly choose exactly one
leader from the group with the restriction that the identity of the leader will be known to the chosen
leader and nobody else. At a later time, the elected leader should be able to publicly reveal her identity
and prove that she is the elected leader. The election process itself should work properly even if many
registered users are passive and do not send any messages. SSLE is used to strengthen the security of
proof-of-stake consensus protocols by ensuring that the identity of the block proposer remains unknown
until the proposer publishes a block. Boneh, Eskandarian, Hanzlik, and Greco (AFT’20) defined the
concept of an SSLE and gave several constructions. Their most efficient construction is based on the
difficulty of the Decision Diffie-Hellman problem in a cyclic group.

In this work we construct the first efficient SSLE protocols based on the standard Learning With
Errors (LWE) problem on integer lattices, as well as the Ring-LWE problem. Both are believed to
be post-quantum secure. Our constructions generalize the paradigm of Boneh et al. by introducing
the concept of a re-randomizable commitment (RRC). We then construct several post-quantum RRC
schemes from lattice assumptions and prove the security of the derived SSLE protocols. Constructing a
lattice-based RRC scheme is non-trivial, and may be of independent interest.

1 Introduction

Leader election is a core component of many consensus protocols used in practice. In proof-of-work systems
such as [51], the identity of the leader remains hidden until the moment that the leader publishes a proposed
block. In contrast, in many proof-of-stake systems, the identity of the leader is known in advance, long
before the leader publishes a proposed block. This opens up the leader to certain attacks, including denial of
service, that may prevent the chosen leader from publishing the newly created block. This in turn, can lead
to a liveness failure for the chain.

In response, several works have studied secret leader election, where the identity of a randomly chosen
leader remains secret until she publishes the new block and reveals herself as the leader [45, 40, 9]. Some
works [9, 38, 11] even keep the identity of the leader hidden after the new block is published. The added
secrecy protects the leader from attacks that may prevent her from publishing the new block. However,
existing proposals for secret leader election work by electing a few potential leaders in expectation, and
describing a run-off procedure so that exactly one of the potential leaders is recognized as the final leader
once all potential leaders have revealed themselves. The possibility of several potential leaders, however,
can lead to wasted effort and may even cause a safety violation in case of an attack on the run-off procedure.

1

This issue motivates the need for a different type of leader election protocol, called a Single Secret
Leader Election, or SSLE [24] (see also [30]). An SSLE protocol is comprised of two phases.

• In the first phase, parties may register to participate in leader elections. This step involves publishing
some public information on a public bulletin board, while keeping some secret information associated
with it private.

• In the second phase, elections are held using a protocol that is executed by the participating parties.
The election protocol uses a randomness beacon and the public information on the bulletin to choose
a leader among the parties. At a later time, the leader can declare themselves as such by providing a
proof that they were selected as the leader.

Informally, an SSLE protocol needs to satisfy three security properties. Uniqueness asserts that at most a
single party can prove that they were elected as leader. Fairness requires that all participating parties have
the same probability of being elected as leader, even if some parties are malicious. Unpredictability means
that until the leader reveals itself, its identity should remain essentially hidden from the other parties, even
if a subset of them colludes. It was recently shown that relying on SSLE leads to more efficient consensus
protocols than relying on a secret leader election protocol that elects few leaders in expectation [8].

The concept of SSLE was formalized by Boneh, Eskandarian, Hanzlik, and Greco [24] who also pre-
sented a number of constructions. Their most efficient construction is based on the Decision Diffie-Hellman
problem (DDH) in cyclic groups. We refer to this SSLE protocol as the BEHG protocol. The Ethereum
Foundation optimized BEHG to obtain Whisk [44], which is the current proposal for SSLE to be used in
Ethereum consensus. Since then, additional works have suggested alternative SSLE constructions with var-
ious security and efficiency tradeoffs (see, for example, [34, 59, 27, 10, 28, 36]).

Due to the potential long-term risk of a large scale quantum computer [60] there is a desire to also
develop a post-quantum secure SSLE. One approach, already in [24], is an SSLE protocol based on fully
homomorphic encryption (FHE). A further optimized FHE-based construction was recently proposed by
Freitas et al. [36]. However, the complexity of these proposals is far greater than the simple DDH-based
scheme. Another elegant approach to post-quantum SSLE was proposed by Sanso [59], who showed how
to adapt Whisk to use an isogeny-based assumption, which is believed to be post-quantum secure. Finally,
Drake [34] proposed an SSLE protocol that can be made post-quantum secure, but the proposal inherently
relies on the availability of an anonymous broadcast channel (e.g., ToR).

Our results. In this paper we construct the first practical post-quantum SSLE protocols based on the
Learning With Errors (LWE) problem [57] and Ring-LWE problem [50]. We do so by generalizing the
BEHG protocol using a new concept we call a re-randomizable commitment (RRC). We show that an RRC
together with a shuffle protocol gives an SSLE. We then construct a number of RRC schemes from lattices.
The next section gives a detailed overview of the construction and explains the technical challenges in
building an RRC from lattices.

1.1 Technical Overview

We briefly sketch the main ideas behind our construction. We begin with an abstract view of the BEHG pro-
tocol. Then, we present the notion of re-randomizable commitments (RRC) used by this protocol. Finally,
we present our new lattice-based post-quantum RRCs for instantiating the abstract BEHG protocol.

2

The BEHG approach. The BEHG protocol employs a commit-and-shuffle approach. The following is a
generalized and abstract view of the protocol.

• When party i registers for elections, it chooses some secret key ki, computes a commitment ci to ki,
and publishes ci. We will define what is needed of this commitment in a minute. To avoid duplicity
of secrets, each party also publishes a deterministic hash of ki.

• At election time, participating parties run a protocol to shuffle and rerandomize the commitments.
For simplicity of presentation in this overview, let us assume that the shuffle protocol works as fol-
lows: in each round, one of the parties locally permutes the entire list of commitments and then
rerandomizes each of the commitments. It then publishes the new list of commitments, and proves in
zero-knowledge that this new list is well-formed (i.e., it is obtained from the previous list by permut-
ing and rerandomizing the commitments). Once the shuffle protocol is done, the parties obtain a list of
commitments c̃1, . . . , c̃N , where each c̃i is a rerandomization of cπ(i) for some unknown permutation
π on {1, . . . , N}. They then let the randomness beacon choose an index i∗ ←$ {1, . . . , N}, and party
j∗ = π(i∗) is the chosen leader. In due time, party j∗ can prove that it was elected by publishing kj∗

and the other parties can check this value against the commitment c̃i∗ .

Re-randomizable commitments. We identify several properties that the commitment scheme being used
must satisfy for the resulting SSLE protocol to be correct and secure. First, the commitments have to be
re-randomizable in a very specific sense. Given a commitment c to some value k, one should be able to re-
randomize c without knowledge of k or the randomness used to generate c. Moreover, given a value k and a
(potentially re-randomized) commitment c̃, one should be able to efficiently test whether c̃ is a commitment
to k. In particular, this test should not require the randomness used for re-randomization. In the BEHG
protocol, this means that the original committer to c̃i∗ can: (i) recognize itself as the winner of the elections
(by checking if c̃i∗ is a commitment to kj∗); and (ii) prove that it won by publishing kj∗ .

The commitment scheme should also satisfy the standard notion of binding. This means that it should
be infeasible to produce a commitment c alongside two distinct values k and k′, such that c passes both as a
commitment to k and as a commitment to k′. In the context of the BEHG protocol, this means that there is
only a single party that can prove ownership of the chosen commitment c̃i∗ by publishing kj∗ .

Finally, commitments should also be unlinkable. This means that given two commitments c0 and c1 to
two random values, and a re-randomization c̃ for one of them, it should be infeasible to determine if c̃ is
a re-randomization of c0 or of c1. This is essential for the BEHG protocol to achieve unpredictability: an
adversary should not be able to link the chosen commitment c̃i∗ to the original commitment cj∗ and therefore
identify party j∗ as the leader. Looking ahead, the use of re-randomizable commitments in the generalized
BEHG SSLE protocol actually requires a stronger notion of unlinkability. We postpone the discussion on
this matter and will revisit it shortly.

The DDH-based construction of re-randomizable commitments (RRCs) suggested by BEHG is as fol-
lows. Let G be a cyclic group of order p generated by g ∈ G. A commitment c to a random value k ←$ Zp

is a pair (gr, grk) where r ←$ Zp. To check if a commitment c = (c1, c2) is a consistent with a value k, once
can simply check if c2 = ck1 . To re-randomize, one chooses a random r′ ←$ Zp and outputs c̃ = (cr

′
1 , c

r′
2).

The scheme is perfectly binding, and unlinkability easily follows from the DDH assumption.
It should be noted that previous works also considered other variants of re-randomizable commitments

(see, for example, [5, 29]). However, in these works, opening a re-randomized commitment requires knowl-
edge of the randomness used for re-randomization (or a function thereof). Such commitments are much
simpler to construct, and indeed, many long-standing algebraic and lattice-based constructions can be easily

3

re-randomized according to this weaker definition. Unfortunately, as discussed above, such commitments
are insufficient for instantiating the BEHG protocol.

RRCs from LWE: A first attempt. Consider the following (flawed) RRC scheme. The secret key space
is Zn

q , where q is a prime and n ≈ λ is the LWE hardness parameter. To commit to a random k ∈ Zn
q the

Commit algorithm samples a uniformly random A←$ Zm×n
q and outputs (A,u) = (A,A ·k+ e), where e

is an LWE noise vector and m > n. To test whether a key k is tied to a commitment c = (A,u), we can
check whether A · k is close (say, in Euclidean distance) to u. We accept k if this is the case and reject
otherwise. If A is chosen randomly and m ≈ n log n (A is a “tall” matrix), a standard argument shows that
with high probability over the choice of A, there are no k,k′ and u such that A · k ≈ u and A · k′ ≈ u.

To re-randomize, the rerandomization algorithm samples a low-norm m-by-m matrix R and computes
c′ = (A′,u′) = (R ·A,R ·u). Since R is of low norm Re may only be slightly longer than e. Hence, Re
is also short and we have

A′ · k = R ·A · k ≈ R ·A · k +R · e ≈ R · u = u′.

The noise does grow a bit with each re-randomization, which is why the scheme only supports a bounded
number of re-randomizations (the LWE parameters can be chosen according to the number of re-randomizations
required by the SSLE shuffle protocol). In terms of unlinkability, note that assuming LWE is hard, a fresh
commitment c = (A,u) is just a pseudorandom matrix-vector pair. Moreover, if m is sufficiently greater
than n and each row of R has high min-entropy, the leftover hash lemma [39, 43] shows that c′ is also
pseudorandom, which implies that the scheme is unlinkable.

The problem. Unfortunately, the above analysis is flawed. It is true that the scheme is binding when the
matrix A is chosen uniformly at random from Zm×n

q . But since A is part of the commitment c, the adversary
may choose it from some other skewed distribution, thus breaking the binding argument. This is not just
an issue of reworking the proof. The scheme is in fact insecure: fix any k and k′ and it is easy to come up
with a matrix A for which A · k ≈ A · k′. To fix this issue, one might be tempted to choose the matrix
A as part of the public parameters, or to force committers to choose A as the output of a hash function
modeled as a random oracle. Indeed, this would make the scheme binding, but then it becomes unclear how
to re-randomize the commitments.

The key observation. Let us revisit the naive “proof” of binding for the above construction. If A is
indeed chosen uniformly at random, then with overwhelming probability there are no k and k′ such that
A · k ≈ A · k′. In particular, this would suggest that for random A, k and k′ it holds that A · k and
A · k′ are almost surely far apart. Put differently, for a uniform k and k′, there are very few matrices A
for which Ak ≈ Ak′. So what if instead of choosing a single k, we make the Commit algorithm sample
the commitment key k as a pair (k1,k2) of independent and uniformly-random vectors? One could expect
that for two such random pairs (k1,k2) and (k′1,k

′
2), the set of matrices A for which A · k1 ≈ A · k′1 and

A · k2 ≈ A · k′2 is even smaller. Indeed, we show that for ℓ ≈ n, if one samples two ℓ-tuples (k1, . . . ,kℓ)
and (k′1, . . . ,k

′
ℓ) of vectors uniformly at random, then with very high probability a matrix A for which

A · ki ≈ A · k′i for every i simply does not exist.
Alas, the proposed commitment scheme is binding for keys that are random tuples of vectors, but the

binding security game allows the adversary to choose the “colliding” keys (k1, . . . ,kℓ) and (k′1, . . . ,k
′
ℓ)

as it pleases — they need not be uniformly random. On the face of it, it might seem that we are back to
square one. Fortunately, this is not the case. The final observation is that for this construction, we can make

4

the commitment algorithm choose the vectors k1, . . . ,kℓ as the output of a cryptographic hash function H,
without hampering re-randomization. That is, to commit, one samples a matrix A and a key k ←$ {0, 1}λ,
computes k1, . . . ,kℓ ← H(k) and outputs the commitment c ← (A, {A · ki + ei}i) where all the eis are
independent LWE noise vectors. To test a key k against a commitment c = (A, {ui}i), the Test algorithm
simply recomputes k1, . . . ,kℓ from k and checks that A · ki ≈ ui for every i = 1, . . . , ℓ.

Adversarial re-randomizations. The construction that we just saw indeed satisfies the notion of unlink-
ability sketched above. Unfortunately, as we already mentioned, this notion is insufficient for the resulting
SSLE protocol to achieve unpredictability. This reason is this: unlinkability only guarantees that if honestly-
generated commitments c1, . . . , cn are honestly re-randomized and shuffled, an adversary cannot trace the
re-randomized commitments to the original ones. In the SSLE protocol above, an honest re-randomization
might follow an adversarial one. So we need to require unlinkability of commitments even after adversarial
re-randomizations. We call this strong unlinkability.

In the DDH-based construction of BEHG, strong unlinkability comes “for free”. Unfortunately, this is
not the case with our LWE-based RRC scheme. For example, consider an adversary that given a commitment
c = (A, {A · ki + ei}i), finds a matrix R such that R ·A has short columns. The adversary then uses this
R to re-randomize c into c̃← (R ·A, {R ·A ·ki+ei}i). Now, even if we honestly re-randomize c̃, we will
almost surely end up with a commitment ĉ whose first coordinate is still a short-columns matrix. Hence, the
adversary can easily trace ĉ back to c.

We present several methods to thwart such attacks. In this overview, we focus on what we view as the
simplest and most practical one. Ahead of time, all parties commit to the matrices R1,R2, . . . they are
going to use for re-randomization using a standard additively homomorphic commitment scheme. When a
party now has to carry out its ith re-randomization, it does so using the matrix Ri +R′i, where R′i is a low
norm matrix outputted by a public randomness beacon. Such a beacon can be external or implemented in
various standard ways. Using the homomorphic properties of the commitment scheme, everyone can now
compute a commitment to Ri + R′i. The re-randomizer can hence prove that this is the matrix it used.
Informally, since Ri was committed to ahead of time, it is independent of R′i. Hence, the re-randomizer
is forced to use a high-entropy matrix for re-randomization, which guarantees the resulting commitment is
from the appropriate distribution. Since Ri is always hidden, Ri+R′i has high min-entropy even given R′i,
and we can still rely on the leftover hash lemma to argue that subsequent honest re-randomizations provide
unlinkability.

Extending the scheme to Ring LWE. We extend our LWE-based RRC scheme to the ring setting, relying
on the Ring Learning with Errors (Ring-LWE) assumption. As we discuss in Section 5 in detail, moving
to the ring setting offers several gains in efficiency. Specifically, we work in a polynomial ring R mod-
ulo a cyclotomic polynomial f , which factors into a constant number of irreducible polynomials over Zq.
Concretely, we choose q = 3 mod 8 so that f has exactly two irreducible factors f1, f2 over Zq (but other
choices are possible).

The construction follows the same template as our LWE-based construction, but the matrix A is now
replaced with a vector of ring elements. To commit, one samples a ←$ Rm

q , and a key k ←$ {0, 1}λ,
computes ℓ ring elements as k1, . . . , kℓ ← H(k) and the commitment is given by c ← (a, {a · ki + ei}i)
where all eis are independent RLWE noise vectors in Rm

q . Re-randomization is done by sampling a low-
norm matrix R←$ Rm×m, and computing c′ = (R ·a, {R ·ui}i). To test a commitment c = (a,u) against
a key k, one computes k1, . . . , kℓ ← H(k) and check that a · ki ≈ ui for all i. Correctness and unlinkability
are proven similarly to the integer case, with one exception: instead of relying on the leftover hash lemma,

5

we rely on the regularity lemma of [61].
Two main observations make our ring-based scheme more efficient than our integer-based one:

• We can choose ℓ to be smaller than in the integer case, and still make the binding argument go through.
Intuitively, the reason is that each entry of a · ki is now a polynomial in the ringR and not an integer.
Thus, we may hope that it has more than log q bits of min-entropy (roughly the entropy of a random
integer in Zq). If this is indeed the case, then the probability that a · k ≈ a · k′, over the choice of
random a, k, k′, is much smaller than the probability that aT · k ≈ aT · k′ in the integer case for
random a,k,k′ ←$ Zn

q . This would imply that we can choose ℓ to be smaller, resulting in smaller
commitments. To argue that a · ki indeed has high min-entropy, we rely on the particular structure of
the ringR. If k ̸= k′, it means that the polynomials must be distinct modulo f1 or modulo f2. Assume
with loss of generality that they are distinct modulo f1. Since f1 is irreducible mod q, a · (k − k′) is
uniformly random in Zq[x]/f1, and hence it has at least ≈ deg(f1) · log q bits of min entropy. This
analysis is inspired by the statistically-binding commitments of Benhamouda, Krenn, Lyubashevsky,
and Pietrzak [21].

• The second observation is that our use of the leftover hash lemma in the LWE setting incurred an
overhead that can be avoided in the Ring LWE setting. To explain this point, we need to revisit
our LWE unlinkability argument in more detail. Recall that we wanted to argue that if we have a
commitment c = (A,U) and we re-randomize it to c′ = (R ·A,R ·U), then the commitment c′ we
end up with is pseudorandom. The first step was to argue that c is pseudorandom, thanks to the LWE
assumption. This step remains essentially unchanged here, relying on the Ring-LWE assumption
instead. The second step was to rely on the leftover has lemma; this step required each row of R
to have more than Ω((n + ℓ) · log q) bits of min-entropy. This implied that m had to be set to be
at least (n + ℓ) · log q. In the ring setting, however, since each coordinate of R can have Ω(n) bits
of min-entropy, m can be reduced to roughly log q. This results in much “shorter” matrices A,U
making up the commitment.

Reducing communication. Catalano, Fiore, and Giuta [28] observed that when instantiating the BEHG
protocol with a DDH-based RRC of the form c = (gr, grk), the commitments of all parties can share the
same first coordinate h = gr, which is part of the public parameters. Then, to re-randomize N commitments
(hr, grk1 , . . . , grkN), a shuffler can sample a single r′ ←$ Zq and raise all the elements to the r′. This
optimization cuts storage and communication by about half. It is tempting to implement this optimization
using our lattice-based commitments; have all commitments share the first coordinate A (or a in the ring
setting) and use a single re-randomization matrix R to re-randomize all commitments. The problem is that
to retain unlinkability, the dimensions of R need to grow as a function of the number of commitments N ,
which may eliminate the gains of sharing A across all commitments. We discuss this further in Section 7
where we consider settings where this can still lead to some savings.

Post-quantum proof of shuffle. Recall that in the BEHG protocol, after each shuffle, the shuffling party
has to prove that it indeed performed a valid shuffle; that is, it applied the Randomize algorithm of the RRC
scheme to each commitment and then permuted the resulting commitments. This can be done by using any
general-purpose non-interactive argument of knowledge, proving that the shuffler knows random coins for
Randomize and a permutation that together yield the resulting list of re-randomized commitments (for such
argument systems based on post-quantum secure assumptions, see for example [20, 18, 19, 4, 23, 41, 12, 6,
49, 2, 53] and the references therein).

6

When using our RLWE-based RRC commitments, we also show how we can change the recent lattice-
based proof-of-shuffle protocol of [31] to work with our commitments. This is a simple protocol that may
provide better concrete efficiency. This is discussed in more detail in Section 8.

2 Preliminaries

In this section, we present the basic notions and cryptographic primitives that are used in this work. For
an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by x←$X the
process of sampling a value x from the distribution X . Similarly, for a set X , we denote by x←$X the
process of sampling a value x from the uniform distribution over X . For a pair X,Y of distributions
defined over the same domain Ω, we denote by SD(X,Y) the statistical distance between them, defined as
SD(X,Y) = 1

2

∑
ω∈Ω |Pr [X = ω]− Pr [Y = ω]|.

We denote matrices by boldface capital letters, e.g. A, and vectors in boldface lower-case letters, e.g.
v. We may use a non-bold capital letter, e.g. A or V , to describe a matrix or a vector, when we wish to
emphasize that this matrix or vector is being treated as a random variable. As standard, we identify Zq

for a prime q with the set (−q/2, . . . , q/2], and we define the absolute value of an element x ∈ Zq as
|x| = {min |y| : y ∈ Z, y = x (mod q)}.

For n, p ∈ N where p is prime, we define the rings R = Z[x]/f(x) and Rp = R/⟨p⟩, where f(x) is
monic and of degree n. That is, Rp is the ring of polynomials modulo f(x) with integer coefficients in Zp.
We define the norm of elements in these rings to be the norm of their coefficient vector in Zn, which is also
called the coefficient embedding. For any g(x) =

∑
i∈0∪[n−1] αix

i ∈ R, we use coeff(g) to denote the
vector {α0, . . . , αn−1}, i.e. the coefficient embedding of g(x), and the norm is defined as follows:

||g||1 =
∑

αi ||g||2 = (
∑

α2
i)

1/2 ||g||∞ = max|αi|

For a vector v overR, we define ||v|| = (
∑

i ||vi||2)1/2.

2.1 Lattice Assumption

The paper makes use of two basic and standard lattice-based assumptions, the learning with errors (LWE)
assumption and the short integer solution (SIS) assumption, both of which over integer lattices. We briefly
recall these assumptions here. For a more detailed survey of these assumptions and their hardness, see, for
example, [54] and the many references therein.

The LWE assumption. We rely on the following formulation of the learning with errors (LWE) problem,
introduced by Regev [58]. The problem is parameterized by a prime modulus q, a vector length n which
typically corresponds to the security parameter λ, and a noise distribution χ. For our needs, the important
thing is that χ is highly concentrated on low-norm vectors such that with overwhelming probability ∥x∥2 ≤
δ for x←$ χ for some δ = δ(λ) (one typically takes χ to be a discrete Gaussian with appropriate parameters)

Definition 2.1. Let q = q(λ) be a prime, n = n(λ) be an integer, and χ = χ(λ) be a distribution over Zq,
all public functions of the security parameter λ ∈ N. The (q, n, χ)-LWE assumption states that for every
probabilistic polynomial time algorithm A and for all polynomially-bounded functions m = m(λ) there
exists a negligible function ν(·) such that

AdvlweA (λ) := |Pr [A(A,A · s+ e) = 1]− Pr [A(A,v) = 1]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where A←$ Zm×n
q , s←$ Zn

q , e←$ χm, and v ←$ Zm
q .

7

2.2 Ring Lattice Assumption

We will also use the ring-based variant of the LWE assumption, introduced by [50].

The RLWE assumption. This problem is also parameterized by the prime modulus q, degree of the
modulus polynomial n, and a noise distribution χ. We focus on a special case of the Ring-LWE problem
where f(x) = xn + 1, and n is a power of two. Similar to LWE, χ is highly concentrated on low-norm
polynomials such that with overwhelming probability ||x||2 ≤ δ for x←$χ for some δ = δ(λ). χ is usually
taken to be a discrete gaussian in the coefficient embedding ofR.

Definition 2.2. Let q = q(λ) be a prime, n = n(λ) be an integer, and χ = χ(λ) be a distribution over R,
all public functions of the security parameter λ ∈ N. The (q, n, χ)-RLWE assumption states that for every
probabilistic polynomial time algorithm A and for all polynomially-bounded functions m = m(λ), there
exists a negligible function ν(·) such that

AdvrlweA (λ) := |Pr [A(a, b) = 1]− Pr [A(a,v) = 1]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where a ←$ Rm
q , s ←$ Rq, e ←$ χm, bi = ai · s + ei ∀ i ∈ [m], and

v ←$ Rm
q .

2.3 Randomness Extraction

We will use the following lemma from the work of Gentry, Peikert, and Vaikuntanathan [39]. The lemma
follows from the leftover hash lemma [43].

Lemma 2.1 ([39, 43]). Let q be a prime and let m,n be integers. Let R,A and B be random variables
distributed uniformly in {−1, 1}m×m, Zm×n

q , and Zm×n
q , respectively. Then, it holds that

SD ((A,R ·A) , (A,B)) ≤ m

2
·
√
2−m+n log q.

When working over polynomial rings, we will not be able to use the leftover hash lemma. Instead, we
will use the regularity lemma defined over rings [61].

Lemma 2.2 (Generalization of Theorem 3.2, [61]). Let F be a finite field and f ∈ F[x] be monic and of
degree n > 0. Let R be the ring F[x]/f and m > 0. For every i, j ∈ [m] and k ∈ [n], let Di,j,k ⊆ F, with
|Di,j,k| = d. Let A,B be random variables distributed uniformly in Rm×ℓ. Let R ∈ Rm×m be a matrix
of polynomials, wherein the kth coefficient of Ri,j is chosen uniformly randomly and independently from
Di,j,k, for all i, j ∈ [m] and k ∈ [n]. Then, it holds that,

SD ((A,RA) , (A,B)) ≤ m

2

√√√√√∏
i∈[t]

(
1 +

(
|F|
dm

)deg(fi)
)ℓ

− 1

where f =
∏

i∈[t] fi is the factorization of f over F[x], and deg(fi) is the degree of the polynomial fi.

Specifically, we will choose F = Zq and Di,j,k = {−1, 1} ∀ i, j ∈ [m], k ∈ [n].
We will also rely on the following definition for the norm of a matrix and a related lemma from Agrawal,

Boneh, and Boyen [1] (a similar lemma appears in [3]), which states that a random Bernoulli matrix has low
norm with overwhelming probability.

8

Definition 2.3. Let R be an m ×m matrix over Z. Let Bm := {x ∈ Rm : ∥x∥2 = 1} be the unit ball in
Rm. Define the norm of the matrix R ∈ Zm×m as

∥R∥ := max
x∈Bm

∥R · x∥2 .

The norm for a matrix in Rm×m
q is defined similarly. The following two lemmas bound the norm of

random matrices where all entries are sampled i.i.d. from a distribution concentrated around 0.

Lemma 2.3 ([1, 3]). Let q be a prime and let m be an integer. Let R be a random variable uniformly
sampled from {−1, 1}m×m. Then, there is a universal constant C > 0 such that

Pr
[
∥R∥ ≥ C ·

√
m
]
< e−2m.

Lemma 2.4. Let q be a prime and let m,n be integers. Let R ∈ Rm×m
q be a random variable, such that for

all i, j ∈ [m], the coefficient vector of Ri,j is sampled uniformly at random from {−1, 1}n. Then,

Pr
[
∥R∥ ≥ m

√
mn · ω(

√
logn)

]
< negl(n)

Proof. Consider any vector u ∈ Rm
q such that ∥u∥2 = 1. We first look at Ri,j · uj for some i, j ∈ [m].

As observed in [46], the coefficient embedding of Ri,j ·uj can be written as the multiplication of coeff(uj)
with a nega-circulant matrix whose entries are derived from the coefficients of Ri,j . Specifically, we have,

coeff(Ri,j · uj) =


coeff(Ri,j)0 −coeff(Ri,j)n−1 . . . −coeff(Ri,j)1
coeff(Ri,j)1 coeff(Ri,j)0 . . . −coeff(Ri,j)2

...
...

...
...

coeff(Ri,j)n−1 coeff(Ri,j)n−2 . . . coeff(Ri,j)0

 coeff(uj)

Without loss of generality, let us consider the last coefficient of the product, i.e. coeff(Ri,j · uj)n−1 =∑n−1
k=0 coeff(Ri,j)n−1−k · coeff(uj)k. Since each coefficient of Ri,j is sampled uniformly randomly from

{−1, 1}, this sum can be re-written as
∑n−1

k=0 xk, where xk = coeff(Ri,j)n−1−k ·coeff(uj)k. Since E(xk) =
0 and xk ∈ {coeff(uj)k,−coeff(uj)k} for all k, applying the Hoeffding bound (similar to Lemma 16 proof
in [1]), we get:

Pr
[
coeff(Ri,j · uj)n−1 > ∥coeff(uj)∥ · ω(

√
log n)

]
< negl(n)

Next, we note that ∥u∥ = 1 implies that ∥uj∥ ≤ 1 for all j. Hence, each coefficient of Ri,j · uj is
bounded by ω(

√
log n) with high probability. This implies that , for all i, j ∈ {0, . . . ,m− 1},

Pr
[
∥Ri,j · uj∥ >

√
n · ω(

√
log n)

]
< negl(n) (1)

since a vector whose entries are all less than some bound B, has L2 norm less than
√
nB.

We now want to show that

Pr

m−1∑
j=0

Ri,juj > m
√
n · ω(

√
log n)

 < negl(n) (2)

This follows directly by combining Eq. 1 with the fact that ∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥.
Eq. 2 gives us a bound on the norm of every element in Ru. The lemma now follows since a vector

whose entries are all bounded by B = m
√
n · ω(

√
log n) with high probability, has L2 norm less than√

mB.

9

3 Re-randomizable Commitments

Informally, a re-randomizable commitment (RRC, for short) is a scheme that allows one to commit to ran-
dom keys.1 Moreover, an RRC scheme supports re-randomizations of commitments: given a commitment
c to a key k, one should be able to re-randomize to commitment to produce a new commitment c′ for k.
Importantly, knowledge of c suffices for such re-randomization, and no additional secrets are needed. In
particular, the re-randomizing entity is not required to know the key k nor the randomness used to create c.

We first present the syntax for RRC schemes and the associated correctness requirement. Then, we
discuss two security notions that such schemes should satisfy.

3.1 Syntax & Correctness

An RRC scheme R is a tuple of four algorithms:

• Setup(1λ)→ pp: outputs public parameters pp,

• Commit(pp)→ (c, k): outputs a commitment string c and a key k,

• Randomize(pp, c)→ c′: randomize the commitment,

• Test(pp, c, k)→ {0, 1}: outputs 1 if k is a valid key for c.

The first three are probabilistic polynomial time (PPT) and the fourth is deterministic polynomial time.
In terms of correctness, we require that Test(pp, c, k) outputs 1 for (c, k) outputted by Commit(pp).

Moreover, Test(pp, c′, k) should output 1 if c′ was obtained from c via at most B consecutive rerandom-
izations, where B is a parameter. We call this correctness requirement B-randomizability. If a scheme is
B-randomizable for all B, we call it fully randomizable.

Definition 3.1. An RRC scheme is B-randomizable if there exists a negligible function ν(·) such that the
following holds for every λ ∈ N:
let pp←$ Setup(1λ), (c0, k)←$ Commit(pp), and ci ←$ Randomize(pp, ci−1) for i = 1, 2, . . ., then

Pr
[
Test(pp, ci, k) = 1 for i = 0, 1, 2, . . . , B

]
≥ 1− ν(λ).

An RRC scheme that is B-randomizable for all B ∈ N is said to be fully randomizable.

For the notion of RRC schemes to be non-trivial, we require that the key k generated by Commit to have
high min-entropy.

Definition 3.2. An RRC scheme is B-randomizable is non-trivial if there exists a negligible function ν(·)
such that the following holds for every λ ∈ N: let pp ←$ Setup(1λ), (c0, k0) ←$ Commit(pp) and
(c1, k1)←$ Commit(pp), then

Pr [k0 = k1] ≤ ν(λ).

3.2 Notions of Security

An RRC scheme should satisfy two security properties: Binding and Unlinkability.
1Committing to random keys is sufficient for the main application we consider, which is SSLE protocols. Observe, however,

that such a scheme can be easily converted into a scheme that allows one to commit to arbitrary messages via a one-time pad.

10

Game GA,R(λ,B)

1 : b←$ {0, 1}
2 : pp←$ R.Setup(1λ)

3 : (c0, k0)←$ R.Commit(pp), (c1, k1)←$ R.Commit(pp)

4 : (state, i0, i1)←$ A(pp, c0, c1)

5 : if (i0 > B) OR (i1 > B) : abort

6 : if (i0 = 0) OR (i1 = 0) : abort

7 : c← cb

8 : for t in {1, . . . , ib} : c←$ R.Randomize(pp, c)

9 : b′ ←$ A(c, state)
10 : return b = b′

Figure 1: The security game for an adversary A attacking the unlinkability of an RRC scheme R

Binding. Similarly to standard commitment schemes, we require that a commitment can be tied to at most
one key.

Definition 3.3. An RRC scheme is perfectly binding if for every λ ∈ N and for all c, k, k′ we have

Prpp←$ Setup(1λ)
[
k ̸= k′ AND Test(pp, c, k) = Test(pp, c, k′) = 1

]
= 0. (3)

Condition (3) ensures that a commitment c will never be accepted by two distinct keys. As we will later
discuss, this is satisfied by the previous DDH-based construction of Boneh et al. [24]. For our lattice-based
construction, we need to weaken this condition a bit and only require that (3) holds computationally. This
leads to the following definition.

Definition 3.4. We say that an RRC scheme is computationally binding if for all PPTadversaries A the
following function is negligible.

Pr

[
k ̸= k′ AND Test(pp, c, k) = Test(pp, c, k′) = 1 :

pp←$ Setup(1λ)
(c, k, k′)←$ A(pp)

]
(4)

Unlinkability. An RRC scheme R is unlinkable if a PPT adversary is unable to distinguish the i-th re-
randomization of a commitment c0 from the j-th re-randomization of another commitment c1. This is
captured in the security game GA,R(λ,B) in Figure 1. As usual, we define the adversary’s advantage in this
game as

AdvrrcA,R,B(λ) :=
∣∣2Pr[GA,R(λ,B) = 1]− 1

∣∣.
Definition 3.5. A B-randomizable RRC scheme is unlinkable if for all PPTadversaries A the function
AdvrrcA,R,B(λ) is negligible.

We make two remarks on the unlinkability definition:

11

• Looking ahead, for some applications, we might want the scheme to remain unlinkable even if adver-
sarial re-randomizations were applied to it at some point. We present such a definition in Section 6.
We also discuss ways to augment our basic LWE-based and Ring-LWE-based constructions to ac-
commodate this stronger security definition. Since the stronger unlinkability definition is much more
complicated than the one in Fig. 1, we first focus on this weaker notion.

• An unlinkable RRC scheme is, in particular, hiding. Meaning, that a commitment c leaks no infor-
mation (in a computational sense) regarding the committed key k. Intuitively, an adversary that can
distinguish between a commitment to a key k and a commitment to a different key k′ can trivially link
a commitment c to either a commitment c0 to k0 or to a commitment c1 to k1 by outputting the bit b
such that c is a commitment to kb.

3.3 An RRC scheme based on DDH

Equipped with the above definitions, we can briefly recall the DDH-based RRC scheme used in [24]. The
scheme, called Rddh, is defined by:

• Setup(1λ): choose a finite cyclic group G with generator g ∈ G and output pp := (G, g).

• Commit(pp): choose random u←$ G and k ←$ Zq, set c← (u, uk), and output (c, k).

• Randomize(pp, c): parse c = (u, v), choose a random ρ←$ Zq, and output c′ := (uρ, vρ).

• Test(pp, c, k): parse c = (u, v) and output 1 iff uk = v, otherwise output 0.

Theorem 3.1 ([24]). If the DDH assumption holds in G then Rddh is a perfectly-binding, unlinkable, and
fully randomizable RRC.

The fact that the scheme is fully randomizable and perfectly binding is easy to observe. The proof
of unlinkability is a direct application of DDH. In the next section, we construct an RRC scheme that is
post-quantum secure based on the LWE assumption.

4 A Construction from Learning with Errors

In this section, we present a construction of an RRC scheme from the LWE assumption [58] (see Section 2).
An informal overview of the construction is presented in Section 1.1.

4.1 The Construction

Our construction of an RRC scheme from LWE, denoted Rlwe is presented in Fig. 2. The construction is
parameterized by an integer B, which serves as a bound on the number of rerandomizations that can be
applied to a commitment. In the construction, we use ∆ to denote (C ·

√
m)B · δ, where m is a parameter of

the scheme determined by the analysis (think of m = O(λ)), C is the universal constant from Lemma 2.3
and δ is a bound on the ℓ2 norm of the LWE noise vectors used in the construction.

12

• Setup(1λ):

1 : Let n := λ, choose a prime q, and choose m = m(n, q) and ℓ = ℓ(n, q).
// we will explain how to choose m and ℓ in the analysis

2 : Let χ be the LWE noise distribution over Zq .

// if e←$ χm, and we lift e to Zm, then with high probability, ∥e∥2 ≤ δ for some δ ≪ q

3 : return pp← (λ, q, n,m, ℓ, χ)

• Commit(pp):

1 : A←$ Zm×n
q // choose a random matrix A

2 : k ←$ {0, 1}1
λ

// choose a random λ-bit string

3 : V ← H(k) ∈ Zn×ℓ
q // hash k to an n-by-ℓ matrix

4 : sample E ∈ Zm×ℓ
q from the LWE noise distribution χm×ℓ

// then for each column e of E, ∥e∥2 ≤ δ w.h.p when e is lifted to Zm

5 : U ← A · V +E ∈ Zm×ℓ
q

6 : c← (A,U)

7 : return (c, k)

• Randomize(pp, c): parse c = (A,U) and do

1 : sample a random matrix R←$ {−1, 1}m×m // R is a low-norm matrix

2 : c′ ← (R ·A, R ·U) ∈ Zm×n
q × Zm×ℓ

q

3 : return c′

• Test(pp, c, k): parse c = (A,U) and do

1 : V ← A · H(k)−U ∈ Zm×ℓ
q

2 : return 1 iff for each column v of V , ∥v∥2 ≤ ∆ when v is lifted to Zm

Otherwise, return 0

Figure 2: Rlwe – A B-randomizable RRC scheme based on the learning with errors (LWE) problem

13

Correctness. First, note that prior to any randomization being preformed, for an honestly-generated com-
mitment c = (A,U) it holds that A · H(k)−U is equal to the noise matrix E sampled according to χm×ℓ

during the generation of the commitment. Hence, the matrix computed by the Test algorithm is simply
E, and each of its columns has norm at most δ. Now, after t ≤ B applications of Randomize to c using
matrices R1, . . . ,Rt, the commitment we get is of the form

(Rt · · ·R1 ·A,Rt · · ·R1 ·U) = (Rt · · ·R1 ·A,Rt · · ·R1 ·A · H(k) +Rt · · ·R1 ·E).

Hence, the matrix computed by the Test algorithm is E′ = Rt · · ·R1 · E. Since R1, . . . ,Rt are sampled
independently from {−1, 1}m×m, Lemma 2.3 guarantees that with overwhelming probability, each column
of E′ has norm at most (C ·

√
m)

t · δ ≤ (C ·
√
m)

B · δ = ∆.

4.2 Binding

Theorem 4.1. The above scheme is computationally binding when H is modeled as a random oracle. Con-
cretely, for every adversary A making at most Q queries to H it holds that

Pr

[
k ̸= k′ AND

Test(pp, c, k) = Test(pp, c, k′) = 1
:

pp←$ Setup(1λ)
(c, k, k′)←$ A(pp)

]
≤ Q2 · qn ·

(
4∆ + 1

q

)ℓ

The proof of Theorem 4.1 makes use of the following lemma.

Lemma 4.2. For all positive integers n,m, ℓ ∈ Z, prime q, and bound β < q it holds that

Pr
[
∃A ∈ Zm×n

q \ {0} s.t. ∀i ∈ [ℓ], ∥A · vi∥2 ≤ β
]
≤ qn ·

(
2β + 1

q

)ℓ

where the probability is taken over v1, . . . ,vℓ ←$ Zn
q .

Proof. Fix integers n,m and ℓ, a prime q, and a bound β < q. We first prove that for every non-zero vector
a ∈ Zn

q it holds that

Pr
[
∀i ∈ [ℓ], |aT · vi| ≤ β

]
≤
(
2β + 1

q

)ℓ

(5)

where the probability is taken over v1, . . . ,vℓ ←$ Zn
q . Fix a non-zero vector a ∈ Zn

q . For every i ∈ [ℓ], the
scalar aT ·vi is uniformly distributed in Zq. In particular the probability that aT ·vi ∈ {−⌈β⌉, . . . , 0, . . . , ⌊β⌋}
is at most (2β + 1)/q. Eq. (5) then follows from the fact that v1, . . . ,vℓ are statistically independent, and
hence so are the events

{∣∣aT · vi
∣∣ ≤ β

}
i
.

Taking a union bound over all vectors a ∈ Zn
q , we observe that

Pr
[
∃a ∈ Zn

q \ {0} s.t. ∀i ∈ [ℓ], |aT · vi| ≤ β
]
≤ qn ·

(
2β + 1

q

)ℓ

. (6)

We now wish to argue that

Pr
[
∃A ∈ Zm×n

q \ {0} s.t. ∀i ∈ [ℓ], ∥A · vi∥∞ ≤ β
]
≤ qn ·

(
2β + 1

q

)ℓ

. (7)

To see why that is, fix a non-zero matrix A ∈ Zm×n
q . Since A is non-zero, it has at least one non-zero

row. Let aT denote the first such row. If for some i ∈ [ℓ] it holds that |aT · vi| > β then ∥A · vi∥∞ > β.

14

Hence, the event {∀i ∈ [ℓ], ∥A · vi∥∞ ≤ β} is contained in the the event
{
∀i ∈ [ℓ], |aT · vi| ≤ β

}
. Since

this holds for every A ∈ Zm×n
q , the event

{
∃A ∈ Zm×n

q s.t. ∀i ∈ [ℓ], ∥A · vi∥∞ ≤ β
}

is contained in the
event

{
∃a ∈ Zn

q s.t. ∀i ∈ [ℓ], |aT · vi| ≤ β
}

. Hence, Eq. (7) follows from Eq. (6).
Finally, ∥x∥2 ≥ ∥x∥∞ for all x, Eq. (7) implies in particular that

Pr
[
∃A ∈ Zm×n

q s.t. ∀i ∈ [ℓ], ∥A · vi∥2 ≤ β
]
≤ qn ·

(
2β + 1

q

)ℓ

. (8)

This concludes the proof of the lemma.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let A be an adversary making at most Q queries to the random oracle. Assume
without loss of generality that allA’s queries to H are distinct and that before outputting a triple of the form
(c, k, k′), A queries the oracle on k and k′. Fix a pair (k, k′) ∈ {0, 1}λ × {0, 1}λ such that k ̸= k′. We
wish to bound the probability that there exists a c = (A,U) such that Test(pp, c, k) = Test(pp, c, k′) = 1.
Recall that this event is defined as all columns of A ·H(k)−U and of A ·H(k′)−U having ℓ2-norm at most
∆. By the triangle inequality, this implies that all columns of A · (H(k) − H(k′)) = A · H(k) −A · H(k)
have norm at most 2∆.

For every k, k′ ∈ {0, 1}λ, consider the matrix Vk,k′ = H(k) − H(k′). Since H is modeled as a random
oracle, Vk,k′ is uniformly distributed in Zn×ℓ

q . Hence, by Lemma 4.2, the probability that there exists a non-

zero matrix A such that the columns of A ·Vk,k′ all have ℓ2-norm at most 2∆ is bounded by qn ·
(
4∆+1

q

)ℓ
.

Taking a union bound over all pairs of queries (k, k′) made by A to H we obtain that the probability that
there is a pair k, k′ of distinct queries to H for which there exists a non-zero matrix A ∈ Zm×n

q such that the

columns of A · Vk,k′ are all shorter than 2∆, is bounded by Q2 · qn ·
(
4∆+1

q

)ℓ
. In particular, this implies

that

Pr

[
∃k, k′ ∈ Spp s.t.

k ̸= k′ AND
∃c = (A,U) s.t. Test(pp, c, k) = Test(pp, c, k′) = 1

]
≤ Q2 · qn ·

(
4∆ + 1

q

)ℓ

where Spp is the random variable corresponding to the set of all A’s queries to H on input pp, and the
probability is taken over pp← Setup(1λ), the random coins of A, and the random choice of H.

Since we assumed that A queries H on the k, k′ that it outputs, this concludes the proof of Theorem 4.1.

4.3 Unlinkability

Theorem 4.3. The above construction is unlinkable, assuming the learning with errors assumption. In
particular, for every PPT adversaryAmaking at most Q = Q(λ) queries to H, there exists a PPT adversary
B such that for all λ ∈ N it holds that:

AdvrrcA,RLWE,B
(λ) ≤ 2Q

2λ −Q
+ 2ℓ · AdvlweB (λ) +

B ·m
2
·
√

2−m+(n+ℓ)·log q.

Proof. Let A be a probabilistic polynomial-time algorithm, and let G0 denote the original security game
from Fig. 1. Consider a modified game G1 obtained from G0 as follows. For each i ∈ {0, 1}, instead of
setting ci as in G0 (that is, ci ← (Ai,Ai ·H(ki)+Ei)), the challenger sets ci ← (Ai,Ui) = (Ai,Ai ·Vi+

15

Ei) where Vi is sampled uniformly at random from Zn×ℓ
q independently of ki. For a game G, we denote by

GA(λ) the random variable corresponding to the output of G ran with A on security parameter 1λ. With
this notation, the following claim shows that moving from G0 to G1 should not noticeably increase the
winning chances of A.

Claim 4.4. For all λ ∈ N it holds that

Pr [G0,A(λ) = 1] ≤ Pr [G1,A(λ) = 1] +
2Q

2λ −Q
.

Proof. For j ∈ {0, 1} let badj denote the event in which the adversaryA queries H on either k0 or k1 in Gj .
Note that the view of A in G0 conditioned on the complementing event bad0 is distributed identically to
A’s view in G1 conditioned on bad1. Hence, Pr [bad0] = Pr [bad1] (where the probability on the left-hand
side is over the random choices of A and the challenger in G0, and the probability on the right-hand side is
over the random choices of A and the challenger in G1). Moreover,

Pr [G0,A(λ) = 1] ≤ Pr
[
G0,A(λ) = 1

∣∣bad0]+ Pr [bad0]

= Pr
[
G1,A(λ) = 1

∣∣bad1]+ Pr [bad1]

= Pr [G1,A(λ) = 1] + Pr [bad1] (9)

≤ Pr [G1,A(λ) = 1] +
2Q

2λ −Q
. (10)

Eq. (9) above follows from the fact that the view of A in G1 is independent of the choice k0, k1. Hence, the
event in which G1,A(λ) = 1 is independent of the event bad1. Eq. 10 follows from the fact that as long asA
has not queried k0 or k1, the two values are uniformly distributed in {0, 1}λ conditioned on A’s view.

Now consider the game G2 which is obtained from G1 by the following modification. For each i ∈
{0, 1}, the challenger now sets ci ← (Ai,Ui) where Ui is sampled uniformly at random from Zm×ℓ

q (instead
of being computed as Ui ← Ai · Vi +Ei as in G1).

Claim 4.5. There exists a PPT adversary B such that for all λ ∈ N it holds that

Pr [G1,A(λ) = 1] ≤ Pr [G2,A(λ) = 1] + 2ℓ · AdvlweB (λ).

Proof. The proof is by a hybrid argument. Consider a sequence of games G1,i for i = 0, . . . , ℓ. For each
i ∈ {0, . . . , ℓ}, the game G1,i is obtained from G1 by sampling the first ℓ − i columns of U0 according to
U0 ← A0 · V0 +E0, but sampling the remaining i columns of U0 uniformly at random.

Consider two consecutive games G1,i and G1,i+1. We claim that there exists a probabilistic polynomial-
time algorithm Bi such that Pr [G1,i,A(λ) = 1] ≤ Pr [G1,i+1,A(λ) = 1] + AdvlweBi (λ). The algorithm Bi
receives an LWE instance (A,u) and decides on its output as follows. It invokes A and simulates to it
either G1,i,A(λ) or G1,i+1,A(λ). It uses A to generate to commitment c0: It samples V ←$ Zn×(ℓ−i)

q and
E ←$ χm×(ℓ−i), and computes U ′0 ← A · V + E; the result will serve as the left ℓ − i columns of U0.
It then samples U ′′0 ←$ Zm×(i−1)

q ; the result will serve as the right i − 1 columns of U0. Finally, it sets
U0 ← [U ′0,u,U

′′
0] and c0 ← (A,U0). Then, Bi samples c1 honestly, and passes the LWE parameters and

the commitments c0 and c1 to A. When A outputs integers i0 and i1, B samples a random bit b ←$ {0, 1}
and computes the randomized commitment c by iteratively applying the Randomize algorithm ib times to
cb. Finally, when A outputs a bit b′, Bi outputs 1 iff b′ = b.

16

Observe that if u given as input to Bi is a noisy product of the form A ·s+e, then Bi perfectly simulates
G1,i to A. If u is a truly random vector, then Bi perfectly simulates G1,i+1 to A. Hence,

Pr [G1,i,A(λ) = 1]− Pr [G1,i+1,A(λ) = 1] = Pr [Bi(A,A · s+ e)]− Pr [Bi(A,u)]

≤ |Pr [Bi(A,A · s+ e)]− Pr [Bi(A,u)]|
= AdvlweBi (λ).

Now consider a sequence of games G1,i for i = ℓ+ 1, . . . , 2ℓ. For each i ∈ {ℓ+ 1, . . . , 2ℓ}, the game
G1,i is obtained from G1,ℓ by sampling the first 2ℓ − i columns of U1 according to U1 ← A1 · V1 + E1,
but sampling the remaining i− ℓ columns of U1 uniformly at random. A similar argument to the one above
shows that for every two consecutive games G1,i and G1,i+1 (for i ∈ {ℓ + 1, . . . , 2ℓ − 1}) there exists an
adversary Bi such that Pr [G1,i,A(λ) = 1] ≤ Pr [G1,i+1,A(λ) = 1] + AdvlweBi (λ).

Observe that G1,0 = G1 and G1,2ℓ = G2. Therefore, we have that

Pr [G1,A(λ) = 1]− Pr [G2,A(λ) = 1] ≤
2ℓ−1∑
i=0

AdvlweBi (λ). (11)

Let B be the LWE algorithm that samples a random i∗ ←$ {0, . . . , 2ℓ − 1} and invokes Bi∗ to decide on its
output. For this algorithm it holds that

Pr [G1,A(λ) = 1] ≤ Pr [G2,A(λ) = 1] + 2ℓ · AdvlweB (λ).

This concludes the proof of the claim.

Finally, consider a final game G3 obtained from G2 by sampling the randomized commitment c that is
returned to the adversary in line 9 as a pair of uniformly random matrices. That is, c ← (A′,U ′) where
A′←$Zm×n

q and U ′←$Zm×ℓ
q .

Claim 4.6. For all λ ∈ N it holds that

Pr [G2,A(λ) = 1] ≤ Pr [G3,A(λ) = 1] +B · m
2
·
√

2−m+(n+ℓ)·log q.

Proof. Consider a sequence of games G2,i for i = 0, . . . , B. Each G2,i is obtained from G2 by replacing
the output of the first j calls to Randomize with a pair of uniformly random matrices (Ab,Ub)←$ Zm×n

q ×
Zm×ℓ
q . By Lemma 2.1, it holds that Pr [G2,i,A(λ) = 1] − Pr [G2,i+1,A(λ) = 1] ≤ m

2 ·
√
2−m+(n+ℓ)·log q.

Noting that G2,0 and G2,B = G3, and summing over all calls to Randomize, we have that

Pr [G2,A(λ) = 1]− Pr [G3,A(λ) = 1] =

B−1∑
i=0

Pr [G2,i,A(λ) = 1]− Pr [G2,i+1,A(λ) = 1]

≤ B · m
2
·
√

2−m+(n+ℓ)·log q,

concluding the proof of the claim.

The theorem is then proven by combining all the claims and noting that the final randomized com-
mitment c in G3 is independent of the bit b. Hence, the view of A is independent of b and therefore
Pr [G3,A(λ)] = 1/2.

17

5 A Construction from Ring LWE

In this section we present our RRC construction from the Ring LWE assumption [50] (see Section 2). Our
construction, denoted Rrlwe is presented in Fig. 3. The construction works in a polynomial ringR modulo a
cyclotomic polynomial f that has exactly two irreducible factors f1, f2 over Zq.

Improvements over RLWE. Compared to the integer-based scheme, the ring-based scheme accommodates
more efficient parameter choices. For concreteness, the ensuing discussion focuses on the regime in which
q = Ω(∆2). In this regime, for the ring-based scheme to be binding, we only need ℓ to be Ω(log(q)+λ/n),
where λ is the security parameter. This is a factor of Ω(n) smaller than the LWE case. Secondly, m only
needs to be of order Ω(log(q) + (ℓ+ κ)/n) where κ is a statistical security parameter (we want the re-
randomized commitments to be distributed 1/2κ close to a uniform distribution). This also turns out to be a
factor of Ω(n) smaller than the integer case. Combining these together, each ring-based RRC commitment
and each re-randomization matrix is Ω(n)-times smaller than the integer-based commitment and matrix,
respectively (this already takes into account the fact that representing each ring element takes n-times the
representation length of a Zq element).

We now prove the correctness, binding, and unlinkability for our ring-based RRC scheme.

Correctness. We first note that, prior to any rerandomization, for an honestly generated commitment
c = (a,U), it holds that U − a · H(k)T is equal to the noise matrix E sampled at the generation of the
commitments. Hence, the matrix V computed by the Test algorithm is just E, and each of its columns has
norm at most δ, since E was sampled according to χm×ℓ. Now, after t ≤ B applications of Randomize to
the commitment c using matrices R1, . . . ,Rt, the commitment we get is of the form

(Rt · · ·R1 · a,Rt · · ·R1 ·U) = (Rt · · ·R1 · a,Rt · · ·R1 · a · H(k)T +Rt · · ·R1 ·E).

Hence, the matrix computed by the Test algorithm is E′ = Rt · · ·R1 ·E. Lemma 2.4 guarantees that with
a high probability, each column of E′ has norm at most

(m
√
mn · ω(

√
log n))t · δ ≤ (m

√
mn · ω(

√
log n))B · δ = ∆

where ∆ is an upper bound on the expression δ · (m
√
mn · ω(

√
log n))B .

5.1 Binding

Theorem 5.1. The above scheme is computationally binding when H is modeled as a random oracle. Con-
cretely, for every adversary A making at most Q queries to H it holds that

Pr

[
k ̸= k′ AND

Test(pp, c, k) = Test(pp, c, k′) = 1
:

pp←$ Setup(1λ)
(c, k, k′)←$ A(pp)

]
≤ Q2 · qn ·

(
4∆ + 1
√
q

)nℓ

The proof of Theorem 5.1 makes use of the following lemma.

Lemma 5.2. For every integer n, ℓ,m ∈ Z, prime q, and bound β < q it holds that

Pr
[
∃a ∈ Rm

q \ {0} s.t. ∀i ∈ [ℓ], ∥a · vi∥2 ≤ β
]
≤ qn · (2β + 1)nℓ

qnℓ/2

where the probability is taken over v ←$ Rℓ
q.

18

• Setup(1λ):

1 : Let n := 2r where r = r(λ), and let f(x) = xn + 1 andR = Z[x]/f(x).
Choose a prime q and letRq = Zq[x]/f(x).

// r, q are chosen such that f factors into two irreducible polynomials over Zq

2 : Let m = m(n, q) and ℓ = ℓ(n, q).
// we will explain how to choose m and ℓ in the analysis

3 : Let χ be the RLWE noise distribution overRq .

// if we sample a vector e←$ χm, then with high probability, ∥e∥2 ≤ δ for some δ ≪ q

4 : return pp← (λ, q, n,m, ℓ, χ)

• Commit(pp):

1 : a←$ Rm
q // choose a random vector a

2 : k ←$ {0, 1}λ // choose a random 1λ-bit string

3 : v ← H(k) ∈ Rℓ
q // hash k to a vector of length ℓ

4 : Sample E ∈ Rm×ℓ
q from the RLWE noise distribution χm×ℓ

// then for each column e of E, ∥e∥2 ≤ δ w.h.p

5 : U ← a · vT +E ∈ Rm×ℓ
q

6 : c← (a,U)

7 : return (c, k)

• Randomize(pp, c): parse c = (a,U) and do

1 : Sample R ∈ Rm×m:
∀i, j ∈ [m], sample the coefficients of Ri,j uniformly and independently from {−1, 1}

// R is a low-norm matrix

2 : c′ ← (R · a, R ·U) ∈ Rm
q ×Rm×ℓ

q

3 : return c′

• Test(pp, c, k): parse c = (a,U) and do

1 : V ← U − a · H(k)T ∈ Rm×ℓ
q

2 : return 1 iff for each column v of V , ∥v∥2 ≤ ∆, and return 0 otherwise

Figure 3: Rrlwe – A B-randomizable RRC scheme based on the learning with errors over rings (RLWE)
problem

19

Proof. Fix integers n, ℓ and a bound β < q. Let f1, f2 denote the two irreducible polynomials of degree
n/2 such that f = f1 · f2. Then, as stated in [21], for any non-zero a ∈ Rq, either a ̸= 0 mod f1(x) or
a ̸= 0 mod f2(x). Without loss of generality, let us assume that a ̸= 0 mod f1(x).

Claim 5.3. For any non-zero a ∈ Rq such that a ̸= 0 mod f1, and any vi that is chosen uniformly randomly
fromRq, avi mod f1 is uniformly random in Zq[x]/f1.

Proof. For any b ∈ Zq[x]/f1(x), let Ab = {v ∈ Rq : av = b mod f1}. Note that the probability that
avi = b mod f1 (over the random choice of vi) equals |Ab|/qn.

Let b = av mod f1 for an arbitrary v. We claim that |Ab| = |A0|. Observe that v′ ∈ Ab if and only if
v′ − v ∈ A0. Since v′ → v′ − v is a bijection between Ab and A0, it follows that |Ab| = |A0|. This proves
that all b ∈ Zq[x]/f1 have the same probability, thus proving the claim.

Next, consider an arbitrary e ∈ Rq. Then,

Pr [av = e : v ←$ Rq] = Pr [(av = e mod f1 ∧ av = e mod f2) : v ←$ Rq]

≤ Pr [av = e mod f1 : v ←$ Rq]

=
1

qn/2
(12)

Here, the first equality follows from the Chinese remainder theorem, and Equation 12 follows from Claim 5.3.
This directly implies that for any arbitrary e1, . . . eℓ ∈ Rq, the following holds:

Pr
[
avi = ei∀i ∈ [ℓ] : v ←$ Rℓ

q

]
≤
(

1

qn/2

)ℓ

Next, taking a union bound over all possible values of a ∈ Rq, and all ei ∈ Rq such that ||ei||∞ ≤
β ∀ i ∈ [ℓ], we get :

Pr
[
∃a ∈ Rq \ 0 s.t. ∀i ∈ [ℓ], ||a · vi||∞ ≤ β : v ←$ Rℓ

q

]
≤ qn · (2β + 1)nℓ

qnℓ/2
(13)

We now wish to argue that

Pr
[
∃a ∈ Rm

q \ {0} s.t. ∀i ∈ [ℓ], ∥a · vi∥∞ ≤ β
]
≤ qn · (2β + 1)nℓ

qnℓ/2
. (14)

To see that, fix a non-zero vector a ∈ Rm
q . Since a is non-zero, at least one of its elements is non-zero.

Let a denote the first such element. If for some i ∈ [ℓ] it holds that |a · vi| > β then ||a · vi||∞ > β.
Hence, the event {∀i ∈ [ℓ], ||a · vi||∞ ≤ β} is contained in the event {∀i ∈ [ℓ], |a · vi| ≤ β}. Since
this holds for every a ∈ Rm

q , the event
{
∃a ∈ Rm

q s.t. ∀i ∈ [ℓ], ∥a · vi∥∞ ≤ β
}

is contained in the event
{∃a ∈ Rq s.t. ∀i ∈ [ℓ], |a · vi| ≤ β}. Hence, Eq. (14) follows from Eq. (13).

Finally, ∥x∥2 ≥ ∥x∥∞ for all x, Eq. (14) implies in particular that

Pr
[
∃a ∈ Rm

q s.t. ∀i ∈ [ℓ], ∥a · vi∥2 ≤ β
]
≤ qn · (2β + 1)nℓ

qnℓ/2
. (15)

This concludes the proof of the lemma.

20

Proof of Theorem 5.1. Let A be an adversary making at most Q queries to the random oracle. Assume
without loss of generality that allA’s queries to H are distinct and that before outputting a triple of the form
(c, k, k′), A queries the oracle on k and k′. Fix a pair (k, k′) ∈ {0, 1}λ × {0, 1}λ such that k ̸= k′. We
wish to bound the probability that there exists a c = (a,U) such that Test(pp, c, k) = Test(pp, c, k′) = 1.
Recall that this event is defined as all columns of a·H(k)T−U and of a·H(k′)T−U having ℓ2-norm at most
∆. By the triangle inequality, this implies that all columns of a · (H(k)−H(k′))T = a ·H(k)T −a ·H(k)T
have norm at most 2∆.

For every k, k′ ∈ {0, 1}λ, consider the matrix vk,k′ = H(k) − H(k′). Since H is modeled as a random
oracle, vk,k′ is uniformly distributed in Rℓ

q. Hence, by Lemma 5.2, the probability that there exists a non-

zero vector a such that the columns of a · vk,k′ all have ℓ2-norm at most 2∆ is bounded by qn·(4∆+1)nℓ

qnℓ/2 .
Taking a union bound over all pairs of queries (k, k′) made by A to H we obtain that the probability that
there is a pair k, k′ of distinct queries to H for which there exists a non-zero vector a ∈ Rm

q such that the

columns of a · vk,k′ are all shorter than 2∆, is bounded by Q2 · qn ·
(
4∆+1√

q

)nℓ
. In particular, this implies

that

Pr

[
∃k, k′ ∈ Spp s.t.

k ̸= k′ AND
∃c = (a,U) s.t. Test(pp, c, k) = Test(pp, c, k′) = 1

]
≤ Q2 · qn ·

(
4∆ + 1
√
q

)nℓ

where Spp is the random variable corresponding to the set of all A’s queries to H on input pp, and the
probability is taken over pp← Setup(1λ), the random coins of A, and the random choice of H.

Since we assumed that A queries H on the k, k′ that it outputs, this concludes the proof of Theorem 5.1.

5.2 Unlinkability

Theorem 5.4. The above construction is unlinkable, assuming the ring learning with errors assumption.
In particular, for every PPT adversary A making at most Q = Q(λ) queries to H, there exists a PPT
adversary B such that for all λ ∈ N it holds that:

AdvrrcA,RRLWE,B
(λ) ≤ 2Q

2λ −Q
+ (2ℓ) · AdvrlweB (λ) +B · m

2

√(
1 +

(q

2m

)n/2)2(ℓ+1)

− 1.

Proof. Let A be a probabilistic polynomial-time algorithm, and let G0 denote the original security game
from Fig. 1. Consider a modified game G1 obtained from G0 as follows. For each i ∈ {0, 1}, instead of
setting ci as in G0 (that is, ci ← (ai,ai·H(ki)T+Ei)), the challenger sets ci ← (ai,Ui) = (ai,ai·vT

i +Ei)
where vi is sampled uniformly at random from Rℓ

q independently of ki. For a game G, we denote by
GA(λ) the random variable corresponding to the output of G ran with A on security parameter 1λ. With
this notation, the following claim shows that moving from G0 to G1 should not noticeably increase the
winning chances of A.

Claim 5.5. For all λ ∈ N it holds that

Pr [G0,A(λ) = 1] ≤ Pr [G1,A(λ) = 1] +
2Q

2λ −Q
.

Proof. The proof strategy is similar to the one for the integer case. For j ∈ {0, 1} let badj denote the event
in which the adversary A queries H on either k0 or k1 in Gj . Note that the view of A in G0 conditioned

21

on the complementing event bad0 is distributed identically to A’s view in G1 conditioned on bad1. Hence,
Pr
[
G0,A(λ) = 1

∣∣bad0] = Pr
[
G1,A(λ) = 1

∣∣bad1]. Moreover, Pr [bad0] = Pr [bad1] (where the probabil-
ity on the left hand side is over the random choices of A and the challenger in G0, and the probability on
the right hand side is over the random choices of A and the challenger in G1). We get,

Pr [G0,A(λ) = 1] ≤ Pr
[
G0,A(λ) = 1

∣∣bad0]+ Pr [bad0]

= Pr
[
G1,A(λ) = 1

∣∣bad1]+ Pr [bad1]

= Pr [G1,A(λ) = 1] + Pr [bad1] (16)

≤ Pr [G1,A(λ) = 1] +
2Q

2λ −Q
. (17)

Eq. (16) above follows from the fact that the view ofA in G1 is independent of the choice k0, k1. Hence, the
event in which G1,A(λ) = 1 is independent of the event bad1. Eq. 17 follows from the fact that as long asA
has not queried k0 or k1, the two values are uniformly distributed in {0, 1}λ conditioned on A’s view.

Now consider the game G2 which is obtained from G1 by the following modification. For each i ∈
{0, 1}, the challenger now sets ci ← (ai,Ui) where Ui is sampled uniformly at random fromRm×ℓ

q (instead
of being computed as Ui ← ai · vT

i +Ei as in G1).

Claim 5.6. There exists a PPT adversary B such that for all λ ∈ N it holds that

Pr [G1,A(λ) = 1] ≤ Pr [G2,A(λ) = 1] + (2ℓ) · AdvrlweB (λ).

Proof. Consider a sequence of games G1,i for i = 0, . . . , ℓ. For each i ∈ {0, . . . , ℓ}, the game G1,i is
obtained from G1 by sampling the first ℓ− i columns of U0 according to U0 ← a0 ·vT

0 +E0, but sampling
the remaining i columns of U0 uniformly at random.

Consider two consecutive games G1,i and G1,i+1. We claim that there exists a probabilistic polynomial-
time algorithm Bi such that Pr [G1,i,A(λ) = 1] ≤ Pr [G1,i+1,A(λ) = 1] + AdvrlweBi (λ). The algorithm Bi
receives an RLWE instance (a,u) and decides on its output as follows. It invokes A and simulates to
it either G1,i,A(λ) or G1,i+1,A(λ). It uses a to generate commitment c0: It samples v ←$ Rℓ−i−1

q and
E ←$ χm×(ℓ−i−1), and computes U ′0 ← a · vT + E; the result will serve as the left ℓ − i − 1 columns of
U0. It then samples U ′′0 ←$ Rm×i

q ; the result will serve as the right ℓ− i− 1 columns of U0. Finally, it sets
U0 ← [U ′0,u,U

′′
0] and c0 ← (a,U0). Then, Bi samples c1 honestly, and passes the LWE parameters and

the commitments c0 and c1 to A. When A outputs integers i0 and i1, B samples a random bit b ←$ {0, 1}
and computes the randomized commitment c by iteratively applying the Randomize algorithm ib times to
cb. Finally, when A outputs a bit b′, Bi outputs 1 iff b′ = b.

Observe that if u given as input to Bi is a noisy product of the form {aj · s + ej}, then Bi perfectly
simulates G1,i to A. If u is a truly random vector, then Bi perfectly simulates G1,i+1 to A. Hence,

Pr [G1,i,A(λ) = 1]− Pr [G1,i+1,A(λ) = 1] = Pr [Bi(a,a · s+ e)]− Pr [Bi(a,u)]
≤ |Pr [Bi(a,a · s+ e)]− Pr [Bi(a,u)]|
= AdvrlweBi (λ).

Now consider a sequence of games G1,i for i = ℓ+ 1, . . . , 2ℓ. For each i ∈ {ℓ+ 1, . . . , 2ℓ}, the game
G1,i is obtained from G1,ℓ by sampling the first 2ℓ − i columns of U1 according to U1 ← a1 · vT

1 + E1,
but sampling the remaining i− ℓ columns of U1 uniformly at random. A similar argument to the one above

22

shows that for every two consecutive games G1,i and G1,i+1 (for i ∈ {ℓ + 1, . . . , 2ℓ − 1}) there exists an
adversary Bi such that Pr [G1,i,A(λ) = 1] ≤ Pr [G1,i+1,A(λ) = 1] + AdvrlweBi (λ).

Observe that G1,0 = G1 and G1,2ℓ = G2. Therefore, we have that

Pr [G1,A(λ) = 1]− Pr [G2,A(λ) = 1] ≤
2ℓ−1∑
i=0

AdvlweBi (λ). (18)

Let B be the RLWE algorithm that samples a random i∗ ←$ {0, . . . , 2ℓ− 1} and invokes Bi∗ to decide on its
output. For this algorithm it holds that

Pr [G1,A(λ) = 1] ≤ Pr [G2,A(λ) = 1] + 2ℓ · AdvlweB (λ).

This concludes the proof of the claim.

Finally, consider a final game G3 obtained from G2 by sampling the randomized commitment c that is
returned to the adversary in line 9 as a pair of uniformly random vector and matrix. That is, c ← (a′,U ′)
where a′←$Rm

q and U ′←$Rm×ℓ
q .

Claim 5.7. For all λ ∈ N it holds that

Pr [G2,A(λ) = 1] ≤ Pr [G3,A(λ) = 1] +B · m
2

√(
1 +

(q

2m

)n/2)2(ℓ+1)

− 1.

Proof. Consider a sequence of games G2,i for i = 0, . . . , B. Each G2,i is obtained from G2 by replacing the
output of the first i calls to Randomize with a pair of uniformly random matrices (ab,Ub)←$ Rm

q ×Rm×ℓ
q .

By lemma 2.2 and the fact that we are using a polynomial modulus with two factors in Zq, it holds that

Pr [G2,i,A(λ) = 1]− Pr [G2,i+1,A(λ) = 1] ≤ m
2

√(
1 +

(q
2m

)n/2)2(ℓ+1)
− 1. Noting that G2,0 = G2 and

G2,B = G3, and summing over all calls to Randomize, we have that

Pr [G2,A(λ) = 1]− Pr [G3,A(λ) = 1] =
B−1∑
i=0

Pr [G2,i,A(λ) = 1]− Pr [G2,i+1,A(λ) = 1]

≤ B · m
2

√(
1 +

(q

2m

)n/2)2(ℓ+1)

− 1,

concluding the proof of the claim.

The theorem is then proven by combining all the claims and noting that the final randomized com-
mitment c in G3 is independent of the bit b. Hence, the view of A is independent of b and therefore
Pr [G3,A(λ)] = 1/2.

6 Handling Adversarially-Randomized Commitments

In this section, we present a stronger notion of unlinkability, called strong unlinkability for RRC schemes,
and then present different approaches to augment our basic schemes from Sections 4 and 5 to satisfy this
definition.

Loosely speaking, strong unlinkability requires that re-randomization should result in unlinkable com-
mitments, even if they were previously re-randomized by the adversary. This trivially holds for the DDH-
based construction of Boneh et al. [24] thanks to two properties of the scheme:

23

• Suppose the adversary receives a commitment c for which k is a valid key, and outputs a randomized
commitment c′. As long as Test(pp, c′, k) = 1, there exists some randomness r such that c′ =
Randomize(pp, c; r).

• Re-randomization using Randomize is a commutative operation. Hence, in conjunction with the
observation above, any knowledge the adversary could gain by re-randomizing a commitment before
an honest re-randomization, it could also gain by re-randomizing it afterwards (which the adversary
can already do in the security game from Fig. 1).

Alas, this is not the case for our lattice-based constructions. The main issue is that matrix multipli-
cation is not commutative. Hence a “bad” re-randomization (even one that does not invalidate the honest
commitment key) can have a long lasting effect on a commitment even after many subsequent honest re-
randomizations have taken place. Concretely, on input c = (A,U), the adversary may output c′ = (A′,U ′),
such that A′ is “bad” in the sense that the distribution R ·A′ for a random R ←$ {−1, 1, }m×m is very far
from the uniform distribution over Zm×n

q . As a hypothetical example, suppose that the adversary can find a
matrix R ∈ {−1, 1, }m×m such that A′ = R ·A is a low-norm matrix. Then, the distribution R ·A′ will be
concentrated on low-norm matrices as well, enabling the adversary to distinguish between this distribution
and the uniform distribution over Zm×n

q , which is concentrated on high-norm matrices.

6.1 A Stronger Unlinkability Definition

We first need to define what it means for an RRC scheme to be unlinkable in the face of adversarial re-
randomizations. To do this, we augment the security game of RRC schemes by letting the adversary re-
randomize the commitments at points in time of its choosing. To avoid trivial attacks, we require that the
adversary justifies its outputs by providing the randomness it used for re-randomization.

To this end, and to facilitate our constructions, we introduce several new notions for RRC schemes:

• We augment an RRC scheme with a corresponding beacon distribution D. This distribution is used
to model a randomness beacon, and will be used by one of our constructions of a strongly-unlinkable
RRC scheme. In practice, the beacon may be assumed as an outside resource or implemented using
known techniques [55].

• We introduce two new algorithms R.Precommit and R.Extract to an RRC scheme R. R.Precommit is
a randomized algorithm that takes in the public parameters pp and outputs some “precommitment”
pcom, whose role will become apparent in a minute. R.Extract is a (potentially randomized) algorithm
that takes in pp, the randomness r ∈ {0, 1}∗ used by R.Precommit to generate pcom, and a sample
rand from D, and outputs some randomness r′ to be used by R.Randomize. Throughout this section,
we will denote the number of random coins used by R.Precommit by ρ = ρ(λ).

• An RRC scheme R is now also parameterized by a class G of admissible random strings , and only
members of G can be used as randomness for R.Randomize. This is checked by the security game for
randomness used by the adversary. A natural selection for G is the entire support of the randomness
used by the honest Randomize algorithm; for example, in our (integer) LWE-based construction, this
corresponds to G = {−1, 1}m×m, but one might also consider strict supersets or subsets of this set.
We allow G to depend on a precommitment pcom, the randomness r ∈ {0, 1}∗ used by R.Precommit
to generate pcom, and a sample rand from D. We denote this by A(pcom, r, rand). The set G may
also depend on the public parameters pp, but we do not note this explicitly, since the public parameters
typically remain fixed.

24

To recap, an RRC scheme R now consists of six algorithms (R.Setup, R.Commit, R.Randomize, R.Test,
and now also R.Precommit and R.Extract), a distribution D, and a set G = G(pcom, r, rand).

Correctness and unlinkability. For correctness, we now require that the scheme is B-rerandomizable
(Definition 3.1), where the randomness for rerandomization is generated by Precommit, D, and Extract. We
additionally require that honestly generated randomness for Randomize is indeed admissible.

Definition 6.1. Let R be an RRC scheme such that R.Precommit takes ρ = ρ(λ) random coins. We say R is
B-randomizable if there exists a negligible function ν(·) such that the following conditions hold for every
λ ∈ N:

1. Let pp←$ R.Setup(1λ), (c0, k)←$ R.Commit(pp), ri ←$ {0, 1}ρ, randi ←$ D,
r′i ←$ R.Extract(pp, ri, randi), ci ←$ R.Randomize(pp, ci−1; r′i) for i ∈ [B], then

Pr
[
R.Test(pp, ci, k) = 1 for i = 0, 1, 2, . . . , B

]
≥ 1− ν(λ).

2. Let pp←$ R.Setup(1λ), r ←$ {0, 1}ρ, pcom← R.Precommit(pp; r), rand←$ D,
and r′ ←$ R.Extract(pp, r, rand), then

Pr
[
r′ ∈ G(pcom, r, rand)

]
≥ 1− ν(λ).

An RRC scheme that is B-randomizable for all B ∈ N is said to be fully randomizable.

The new strong-unlinkability game is defined in Figure 4. It uses the following abbreviated writing:
we write (rand, c′) ←$ R.Randomize(pp, r, c) as a shorthand for the process of (1) sampling rand ←$ D,
(3) sampling r′ ←$ R.Extract(pp, r, rand), (4) computing c′ ← R.Randomize(pp, c; r′), and (5) outputting
(rand, c′). The new game is obtained from the old unlinkability security game (Figure 1) by the following
modifications:

1. At the onset of the game, the challenger samples precommitments {pcom} to be used for the honest
re-randomizations it performs. The adversary then also outputs a precommitment {pcom} for its own
future re-randomizations. For each re-randomization, the set G will depend on the corresponding
precommitment. Looking ahead, in a couple of our constructions, the precommitments will serve as
commitments for randomness to be used in the future re-randomizations.

2. The challenger samples {rand} values from the beacon distribution D. These serve as the beacon
values for each re-randomization (adversarial or honest). The adversary receives the corresponding
rand value before each adversarial re-randomization, and together with each honest re-randomization.

3. Each time the adversary A outputs re-randomized commitments, it also outputs the associated ran-
domness used to generate the associated precommitment and the randomness used for re-randomization.
The challenger then checks that this randomness is indeed admissible.

As before, we define the adversary’s advantage as

Advstrong-rrc
A,R (λ) :=

∣∣2Pr[Gstrong
A,R (λ) = 1]− 1

∣∣.
Definition 6.2. An RRC scheme R is strongly-unlinkable if for all PPTadversariesA the function Advstrong-rrc

A,R (λ)
is negligible.

25

Game G
strong
A,R (λ)

1 : b←$ {0, 1}
2 : pp←$ R.Setup(1λ)

3 : (T, i
(1)
0 , i

(1)
1 . . . , i

(T)
0 , i

(T)
1 , state)←$ A(pp)

4 : −−−→pcom← () // initialize an empty vector

5 : for t in {1, . . . , T} :

6 : for j in {1, . . . , i(t)0 } : rt,0,j ←$ {0, 1}ρ, pcomt,0,j ← R.Precommit(pp; rt,0,j), −−−→pcom← −−−→pcom∥pcomt,0,j

7 : for j in {1, . . . , i(t)1 } : rt,1,j ←$ {0, 1}ρ, pcomt,1,j ← R.Precommit(pp; rt,1,j), −−−→pcom← −−−→pcom∥pcomt,1,j

8 : // ρ denotes the number of random coins used by R.Precommit

9 : (pcom′
1,0, pcom

′
1,1, . . . , pcom

′
T,0, pcom

′
T,1, state)←$ A(state,−−−→pcom)

10 : rand1,0, rand1,1 . . . , randT,0, randT,1 ←$ D

11 : (c
(0)
0 , k0)←$ R.Commit(pp), (c

(0)
1 , k1)←$ R.Commit(pp)

12 : aux0 ← c
(0)
0 ∥c

(0)
1

13 : for t in {1, . . . , T} :

14 : (state, c
(t)
0 , c

(t)
1 , r0, r1, r

′
0, r

′
1)←$ A(state, auxt−1, randt,1, randt,0)

15 : // r0 and r1 are the random coinsA claims to have used to generate pcomt,0 and pcomt,1

16 : // r′0 and r′1 are the random coinsA claims to have used for re-randomization

17 : if (c
(t)
0 ̸= R.Randomize(pp, c(t−1)

0 ; r′0)) OR (c
(t)
1 ̸= R.Randomize(pp, c(t−1)

1 ; r′1)) : abort

18 : // check that r′0 and r′1 were used byA for re-randomization

19 : for d in {0, 1} : Gd ← G(pcom′
t,d, rd, randt,d)

20 : auxt ← () // initialize an empty vector

21 : for j in {1, . . . , i(t)0 } : (randt0,j , c
(t)
0)←$ R.Randomize(pp, rt,0,j , c

(t)
0), auxt ← auxt∥(randt0,j , c

(t)
0)

22 : for j in {1, . . . , i(t)1 } : (randt1,j , c
(t)
1)←$ R.Randomize(pp, rt,1,j , c

(t)
1), auxt ← auxt∥(randt1,j , c

(t)
1)

23 : // the notation (rand, c′)←$ R.Randomize(pp, r, c) is defined above

24 : if r′0 ̸∈ G0 OR r′1 ̸∈ G1 : c
(t)
0 ← c

(t−1)
0 , c

(t)
1 ← c

(t−1)
1

25 : (rand0, c0)←$ R.Randomize(pp, c(T)
0), (rand1, c1)←$ R.Randomize(pp, c(T)

1)

26 : b′ ←$ A(cb, c1−b, rand0, rand1, state)

27 : return b = b′

Figure 4: The strong unlinkability security game for an adversary A and an RRC scheme R

26

Game G
pr
A,R(λ)

1 : b←$ {0, 1}
2 : pp←$ R.Setup(1λ)

3 : r ←$ {0, 1}ρ, pcom← R.Precommit(pp; r)

4 : (pcom′, state)←$ A(pp, pcom)

5 : rand←$ D

6 : (c, k)←$ R.Commit(pp), (c′0, k
′)←$ R.Commit(pp)

7 : (c′′, r′, r′′, state)←$ A(state, c, rand)
8 : if c′′ ̸= R.Randomize(pp, c; r′′) : abort

9 : if r′′ ̸∈ G(pcom′, r′, rand) : abort

10 : (rand′, c0)←$ R.Randomize(pp, r, c′′)

11 : c1, c
′
1 ←$ Cλ

12 : b′ ←$ A(cb, c′b, rand
′, state)

13 : return b = b′

Figure 5: The security game for an adversary A attacking the strong pseudorandomness of R

How to put the strong unlinkability definition to use. In the strengthened security game from Fig. 4,
whenever the adversary re-randomizes, it also sends to the challenger the randomness that went into this re-
randomization process (that is, the randomness that went into Precommit and into Randomize). This means
that whenever using a strongly-unlinkable RRC scheme within a larger protocol, one should require that
re-randomizers provide a argument of knowledge for such randomness (and potentially of additional secrets
that are related to the larger super-protocol). Then, a security reduction that tries to break the security of the
RRC scheme can use the knowledge extractor of the proof system to extract the randomness and output it in
the RRC security game. Our SSLE protocol in Section 7 provides an example of how to use RRC schemes
within a larger protocol. In Section 8 we discuss specific ways to construct the necessary arguments of
knowledge for our lattice-based RRC schemes.

Strongly-pseudorandom RRC schemes. We present the notion of strong pseudorandomness for RRC
schemes. Roughly speaking, an RRC scheme enjoys strong pseudorandomness, if honestly rerandomized
commitments are pseudorandom. That is, it is indistinguishable from a uniformly-random member of the
domain C = {Cλ}λ of commitments. Moreover, honest re-randomization should output pseudorandom
commitments even on commitments that were previously re-randomized by the adversary (using admissible
randomness). This is captured by the security game in Fig. 5.

As before, we define the adversary’s advantage as

Advpr-rrcA,R (λ) :=
∣∣2Pr[Gpr

A,R(λ) = 1]− 1
∣∣.

Definition 6.3. A B-randomizable R scheme is strongly-pseudorandom if for all PPT adversaries A the
function Advpr-rrcA,R (λ) is negligible.

A simple hybrid argument shows that an RRC scheme that is strongly-pseudorandom is also strongly-
unlinkable.

27

Proposition 6.1. If an RRC scheme R is strongly-pseudorandom then it is also strongly-unlinkable.

We now turn to present several ways to augment our basic RRC schemes so that they achieve strong-
pseudorandomness, and hence strong unlinkability.

6.2 Constructing Strongly-Pseudorandom RRCs

We now present a way to turn our lattice-based constructions of RRC schemes to ones that provide strong
pseudorandomness, and hence strong unlinkability. We start by describing such a mechanism for our LWE-
based scheme, and then discuss how the same ideas can also be applied to our Ring-LWE-based scheme.

Immunizing our LWE-based RRC scheme RLWE against adversarial re-randomizations per the Defini-
tion 6.2 amounts to defining the beacon distribution D, the algorithms RLWE.Precommit and RLWE.Extract,
and the set G of admissible random strings. We do so as follows:

• D is the uniform distribution over {−1, 1}m×m.

• RLWE.Precommit(pp; r): the randomness r to the algorithm is parsed as a tuple (R, r′) of a uniformly-
random matrix R in {−1, 1}m×m and randomness r′ to a standard (not re-randomizable) statistically-
binding non-interactive commitment scheme C = (C.Setup,C.Commit) (for definitions of standard
commitment schemes, see for example [25] and also Section 8). The algorithm then commits to R
using C: it computes pcom ← C.Commit(ppC,R; r′) and outputs pcom (the public parameters ppC
for C are sampled by the C.Setup algorithm during the operation of RLWE.Setup and are included as
part of the public parameters of RLWE).

• RLWE.Extract(pp, r, rand) parses r as (R, r′) and treats rand as a matrix R′ in {−1, 1}m×m. It outputs
R′′ ← R+R′ ∈ Zm×m

q .

• The set G = G(pcom, r = (R, r′), rand = R′) is then the singleton set {R + R′} if pcom =
C.Commit(ppC,R; r′). Otherwise, if pcom ̸= C.Commit(ppC,R; r′) then G = ∅ and there is no
admissible randomness. That is, G “checks” if pcom is a valid commitment to R given the randomness
used to generate it, and if so, the only admissible randomness for RLWE.Randomize is the sum of
R+R′.

We denote the RRC scheme obtained by these augmentations by R+
LWE. We first argue that the scheme is cor-

rect per Definition 6.1. Condition 2 of the definition holds trivially. To see why Condition 1 holds, observe
that honest ris used for re-randomization are now m-by-m matrices, whose coordinates are independently
sampled from a distribution which attains 0 with probability 1/2, and −2 or 2 with probability 1/4 each.
A straightforward adaptation of the proof of Lemma 2.3 shows that it still applies (with a slightly worse
constant C) and hence the previous proof of correctness still goes through.

As for security, the following theorem proves that R+
LWE satisfies strong pseudorandomness. In conjunc-

tion with Proposition 6.1, this implies that it is also strongly-unlinkable.

Theorem 6.2. The scheme R+
LWE is a strongly-pseudorandom RRC scheme.

Proof. The proof follows a similar template to that of Theorem 4.3. Let A be an adversary participating
in the strong pseudorandomness security game, and let G0 = G

pr
A,R(λ). Consider a hybrid game G1

obtained from G0 by changing the precommitment pcom sampled by the challenger to be a commitment
to the all zero matrix in Zm×m

q . The games G0 and G1 are indistinguishable by the hiding property of the
commitment scheme C.

28

Now, consider a hybrid game G2 which is obtained from G1 by sampling the commitments c and c′0 as
independent pairs of uniformly-random and independent matrices. The games G1 and G2 are indistinguish-
able by the LWE assumption. Now fix any matrix R ∈ Zm×m

q outputted by A as part of the randomness
used in Line 4, and consider the family of functions {fR,A,U (R′) = (R+R′) · [A,U]}A,U . This family is
universal over the choices of A and U . Hence, since A and U making up the commitment c in G1 are sam-
pled after R is determined, the leftover hash lemma [43] guarantees that c0 is statistically close to uniform.
Hence, G2 is statistically indistinguishable from a game G3 in which c0 and c′0 are sampled uniformly at
random from Zm×(n+ℓ)

q . In G3, the view of A is independent of b and hence its advantage is 0.

Strong unlinkability from the Ring LWE assumption. We can use a similar technique in order to aug-
ment our Ring-LWE-based RRC scheme with strong unlinkability. The only difference is that now R and R′

are sampled as matrices of “short” polynomials. That is, the distribution D samples a matrix R′ as follows:
Each coordinate is an independent polynomial, whose coefficients are sampled independently and uniformly
from {−1, 1}. Precommit samples a commitment to a matrix R sampled from the same distribution, and
Extract outputs R + R′. Finally, the set G(pcom, r, rand) = {R + R′} as before if the precommitment
pcom is consistent with r and ∅ otherwise. Correctness follows similarly as in the LWE case, replacing the
use of Lemma 2.3 with Lemma 2.4. For strong pseudorandomness, we replace the use of the leftover hash
lemma [43] with Lemma 2.2.2

6.3 Strong Pseudorandomness without A Randomness Beacon

The above approach requires a randomness beacon, which is a very reasonable assumption in the context
of SSLE protocols. However, there might be other scenarios in which one might want to use RRCs without
assuming the availability of such a beacon. This is formally captured by the above definitions by fixing D
to be the constant distribution outputting ⊥ with probability 1. In Appendix A, we present three different
approaches to augment our schemes to provide strong unlinkability without assuming a randomness beacon.

7 From Rerandomizable Commitments to Single Secret Leader Election

In this section, we present our main application of post-quantum RRCs: constructing post-quantum secure
protocols for single secret leader election (SSLE). We begin this section by presenting definitions for SSLE
protocols, and then show how an RRC scheme can be used generically to construct such a protocol. As
described in the introduction, our construction generalizes the efficient DDH-based construction by Boneh,
Eskandarian, Hanzlik, and Greco [24].

7.1 SSLE: Syntax and Security Notions

We adapt the definitions of Boneh et al. [24]. On the one hand, they presented a broad syntax that allowed
them to capture various constructions in addition to their DDH-based one. Since we are primarily focused on
our construction from RRC schemes, we can simplify their definitions. On the other hand, we also generalize
their definitions to allow for interactive election protocols, as is the case for the whisk implementation of the
BEHG protocol [44].

Formally, an SSLE protocol ssle is a tuple of three algorithms:
2Technically speaking, we require a generalization of Lemma 2.4, in which the coefficients of each entry of R may be chosen

from different (but small) sets. Fortunately, the proof of 2.4 readily extends to this setting.

29

• Setup(1λ, N) → pp: The setup algorithm takes in the security parameter 1λ and an integer bound N
and outputs public parameters pp. Here, N serves as an upper bound on the number of participants in
an election.

• Elect(pp,J , i)→ (pst, b, π): This is the interactive (stateful) algorithm that each party runs during the
election protocol. Its initial input is pp, a set J of size at most N of registered participating parties,
and the executing party’s index i. Its final output is a public state pst, a bit b ∈ {0, 1} indicating
whether i was elected as leader, and a proof π asserting that this is the case (π = ⊥ if b = 0). The
public state pst is used to verify the proof π and will end up being the same across all parties.

For concreteness, we assume here that each party is associated with a unique id ∈ [N], and hence
J ⊆ [N]. We elaborate on how the election protocol works below.

• Verify(pp, i, pst, π) → b: The winner verification algorithm takes in the public parameters pp, an
index i for the claimed winner, the public state pst, and a proof π and outputs a bit b ∈ {0, 1}, where
1 implies acceptance and 0 rejection.

The election protocol’s syntax in depth. The election protocol is specified by the interactive (stateful)
algorithm Elect, which the participating parties run locally. The protocol is potentially interactive and pro-
ceeds in rounds. The initial input to the Elect algorithm, executed by party i, is the public parameters pp,
the set J of the parties participating in the protocol, and its own index i. On this input, Elect outputs the
outgoing message m

(1)
i from the ith party in the first round and some local state st. We assume that all

messages are broadcast to all other parties over a public broadcast channel. In a subsequent round k > 1,
the input to Elect are the incoming messages {m(k−1)

j }j∈I\{i}, the local state st, and potentially additional
randomness rk generated by a randomness beacon. The value rk is sampled only after the kth round has
been completed. On this input, Elect again outputs an outgoing message m

(k)
i from party i and an updated

local state st′. Finally, in the last round, Elect outputs a public state pst, a bit b ∈ {0, 1} – indicating whether
i was elected or not – and a proof π. If b = 1, π asserts that i was indeed elected, and if b = 0 then π = ⊥.
Recall that in an execution of the protocol, the final public state pst will be the same across all parties.

Security. Following Boneh et al. [24], we require that an SSLE protocol satisfies three security properties:
uniqueness, unpredictability, and fairness. We now define each of them.

Uniqueness. Informally, uniqueness means that after an election has taken place, there is at most one
participant that can prove that they have been chosen as leader. Formally, for an SSLE protocol ssle =
(Setup,Elect,Verify), and adversary A, and a security parameter λ ∈ N, uniqueness is defined via the
following security experiment, denoted UNIQUEA,ssle(λ):

1. Setup stage:

(a) On input 1λ, the adversary A outputs an integer N and a local state st.

(b) ssle.Setup(1λ, N) is executed and outputs pp.

2. Election stage:

30

(a) On input (st, pp), the adversary A outputs a subset J ⊆ [N] of parties to participate in the
election. A also outputs an additional subset I ⊆ J ; this is the set of corrupted users during the
protocol.3

(b) The Elect protocol is executed among the parties in J , where A plays the roles of the parties in
I. The initial input of party j ∈ J \ I is (pp,J , j). At the end of the protocol, each honest
party j ∈ J \ I has an output (pstj , bj , πj). The output of A is an updated local state st.

3. Output stage:

(a) On input st, A outputs two indices i, j ∈ J and two proofs πi, πj .

(b) The experiment’s output is 1 if there is an honest party k ∈ J \I such that Verify(pp, i, pstk, πi) =
Verify(pp, j, pstk, πj) = 1. Otherwise, the experiment outputs 0.

The advantage of an adversary A in breaking the unlinkability of an SSLE protocol ssle is defined by:

AdvuniqueA,ssle (λ) := Pr
[
UNIQUEA,ssle(λ) = 1

]
.

Definition 7.1. An SSLE protocol ssle satisfies uniqueness if for any probabilistic polynomial-time adversary
A the function AdvuniqueA,ssle (λ) is negligible.

Unpredictability. Intuitively, unpredictability requires that after an election has taken place, the identity
of the chosen leader remains hidden from all other parties (until she reveals herself). In more detail, for
an SSLE protocol ssle = (Setup,Elect,Verify), and adversary A, integers n and c such that c < n, and
a security parameter λ ∈ N, unpredictability is defined via the following security experiment, denoted
UNPREDA,ssle,n,c(λ):

1. The Setup stage and Election stage are defined as in UNIQUEA,ssle(λ), with the restriction that the
subset J of participating parties is of size n,4 and number |I| of corrupted parties is at most c.

2. Output stage:

(a) On input st, A outputs an index i ∈ J .

(b) If i ∈ I, then the experiment outputs 0. Otherwise, the experiment outputs 1 if and only if
bi = 1.

For parameters n, c such that n > c, the advantage of an adversaryA in breaking the unpredictability of
an SSLE protocol ssle is defined by:

AdvunpredA,ssle,n,c(λ) := Pr [UNPREDA,ssle,n,c(λ) = 1 | i ∈ J \ I]− 1

n− c
.

Definition 7.2. Let n, c ∈ N such that n > c. An SSLE protocol ssle satisfies (n, c)-unpredictability if for
any probabilistic polynomial-time adversary A it holds that AdvuniqueA,ssle,n,c(λ) is negligible.

3As we discuss below, one can strengthen the adversarial model to allow the adversary to adaptively corrupt the subset I.
4In this section, n is used to denote the number of parties participating in the election protocol. Recall that in previous sections,

n was used as a parameter for the LWE and Ring-LWE assumptions. Since the use of n is always clear from context, we allow
ourselves this overloading of notation.

31

Fairness. An SSLE protocol is said to be fair if all parties have essentially the same probability of being
chosen as leaders. Formally, for an SSLE protocol ssle = (Setup,Elect,Verify), an adversary A, integers
n, c such that c < n, and a security parameter λ ∈ N, unpredictability is defined via the following security
experiment, denoted FAIRA,ssle,n,c(λ):

1. The Setup stage and the Election stage are defined as in UNPREDA,ssle,n,c(λ).

2. Output stage:

(a) The experiment outputs 0 if there is a party i ∈ J \ I such that for all k ∈ J \ I it holds that
Verify(pp, i, pstk, πi) = 1. Otherwise, the output of the experiment is 1.

For parameters n, c such that n > c, the advantage of an adversaryA in breaking the unpredictability of
an SSLE protocol ssle is defined by:

AdvfairA,ssle,n,c(λ) := Pr [FAIRA,ssle,n,c(λ) = 1 | i ∈ J \ I]− c

n
.

Definition 7.3. Let n, c ∈ N such that n > c. An SSLE protocol ssle satisfies (n, c)-unpredictability if for
any probabilistic polynomial-time adversary A it holds that AdvuniqueA,ssle,n,c(λ) is negligible.

7.2 The Commit-and-Shuffle Protocol

We now present our construction of an SSLE protocol from re-randomizable commitments. The construction
follows the commit-and-shuffle approach of the DDH-based SSLE protocol presented by Boneh et al. [24].
However, it replaces the reliance on DDH by a generic reliance on RRCs, thus allowing us to instantiate the
protocol based on lattice-based assumptions.

The protocol relies on the following building blocks:

1. An RRC scheme R = (R.Setup,R.Commit,R.Randomize,R.Test,R.Precommit,R.Extract, D,R). We
assume that R is non-trivial, B-randomizable, binding, and strongly unlinkable (recall Sections 3
and 6). Looking ahead, in each round of the SSLE protocol, we will view the output of the ran-
domness beacon as a tuple of n samples from the distribution D. The SSLE protocol we construct
supports a bound of N = B on the number of parties participating in an election. However, as we
discuss below, this bound can be improved using different shuffle patterns.

2. A hash function H mapping keys k outputted by R.Commit to strings in {0, 1}λ.

3. A non-interactive zero-knowledge argument of knowledge NIZK = (NIZK.Setup,NIZK.P,NIZK.V)
for proving knowledge of a permutation σ and admissible randomness (recall Section 6) r1, . . . , rn
used to shuffle one vector of RRC commitments (c1, . . . , cn) to another vector (c′1, . . . , c

′
n). That is,

c′σ(i) is a re-randomization of ci using randomness ri to R.Randomize. Moreover, we require that the
NIZK is simulation sound; that is, knowledge soundness is preserved even against a malicious prover
who observed simulated proofs. More formally, NIZKR is an argument of knowledge for the relation
W = {Wλ}λ∈N, whereWλ is defined as:


pp, (c1, . . . , cn)
(c′1, . . . , c

′
n)

(rand1, . . . , randn)
(pcom1, . . . , pcomn)

;
σ, (r1, . . . , rn)
(r′1, . . . , r

′
n)

(r′′1 , . . . , r
′′
n)

 :

σ is a permutation on [n]
∀i ∈ [n] : r′′i = R.Extract(pp, ri, randi; r′i)

∧ r′′i ∈ R(pcomi, ri, randi)
∧ c′σ(i) = R.Randomize(pp, ci; r′′i)

 .

See Section 8 for a formal definition of such a proof system.

32

Equipped with these building blocks, the SSLE protocol is defined in Fig. 6. The protocol follows the
commit-and-shuffle approach described informally in the introduction.

Theorem 7.1. Let n and c be any integers such that c < n. If H is modeled as a random oracle, then the
protocol ssle defined in Fig. 6 satisfies uniqueness, (n, c)-fairness, and (n, c)-unpredictability.

The proof of the theorem can be found in Appendix C.1.

General shuffle patterns. The protocol in Fig. 6 relies on the “complete shuffle”: All of the parties take
turns, and each party shuffles all of the commitments when it is her turn. This is a simple and easy-to-
present shuffle, and it also provides optimal unpredictability guarantees. However, this is not without cost,
as this means that the proofs of correct shuffle that parties compute are for large statements. Moreover,
when instantiating it with our lattice-based RRC schemes, one has to set the modulus q to be large enough
to support N re-randomizations.

To mitigate these costs, one can employ other shuffles rather than the complete shuffle. Boneh et al. [24]
consider dividing the parties to equally-sized buckets and having each party shuffle only the commitments in
her bucket. This reduces the size of its shuffle and also the number of re-randomizations each commitment
undergoes. However, it weakens the unpredictability guarantees. Whisk [44] employs a more sophisticated
Feistel-based approach. Recently, Larsen, Obremski, and Simkin [47] proposed a randomized approach for
distributed shuffling in which each party permutes k commitments and the number of rounds is Õ(n/k+ c),
where c is the number of corruptions.

Reducing storage and communication. The commit-and-shuffle protocol may be modified such that in
each shuffle, the shuffler uses the same randomness to re-randomize all commitments, as proposed in [28]
for DDH commitments. When using our lattice-based commitments, this comes at a cost: in order to use
a single re-randomization matrix R, one needs to increase the parameter m (the number of rows in each
commitment), otherwise the scheme is insecure – it is no longer unlinkable. This cost is considerable in the
integer setting but is more manageable in the ring setting. In the ring setting, to use a single re-randomization
matrix R across all commitments, m needs to scale by a factor of N/n to maintain unlinkability, where
N is the number of commitments being re-randomized and n is the degree parameter of the ring-LWE
assumption. In contrast, in the integer case, m would need to grow by a factor of N to retain unlinkability.
As a concrete example, for N = Ω(n), the ring-based RRC commitments and the re-randomization matrix
would only grow by a constant factor, while in the integer case, they would grow linearly in N .5

This modification opens up the possibility of also using the same vector a across all commitments. We
briefly describe this change in the more efficient ring setting:

• An initial vector a is sampled as part of the public parameters of the protocol. Each initial commitment
is then of the form U ← a ·vT +E ∈ Rm×ℓ

q , where v = H(k) and k is the committed random value.

• When re-randomizing commitments U1, . . . ,UN , the shuffler samples a single matrix R, and broad-
casts a single a′ ← R · a and U ′i ← R ·Ui for i = 1, . . . , N .

Applying this modification, in each shuffle, we only need to transmit and store a single re-randomized
vector a′ ∈ Rm

q instead of N such vectors. However, in our setting, this change does not immediately lead
to savings in total storage and communication for a large number of commitments due to enlarging m.

5While the re-randomization matrix would typically not be transmitted in the clear, its size does affect the complexity of the
proof of shuffle (recall our discussion in the introduction and also see Section 8).

33

• Setup(1λ, N):

1. Sample ppNIZK ←$ NIZK.Setup(1λ) and ppR ←$ R.Setup(1λ).

2. Return pp = (ppNIZK, ppR).

• The election protocol Elect for subset J = {1, . . . , n}:

1. Party i ∈ J starts with a local input pp,J , i. The protocol proceeds in three stages.

2. Commit stage:
(a) Party i samples (ci, ki)←$ R.Commit(ppR), and computes hi ← H(ki).
(b) For j = 1, . . . , n: Party i samples ri,1, . . . , ri,n ←$ {0, 1}ρ and pcomi,j ←

R.Precommit(ppR; ri,j) for each j ∈ [n].
(c) Party i broadcasts pcomi,1, . . . , pcomi,n to all other users in J .
(d) Upon receiving all precommitments, party i broadcasts ci, hi to all other users in J .

(e) Upon receiving c1, . . . , cn,h1, . . . , hn each party i sets c(0)i,j ← cj for all j ∈ [n].

3. Shuffle stage: The shuffle stage proceeds in n rounds. Let randi,1, . . . , randi,n be the output of the
randomness beacon in round i ∈ [n].
In round i ∈ [n], party i does:

(a) Compute r′′i,j ←$ R.Extract(pp, ri,j , randi,j) for each j ∈ [n].

(b) Compute c′j ← R.Randomize(pp, c(i−1)
i,j ; r′′i,j) for each j ∈ [n].

(c) Sample a random permutation σ on [n] and set c(i)i,j ← c′σ(j) for each j ∈ [n].
(d) Compute a proof pfi by invoking NIZK.P on input ppNIZK, the instance composed of

ppR, (c(i−1)
i,1 , . . . , c

(i−1)
i,n), (c(i)i,1, . . . , c

(i)
i,n), (randi,1, . . . , randi,n) and (pcomi,1, . . . , pcomi,n),

and the witness composed of σ, (ri,1, . . . , ri,n), (r′i,1, . . . , r
′
i,n), and (r′′i,1, . . . , r

′′
i,n), where

r′i,1, . . . , r
′
i,n is the randomness used for R.Extract above.

(e) Broadcast (c(i)i,1, . . . , c
(i)
i,n) and pfi to all other users in J .

In round j ̸= i, Upon receiving (c
(j)
j,1, . . . , c

(j)
j,n) and pfj from party j, party i does:

(a) Verify the proof pfj by invoking NIZK.V on input ppNIZK, the instance composed of ppR,

(c
(j−1)
i,1 , . . . , c

(j−1)
i,n), (c(j)j,1, . . . , c

(j)
j,n), (randj,1, . . . , randj,n) and (pcomj,1, . . . , pcomj,n).

(b) If verification passes, set (c(j)i,1 , . . . , c
(j)
i,n) ← (c

(j)
j,1, . . . , c

(j)
j,n). Otherwise, set (c(i)i,1, . . . , c

(i)
i,n) ←

(c
(j−1)
i,1 , . . . , c

(j−1)
i,n).

4. Selection stage: Let S = {j ∈ [n] : ∃j′ ̸= j s.t. hj = hj′}. After the selection stage, the
randomness beacon outputs a value we treat as an integer i∗ ←$ [n] \ S . Each party i ∈ [n] does:

(a) Set psti ← (S, h1, . . . , hn, c
(n)
i,i∗).

(b) Check if R.Test(ppR, c
(n)
i,i∗ , ki) = 1. If so, let bi ← 1 and πi ← ki. Otherwise, let bi ← 0 and

πi ← ⊥.
(c) Output (psti, bi, πi)

• Verify(pp, i, pst, π): parse pst as (S, h1, . . . , hn, c) and π as k and do:

1. If i ̸∈ S, hi = H(k) and R.Test(ppR, c, k) = 1 then output 1. Otherwise, output 0.

Figure 6: ssle – A commit-and-shuffle SSLE protocol

34

Fortunately, when using the precommitment to randomness approach from Section 6, we can further
reduce the size of commitments by setting the parameter ℓ to be just 1. The commitments will still be
binding; a similar analysis to the proof of Theorem 6.2 shows that the vector a′ remains close to uniformly
random throughout the execution of the protocol.

We stress that the discussion above only pertains to the “complete shuffle” pattern used by the commit-
and-shuffle protocol in Fig. 6. We cannot use a single a vector if using a shuffle pattern in which different
commitments are randomized by different shufflers, as in [44, 47].

Adaptive adversaries. In the security experiments above, we considered a static adversary, that decides on
the corrupted parties I in the beginning of the election protocol. We do this for simplicity, as the distributed
shuffle itself is not the focus of this paper. However, the proof of Theorem 7.1 readily captures an adaptive
adversary that may decide, in the beginning of each round, which parties to corrupt in this round. Then, c is
the total number of corruptions the adversary is allowed. See, for example, [44, 47].

8 Proof of Well-Formed Shuffle

Our SSLE application of RRC schemes required that the shuffler in each round proves that they performed a
“well-formed” shuffle; that is, the new list of commitments is obtained from the old one by re-randomizing
and permuting. Moreover, the randomness used for re-randomization has to be consistent with the transcript
of the protocol so far, including the outputs of the randomness beacon; in the language of Section 6 the
shuffler has to prove that it used admissible randomness. For example, if R+

LWE is used, the shufflers need to
prove that when re-randomizing, they used the sum of the matrix that they pre-committed to and the matrix
sampled from the beacon. In this section, we present various approaches for realizing such a proof of a
well-formed shuffle for our lattice-based RRC schemes.

The outline of this section is as follows. We start by presenting formal definitions for non-interactive
statistically-binding commitment schemes, who will play an instrumental role in this section. Then, we
discuss how to instantiate the proof of shuffle using generic proof systems. Finally, we present an adap-
tation of the recent protocol of Costa, Martı́nez, and Morillo [31] (following the classic Bayer and Groth
protocol [16], a variant of which is used in Ethereum’s Whisk protocol [64]).

8.1 Commitment Scheme

A non-interactive commitment scheme is defined by the following three algorithms:

• Setup(1λ) → pp : outputs public parameters pp. Implicit in these parameters is a message spaceM.
Typically, this will be Zq and Rq for LWE-based and Ring-LWE based commitments, respectively.
We add the subscripts LWE,RLWE when referring to parameters for the integer and the ring-based
schemes, e.g.MLWE = Zq andMRLWE = Rq,

• Commit(pp,m; r) → c : this is a randomized poly-time algorithm that takes as input the public pa-
rameters pp, a message m ∈M, and randomness r, and returns a commitment c to m. We also define
the notation Commit(pp,m) → (c, r) to denote the process of randomly sampling r and returning
Commit(pp,m; r) as the commitment and r as the opening,

• Verify(pp,m, r, c)→ 0/1 : takes in pp, a message m, randomness r, and a commitment c, and outputs
0 or 1. The output 1 implies that c is a valid commitment on m with opening r.

35

The standard properties a commitment scheme should satisfy are correctness, hiding, and binding.

Correctness. A scheme is correct if Verify outputs 1 whenever the commitment and opening are computed
by an honest party. More formally,

Pr[Verify(pp,m, r, c) = 1 : pp←$ Setup(1λ),m←$M, (c, r)←$ Commit(pp,m)] = 1

Hiding. A commitment scheme is hiding if the commitment does not reveal anything about the committed
value. More formally, we say that a scheme is computationally hiding if for all probabilistic polynomial
time adversaries (A1,A2), there is a negligible function negl such that :

Pr

[
b = b′ :

pp←$ Setup(1λ), (m0,m1, aux)←$A1(pp), b←$ {0, 1},
(c, r)←$ Commit(pp,mb), b

′←$A2(c, aux)

]
≤ 1

2
+ negl(λ)

Binding. A commitment scheme is binding if a commitment cannot be opened to different messages. A
scheme is called statistically binding if this holds unconditionally, i.e. with overwhelming probability over
the choice of the public parameters pp←$ Setup(1λ), we have that, for all m,m′ ∈ M, for all r, r′, and for
all commitments c,

Verify(pp,m, r, c) = Verify(pp,m′, r′, c) = 1 =⇒ m = m′

In the following sections, we will use CLWE and CRLWE to refer to a commitment scheme with the above
properties, with the message space being Zq andRq respectively.

8.2 The Relation That Needs Proving

Equipped with the above definition of commitment schemes, we can present the relation that the proof of
shuffle needs to prove, when using our lattice-based RRC schemes. We begin by presenting the relation for
our LWE-based scheme, and then turn to the ring setting.

Let us use {cr,ijk}i∈[t],j∈[m],k∈[m] to denote the pre-commitment to the randomness sampled by the
prover. For any i ∈ [t], j, k ∈ [m], cr,ijk is the commitment to Ri,jk. Let us use {(A1,U1), . . . , (At,Ut)}
to denote the original list of commitments, and {(A′1,U ′1), . . . , (A′t,U ′t)} to denote the shuffled list. Let
{R′i}i∈[t] be the randomness sampled from the beacon at the time of shuffle. The randomizer P wants
to prove that they re-randomized and shuffled the list correctly using {Ri + R′i}i∈[t]. More formally, P
holds a list of matrices R1, . . . ,Rt, the randomness {ri,jk} for the pre-commitments and a permutation π
as witness, and wants to prove that

1. A′i = (Ri +R′i) ·Aπ(i) and U ′i = (Ri +R′i) ·Uπ(i) for all i ∈ [t].

2. CLWE.Verify(ppLWE,Ri,jk, ri,jk, cr,ijk) = 1 for all i ∈ [t], j, k ∈ [m]

We formalize this with the following relation:

RLWE =


(
{cr,ijk}i∈[t],j∈[m],k∈[m], {(Ai,Ui)}i∈[t],

{(A′i,U ′i)}i∈[t], {R′i}i∈[t]

)
,

({Ri}i∈[t], {ri,jk}i∈[t],j∈[m],k∈[m], π)
:

A′i = (Ri +R′i) ·Aπ(i)∀i ∈ [t]

∧U ′i = (Ri +R′i) ·Uπ(i)∀i ∈ [t]

∧∀i ∈ [t], j, k ∈ [m] :
CLWE.Verify(ppLWE,Ri,jk, ri,jk, cr,ijk) = 1


36

We can write a similar relation for the Ring-LWE version. The main difference is that, assuming t = cn
for some constant c > 1 and m = O(c · (log(q) + λ

n) +
κ
n), a single matrix R can be used to re-randomize

all the commitments. We define the following relation to formalize this.

RRLWE =


(
{cr,jk}, {(ai,Ui)}i∈[t],
{(a′i,U ′i)}i∈[t],R′

)
,

(R, {rjk}j∈[m],k∈[m], π)
:

a′i = (R+R′) · aπ(i)∀i ∈ [t]

∧U ′i = (R+R′) ·Uπ(i)∀i ∈ [t]

∧∀j, k ∈ [m] :
CRLWE.Verify(ppRLWE,Rjk, rjk, cr,jk) = 1


Note that for correctness to hold, one also needs to check that R is low-norm. This can be formalized as

another constraint in the relations. However, this can also be achieved by having each party checking after
each shuffle that her commitment still appears on the list, and so we do not include it in the descriptions of
the relations.

8.3 Constructing Proof of Shuffle

There are a few methods that can be used to prove the above relations.

8.3.1 Generic Post-Quantum Proof Systems

One option to construct a proof of shuffle for the relations above is to rely on generic non-interactive proof
systems. Recent years have seen tremendous improvements in the succinctness and computational efficiency
of such proof systems. This includes, in particular, proof systems that rely on assumptions that are assumed
to be post-quantum secure. Examples include hash-based proof systems (e.g., [20, 18, 19, 41] and the
references therein), lattice-based proof systems (e.g., [2, 53, 49, 6, 12] and the references therein), and proof
systems that rely on MPC in the head techniques (e.g., [4, 23] and the references therein).

Such generic proof systems can be applicable to our needs, since the above relations can be expressed as
simple systems of algebraic constraints. For completeness, we now sketch one way to convert these relations
to algebraic constraints. We emphasize, however, that this presentation is merely meant to exemplify the
simplicity of the constraints, and is by no means optimized for any specific proof system.

The constraint system. We describe how to convert the relation RLWE to a constraint system and then
briefly discuss how to extend this to RRLWE. We can describe the permutation π as a list of t2 boolean
variables {p1,1, . . . , pt,t}, where pi,j denotes whether π(i) is j. Then, we can express Aπ(i) as the following
sum: Aπ(i) = Σj∈[t]Aj · pi,j . To ensure that these variables are indeed boolean, we add the following
constraint for all i, j ∈ [t], p2i,j = pi,j . Next, to ensure that they represent a valid permutation, we add two
sets of constraints: (i) For every i ∈ [t], Σj∈[t]pi,j = 1 and (ii) for every j ∈ [t], Σi∈[t]pi,j = 1. We now
describe the relation with {pi,j}i∈[t],j∈[t] included in the witness instead of π.

∀i ∈ [t], j ∈ [m], k ∈ [m],A′i,jk = Σl∈[m](Ri,jl +R′i,jl) · (Σy∈[t]Ay,lk · pi,y) (19)

∀i ∈ [t], j ∈ [m], k ∈ [m],U ′i,jk = Σl∈[m](Ri,jl +R′i,jl) · (Σy∈[t]Uy,lk · pi,y) (20)

∀i ∈ [t], j ∈ [m], k ∈ [m],CLWE.Verify(ppLWE,Ri,jk, ri,jk, cr,ijk) = 1 (21)

37

∀i ∈ [t], p2i,j − pi,j = 0 (22)

∀i ∈ [t],Σj∈[t]pi,j = 1 (23)

∀j ∈ [t],Σi∈[t]pi,j = 1 (24)

The constraints in Eq. 21 still appear in their generic form, but they too translate to simple algebraic
constraints when the commitment scheme CLWE is instantiated using a lattice-based commitment scheme
with an algebraically simple verification procedure (e.g., [22, 15, 13]; see also Section 8.4 for an example
of such a commitment scheme in the ring setting).

We can similarly construct a family of constraints for the Ring-LWE based scheme, wherein the main
difference is that the same matrix R is used to re-randomize all the commitments.

8.4 A Bayer-Groth-Like Shuffle Argument for Ring-LWE

Another option is to construct a protocol that is specifically tailored to prove the above relations. In the
context of shuffling discrete-log-based commitments or encryptions, there has been a long line of research
on constructing shuffle proofs (see, for example, [52, 37, 42, 16, 26], and the many references therein).
Recent works have extended the ideas from the discrete-log setting to the lattice-based setting [62, 31].

In particular, a recent work by Costa, Martı́nez, and Morillo [31] constructed a proof of shuffle for
Ring-LWE-based homomorphic encryptions, by non-trivially importing ideas from the work of Bayer and
Groth [16] in the discrete-log setting. It cannot be directly used to prove shuffle for our RRC commitments,
since they are not homomorphic. We show that, in the case where we use a single large matrix to re-
randomize the list of ring-based RRC commitments, we can tweak their shuffle proof to be compatible with
our scheme. Recall that the prover uses CRLWE to commit to its witnesses for this proof. Similarly to the
protocol of Costa et al. our protocol requires that in addition to the standard notions of correctness, hiding,
and binding, the commitment scheme is also additively homomorphic.6 A commitment scheme is called
additively homomorphic in both the message and the randomness, if there are binary group operations +,⊗
such that the following is true for all λ ∈ N, and for all pp←$ Setup(1λ), for all messages m,m′ ∈ M, for
all randomness r, r′:

Commit(pp,m; r) + Commit(pp,m′; r′) = Commit(pp,m⊗m′; r ⊗ r′)

We define ⊗ as ring addition, and + is defined as vector addition. From this point on, we will use + to
refer to both these operations.7

We also require that CRLWE is equipped with two special types of zero-knowledge proof systems: A
proof of linear relations, and a proof of product relations:

1. Proof of Linear Relations: We use LRRLWE to refer to a zero-knowledge proof of knowledge of
openings {(mi, ri)}i∈[L] to commitments {ci}i∈[L], where the messages mi ∈M additionally satisfy
a linear relation, Σi∈[L]αimi = S. More formally, LRRLWE is a zero-knowledge proof of knowledge
for the following relation:

6Costa et al. considered a specific commitment scheme that satisfies this property.
7Lattice-based commitment schemes are typically homomorphic only up to a bounded number of additions, determined by the

parameters of the scheme. We abstract this fact out to simplify the presentation.

38

RL,RLWE =

{
(pp, {ci}i∈[L], {αi}i∈[L], S),

({mi, ri}i∈[L])
:

Verify(pp,mi, ri, ci) = 1 ∀ i ∈ [L]
∧Σi∈[L]αimi = S

}
We characterize LRRLWE with the following functions :

• LRRLWE.Prove((pp, {ci}i∈[L], {αi}i∈[L], S), ({mi, ri}i∈[L])) → Π : a randomized algorithm
that returns a zero-knowledge proof for the relation,

• LRRLWE.Verify((pp, {ci}i∈[L], {αi}i∈[L], S),Π)→ {0, 1} : outputs 1 if Π is a valid proof for the
relation.

2. Proof of Product Relations: We use PRRLWE to refer to a zero-knowledge proof of knowledge
of openings {(mi, ri)}i∈[L] to commitments {ci}i∈[L], where the messages mi additionally satisfy
a multiplicative relation, Πi∈[L]mi = M . More formally, PRRLWE is a zero-knowledge proof of
knowledge for the following relation:

RP,RLWE =

{
(pp, {ci}i∈[L], P),

({mi, ri}i∈[L])
:

Verify(pp,mi, ri, ci) = 1 ∀ i ∈ [L]
∧Πi∈[L]mi = P

}
Similar to LRRLWE, we characterize PRRLWE with the following two functions:

• PRRLWE.Prove((pp, {ci}i∈[L], P), ({mi, ri}i∈[L]))→ Π : a randomized algorithm that returns a
zero-knowledge proof for the product relation,

• PRRLWE.Verify((pp, {ci}i∈[L], P),Π)→ {0, 1} : outputs 1 if Π is a valid proof for the relation.

Overview of the protocol. We start with a high level overview of [31], and explain where we deviate
from it. In [31], the prover first sends a commitment to the permutation π. Specifically, it sends a list of t
commitments :

{cπ(i)←$CRLWE.Commit(ppRLWE, π(i))}i∈[t].

It then uses techniques from [32, 14] to generate a zero-knowledge proof Π1 to show that the prover knows
{mi}i∈[t], that are valid openings for the commitments {cπ(i)}i∈[t], and for all i, mi is a polynomial with
degree < n/2. These techniques can be used because the commitment scheme CRLWE is additively homo-
morphic and hiding, and hence can be characterized as a homomorphic one-way function. We use SSRLWE

to refer to such an argument system, and characterize it with two algorithms: (a) Prove which takes as input
the public statement and the prover’s witness and outputs a proof, and (b) Verify which takes as input the
public statement and a proof, and outputs whether the proof is valid. Note that the Prove algorithm is actu-
ally a constant-round public-coin interactive protocol, but we refer to it as a function for simplicity in this
overview (since the protocol is constant-round public-coin protocol, one can apply the Fiat-Shamir heuristic
[35] to make it non-interactive).

Next, the verifier sends a random challenge α←$S, where S ⊂ Rq is the set of polynomials with degree
< n

2 . The prover responds with another list of commitments:

{cαπ(i) ←$CRLWE.Commit(ppRLWE, α
π(i))}i∈[t]

The prover then gets two more random challenges β, γ ←$ S from the verifier, and generates a proof Π2

that, for every i ∈ [t], it knows valid openings mi ∈ Zq,mα,i ∈ Rq for the commitments cπ(i), cαπ(i) that
satisfy the following relation:

39

Πi∈[t](βmi +mα,i − γ) = Πi∈[t](βi+ αi − γ)

The prover can use the linear relations proof LRRLWE and the product relations proof PRRLWE to generate
such a proof. As stated in [31], this proof would convince the verifier, that with overwhelming probability,
{cαπ(i)}i∈[t] are indeed commitments to α with exponents 1 to t permuted in an order that was fixed by
{cπ(i)}i∈[t] before α was chosen.

Next, the prover wants to prove that the new list was generated using the randomness consistent with the
pre-commitments. In [31], they exploit the fact that the Ring-LWE encryptions (and re-encryptions) they are
shuffling are homomorphic, allowing them to express the constraints as a single linear relation and simply
use LRRLWE to generate a proof.

Unfortunately, since our RRC commitments are not homomorphic, we cannot express this constraint
directly as linear or product relations. To solve this issue, we extend a technique from [64] by exploit-
ing the fact that we use the same matrix R to re-randomize all our commitments. Let us use {cr,ij←$

CRLWE.Commit(Rij)}i,j∈[m] to refer to the commitment to the re-randomization matrix R, that the prover
sends before the beginning of the shuffle protocol. Let us denote a = Σi∈[t]α

i · ai and U = Σi∈[t]α
i ·Ui.

The prover starts with sending values a′ = (R + R′) · a and U ′ = (R + R′) · U to the verifier. It then
uses LRRLWE to prove that it knows openings {mr,ij}i,j∈[m] for commitments {cr,ij}i,j∈[m] that satisfy the
following linear relations (Π3):

∀i ∈ [m],a′i = Σj∈[m](mr,ij +R′ij) · aj

∀i ∈ [m], j ∈ [ℓ],U ′ij = Σk∈[m](mr,ik +R′ik) ·Ukj

The idea of using the same randomness across all re-randomizations is inspired by the “proof of same-
exponent relation” in [64].

Next, the prover again uses the linear relation proof LRRLWE to prove that it knows openings {mα,i}i∈[t]
for commitments {cαπ(i)}i∈[t] which satisfy the following relations (Π4):

∀i ∈ [m],a′i = Σj∈[t]mα,j · a′j,i

∀i ∈ [m], j ∈ [ℓ],U ′ij = Σk∈[t]mα,k ·U ′k,ij
The proofs Π3,Π4 together convince the verifier, that with overwhelming probability, {cr,ij}i,j∈[m] are

indeed commitments to the matrix R, such that a′i = (R+R′) · aπ(i) and U ′ = (R+R′) ·Uπ(i) for all i
in the list [t].

Note that we can use this proof with our LWE scheme as well, by using the same re-randomization matrix
R +R′ for each RRC commitment. This, however, comes at the cost of scaling all the RRC commitments
by a factor of t (the size of the shuffle) to make the unlinkability analysis go through (as mentioned in
Section 7).

The protocol in detail and its analysis. We now formalize the full interactive proof Πshuffle in Figure 7.
We analyse the security of our protocol when instantiated with the commitment scheme from [22]. To

prove that the commitments {cπ(i)}i∈[t] are commitments to polynomials with degrees < n
2 , we use the

cut-and-choose based protocol SSRLWE from [14]. Specifically, the public parameters for the commitment
scheme contain a, b which are vectors of length k, uniformly randomly sampled from Rk

q . To commit to a

40

P(R, π) V(ppRLWE, {ai,Ui}i∈[t], {a
′
i,U

′
i}i∈[t],R

′
)

∀i ∈ [m], j ∈ [m] :

rr,ij ←$ RRLWE, cr,ij ← Commit(ppRLWE,Rij ; rr,ij)

{cr,ij}i∈[m],j∈[m]

∀i ∈ {1, . . . , t} :

ri ←$ RRLWE, cπ(i) ← Commit(ppC,RLWE, π(i); ri)

Π1 ←$ SSRLWE.Prove((ppRLWE, {cπ(i)}i∈[t]), ({mi, ri}i∈[t]))

{cπ(i)}i∈[t] , Π1

α←$ S

α

a← Σi∈[t]α
i
ai , U ← Σi∈[t]α

i
Ui

a
′
= (R + R

′
)a,U

′
= (R + R

′
)U

∀i ∈ {1, . . . , t} :

rα,i ←$ RRLWE, cαπ(i) ← Commit(ppRLWE, α
π(i)

; rα,i)

a′ , U ′ , {c
απ(i)}i∈[t]

β, γ ←$ S

β, γ

P ← Πi∈[t](βi + α
i − γ)

∀i ∈ [t] :

mi,L ← βπ(i) + α
π(i) − γ

ri,L ←$ RRLWE, ci,L ← Commit(ppRLWE,mi,L; ri,L)

Π2,i,L ←$ LRRLWE.Prove((ppRLWE, {cπ(i), cαπ(i) , ci,L}, {β, 1,−1}, γ), ({(mi, ri), (mα,i, rα,i), (mi,L, ri,L)}))

Π2,P ←$ PRRLWE.Prove((ppRLWE, {ci,L}i∈[t], P), ({(mi,L, ri,L)}i∈[t]))

{(c′′i , Π2,i,L)}i∈[t] , Π2,P

∀i ∈ [m] :

Π3,a,i ←$ LRRLWE.Prove((ppRLWE, {cr,ij}j∈[m], {aj}j∈[m],a
′
i), ({(mr,ij , rr,ij)}j∈[m]))

∀i ∈ [m], j ∈ [ℓ] :

Π3,u,ij ←$ LRRLWE.Prove((ppRLWE, {cr,ik}k∈[m], {Ukj}k∈[m],U
′
ij), ({(mr,ik, rr,ik)}k∈[m]))

{Π3,a,i}i∈[m] , {Π3,u,ij}i∈[m]j∈[ℓ]

∀i ∈ [m] :

Π4,a,i ←$ LRRLWE.Prove((ppRLWE, {cαπ(j)}j∈[t], {a
′
ji}j∈[t],a

′
i), ({(m

′
j , r

′
j)}j∈[t]))

∀i ∈ [m], j ∈ [ℓ] :

Π4,u,ij ←$ LRRLWE.Prove((ppRLWE, {cαπ(k)}k∈[t], {U
′
k,ij}k∈[t],U

′
ij), ({(m

′
k, r

′
k)}k∈[t]))

{Π4,a,i}i∈[m] , {Π4,u,ij}i∈[m].j∈[ℓ]

If SSRLWE.Verify((ppRLWE, {cπ(i)}i∈[t]),Π1) = 1

∧ ∀i ∈ [t] LRRLWE.Verify((ppRLWE, {cπ(i), cαπ(i) , ci,L}, {β, 1,−1}, γ)Π2,i,L) = 1

∧ PRRLWE.Verify((ppRLWE, {ci,L}i∈[t], P),Π2,P) = 1

∧ ∀i ∈ [m]LRRLWE.Verify((ppRLWE, {cr,ij}j∈[m], {aj}j∈[m],a
′
i),Π3,a,i) = 1

∧ ∀i ∈ [m], j ∈ [ℓ], LRRLWE.Verify((ppRLWE, {cr,ik}k∈[m], {Ukj}k∈[m],U
′
ij),Π3,u,ij) = 1

∧ ∀i ∈ [m], LRRLWE.Verify((ppRLWE, {cαπ(j)}j∈[t], {a
′
ji}j∈[t],a

′
i),Π4,a,i) = 1

∧ ∀i ∈ [m], j ∈ [ℓ], LRRLWE.Verify((ppRLWE, {cαπ(k)}k∈[t], {U
′
k,ij}k∈[t],U

′
ij),Π4,u,ij) = 1

then, accept.

Figure 7: The proof of shuffle protocol Πshuffle.
41

message m ∈ Rq, we sample r ←$ Rq and e ←$ Dk
σe

conditioned on ||e||∞ ≤ n, where Dσe is a discrete
gaussian distribution over Rq with zero-mean and standard deviation σe. Then the commitment to m is
am + br + e and the opening is (m, r, e, 1). The verify protocol accepts an opening (m′, r′, e′, f ′) for a
commitment c only if :

c′ = am′ + br′ + f ′−1e′ ∧ ||e||∞ ≤ ⌊
nX

2
⌋ ∧ ||f ′||∞ ≤ 1 ∧ deg(f ′) <

n

2

Here, X > 2 is a parameter, such that q ≥ nγ and γ = 2X, k = 12. We discuss how these parameters
can be set in more detail later.

The paper [22] also presents protocols LRRLWE,PRRLWE for proof of linear and product relations re-
spectively, over messages committed using this scheme. Both these protocols are 3-round Sigma protocols,
and use the same challenge space C. They can be characterized by the following 3-move form:

• The prover runs (st, t) ←$ Message1(pp, x, w), where pp, x and w denote the public parameters, the
statement and the witness of the relation. The output is a message t that the prover sends to the verifier,
and st, which represents the prover’s state.

• The verifier then samples a challenge d←$ C and sends d to the prover.

• The prover first runs rejection sampling, i.e. b ←$ Rej(d, st). If b = 1, then the prover aborts.
Otherwise, the prover runs z ←$ Message3(d, st), and sends z to the verifier.

• The verifier runs Verify(pp, x, (t, d, z)) and returns 1 if it accepts the proof.

For simplicity, we use Prove(pp, x, w) to refer to the first three steps together, and we use Π← (t, d, z)
to refer to the full transcript as the proof. The paper describes both the protocols for proving linear and
product relations over three messages, but they can be easily generalized to relations over L messages. We
also set the norm bound in the Verify function to be ⌊nX

4 ⌋, where X > 2 is a parameter.
These protocols as well as SSRLWE require an auxiliary commitment scheme, which we instantiate us-

ing the scheme above. Note that the scheme can similarly be instantiated using the commitment scheme
from [15] and SSRLWE from [32]. We leave this as another future direction.

Reducing the number of rounds in Πshuffle to a constant. We described our protocol above as a sequential
composition of poly(t,m, l) number of LRRLWE and PRRLWE proofs for simplicity. However, since these
are Sigma protocols, we can invoke the standard transformation for the conjunction of relations: the prover
would execute all the LRRLWE and PRRLWE protocols in parallel. Moreover, since the challenge space is the
same for LRRLWE and PRRLWE, the verifier can use the same challenge for all the proofs. We now describe
the 3-round protocol combining all the LRRLWE and PRRLWE proofs in Πshuffle:

• The prover computes the first message for all the proofs, i.e.

(st2,i,L, t2,i,L)←$ LRRLWE.Message1

(
(ppRLWE, {cπ(i), cαπ(i) , ci,L}, {β, 1,−1}, γ),

({(mi, ri), (mα,i, rα,i), (mi,L, ri,L)})

)
∀i ∈ [t]

(st2,P , t2,P)←$ PRRLWE.Message1((ppRLWE, {ci,L}i∈[t], P), ({(mi,L, ri,L)}i∈[t]))

(st3,a,i, t3,a,i)←$ LRRLWE.Message1((ppRLWE, {cr,ij}j∈[m], {aj}j∈[m],a
′
i), ({(mr,ij , rr,ij)}j∈[m]))∀i ∈ [m]

(st3,u,ij , t3,u,ij)←$ LRRLWE.Message1

(
(ppRLWE, {cr,ik}k∈[m], {Ukj}k∈[m],U

′
ij),

({(mr,ik, rr,ik)}k∈[m])

)
∀i ∈ [m], j ∈ [ℓ]

42

(st4,a,i, t4,a,i)←$ LRRLWE.Message1((ppRLWE, {cαπ(j)}j∈[t], {a′
ji}j∈[t],a

′
i), ({(m′

j , r
′
j)}j∈[t]))∀i ∈ [m]

(st4,u,ij , t4,u,ij)←$ LRRLWE.Prove((ppRLWE, {cαπ(k)}k∈[t], {U ′
k,ij}k∈[t],U

′
ij), ({(m′

k, r
′
k)}k∈[t]))∀i ∈ [m], j ∈ [ℓ]

The prover then sends all the messages to the verifier, i.e. {t2,i,L}i∈[t], t2,P , {t3,a,i}i∈[m], {t3,u,ij}i∈[m],j∈ℓ,
{t4,a,i}i∈[m], {t4,u,ij}i∈[m],j∈ℓ.

• The verifier samples a random challenge d←$ C, and sends it to the prover.

• The prover then runs rejection sampling for all the protocols. Specifically,

b←$ ∨i∈[t] LRRLWE.Rej(d, st2,i,L) ∨ PRRLWE.Rej(d, st2,P) (25)

∨i∈[m] LRRLWE.Rej(d, st3,a,i) (26)

∨i∈[m],j∈[ℓ] LRRLWE.Rej(d, st3,u,ij) (27)

∨i∈[m] LRRLWE.Rej(d, st4,a,i) (28)

∨i∈[m],j∈[ℓ] LRRLWE.Rej(d, st4,u,ij) (29)

If b = 1 then the prover aborts. Otherwise, the prover computes the final message for all the protocols
as follows:

z2,i,L ←$ LRRLWE.Message3(d, st2,i,L)∀i ∈ [t]

z2,P ←$ PRRLWE.Message3(d, st2,P)

z3,a,i ←$ LRRLWE.Message3(d, st3,a,i)∀i ∈ [m]

z3,u,ij ←$ LRRLWE.Message3(d, st3,u,ij)∀i ∈ [m], j ∈ [ℓ]

z4,a,i ←$ LRRLWE.Message3(d, st4,a,i)∀i ∈ [m]

z4,u,ij ←$ LRRLWE.Message3(d, st4,u,ij)∀i ∈ [m], j ∈ [ℓ]

The prover then sends all these messages {z2,i,L}i∈[t], z2,P , {z3,a,i}i∈[m], {z3,u,ij}i∈[m],j∈ℓ, {z4,a,i}i∈[m],
{z4,u,ij}i∈[m],j∈ℓ to the verifier.

By combining the constant-round protocol SSRLWE and the above 3-round sigma protocol, we get that Πshuffle
is a constant-round protocol. Hence, it can be made non-interactive using the Fiat-Shamir heuristic [35, 33].

Theorem 8.1 below proves completeness, soundness and honest-verifier zero-knowledge for our protocol
with the aforementioned commitment scheme.

Theorem 8.1. The proof of shuffle protocol Πshuffle is an honest verifier zero-knowledge proof of knowledge
for the relation RRLWE.

We prove the theorem using the following claims, which prove the security of the underlying protocols,
i.e. SSRLWE, LRRLWE and PRRLWE.

Claim 8.2 (Theorem 2, [14]). Let k′ be a statistical security parameter, such that t > k′ log(k′). Then
the SSRLWE protocol is an interactive honest-verifier zero-knowledge proof of the following relation with
knowledge error 2−k

′+1 :

RSS =

 ({ci}i∈[t], ppRLWE = {a, b})
{(mi, ri, ei)}i∈[t]

:

ci = ami + bri + ei ∀ i ∈ [t]
deg(mi) <

n
2 ∀ i ∈ [t]

||ei|| ≤ ⌊n
X

2 ⌋ ∀ i ∈ [t]


43

More specifically, SSRLWE has the following properties:
Completeness. If P,V are honest, then the protocol succeeds with probability at least 1− 2O(k′).
Knowledge Soundness. For every deterministic prover P̂ that makes the verifier accept with probability

p > 2−k
′+1, there exists an extractor ESS that outputs t values (m′i, r

′
i, e
′
i) such that Verify(ppRLWE,m

′
i, r
′
i,

e′i, 1, ci) = 1, deg(m′i) <
n
2 and ||e′i|| ≤ O((2k′ + 1)log(k

′)/2 · t · (k) · n) ≤ ⌊nX

2 ⌋ for all i ∈ [t], except
with probability 2−O(k′). The expected time of the extractor is poly(t, k, n, log(q), k′)/p.

Zero-Knowledge. There exists a probabilistic polynomial time algorithm SimSS,RLWE, which takes as
input the public statement (({ci}i∈[t], ppRLWE = {a, b})), and outputs a transcript that is computationally
indistinguishable from a transcript generated by a real protocol execution by honest P,V .

Claim 8.3 (Theorem 4.5, [22]). The LRRLWE protocol is an honest-verifier zero-knowledge proof of knowl-
edge with knowledge error 1

(n/2

k′′)
for the following relation8.

RL,RLWE =

 ({a, b}, {ci}i∈[L], {αi}i∈[L], S)
({(mi, ri, ei, fi)}i∈[L])

:

ci = ami + bri + f−1i ei ∧ ||fi||∞ ≤ 1∀i ∈ [L]

||ei||∞ ≤ ⌊n
X

2 ⌋ ∧ deg(fi) <
n
2∀i ∈ [L]

Σi∈[L]αimi = S


Specifically, the protocol has the following properties:
Completeness. An honest prover P responds with probability 1

ML , where M is a constant from rejection
sampling. When it does respond, an honest V accepts the proof with overwhelming probability.

Special Soundness. There exists a PPT algorithm ELR, which takes as input two accepting transcripts
with different challenges, and outputs {m′i, r′i, e′i, f ′i}i∈[L], such that Verify({a, b},m′i, r′i, e′i, f ′i , ci) = 1 ∀
i ∈ [L], and Σi∈[L]αim

′
i = S.

Honest-verifier Zero-knowledge. There exists a PPT algorithm SimLR,RLWE, which takes as input the
public statement i.e. {a, b}, {ci}i∈[L], {αi}i∈[L], S, and outputs a transcript that is computationally indis-
tinguishable from a transcript generated by a real protocol execution by honest P,V .

Claim 8.4 (Theorem 4.6, [22]). The PRRLWE protocol is an honest-verifier zero-knowledge proof of knowl-
edge with knowledge error 2

(n/2

k′′)
for the following relation.

RP,RLWE =

 ({a, b}, {ci}i∈[L], P)

({(mi, ri, ei, fi)}i∈[L])
:

ci = ami + bri + f−1i ei ∧ ||fi||∞ ≤ 1∀i ∈ [L]

||ei||∞ ≤ ⌊n
X

2 ⌋ ∧ deg(fi) <
n
2∀i ∈ [L]

Πi∈[L]mi = P


Specifically, the protocol has the following properties:
Completeness. An honest proverP responds with probability 1

M2L , where M is a constant from rejection
sampling. When it does respond, an honest V accepts the proof with overwhelming probability.

Special Soundness. There exists a PPT algorithm EPR, which takes as input two accepting transcripts
with different challenges, and outputs {m′i, r′i, e′i, f ′i}i∈[L], such that Verify({a, b},m′i, r′i, e′i, f ′i , ci) = 1 ∀
i ∈ [L], and Πi∈[L]m

′
i = P .

Honest-verifier Zero-knowledge. There exists a PPT algorithm SimPR,RLWE, which takes as input the
public statement i.e. {a, b}, {ci}i∈[L], P , and outputs a transcript that is computationally indistinguishable
from a transcript generated by a real protocol execution by honest P,V .

8Here, k′′ is a parameter that characterizes the challenge space C

44

We can now prove Theorem 8.1.

Proof of Theorem 8.1. Completeness. In the case that the honest prover does not abort, an honest verifier
will a) accept the proof Π1 by completeness of SSRLWE, b) accept Π2,P by completeness of PRRLWE, and
lastly, accept the proofs {Π2,i,L}i∈[t], {Π3,a,i}i∈[m], {Π3,u,ij}i∈[m],j∈[ℓ], {Π4,a,i}i∈[m], {Π4,u,ij}i∈[m],j∈[ℓ] be-
cause LRRLWE is complete. Hence, the verifier will accept the proof of shuffle with overwhelming probabil-
ity, implying that Πshuffle is complete.

Bounding the abort probability. The protocols LRRLWE and PRRLWE from [22] use rejection sampling.
We now analyse the probability that the prover does not abort:

(
1− 1

2O(k′)

)
·

((
1

M

)3
)t

·
(

1

M

)t

·
((

1

M

)m)m

·
((

1

M

)m)mℓ

·

((
1

M

)t
)m

·

((
1

M

)t
)mℓ

Here, M is a rejection sampling parameter used within all the LRRLWE and PRRLWE protocols. As stated
in [48], M = e

12
α
+ 1

2α2 , where α is a function of ση, a parameter controlling the standard deviation of the
messages output by the prover. Specifically, α =

ση

nk′′
√
k

. To ensure that our protocol succeeds with a

constant probability, we set ση = 11(4t +m2 +m2ℓ +mt +mℓt) · nk′′
√
k, and choose any X such that

nX ≥ 4ση
√
2k. Note that this implies that our commitment scheme has a larger multiplicative overhead

in size as compared to the parameters in [22]. This is not unique to our protocol, but is in fact a standard
phenomenon that arises when composing multiple sub-protocols, each of which uses rejection sampling
(such as the protocols in [31, 7]).

Honest-verifier zero-knowledge. We build a simulator Simshuffle for Πshuffle. Specifically, given the public
statement ppRLWE, {ai,Ui}i∈[t], {a′i,U ′i}i∈[t], the simulator does the following.

1. Sample the challenges α̂, β̂, γ̂←$S. Observe that α, β, γ are sampled randomly from S in the real
transcript as well, meaning, (α̂, β̂, γ̂) is distributed identically in the real and the simulated transcript.

2. For all i ∈ [m], j ∈ [m], set ĉr,ij to be a randomized commitment to zero. Specifically, we set ĉr,ij ←$

Commit(ppRLWE, 0). Since the commitment scheme is computationally hiding, {ĉr,ij}i∈[m],j∈[m] ≈c

{cr,ij}i∈[m],j∈[m].

3. For all i ∈ [t], set ĉπ(i), ĉαπ(i) and ĉi,L to be random commitments to zero, i.e. ĉπ(i), ĉαπ(i) , ĉi,L ←$

Commit(ppRLWE, 0). Again, since the commitment scheme is computationally hiding, {ĉπ(i), ĉαπ(i) ,
ĉi,L}i∈[t] ≈c {cπ(i), cαpi(i) , ci,L}i∈[t]

4. Run SimSS,RLWE(ppRLWE, {ĉπ(i)}i∈[t]) to get a simulated Π̂1. As per Claim 8.2, the SSRLWE protocol
is computational zero-knowledge, hence we get Π̂1 ≈c Π1.

5. For every i ∈ [t], run SimLR,RLWE to simulate Π̂2,i,L. Run SimPR,RLWE to simulate Π̂2,P . As stated
in Claims 8.3 and 8.4, the LRRLWE and PRRLWE protocols are both computational zero-knowledge,
hence no efficient adversary can distinguish between the simulated and the real proofs. Specifically,
{Π̂2,i,L}i∈[t] ≈c {Π2,i,L}i∈[t] and Π̂2,P ≈c Π2,P . We note that the simulators for these protocols,
specifically SimLR,RLWE and SimPR,RLWE all generate a valid transcript even if the statement is false.

45

6. Compute â, Û similar to the original protocol, i.e. â = Σi∈[t]α̂
iai and Û = Σi∈[t]α̂

iUi. Sam-
ple â′ ←$ Rm

q and Û ′ ←$ Rm×l
q uniformly randomly. By Lemma 2.2, we get that the statistical

distance between (a′,U ′) (computed as in the real protocol execution) and uniformly random vari-

ables (â′, Û ′) is bounded by m
2

√(
1 +

(q
2m

)n/2)2(tℓ+1)
− 1. Since we set ℓ = O(log(q) + λ

n) and

m = O(t
n · (log(q) +

λ
n)), this distance is negligible. In other words, (â′, Û ′) ≈s (a

′,U ′).

7. Lastly, for all i ∈ [m], j ∈ [ℓ], we use the simulator for linear relations proof SimLR,RLWE to simulate
Π̂3,a,i, Π̂4,a,i, Π̂3,u,ij and Π̂4,u,ij . Since LRRLWE and PRRLWE are both computational zero-knowledge
protocols, we get that {Π̂3,a,i, Π̂4,a,i}i∈[m] ≈c {Π3,a,i,Π4,a,i}i∈[m] and {Π̂3,u,ij , Π̂4,u,ij}i∈[m],j∈[ℓ]
≈c {Π3,u,ij ,Π4,u,ij}i∈[m],j∈[ℓ].

The final transcript ({ĉr,ij}i∈[m],j∈[m], {ĉπ(i)}i∈[t], Π̂1, α̂, {ĉαπ(i)}i∈[t], β̂, γ̂, {ĉi,L, Π̂2,i,L}i∈[t], Π̂2,P ,
â′, Û ′, {Π̂3,a,i}i∈[m], {Π̂3,u,ij}i∈[m],j∈[ℓ], {Π̂4,a,i}i∈[m], {Π̂4,u,ij}i∈[m],j∈[ℓ]) is computationally indistin-
guishable from a real transcript, meaning that Πshuffle is computational honest-verifier zero-knowledge.
Knowledge Soundness. Let us consider a malicious prover P∗ that convinces the verifier with probability
p > 2−k

′+1. We construct an extractor Eshuffle as follows.

• We first construct a malicious prover for the SSRLWE protocol P∗SS from P∗. This prover simply runs
P∗ and simulates all the LRRLWE and PRRLWE protocols by sampling a random challenge.

• We then run ESS with P∗SS, which will extract pre-images {(m′i, r′i, e′i)} for {cπ(i)}i∈[t]. By Claim 8.2,
for all i ∈ [t], deg(m′i) <

n
2 , Verify(ppRLWE,m

′
i, r
′
i, e
′
i, 1, cπ(i)) = 1 and ||e′i|| ≤ O((2k′+1)log(k

′)/2 ·
t · k · n).

• Next, we run P∗ once with randomly sampled challenge. Then, we rewind the prover to just after its
first message, sample fresh challenges and re-run P∗ with these challenges. The probability that we
get two full transcripts, with a different challenge for the LRRLWE and PRRLWE proofs (recall that we
are sampling just one challenge for all of these protocol instances) is p2 − 1

|C| [17].

• If we do indeed get two transcripts where the challenge for all the LRRLWE and PRRLWE proofs is dif-
ferent, we can run the extractor ELR on transcripts for {Π2,i,L}i∈[t] to extract pre-images {(m′′i , r′′i , e′′i , f ′′i),
(m′α,i, r

′
α,i, e

′
α,i, f

′
α,i), (m

′
i,L, r

′
i,L, e

′
i,L, f

′
i,L)} for {cπ(i), cαπ(i) , ci,L}i∈[t], such that for all i ∈ [t],

Verify(ppRLWE,m
′′
i , r
′′
i , e
′′
i , f
′′
i , cπ(i)) = 1

Verify(ppRLWE,m
′
α,i, r

′
α,i, e

′
α,i, f

′
α,i, cαπ(i)) = 1

Verify(ppRLWE,m
′
i,L, r

′
i,L, e

′
i,L, f

′
i,L, ci,L) = 1

m′i,L = βm′i +m′α,i − γ

Note that since the commitment scheme is perfectly binding, m′i = m′′i ∀ i ∈ [t].

• Similarly we can run EPR on the two transcripts for Π2,P to extract {(m′′i,L, r′′i,L, e′′i,L, f ′′i,L)}i∈[t] such
that,

Verify(ppRLWE,m
′′
i,L, r

′′
i,L, e

′′
i,L, f

′′
i,L, ci,L) = 1

Πi∈[t]m
′
i,L = P = Πi∈[t](βi+ αi − γ)

46

Since the commitment scheme is perfectly binding (with overwhelming probability over its setup
algorithm), the pre-images for {ci,L}i∈[t] found in this and the last step are equal, i.e. m′i,L = m′′i,L
for all i ∈ [t].

As discussed in [31], the above equations combined with the fact that ∀ i ∈ [t], deg(m′i) <
n
2 , imply

that m′i = π′(i) and m′α,i = απ′(i) for some permutation π′ that the prover committed to, before the
verifier chose α.

• We can similarly run ELR on the transcripts to extract witnesses for the proofs {Π3,a,i}i∈[m] . Specifi-
cally, we would get {(m′r,ij , r′r,ij , e′r,ij , f ′r,ij}i,j∈[m] such that :

Verify(ppRLWE,m
′
r,ij , r

′
r,ij , e

′
r,ij , f

′
r,ij , cr,ij)) = 1

Σj∈[m]m
′
r,ijaj = a′i∀i ∈ [m]

• Using the two transcripts for the proof Π3,u,ij for any i, j ∈ [m], we can extract witnesses {(m′′r,ik,(j),
r′′r,ik,(j), e

′′
r,ik,(j), f

′′
r,ik,(j))}k∈[m] such that :

Verify(ppRLWE,m
′′
r,ik,(j), r

′′
r,ik,(j), e

′′
r,ik,(j), f

′′
r,ik,(j), cr,ik) = 1

Σk∈[m]m
′′
r,ik,(j)Ukj = U ′ij

By perfect binding of the commitment scheme, m′r,ik = m′′r,ik,(j)∀i, j, k ∈ [m]. We have now ex-

tracted a matrix R̂ with R̂ik = m′r,ik∀i, k ∈ [m], that the prover committed to in advance, such that
a′ = (R̂+R′)a and U ′ = (R̂+R′)U .

• For every i ∈ [m], we run the extractor ELR on two transcripts for Π4,a,i, to get {m′′α,j,(i), r
′′
α,j,(i),

e′′α,j,(i), f
′′
α,j,(i)}j∈[t] such that,

Verify(ppRLWE,m
′′
α,j,(i), r

′′
α,j,(i), e

′′
α,j,(i), f

′′
α,j,(i), cαπ(i)) = 1∀j ∈ [t]

a′i = Σj∈[t]m
′′
α,j,(i)a

′
ji

The above equations hold for all i ∈ [m]. By perfect binding of the commitment scheme, we get that
for all j ∈ [t], m′α,j = απ′(j) = m′′α,j,(i)∀i ∈ [m].

• Lastly, for every i ∈ [m], j ∈ [l], we can run the extractor ELR on two transcripts for Π4,u,ij to get
{m′′α,k,(ij), r

′′
α,k,(ij), e

′′
α,k,(ij), f

′′
α,k,(ij)}k∈[t] such that,

Verify(ppRLWE,m
′′
α,k,(ij), r

′′
α,k,(ij), e

′′
α,k,(ij), f

′′
α,k,(ij), cαπ(i)) = 1∀j ∈ [t]

U ′ij = Σk∈[t]m
′′
α,k,(ij)U

′
ij

Again since the commitment scheme is perfectly binding, we have, for all k ∈ [t], m′α,k = m′′α,k,(ij) =

απ′(i)∀i ∈ [m], j ∈ [l]. We get that a′ = Σi∈[t]α
π′(i)a′i and U ′ = Σi∈[t]α

π′(i)U ′i .

47

Combining the above equations, we get the following:

Σi∈[t]α
π′(i)a′i = a′

= (R̂+R′)a

= (R̂+R′)Σi∈[t]α
iai

= Σi∈[t]α
i(R̂+R′)ai

Consider the polynomial Σi∈[t]x
π′(i) · ((R̂+R′)aπ′(i) − a′i). The prover committed to this polynomial

before receiving anything from the verifier, and then the verifier queries it at a random point α. By the
Generalized Schwartz zippel lemma from [31], we get that with probability 1 − t

|S| , this polynomial is the

zero polynomial. This implies that a′i = (R̂+R′)aπ′(i)∀i.
So we were able to extract a permutation π′ and a re-randomization matrix R̂ such that the relation

RRLWE is satisfied. The overall success probability of our extractor is
(
1− 1

2O(k′)

)
· (p2 − 1

|C|), and the

expected run-time is poly(t, k, n, log(q), k′)/p. This proves that Πshuffle is knowledge-sound.

Acknowledgments. This work was funded by NSF, DARPA, the Simons Foundation, UBRI, and NTT
Research. Opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of DARPA. Lior Rotem is supported by a research grant
from Protocol Labs.

References

[1] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (h)ibe in the standard model. In Advances in
Cryptology – EUROCRYPT 2010, pages 553–572, 2010.

[2] M. R. Albrecht, V. Cini, R. W. F. Lai, G. Malavolta, and S. A. Thyagarajan. Lattice-based snarks:
Publicly verifiable, preprocessing, and recursively composable. In Advances in Cryptology – CRYPTO
2022, pages 102–132, 2022.

[3] J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. Theory of Computing
Systems, 48:535–553, 2011.

[4] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS
2017, pages 2087–2104, Dallas, TX, USA, Oct. 31 – Nov. 2, 2017. ACM Press.

[5] P. Ananth, A. Deshpande, Y. T. Kalai, and A. Lysyanskaya. Fully homomorphic NIZK and NIWI
proofs. In D. Hofheinz and A. Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages
356–385, Nuremberg, Germany, Dec. 1–5, 2019. Springer, Heidelberg, Germany.

[6] T. Attema, R. Cramer, and L. Kohl. A compressed Σ-protocol theory for lattices. In Advances in
Cryptology – CRYPTO 2021, pages 549–579, 2021.

48

[7] T. Attema, V. Lyubashevsky, and G. Seiler. Practical product proofs for lattice commitments. In
D. Micciancio and T. Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 470–
499, Santa Barbara, CA, USA, Aug. 17–21, 2020. Springer, Heidelberg, Germany.

[8] S. Azouvi and D. Cappelletti. Private attacks in longest chain proof-of-stake protocols with single
secret leader elections. In Proceedings of the 3rd ACM Conference on Advances in Financial Tech-
nologies, AFT ’21, page 170–182, 2021.

[9] S. Azouvi, P. McCorry, and S. Meiklejohn. Betting on blockchain consensus with fantomette, 2018.

[10] M. Backes, P. Berrang, L. Hanzlik, and I. Pryvalov. A framework for constructing single secret leader
election from MPC. In V. Atluri, R. Di Pietro, C. D. Jensen, and W. Meng, editors, ESORICS 2022,
Part II, volume 13555 of LNCS, pages 672–691, Copenhagen, Denmark, Sept. 26–30, 2022. Springer,
Heidelberg, Germany.

[11] F. Baldimtsi, V. Madathil, A. Scafuro, and L. Zhou. Anonymous lottery in the proof-of-stake setting. In
L. Jia and R. Küsters, editors, CSF 2020 Computer Security Foundations Symposium, pages 318–333,
Boston, MA, USA, June 22–26, 2020. IEEE Computer Society Press.

[12] C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyubashevsky. Sub-linear lattice-based
zero-knowledge arguments for arithmetic circuits. In Advances in Cryptology – CRYPTO 2018, pages
669–699, 2018.

[13] C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyubashevsky. Sub-linear lattice-
based zero-knowledge arguments for arithmetic circuits. In H. Shacham and A. Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 669–699, Santa Barbara, CA, USA, Aug. 19–
23, 2018. Springer, Heidelberg, Germany.

[14] C. Baum, I. Damgård, K. G. Larsen, and M. Nielsen. How to prove knowledge of small secrets. In
M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 478–498,
Santa Barbara, CA, USA, Aug. 14–18, 2016. Springer, Heidelberg, Germany.

[15] C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert. More efficient commitments
from structured lattice assumptions. In D. Catalano and R. De Prisco, editors, SCN 18, volume 11035
of LNCS, pages 368–385, Amalfi, Italy, Sept. 5–7, 2018. Springer, Heidelberg, Germany.

[16] S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a shuffle. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280,
Cambridge, UK, Apr. 15–19, 2012. Springer, Heidelberg, Germany.

[17] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma.
In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399,
Alexandria, Virginia, USA, Oct. 30 – Nov. 3, 2006. ACM Press.

[18] E. Ben-Sasson, I. Bentov, Y. Horesh, , and M. Riabzev. Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint Archive, Paper 2018/046, 2018. https://eprint.
iacr.org/2018/046.

[19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent
succinct arguments for R1CS. In Advances in Cryptology – EUROCRYPT 2019, pages 103–128, 2019.

49

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

[20] E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In Theory of Cryptography,
pages 31–60, 2016.

[21] F. Benhamouda, S. Krenn, V. Lyubashevsky, and K. Pietrzak. Efficient zero-knowledge proofs for
commitments from learning with errors over rings. Cryptology ePrint Archive, Report 2014/889,
2014. https://eprint.iacr.org/2014/889.

[22] F. Benhamouda, S. Krenn, V. Lyubashevsky, and K. Pietrzak. Efficient zero-knowledge proofs for
commitments from learning with errors over rings. In G. Pernul, P. Y. A. Ryan, and E. R. Weippl,
editors, ESORICS 2015, Part I, volume 9326 of LNCS, pages 305–325, Vienna, Austria, Sept. 21–25,
2015. Springer, Heidelberg, Germany.

[23] R. Bhadauria, Z. Fang, C. Hazay, M. Venkitasubramaniam, T. Xie, and Y. Zhang. Ligero++: A new
optimized sublinear IOP. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages
2025–2038, Virtual Event, USA, Nov. 9–13, 2020. ACM Press.

[24] D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco. Single secret leader election. In AFT ’20, pages
12–24. ACM, 2020. Available online at eprint/2020/025.

[25] D. Boneh and V. Shoup. A Graduate Course in Applied Cryptography, Draft 0.6. Cambridge University
Press, 2023.

[26] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334,
San Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press.

[27] D. Catalano, D. Fiore, and E. Giunta. Efficient and universally composable single secret leader election
from pairings. Cryptology ePrint Archive, Report 2021/344, 2021. https://eprint.iacr.
org/2021/344.

[28] D. Catalano, D. Fiore, and E. Giunta. Adaptively secure single secret leader election from ddh. In
Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC’22, page
430–439, 2022.

[29] R. Chairattana-Apirom and A. Lysyanskaya. Compact cut-and-choose: Boosting the security of
blind signature schemes, compactly. Cryptology ePrint Archive, Paper 2022/003, 2022. https:
//eprint.iacr.org/2022/003.

[30] M. Christ, V. Nikolaenko, and J. Bonneau. Leader election from randomness bea-
cons and other strategies, 2022. https://a16zcrypto.com/posts/article/
leader-election-from-randomness-beacons-and-other-strategies.

[31] N. Costa, R. Martı́nez, and P. Morillo. Lattice-based proof of a shuffle. In FC 2019: Financial
Cryptography and Data Security, pages 330–346, 2019.

[32] R. del Pino and V. Lyubashevsky. Amortization with fewer equations for proving knowledge of small
secrets. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages
365–394, Santa Barbara, CA, USA, Aug. 20–24, 2017. Springer, Heidelberg, Germany.

[33] J. Don, S. Fehr, and C. Majenz. The measure-and-reprogram technique 2.0: Multi-round fiat-shamir
and more. In Advances in Cryptology – CRYPTO 2020, pages 602–631, 2020.

50

https://eprint.iacr.org/2014/889
https://eprint.iacr.org/2020/025
https://eprint.iacr.org/2021/344
https://eprint.iacr.org/2021/344
https://eprint.iacr.org/2022/003
https://eprint.iacr.org/2022/003
https://a16zcrypto.com/posts/article/leader-election-from-randomness-beacons-and-other-strategies
https://a16zcrypto.com/posts/article/leader-election-from-randomness-beacons-and-other-strategies

[34] J. Drake. Low-overhead secret single-leader election, 2019. https://ethresear.ch/t/
low-overhead-secret-single-leader-election/5994.

[35] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature prob-
lems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194, Santa Barbara,
CA, USA, Aug. 1987. Springer, Heidelberg, Germany.

[36] L. Freitas, A. Tonkikh, A.-A. Bendoukha, S. Tucci-Piergiovanni, R. Sirdey, O. Stan, and P. Kuznetsov.
Homomorphic sortition – single secret leader election for pos blockchains. Cryptology ePrint Archive,
Paper 2023/113, 2023. https://eprint.iacr.org/2023/113.

[37] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In J. Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 368–387, Santa Barbara, CA, USA, Aug. 19–23, 2001. Springer, Hei-
delberg, Germany.

[38] C. Ganesh, C. Orlandi, and D. Tschudi. Proof-of-stake protocols for privacy-aware blockchains. In
Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 690–719,
Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

[39] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC
’08, page 197–206, 2008.

[40] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine agree-
ments for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454, 2017. https://eprint.
iacr.org/2017/454.

[41] A. Golovnev, J. Lee, S. Setty, J. Thaler, , and R. S. Wahby. Brakedown: Linear-time and post-quantum
snarks for R1CS. Cryptology ePrint Archive, Paper 2021/1043, 2021. https://eprint.iacr.
org/2021/1043.

[42] J. Groth and Y. Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle. In Advances
in Cryptology – EUROCRYPT 2008, pages 379–396, 2008.

[43] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way
function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[44] G. Kadianakis. Whisk: A practical shuffle-based ssle protocol for ethereum, 2022. X.

[45] T. Kerber, A. Kiayias, M. Kohlweiss, and V. Zikas. Ouroboros crypsinous: Privacy-preserving proof-
of-stake. In 2019 IEEE Symposium on Security and Privacy, pages 157–174, San Francisco, CA, USA,
May 19–23, 2019. IEEE Computer Society Press.

[46] A. Langlois and D. Stehle. Worst-case to average-case reductions for module lattices. Cryptology
ePrint Archive, Paper 2012/090, 2012. https://eprint.iacr.org/2012/090.

[47] K. G. Larsen, M. Obremski, and M. Simkin. Distributed shuffling in adversarial environments. Cryp-
tology ePrint Archive, Paper 2022/560, 2023. Appeared in Information-Theoretic Cryptography (ITC)
2023. Available at https://eprint.iacr.org/2022/560.

51

https://ethresear.ch/t/low-overhead-secret-single-leader-election/5994
https://ethresear.ch/t/low-overhead-secret-single-leader-election/5994
https://eprint.iacr.org/2023/113
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2021/1043
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2022/560

[48] V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and T. Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755, Cambridge, UK, Apr. 15–19, 2012.
Springer, Heidelberg, Germany.

[49] V. Lyubashevsky, N. K. Nguyen, and M. Plançon. Lattice-based zero-knowledge proofs and applica-
tions: Shorter, simpler, and more general. In Advances in Cryptology – CRYPTO 2022, pages 71–101,
2022.

[50] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In
H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23, French Riviera, May 30 –
June 3, 2010. Springer, Heidelberg, Germany.

[51] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[52] C. A. Neff. A verifiable secret shuffle and its application to e-voting. In M. K. Reiter and P. Samarati,
editors, ACM CCS 2001, pages 116–125, Philadelphia, PA, USA, Nov. 5–8, 2001. ACM Press.

[53] N. K. Nguyen and G. Seiler. Practical sublinear proofs for r1cs from lattices. In Advances in Cryptology
– CRYPTO 2022, pages 133–162, 2022.

[54] C. Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical Computer Science,
10(4):283–424, 2016. Available online at eprint/2015/939.

[55] M. Raikwar and D. Gligoroski. Sok: Decentralized randomness beacon protocols. In Australasian
Conference on Information Security and Privacy, pages 420–446. Springer, 2022. available here.

[56] A. Rao. An exposition of bourgain’s 2-source extractor. In Electronic Colloquium on Computational
Complexity (ECCC), volume 14. Citeseer, 2007.

[57] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In H. N. Gabow
and R. Fagin, editors, 37th ACM STOC, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM
Press.

[58] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):34:1–34:40, 2009. Available online here.

[59] A. Sanso. Towards practical post quantum single secret leader election (ssle) - part 1, 2022. X.

[60] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th FOCS,
pages 124–134, Santa Fe, NM, USA, Nov. 20–22, 1994. IEEE Computer Society Press.

[61] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key encryption based on ideal
lattices. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635, Tokyo,
Japan, Dec. 6–10, 2009. Springer, Heidelberg, Germany.

[62] M. Strand. A verifiable shuffle for the GSW cryptosystem. In A. Zohar, I. Eyal, V. Teague, J. Clark,
A. Bracciali, F. Pintore, and M. Sala, editors, FC 2018 Workshops, volume 10958 of LNCS, pages
165–180, Nieuwpoort, Curaçao, Mar. 2, 2019. Springer, Heidelberg, Germany.

[63] T. Tao and V. Vu. On the singularity probability of random bernoulli matrices. Journal of the American
Mathematical Society, 20(3):603–628, 2007.

52

https://eprint.iacr.org/2015/939.pdf
https://arxiv.org/abs/2205.13333
https://cims.nyu.edu/~regev/papers/qcrypto.pdf
https://crypto.ethereum.org/blog/pq-ssle

[64] E. F. R. Team. A shuffle argument protocol specification, 2020. X.

[65] K. Tikhomirov. Singularity of random bernoulli matrices. Annals of Mathematics, 191(2):593–634,
2020.

A Strong Unlinkability without A Randomness Beacon

In this section, we sketch three we present three different approaches to augment our lattice-based RRC
schemes to provide strong unlinkability without assuming a randomness beacon (recall Section 6).

Method I: Enforcing true randomness. One method for augmenting RLWE to be secure according to the
above-strengthened notion is to have the Randomize algorithm choose the matrix R used for re-randomization
as R← HR(r) where r ←$ {0, 1}λ and HR is a cryptographic hash function mapping λ-bit strings to matri-
ces in {−1, 1}m×m. This is formalized as follows. The Precommit does nothing and outputs⊥. The Extract
algorithm gets no input other than pp, samples a random string r ←$ {0, 1}λ, and outputs R ← HR(r).
Intuitively, the set G of admissible randomness for Randomize is the set of all matrices R for which the
re-randomizer “knows” a pre-image r under HR. Formalizing this requires an extension of the above defini-
tions in the random oracle model, in which G is set to be the set of all outputs of the random oracle observed
by the adversary. When using this approach with a concrete hash function HR, the randomizer has to prove
(as discussed above) that it used randomness for which it knows a pre-image.

We argue that this method results in a scheme that is strongly pseudorandom and hence strongly unlink-
able, when HR is modeled as a random oracle. This is true even for unbounded adversaries (in the random
oracle model). The argument is a standard one, but we sketch it here for completeness. Consider an adver-
sary A that makes at most a polynomial number Q = Q(λ) of queries to HR. Consider a modified game,
denoted G

′pr
A,R(λ) in which instead of letting A choose the randomness r used to produce c′, we sample r

honestly. By the proof of Theorem 4.3, we know that there exists a negligible function ν(·) such that A’s
advantage in G

′pr
A,R(λ) is bounded by ν(λ). We say that randomness r is bad if A’s advantage in G

′pr
A,R(λ)

conditioned on the challenger choosing r as the randomness for randomization is at least
√

ν(λ). Total
probability implies that the probability that r is bad is bounded by

√
ν(λ). Hence, by sampling Q random

possible values for r, the overall probability that one of them is bad is at most Q ·
√
ν(λ) and the A’s total

advantage in G
pr
A,R(λ) is at most (Q+ 1) ·

√
ν(λ).

The same technique works for augmenting our ring-based scheme, RRLWE, with strong pseudorandom-
ness in the same manner.

Method II: Pre-committing to well-structured randomness. Our second method to achieve strong un-
linkability using our LWE-based RRC scheme, without a randomness beacon, is to have the randomizer
precommit to a well-structured R in advance. By well-structured, we mean that R is full-rank. Formally,
Precommit(pp; r) parses r = (R, r′) and commits to R using a statistically-binding non-interactive com-
mitment scheme C using randomness r′. Given the randomness r = (R, r′) to the precommitment pcom,
the Extract algorithm simply outputs R. The set G(pcom, r = (R, r′),⊥) of admissible randomness is
the equal to {R} if R is a full-rank matrix and pcom = C.Commit(ppC,R; r′), and to the empty set ∅
otherwise.

To see why this approach provides strong pseudorandomness, first observe that since the adversary com-
mits to R in advance in the strong pseudorandomness game, it is statistically independent of the commitment
c. Next, observe that for any fixed full-rank matrix R ∈ {−1, 1}m×m, the distribution (R ·A,R · U) when

53

https://github.com/ethresearch/Shuffle_SSLE/blob/8b42397dcdb01e57bb5b804c896eab50430795a9/docs/shuffle_ssle.pdf

A ←$ Zm×n
q and U ←$ Zm×ℓ

q , is uniformly random in Zm×n
q × Zm×ℓ

q . This is the case since the function
fR(x) = R · x is a permutation on Zm

q . Hence, since c is indistinguishable from pairs of independent
uniformly-random matrices, this is also the case for c′. Therefore, Lemma 2.1 guarantees that the subse-
quent honest call to Randomize assures that the commitment cb given to the adversary in line 12 of the
strong-pseudorandomness security game is indistinguishable from a pair of uniformly random matrices,
which is independent of the bit b (the proof is identical to the proof of Claim 4.6).

To retain the correctness of the scheme, we need that a uniformly-random matrix in {−1, 1}m×m to
be full-rank with overwhelming probability. To achieve that, we need to set the modulus q to be super-
polynomial in the security parameter λ. In particular, if we assume that q > mm/2 we may leverage the
recent result of Tikhomirov [65] showing that a random m × m Bernoulli matrix is singular over R with
probability (1/2 + o(1))m. We can do so, since the determinant of a matrix {−1, 1}m×m is at most mm/2;
this can be seen, for example, by recalling that the magnitude of the determinant is equal to the volume of
the parallelopiped spanned by the rows of the matrix (see also [63]).

A similar approach may be pursued for our Ring-LWE based RRC scheme as well, by replacing the
notion of “full-rank” with an analogous notion in the ring setting that is sufficient for the above analysis to
go through. We leave this as an interesting question for future work.

Method III: Assuming bad randomness is hard to find Our third approach is the simplest one: It
only requires that the randomizer uses a matrix R with entries in {−1, 1} (that is, it constitutes “honest
randomness” for Randomize) for re-randomization. That is, Precommit does nothing and outputs ⊥, and
Extract samples a uniform matrix in {−1, 1}m×m. The set G of admissible random strings is the entire set
{−1, 1}m×m.

We introduce a lattice-based hardness assumption, under which restricting the randomizer to such ran-
domness is sufficient for guaranteeing unlinkability. The rough idea is this: the leftover hash lemma guaran-
tees that (A,RA,RU) is close to a tuple of three random matrices when A,R and U are chosen at random.
A standard argument shows that this implies that for a fixed matrix [A,U], the distribution R · [A,U] is
(slightly less) close to a uniformly random matrix. Hence, the set of “bad” matrices, i.e., a matrix [A,U]
such that R · [A,U] is far from uniform, is a relatively small set.

Now recall the task of the adversary. The adversary is given a commitment, c = (A,U), which is
just a pair of pseudorandom matrices. The adversary comes up with R ∈ {−1, 1}m×m and produces
c′ = (A′,U ′) = (RA,RU). Then, we wish to claim that c0 = (R′A′,R′U ′) for R′ ←$ {−1, 1}m×m is
pseudorandom. Now, if [A′,U ′] is not a bad matrix, then c0 is statistically close to a uniformly-random pair
of matrices, and we are done. This means that to have a meaningful advantage, [A′,U ′] should be a bad
matrix. This, in turn, means that to be successful, the adversary needs to find a low-norm matrix R such that
R · [A,U] is in the small set of bad matrices. We can make the assumption that this is hard when A and U
are uniformly-random matrices.

In Appendix B we formally present this assumption (called the SMS-SIS assumption), show that the set
of “bad matrices” the adversary has to hit is indeed of negligible density, and prove that this assumption
is sufficient to obtain strong pseudorandomness of our RRC schemes. We focus on the LWE setting, but a
similar assumption and analysis can be made for the Ring-LWE case as well.

B The SMS-SIS Assumption

In this appendix we define the SMS-SIS assumption, which essentially states that given a random matrix
A it should be hard to find a matrix R such that R ·A hits some fixed sparse subset of matrices. We then

54

show that the subset of “bad” matrices the adversary in our RRC scheme has to hit is indeed very sparse,
and conclude by reducing the active security of the scheme to this new assumption.

We focus the discussion on our LWE-based RRC, but it can be extended to the ring setting as well.

The SMS-SIS assumption. We prove the security of the scheme based on a new assumption we put forth,
which we call the small matrix set short integer solution problem, or SMS-SIS for short.

Definition B.1. Let q = q(λ) be a prime, n = n(λ) and m = m(λ) be integers, and β = β(λ) be a real
number, all public functions of the security parameter λ ∈ N. Let S = {Sλ}λ be a set of matrices in Zn×m

q .
The (n, q, β,m,S)-SMS-SIS assumption states that for every probabilistic polynomial time algorithm A
there exists an negligible function ν(·) such that

Advsms-sis
A (λ) := Pr

[
A ·R ∈ S AND

for each row x of R, ∥x∥2 ≤ β

∣∣∣∣ A←$ Zm×n
q

R←$ A(A)

]
≤ ν(λ)

for all sufficiently large λ ∈ N.

The reduction. We now explain how an adversary breaking the strong pseudorandomness of the commit-
ment scheme can be used to break the SMS-SIS assumption with respect to a small subset S of matrices.
First, we define a set of “bad” matrices and show that it is small. Concretely, we show that the parameters
can be set such that the size of this set is less than 2cλ for some constant c ≤ 1. Then, we claim that an
adversary which breaks the unlinkability of our scheme essentially has to break SMS-SIS with respect to
this set.

Bad matrices. For a value ϵ ∈ [0, 1], we say that a (fixed) matrix A ∈ Zm×(n+ℓ)
q is ϵ-bad if

Pr [SD(R ·A, U) > ϵ] ,

where the probability is over R ←$ {−1, 1}m×m and U ←$ Zm×(n+ℓ)
q . Intuitively, a matrix A is bad if

it does not act like a good extractor (with respect to multiplication). Let Sϵ,m,n,ℓ denote the set of ϵ-bad
m× (n+ ℓ)-matrices.

We first prove a useful lemma, bounding the number of bad matrices.

Lemma B.1. For any m,n ∈ N and ϵ ∈ [0, 1] it holds that

|Sϵ,m,n,ℓ| ≤
m ·
√
2−m+(n+ℓ) log q−2 · qm·(n+ℓ)

ϵ

Proof. The proof follows a, by now standard, observation by Rao (see [56] for example). Let R ←$

{−1, 1}m×m, A ←$ Zm×(n+ℓ)
q and U ←$ Zm×(n+ℓ)

q be random variables. Assume towards contradiction
that

|Sϵ,m,n,ℓ| >
m ·
√
2−m+(n+ℓ) log q−2 · qm·(n+ℓ)

ϵ
.

55

Then, it holds that

SD((A,R ·A), (A,U)) =
1

2

∑
A,B

∣∣∣∣PrA,R
[A = A ∧RA = B]− q−2·m·(n+ℓ)

∣∣∣∣
=

1

2

∑
A,B

∣∣∣∣PrA [A = A] · Pr
R
[R ·A = B]− q−2·m·(n+ℓ)

∣∣∣∣
= q−m·(n+ℓ) ·

∑
A

∑
B

1

2

∣∣∣∣PrR [R ·A = B]− q−m·(n+ℓ)

∣∣∣∣
= q−m·(n+ℓ) ·

∑
A

SD(R ·A, U)

≥ q−m·(n+ℓ) ·
∑

A∈Sϵ,m,n,ℓ

SD(R ·A, U)

≥ q−m·(n+ℓ) · |Sϵ,m,n,ℓ| · ϵ (30)

> m ·
√

2−m+(n+ℓ) log q−2, (31)

where unless otherwise specified, summation is over Zm×(n+ℓ)
q , Eq. (30) follows from the definition of

Sϵ,m,n,ℓ and Eq. (31) follows from our assumption.
But we have arrived at a contradiction, since by Lemma 2.1, we know that SD((A,R · A), (A,U)) ≤

m ·
√
2−m+(n+ℓ) log q−2. This concludes the proof of the lemma.

Corollary B.2. For any c ∈ [0, 1], if λ and ϵ are such that λ ≥ 2 · m · (n + ℓ) · log q + log(1/ϵ), then
|Sϵ,m,n,ℓ| ≤ 2cλ.

As a concrete example, think of setting m,n, ℓ and log q such that all of them are at most λ1/3/3, and
setting 1/ϵ = o(2λ) but still super-polynomial.

From breaking strong pseudorandomness to breaking SMS-SIS. Consider an adversary A trying to break
strong pesudorandomness. The reduction algorithm B gets as input a matrix B = [A,U] ∈ Zm×(n+ℓ)

q and
sends it toA. A then produces c′ = (A′,U ′) alongside randomness R. If R is invalid, the reduction aborts.
Otherwise, B outputs R.

To see why the reduction is successful, consider the case where [A′,U ′] is outside of Sϵ,m,n,ℓ. In this
case, R′ · [A′,U ′] is close to uniform for an honest choice of R′. Hence, the adversary can only have a
negligible advantage in guessing b. Hence,Amay have noticeable advantage only if [A′,U ′] = R·[A,U] ∈
Sϵ,m,n,ℓ. Conditioned on this being the case, B solves the SMS-SIS problem with respect to Sϵ,m,n,ℓ with
probability 1.

C Deferred Proofs

C.1 Proof of Theorem 7.1

We prove uniqueness, fairness, and unpredictability separately.

56

Uniqueness. Suppose that there exists an adversaryA breaking the uniqueness of the scheme. We construct
an adversary B that breaks the binding property of R. On input ppR, B simulates the UNIQUEA,ssle(λ) to
A. It does so by sampling public parameters ppNIZK for NIZK and forwarding pp = (ppNIZK, ppR) to
A. It then plays the honest parties, and the randomness beacon D in the election protocol ssle.Elect. Let
(psti, bi, πi) denote the output of the honest user i (emulated by B) at the end of the election protocol, and let
psti = (h∗i , c

∗
i). Then, to win the uniqueness experiment,A needs to come up with πj1 = kj1 and πj2 = kj2

such that for some honest i, it holds that ssle.Verify(pp, j1, psti, πj1) = ssle.Verify(pp, j2, psti, πj2) = 1.
By definition, this implies that hj1 ̸= hj2 , which means that kj1 ̸= kj2 . But for both proofs to go through
verification by party i, it must be the case that R.Test(ppR, c

∗
i , kj1) = R.Test(ppR, c

∗
i , kj2) = 1. This means

that B can output the commitment c∗ and the keys kj1 and kj2 to break binding.

Fairness. The fairness of the protocol follows from the re-randomizability of R and the soundness of
NIZK. Let c1, . . . , cn be the commitments broadcast by parties in the commitment stage of the protocol, and
let c(n)i,1 , . . . , c

(n)
i,n denote the commitments held by party i at the end of the shuffle stage. By the soundness of

NIZK, with all but negligible probability, there exists a permutation σ on [n] such that for every i, j ∈ [n]\I,
c
(n)
i,σ(j) is obtained by a sequence of at most n re-randomizations of cj using admissible randomness. Hence,

by the re-randomizability of R, R.Test(ppR, c
(n)
i,σ(j), kj) = 1 with all but negligible probability.

Additionally, we argue that with overwhelming probability, the set S contains no honest parties. For
any two honest parties j1, j2, it holds that H(k1) = H(k2) with negligible probability. This is the case
since by assumption, kj1 = kj2 with negligible probability, and conditioned on k1 ̸= k2, it holds that
H(kj1) = H(kj2) with probability 2−λ since H is modeled as a random oracle.

Let Bad denote the event in which S ∩ ([n] \ I) ̸= ∅ (that is, there is an honest party in S), or there
exist honest parties i, j ∈ [n] \ I such that for all ℓ ∈ [n] it holds that R.Test(ppR, c

(n)
i,ℓ , kj) = 0. The above

analysis shows that the probability of Bad is negligible. Let i ∈ [n] \ I. Conditioned on the complementing
event Bad, the probability that an honest party j ∈ [n] \ I such that ssle.Verify(pp, j, psti, kj) = 1 is exactly
1− |I|/n, concluding the proof.

Unpredictability. Let A be an adversary in the unpredictability experiment UNPREDA,ssle,n,c(λ). We
construct an adversary B participating in the strong unlinkability game of R. The adversary B gets ppR,
samples ppNIZK ←$ NIZK.Setup(1λ) and forwards pp = (ppNIZK, ppR) to A. Then, B simulates the election
protocol to A, playing the role of the honest parties [n] \ I as follows:

1. On each query k to the random oracle by A: if the value H(k) was previously defined, B replies
consistently. Otherwise, it samples a fresh uniformly random answer from {0, 1}λ.

2. It gets the subset I of corrupted parties from A. Let S1, . . . ,ST denote the maximally-sized of
consecutive honest parties. That is, the sets are defined iteratively: S1 = {i1, . . . , j1}, where i1 is the
smallest index not in I and j1 is the smallest index not in I for which j1+1 is in I; S2 = {i2, . . . j2},
where i2 is the smallest index not in I ∪ S2 and j2 is the smallest index not in I ∪ S2 for which
j2 + 1 ∈ I; and so forth. B outputs T, i10 = i

(1)
1 = |S1|, . . . , i(T)

0 = i
(T)
1 = |ST |.

3. B guesses two indices j0, j1 ←$ [n] \ I. It then generates the precommitments for the honest parties:
It sets the precommitments of parties j0, j1 to be the precommitments received from the challenger
in the strong unlinkability game, and honestly samples all of the other precommitments. It sends all
precommitments to A.

57

4. Upon receiving the precommitments of the corrupted parties from A, B generates all commitments
c1, c2, . . . and hash values h1, h2, . . . for the honest parties: it sets cj0 and cj1 to be the fresh com-
mitments received from the challenger in the unlinkability game. All other commitments {ci} are
generated honestly, together with the corresponding keys {ki}. The hash values h1, h2, . . . are sam-
pled uniformly at random from {0, 1}λ. If for some i ∈ [n] \ (I ∪ {j0, j1}), it holds that A has
previously queried H on ki, then B outputs a random bit b′ ←$ {0, 1} and terminates.

5. B simulates the shuffle stage of the protocol in the following manner:

• When it is the turn of a corrupted party i ∈ I to shuffle: B samples the randomness beacon val-
ues for this round and sends them toA. It then receives the vector of re-randomized and shuffled
commitments fromA, together with a proof of shuffle pf. It uses the extractor guaranteed by the
NIZK to extract the permutation σ, the randomness r1, . . . , rn to R.Precommit, and the random-
ness r′1, . . . , r

′
n used by A to perform the shuffle. It sends the r and r′ values corresponding to

j1 and j2 together with the corresponding re-randomized commitments to the challenger in the
unlinkability game.

• When it is the turn of an honest party i ∈ [n]\I to shuffle: B obtains the re-randomized commit-
ments for parties j0 and j1 from the challenger, together with the corresponding random beacon
values. It re-randomizes honestly the commitments of all other parties, sampling the associated
randomness beacon values on its own. It then samples a permutation σ on [n] and applies it
to the re-randomized commitments. Let c1, . . . , cn denote the vector of commitments as stored
by party i before B applied the re-randomization and permutation, and let c′1, . . . , c

′
n denote the

re-randomized and shuffled commitments. Let rand1, . . . , randn denote the corresponding out-
puts of the beacon (two of which obtained from the challenger, and the rest sampled by B), and
let pcom1, . . . , pcomn be the corresponding precommitments (two of which obtained from the
challenger, and the rest sampled by B in the beginning of the execution). Using the simulator
for NIZK, B computes a proof pf for the instance

(ppR, (c1, . . . , cn), (c
′
1, . . . , c

′
n), (rand1, . . . , randn), (pcom1, . . . , pcomn)).

B sends the re-randomized and shuffled commitments c′1, . . . , c
′
n, the randomness beacon values

rand1, . . . , randn, and the proof pf to A.
In the final pair of re-randomized commitments that B obtains from the challenger, it does not
know whether their order was swapped or not. B continues as if they were not. Note that this
does not affect the distribution over the view of A since B applies a random permutation onto
the n commitments.

6. B computes the set S according to the hash values {hi} and samples a random index i∗ ←$ [n] \
S. Let i0, i1 denote the possible locations of the commitments corresponding to parties j0 and j1,
respectively, assuming that b = 0 in the unlinkability experiment (note if b = 1, it holds that i0, i1
correspond to parties j1 and j0, respectively). If i∗ ̸∈ {i0, i1}, then B outputs a random b′ ←$ {0, 1}
and terminates. Otherwise, let d be the bit such that i∗ = id. B sends i∗ to A, who responds with
some index ℓ ∈ [n].

7. Let c(n)1 , . . . , c
(n)
n be the final vector of commitments. Let K be the set of H-queries issued by A.

If there is a query k ∈ Q such that R.Test(ppR, cj0 , k) = 1, then B outputs 0 (and terminates) if
R.Test(ppR, ci0 , k) = 1 and 1 if R.Test(ppR, ci1 , k) = 1. Similarly, if there is a query k ∈ Q such that
R.Test(ppR, cj1 , k) = 1, then B decides on its output symmetrically and terminates.

58

8. If ℓ = jd, then B outputs b′ = 0. If ℓ = j1−d then B outputs b′ = 1. Otherwise, it outputs a uniformly
random bit b′ ←$ {0, 1}.

Let E1 denote the event in which B terminates in Step 4 of the simulation. Since A makes at most a
polynomial number of queries to A, it holds that E1 occurs with negligible probability. Let E2 denote the
event in which B terminates in Step 6 of the simulation. Conditioned on E1, E2 occurs with probability at
most (n − 2)/n. Moreover, conditioned on E2 occurring, the probability that B guesses b correctly is 1/2.
Let E3 be the event in which B terminates in Step 7. Conditioned on E3, B guesses the bit b with probability
negligibly close to 1. Hence, if the probability of E3 is non-negligible, we are done. So for the remainder of
the analysis, we assume E3 occurs with negligible probability.

We argue that conditioned on E1 ∧ E2 ∧ E3, the view ofA in the simulation is indistinguishable from its
view in the real experiment. This is because the only differences between the two experiments are:

1. The proofs of shuffle of the honest parties are generated using the NIZK simulator.

2. The randomness values passed by B to the challenger in the unlinkability game are extracted from
the proofs provided by A for the corrupted parties, via the NIZK extractor. If A used admissible
randomness, but the extractor failed to extract admissible randomness, this is a deviation between the
two experiments.

By the zero-knowledge and simulation-sound knowledge soundness of NIZK, it follows that conditioned on
E1 ∧ E2 ∧ E3, the two experiments are indistinguishable in the view of A. Hence, the probability that it
guesses the leader in the simulated experiment is negligibly close to the probability it guesses it in the real
experiment.

Whenever E1 ∧ E2 ∧ E3 occurs A guesses the leader, B correctly guesses the bit b. Hence, if we denote
by j∗ the index of the party chosen as leader, B guesses the bit b correctly with probability at least

1

2
· n− 2

n
+

2

n
· Ej1 ̸=j2←$

[n]\I [Pr [ℓ = j∗ | j∗ ∈ {j1, j2}]]− ν(λ),

for some negligible function ν. Therefore, the unlinkability of R implies that there is negligible function ν ′

such that

Pr [ℓ = j∗ | j∗ ∈ [n] \ I] = Ej1 ̸=j2←$
[n]\I [Pr [j

∗ ∈ {j1 ̸= j2} |j∗ ∈ [n] \ I] · Pr [ℓ = j∗ | j∗ ∈ {j1, j2}]]

= Ej1 ̸=j2←$
[n]\I

[
2

n− c
· Pr [ℓ = j∗ | j∗ ∈ {j1, j2}]

]
=

2

n− c
· Ej1 ̸=j2←$

[n]\I [Pr [ℓ = j∗ | j∗ ∈ {j1, j2}]]

≤ 2

n− c
·
(
1

2
+ ν ′(λ)

)
=

1

n− c
+ ν ′′(λ),

where ν ′′ is negligible. This concludes the proof.

59

	Introduction
	Technical Overview

	Preliminaries
	Lattice Assumption
	Ring Lattice Assumption
	Randomness Extraction

	Re-randomizable Commitments
	Syntax & Correctness
	Notions of Security
	An RRC scheme based on DDH

	A Construction from Learning with Errors
	The Construction
	Binding
	Unlinkability

	A Construction from Ring LWE
	Binding
	Unlinkability

	Handling Adversarially-Randomized Commitments
	A Stronger Unlinkability Definition
	Constructing Strongly-Pseudorandom RRCs
	Strong Pseudorandomness without A Randomness Beacon

	From Rerandomizable Commitments to Single Secret Leader Election
	SSLE: Syntax and Security Notions
	The Commit-and-Shuffle Protocol

	Proof of Well-Formed Shuffle
	Commitment Scheme
	The Relation That Needs Proving
	Constructing Proof of Shuffle
	Generic Post-Quantum Proof Systems

	A Bayer-Groth-Like Shuffle Argument for Ring-LWE

	Strong Unlinkability without A Randomness Beacon
	The SMS-SIS Assumption
	Deferred Proofs
	Proof of Theorem 7.1

