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Abstract

Modern SNARK designs typically follow a frontend-backend paradigm: The frontend compiles
a user’s program into some equivalent circuit representation, while the backend calls for a SNARK
specifically made for proving circuit satisfiability. While these circuits are often defined over small
fields, the backend prover always needs to lift the computation to much larger fields to ensure
soundness. This gap introduces concrete overheads for ZK applications like zkRollups, where group-
based SNARKs are used to provide constant-size proofs for Merkle tree openings.

For a class of highly repetitive computations, we propose FREPack, an improved frontend that
effectively bridges this gap. The larger the gap between circuit’s small field and backend’s large
field, the more FREPack reduces the circuit size, making it particularly well-suited for group-based
backends. Our implementation shows that, for proving ≈ 300 iterations of SHA-256, FREPack
improves the performance of Groth16 by 3.6×, Nova by 3.8×, and Spartan by 5.9×.

1 Introduction
In recent years, zero-knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs) have
gained widespread adoption due to their extremely small proof sizes and efficient verification times.
One notable example is zkRollup [rol], which utilizes zkSNARKs to significantly scale the Ethereum
blockchain by compressing large numbers of transactions into compact, verifiable proofs.

Modern SNARK Paradigm: Frontend vs. Backend: Modern SNARKs are designed to prove
correctness of arbitrary programs through a two-step process:

First, the SNARK frontend compiles the program into a specialized circuit representation, where the cir-
cuit’s satisfiability corresponds to the correct evaluation of the original program. This step is information-
theoretic and incurs no computational assumptions, making it extremely efficient. The efficiency of the
frontend is primarily determined by the size of the circuit representation relative to the original program.
For instance, in Rank-1 Constraint Systems (R1CS), the circuit size is largely dictated by the number
of constraints and variables.

Next, this circuit representation is processed by the SNARK backend, which is responsible for proving
the circuit’s satisfiability with a succinct proof. Unlike the frontend, this step involves cryptographic
operations and relies on computational assumptions. For example, in [Gro16], the backend involves
multi-scalar exponentiations (MSM) over elliptic curve groups of large order. Broadly speaking, these
cryptographic operations can be viewed as arithmetic computations over large finite fields.

Despite extensive research aimed at improving backend efficiency [ZLW+21, GLS+21, XZS22, CBBZ22,
DP24], the performance of modern SNARKs appears to be hitting a bottleneck, where backend runtimes
are constrained to a giant constant factor proportional to the circuit size. Given this limitation, our
work shifts focus to the frontend:

Can we theoretically design a more efficient SNARK frontend that minimizes circuit size for certain
classes of computations?
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From zkRollup to Highly Repetitive Computations: Our investigation along this route is moti-
vated by zkRollup [rol], where the primary challenge lies in generating succinct proofs for large batches
of transactions. This often involves proving Merkle tree openings, which require numerous hash function
evaluations. For instance, in a Merkle tree with 216 leaves, each path requires 16 hash evaluations, and
for a batch of 1000 transactions, the total number of SHA-256 hash evaluations reaches 16,000. A similar
pattern occurs in proof recursion, where one outer proof system is used to recursively prove the verifier
of an inner proof system to further shrink proof size. Since most inner proof systems are hash-based (for
performance reasons), this involves proving many Merkle tree openings corresponding to the verifier’s
query logic in the inner system.

This pattern of repeatedly applying the same subroutine (e.g., a hash function) to different inputs
illustrates a broader class of problems known as highly repetitive computations. These computations
are common across various settings such as data processing pipelines and recursive function calls, where
the same operation is performed multiple times in different contexts. We thus broaden our goal to
design more efficient frontends that tackle this ubiquitous class of computations. This will benefit all
zk-applications where repetitive patterns are prevalent, and backend prover speed remains a limiting
factor, more examples to be found in blockchain history data retrieval and zk-virtual machine (zkVM).

Moreover, since on-chain storage is extremely costly due to high gas fees—particularly on networks
like Ethereum—it’s crucial for zkRollup applications (and similarly in proof recursion, where the final
recursed proof almost surely aim to be posted on-chain) to produce constant-size proofs. With real-world
impact in mind, we also pose the following practical question:

How can we more efficiently generate constant-size proofs for a large number of hash evaluations, such
as those in zkRollup and proof recursion?

1.1 Our Contributions
Packing Techniques for Highly Repetitive Computations: We introduce Pack, an information-
theoretic method that greatly reduces the size of circuits for repetitive computations over small fields.
This is accomplished by redefining the circuit over a larger modulo ring Zq.

Efficient Emulations for Non-native Modulo Rings: We then introduce FRE, an information-
theoretic emulation technique that enables efficiently proving arithmetic relations over rings Zq using
relations over any fixed prime field Fp∗ , thus realizing gains from Pack while ensuring compatibility with
any existing backend.

Improved Frontend for Highly Repetitive Computations: Combining them into FREPack yields
an improved frontend compiler tailored for highly repetitive computations. It is fully compatible with
any commit-and-prove SNARK backend operating over large prime fields, especially appealing for group-
based backends.

Fast Constant-size Proof Generation for Merkle Openings: We implement FREPack with var-
ious group-based backends and our evaluation shows that it greatly reduces the time required to prove
repetitive hash computations, such as those found in zkRollup and proof recursion, where constant-size
proofs are needed for verifying multiple openings of Merkle trees building on SHA2/SHA3 family.

1.2 Technical Overview
1.2.1 Embedding Overhead

All widely used SNARK frontend compilers transform program logic into circuits defined over prime
fields. Each wire in the circuit corresponds to an element of the prime field, and constraints represent
arithmetic operations (like addition and multiplication) in that field. The prime field is typically chosen
based on the size of the program’s variables, allowing each variable to be naturally embedded as a field
element. For instance, a SHA2-256 circuit can be defined over a small field like F253, which has size ≈ 28.
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However, SNARK backends must work with much larger prime fields to ensure cryptographic soundness.
For example, when constant-size proofs are required, the backend often operates over an elliptic curve
group, corresponding to a prime field Fp∗ with size |p∗| ≈ 2255.

To bridge the gap between the small prime fields used in the frontend and the large fields required by the
backend, a common approach is to directly embed the small-field circuits into the larger backend field. For
instance, operations originally defined over small fields like F253 are simply embedded into Fp∗ . Although
this naive method works, it introduces a significant embedding overhead—the backend prover must
perform operations in the large field Fp∗ even for constraints that could be efficiently handled in the
smaller field. This inefficiency is particularly pronounced in programs with many small-field operations,
like cryptographic hash functions (e.g., SHA2, SHA3) or simple bitwise operations – a significant portion
of backend field is wasted.

1.2.2 Our Approach

To reduce the embedding overhead, we would like to design better frontends which information-theoretically
compresses these circuits by trading off some increase in the field size over which the compressed circuit is
defined. Since the SNARK backend prover must already work over a large field, compressing the circuit
size leads to a direct performance improvement for the prover. We begin to explore this possibility in
the space of highly repetitive computations.

1.2.3 Example: Repetitive XOR Computations

In a SHA-2 program, a common operation is the XOR of two ℓ-bit strings: x ∈ {0, 1}ℓ and y ∈
{0, 1}ℓ, producing z← x⊕ y ∈ {0, 1}ℓ. This highly repetitive operation is an example of SIMD (Single
Instruction, Multiple Data) computation, consisting of ℓ copies of the two-bitwise XOR operation: ∀i ∈
[ℓ], zi ← xi ⊕ yi ∈ {0, 1}.

A straightforward circuit representation for it would consists of ℓ copies of the following constraints:

• x2
i − xi = 0 y2i − yi = 0 z2i − zi = 0 (enforcing binary)

• xi + yi − 2xi · yi = zi (enforcing zi = xi ⊕ yi)

This circuit can naturally be defined over the binary field F2. However, notice that it can also be defined
over any prime field Fp where p ≥ 2. This is because the first constraints ensure that xi, yi, and zi
remain binary. Then out of the 8 possible combinations of (xi, yi, zi), the only way to satisfy the second
constraint (over any prime field) is to set zi = xi ⊕ yi. We refer to this property as 2-satisfiability,
meaning the minimal prime field for this circuit is F2. In fact, this property is key to enable the
aforementioned ’naive’ method of embedding each copy of constraints directly into the large field Fp∗ .
The question arises: Can we design a more efficient embedding mechanism that avoids simply repeating
ℓ copies of the same constraints?

1.2.4 Pack: Compressing Repetitive Circuits

Our solution is to ”pack” the ℓ repetitive copies, each originally defined over a small prime field, into a
single circuit defined over a larger algebraic structure. To achieve this, we leverage the Chinese Remainder
Theorem (CRT), which states that for any set of ℓ distinct prime numbers (q1, . . . , qℓ), and their product
q =

∏ℓ
i=1 qi, the following ring isomorphism holds:

Zq
∼= Fq1 × · · · × Fqℓ

This isomorphism allows us to ”pack” circuits defined over the smaller fields Fqi into a larger circuit
defined over the composite ring Zq.

The process works as follows: for each sub-circuit i ∈ [ℓ], we embed it in a distinct prime field Fqi , such
as q1 = 2, q2 = 3, etc. Since each sub-circuit is 2-satisfiable, the correctness of the ith sub-circuit is
preserved even after embedded.

Now, consider the collection of ℓ sub-circuits as behaving with respect to the direct product Fq1×· · ·×Fqℓ .
Using the CRT, we can emulate this behavior in the larger ring Zq. Thus the packed circuit would still
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consist of the same constraints, but instead defined over Zq. Importantly, it only requires one copy,
shrinking the circuit size by a factor of ℓ as compared to ’naive embedding’.

In section 3.1, we further observe that any form of highly repetitive computation can be expressed in
a similar format to such example of SIMD, when represented as circuits. In section 4.1, we generalize
this information-theoretic packing technique and introduce our first frontend compiler, Pack, which can
efficiently compress circuit representations for any type of highly repetitive computation.

1.2.5 FRE: Handling Non-native Arithmetic Efficiently

A major challenge arises with CRT Packing: almost all SNARK backends operate over a large prime
field Fp∗ , whereas the Packed circuits are defined over the Zq, where q is a large composite number.
This means that the packed circuit can no longer be directly embedded into the prime field used by the
backend.

This notorious issue is often referred to as non-native arithmetic. Although there are existing solutions
for handling non-native arithmetic, most are inefficient, especially when dealing with large composite
modulus. These inefficiencies threaten to undo the performance gains achieved through CRT-packing.

As our second contribution, we introduce a technique called Fast Ring Emulation (FRE). It is based
on an information-theoretic, “degree-2 homomorphic” embedding technique that allows the prover to
embed elements from Zq into (potentially non-unique) elements of Fp∗ . Using this embedding, the
prover can efficiently emulate any degree-2 arithmetic operations over Zq, including a constant number
of additions and scalar multiplications, as well as one single multiplication. Crucially, these operations
are considered ‘SNARK frontend-complete’ because the most common circuit representations, such as
R1CS (Rank-1 Constraint Systems) and QAP (Quadratic Arithmetic Programs), are built on degree-2
arithmetic constraints.

Illustrative Example: Consider a simple scenario where we need to prove a constraint a · b = c, over
wire values (a, b, c), and the constraint is defined over non-native ring Zq.

Since the prover must supply wire values a, b, and c from the native field Fp∗ , the constraint actually
enforces a · b = c mod p∗. Notice that this is problematic even for an honest prover. Just because
a · b = c holds over Zq, it does not imply the same condition over Fp∗ due to potential wrap-around. To
mitigate this, we allow the prover to supply an additional shift wire value k and turn the constraint into:
a · b = c+ k · q. An honest prover can always find such a shift k so that a · b = c+ k · q over the integers,
ensuring the relation holds over Fp∗ . However, a dishonest prover might compute a shift k′, allowing
a · b ̸= c mod q while still satisfying the constraint a · b = c+ k′ · q over Fp∗ .

To counter this attack, we utilize rational representations of elements in Fp∗ . Informally, we say that an
element a ∈ Fp∗ is represented as a1

a2
if a = a1

a2
mod p∗. Substituting the prover’s wire values a, b, c, and

k in Fp∗ with their rational representations:

a1
a2
· b1
b2

=
c1
c2

+
k1
k2

over Fp∗

We claim that if these rationals have small numerators and denominators, the arithmetic holds not only
modulo p∗ but over the field of rationals as well. To see this, multiply both sides by the least common
multiple (LCM) of the denominators gives:

a1 · b1 · c2 · k2 = c1 · a2 · b2 · k2 + k1 · a2 · b2 · c2 · q mod p∗.

Since the individual values remain small, no overflow should occur, and the equation holds over the
integers. After dividing by the LCM, we recover:

a1
a2
· b1
b2

=
c1
c2

+
k1
k2
· q.

We note that similar observations were made in [CGKR22, GJJZ22] for proving relations over rational
numbers. However, in this work we extend the technique further: instead of just viewing Fp∗ elements
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as rationals, we also cast these rational numbers as representatives of Zq elements. This corresponds to
taking the relation modulo q. For simplicity, assume q is prime1, making the casted element a′ = a1

a2

mod q (similarly for b′, c′, and k′) well-defined. Then our desired relation holds over the casted elements:

a′ = b′ · c′ over Zq

To summarize, when Fp∗ elements are represented as bounded rationals (with small numerators and
denominators), they can be viewed as embedded Zq elements. This embedding is ”somewhat homo-
morphic,” meaning operations in Fp∗ project to equivalent operations in Zq. However, multiplicative
homomorphism comes at the expense of increasing the gap requirement between q and p∗. Since our
packing efficiency increases with q, we restrict to one multiplication.

Importantly, honest provers can simply use Zq elements without overhead. Any a ∈ Zq can be trivially
represented as a

1 , and since in our setting q ≪ p∗, this representation is a valid bounded rational.

To ensure that the prover’s wire values are all bounded rationals, we utilize a recent information-theoretic
technique underlying Batch Proof-of-Short-Opening (Batch-PoSO). Informally, let w ∈ Fn

p∗ represent all
prover’s wire values. Batch-PoSO operates by sampling a short random vector r, where each entry is
small, and checking if the inner product ⟨r, w⟩ is also small. The intuition is that if this inner product
is small with high probability, then by an averaging argument, there must exist two short vectors that
differ only at index i ∈ [n] and both result in small inner products. This allows extraction of each w[i]
as a bounded rational.

Building on aforementioned embedding techniques and Batch-PoSO, we introduce Fast Ring Emulator
(FRE), our second information-theoretic frontend compiler which transforms any circuit defined over a
non-native modular arithmetic ring into an equivalent circuit over the native prime field.

1.2.6 FREPack: Enhanced Frontend for Repetitive Computations

We combine FRE with the earlier Pack technique, resulting in a unified SNARK frontend called FREPack.
This framework integrates seamlessly with any commit-and-prove SNARK backend, and provides sub-
stantial efficiency improvements, particularly for group-based backends, where the naive embedding over-
head is very significant. One subtle issue is that this straightforward integration yields linear verification,
nonetheless one can achieve succinct verification through very simple frontend modifications. Addition-
ally, we show that FREPack retains the zero-knowledge property of any backend.

Small Integer x Embedded in Large Field Fp∗
Naive Embedding

Small Integer x1 Small Integer x2 . . . Small Integer xℓ

Embed in Fq1 Embed in Fq2
. . . Embed in Fqℓ

Embedded in Zq

Rational Embedding in Fp∗

FRE

Pack

Figure 1: Comparison between Naive Embedding and FREPack Embedding

1.3 Related Works
We divide the related literature into two primary categories: backend-oriented and frontend-oriented
approaches, which differ in their focus on optimizing SNARKs for highly repetitive computations.

1As mentioned earlier, q is composite, so inversions are not always well-defined. This complexity is handled later.
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1.3.1 Backend-Oriented Approaches:

Backend improvements can be further classified into two distinct subcategories: those that algorithmically
improve the backend without changing the backend field, and those that customize the backend field by
moving to smaller fields or binary fields.

Algorithmic Backend Improvements: These works focus on enhancing the backend prover’s algo-
rithm while retaining the existing field structure. For instance, the works of [Tha13, WTS+18, XL24] im-
prove various aspects of the prover algorithm originally introduced in [GKR08] for data-parallel (SIMD)
computations, where the prover operates over any large prime field. Similarly, for group-based backends,
Nova [KST22] and following works [BC23, KS23] introduce efficient folding schemes for incrementally
verifiable computation.

Our frontend compiler is fully compatible with all these algorithmic improvements. By combining our
frontend optimizations with these algorithmic backend improvements, a ”double” speed-up for the prover
can be achieved, as demonstrated in Section 7.

Backend Field Customization: This subcategory includes most ’hash’ based backends. While those
works are not tailored to optimize high repetitive computations, they share the theme of reducing em-
bedding overhead by switching to smaller backend fields. The theoretical line of works [RZR22, BCGL22]
builds specific Interactive Oracle Proofs over binary fields. However, these constructions have limitations,
such as linear verifier time in [RZR22] and sublinear but still large verifier time in [BCGL22]. Similarly,
[AHIV17, KKW18] uses ”MPC in the head” to allow backends to work over any finite field, but these
protocols result in much larger proofs, making them less practical for real-world use cases.

On the industry side, Plonky3 implements FRI-based backends that use small fields like BabyBear or
Mersenne-31, offering faster proving times compared to group-based backends. Similarly, [DP23, DP24]
leverage binary extension fields to reduce overhead specifically for binary circuits, though their arithmetic
is less friendly for general arithmetic circuits, often relying on expensive lookups to simulate integer
arithmetic.

Since these works already reduce the embedding overhead by switching to smaller fields, our FREPack
compiler is no longer compatible with those backends. Nonetheless, none of them produce constant-size
proofs, making them unsuitable for our target applications. One might ask: why not use recursion with
a group-based backend which produces constant-size proof? There are several reasons:

(1) In practice, recursion involves proving many Merkle openings, which is prohibitively expensive. As
we demonstrate in appendix section 8.1, unless the number of hashes to be proved exceeds 216, the
recursion cost alone is higher than directly using a group-based backend to prove all hashes.

(2) Proof recursion requires non-black-box use of the hash function, which weakens the security guaran-
tees.

(3) FREPack is specifically designed to improve recursion efficiency, meaning that even when recursion is
necessary, FREPack will significantly enhance the process.

1.3.2 Frontend-Oriented Approaches:

Existing frontend optimization approaches are primarily represented by lookup arguments [GW20,
ZBK+22]. Lookup arguments reduce the need to check multiple small gate operations in a circuit
by performing a single lookup in a large precomputed truth table. For example, the bitwise XOR of two
4-bit strings can be replaced with a lookup in a table containing all 28 possible outputs, with each output
encoded as a 4-bit value. The nature of lookup is that if the number of lookups becomes comparable to
the table size, then good amortization can be achieved. Thus lookup argument only works for circuits
with small repetitive structure. In such cases, lookup gates allow for significant reductions in number of
gates (circuit constraints) by replacing multiple gates with a single lookup.

Nonetheless, lookup arguments always introduces extra wires (circuit variables) which depend on both
the size of the lookup table and the number of lookup gates. For example, in [STW24], the circuits
need to remember all access counts in table. In [Hab22], the circuit needs to further maintain LogUp
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variables for each lookup. Furthermore, if the table is deemed ’unstructured’, then the entire lookup
table also needs to be materialized in circuit. In some works [GW20, ZBK+22], such cost is even inherent
regardless of the table structure.

We observe that for group-based backends, the number of variables plays a more important role than
the number of constraints in terms of prover efficiency, due to prover always need to cryptographically
commit to all variables. Thus the extra variables introduced in lookup could even decrease overall prover
performance, as demonstrated in our SHA2 benchmarking. More details in section 7.

In comparison, FREPack does not require any amortization. Instead, it achieves efficiency by directly
reducing size of the circuit, in terms of both the number of gates (constraints) and wires (variables),
hence concretely boosts prover efficiency in all scenarios of repetitive computations, including SIMD
random circuits where no small repetitive structures to be found. Nonetheless, lookup argument admits
other use cases which FREPack does not, particularly in constructing efficient range proofs.

2 Preliminaries
Notation: We denote by λ the security parameter, and let negl(λ) represent a negligible function. That
is, for any polynomial p(λ), it holds that negl(λ) < 1

p(λ) for sufficiently large λ. Vectors are denoted
by z, with z[i] referring to the i-th element of z. The inner product between two vectors z1 and z2 is
denoted by ⟨z1, z2⟩, and the Hadamard (entry-wise) product by ⟨z1 ◦ z2⟩. For an integer n, the notation
[n] represents the set {1, 2, . . . , n}. Let Zp denote the ring Z/pZ, i.e., the integers modulo p. When p is a
prime, we denote this field by Fp. Throughout the paper we use Fp∗ to denote any fixed prime field. The
term PPT stands for all efficient adversaries, which are algorithms running in probabilistic polynomial
time with respect to the security parameter λ. We may refer to these algorithms as efficient algorithms
throughout the paper.

2.1 Chinese Remainder Theorem (CRT)
Let (q1, . . . , qn) ∈ Zn be a list of n prime numbers, and define q =

∏n
i=1 qi. The Chinese Remainder

Theorem (CRT) asserts the existence of the following ring isomorphism:

Zq
∼= Fq1 × · · · × Fqn ,

where the isomorphism is induced by the map f : Zq → Fq1 × · · · × Fqn , defined as: f(a) = (a
mod q1, . . . , a mod qn).

The inverse map f−1 : Fq1 × · · · × Fqn → Zq is given by:

f−1(a1, . . . , an) =

n∑
i=1

ai · λi mod q,

where each coefficient λi is an integer that satisfies the following properties:

λi mod qi = 1 and λi mod qj = 0 for all j ̸= i.

These integers λi can be efficiently computed using the following approach. Let: Qi =
∏

j ̸=i qj , which is
the product of all qj ’s except qi. Then, we define λi as: λi = Qi ·Q−1i mod qi, where Q−1i is the modular
inverse of Qi modulo qi, i.e., Qi ·Q−1i = 1 mod qi.

We also formalize the map f into a set of interfaces, which we refer to as CRT packing.

Definition 1 (CRT Packing Scheme). Let (q1, . . . , qn) be a set of prime numbers, and let q =
∏n

i=1 qi.
A CRT Packing scheme with respect to this set consists of two algorithms, (CRT.Pack,CRT.Unpack),
defined as follows:

• CRT.Pack(a1, . . . , an)→ a: The packing algorithm takes as input field elements ai ∈ Fqi and packs
them into one ring element a ∈ Zq.
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• CRT.Unpack(a)→ (a1, . . . , an): The unpacking algorithm takes as input a ring element a ∈ Zq and
recovers a set of n field elements (a1, . . . , an) where ai ∈ Fqi for each i ∈ [n].

2.2 Vector Commitment Scheme
A vector commitment scheme is a pair of algorithms (KeyGen,Commit) with the following syntax:

• KeyGen(1λ) → ck: The KeyGen algorithm takes as input the security parameter λ, outputs a
commitment key ck, and specifies an allowed message space Fn

p∗ , which is a vector space over some
designated prime field.

• Commit(ck, z) → c: The Commit algorithm takes as input a commitment key ck and a vector
z ∈ Fn

p∗ , and outputs a commitment c.

We require the following properties to hold:

Succinctness: The size of the commitment c is independent of the length of the vector n.

Binding: Due to the size reduction of commitments, it is possible for different vectors to collide and
produce the same commitment. Nevertheless, we require that for all efficient adversaries A, finding such
a collision is intractable:

Pr

[
Commit(ck, z1) = Commit(ck, z2) ∧ z1 ̸= z2 :

ck← KeyGen(1λ);
(z1, z2)← A(1λ, ck)

]
≤ negl(λ)

2.3 Non-interactive Argument of Knowledge
We denote a relation by R(·, ·) and say that a pair consisting of an instance X and a witness w is in the
relation if R(X, w) = 1. For any relation R, an argument of knowledge for R consists of the following
triple of algorithms (Gen,Prove,Verify) with the following interface:

• Gen(1λ,R)→ (pk, vk): The Gen algorithm takes as input the security parameter λ and the descrip-
tion of the relation R, and outputs a public proving key pk and a verification key vk.

• Prove(pk,X, w) → π: The Prove algorithm takes as input the proving key pk, an instance X, and
an alleged witness w, and outputs a proof π.

• Verify(vk,X, π) → {0, 1}: The Verify algorithm takes as input the verification key vk, the instance
X, and the proof π, and outputs a bit indicating the verification result.

We require the non-interactive argument of knowledge to satisfy the following properties:

Completeness: Completeness requires that for all relations R, we have:

Pr

[
Verify(vk,X, π) = 1 :

(pk, vk)← Gen(1λ,R);
π ← Prove(pk,X, w)

]
= 1.

Knowledge Soundness: For any efficient adversary A, there exists an efficient extractor E , which has
oracle access to A, such that:

Pr

Verify(vk,X, π) = 1 ∧R(X, w) ̸= 1 :

R← A(1λ);
(pk, vk)← Gen(1λ,R);

(π,X)← A(pk);
w ← EA(vk, π)

 ≤ negl(λ).

Honest Verifier Zero-Knowledge: We say that the non-interactive argument of knowledge is honest-
verifier zero-knowledge if there exists a PPT simulator S such that, for any instance-witness pair (X, w)
in relation R,

{(pk, vk)← Gen(1λ,R), π ← Prove(pk,X, w)}λ,X ≈ {S(1λ,X)}λ,X.
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2.3.1 Succinct, Non-interactive Argument of Knowledge (SNARK):

A non-interactive argument is succinct if both the proof size |π| and the running time of Verify are
sublinear in |w|, the size of the witness. We are particularly interested in the following special class of
SNARKs that build on top of vector commitment schemes:

Definition 2 (Commit-and-Prove SNARKs). A commit-and-prove SNARK associated with a vector
commitment scheme (KeyGen,Commit) and a relation R(·, ·) is a SNARK for the following relation
Rck(·, ·):

Rck((X, c), w) = 1 ⇐⇒ R(X, w) = 1 ∧ c = Commit(ck, w),

where ck← KeyGen(1λ) is the commitment key.

Most existing commit-and-prove SNARKs are inherently designed to support proving arithmetic relations
over certain prime fields. These fields are sometimes referred to as native or backend fields and in this
paper we always denote them by Fp∗ . However, the field choices can vary significantly depending on the
underlying vector commitment schemes. Here, we provide a brief survey. For more details, readers may
consult Chapter 19.3 of [Tha23].

• Known-order groups: This category of vector commitment schemes leverages algebraic hardness
assumptions in known-order groups. Examples include [KZG10] and [BBB+18]. These schemes
are widely adopted in blockchain applications due to their extremely small commitment sizes,
which further leads to constant-size proofs. In this work, we are particularly focused on improving
backends that utilize known-order groups. The common field choices in this category are scalar
fields of the elliptic curve groups, such as BLS12-381, which is a prime field with a 255-bit prime.

• Collision-resistant hash functions: This category employs collision-resistant hash functions,
such as [COS20] and [ZXZS20]. Here, the field choice is more flexible. As mentioned in section 1.3,
for efficiency, smaller prime fields around 32 or 64 bits are often chosen. However, SNARK back-
ends that utilize these smaller fields result in considerably larger proof sizes, limiting their use in
blockchain applications. In this work, we do not aim to improve backends using these smaller fields.

• Unknown-order groups: The third category utilizes the hardness of unknown-order groups
[BFS20, CFKS22, AGL+23, SB23]. These systems are primarily of theoretical interest due to their
slower running times, and are beyond the scope of this paper.

2.4 Highly Repetitive Computation
A computation is considered highly repetitive if it can be viewed as a fixed sub-computation being applied
to multiple pieces of input, which may or may not depend on each other. Examples of such computations
include Data Parallel (SIMD) Computation and Incremental Computation.

2.4.1 Data Parallel (SIMD) Computation

Data parallel computation, or Same Instruction Multiple Data (SIMD), is a common form of highly
repetitive computation where the same sub-computation is applied to multiple independent inputs. This
type of computation is ubiquitous in many real-world applications.

As a concrete example, consider the SIMD computation GSIMD, where the sub-computation G is repeated
ℓ times on ℓ different independent inputs (x1, . . . , xℓ). That is:

GSIMD(x1, . . . , xℓ) = (G(x1), . . . , G(xℓ)).

2.4.2 Incremental Computation

Incremental computation typically involves a sub-computation being applied iteratively to a sequence of
dependent inputs, capturing most recursive functions and while loops in a program.

As an example, consider the iterative computation GIC, where the sub-computation G is applied ℓ times
in sequence, with each output serving as the input for the next iteration. That is:

GIC(x) = G(G(. . . G(x)))︸ ︷︷ ︸
ℓ times

.
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3 Existentially Quantified Circuits (EQC)
Typically, a SNARK frontend compiler transforms a user’s program into a suitable circuit representation.
In this work, we adopt an abstract view of this circuit representation, formalized as an Existentially
Quantified Circuit (EQC) [OBW22].

Definition 3 (Existentially Quantified Circuits (EQC)). An EQC consists of a set of wires that take
values from a specified domain (such as the prime field Fp) and constraints that express relationships
among the wire values (e.g., the constraint x · y = z). There are two types of wire values: explicit
input/output values, which are assigned to input/output wires at the start of execution, and existentially
quantified wire values, which can take any value consistent with the input values and the constraints. We
denote an EQC by the tuple (F, C, io, w), representing the domain, the set of constraints, the input/output
values, and the existentially quantified wire values.

We say an EQC (F, C, io) is satisfiable if there exists a set of existentially quantified wire values w ∈ F
such that (io, w) together satisfy all the constraints in C. When the domain F is clear from the context,
we define the induced relation RC such that an instance-witness pair (io, w) ∈ RC if (io, w) satisfy all
the constraints described by C.

3.1 Reducing Highly Repetitive Computations to SIMD EQCs
In the context of EQCs, we observe that all highly repetitive computations can in fact be reduced to a
specialized class of circuits:

Definition 4 (SIMD EQC). For any number ℓ, a SIMD EQC {(F, C, ioi)}i∈[ℓ] consists of ℓ copies of
the same circuit constraints C, each with respective input/output values (io1, . . . , ioℓ). It is satisfiable if
all ℓ internal copies are satisfiable. Let RC,SIMD denote the SIMD relation w.r.t. C. We say that the
instances and existential wires

(
{ioi}i∈[N ], {wi}i∈[N ]

)
are in the relation RC,SIMD if, for each i ∈ [N ], the

existential wires wi satisfy the EQC instance (Fp∗ , C, ioi).

It should be obvious that any SIMD computation can be naturally expressed as its SIMD EQC. For all
other types, let’s start by considering the incremental computation GIC(x) = G(G(. . . G(x)))︸ ︷︷ ︸

ℓ times

. We can

convert this into a SIMD by leveraging the non-determinism of EQCs and introducing existential wires
to verify the consistency of transitions between iterations.

Let xi be the input to the ith iteration of the sub-computation G, and let yi be the corresponding output
such that G(xi) = yi. This transformation yields a SIMD computation GSIMD(x1, . . . , xℓ)→ (y1, . . . , yℓ),
where yi = G(xi). For this sub-computation, we derive its equivalent SIMD EQC. Nonetheless, given the
iterative structure, additional consistency constraints must be enforced to ensure correctness: xi = yi−1
for all i ∈ [ℓ].

This methodology extends to other highly repetitive computations by adding suitable consistency con-
straints, ensuring the proper relationships between intermediate wire values are maintained. In some
cases, the entire computation may not be highly repetitive, but it could contain a large repetitive sub-
component. In such scenarios, we isolate the repetitive sub-component from the rest of the computation
while tracking the set S = {wi} of shared wires between the two components. Eventually, we add
constraints to all shared wires wi ∈ S to ensure consistency between the two components.

3.2 pmin-Satisfiability of EQCs over Prime Fields
Nearly all currently deployed SNARK frontends, such as circom, output a family of EQCs defined over a
specific prime field Fp. This implies that all wire values are elements of Fp, and the constraints correspond
to arithmetic operations (addition, subtraction, multiplication) over Fp.

A key observation in this work is that these frontends generate EQCs that exhibit an interesting property:
there exists a minimal prime field Fpmin

such that for any prime p′ ≥ pmin, the EQC is satisfiable over
Fp′ if and only if it is satisfiable over Fpmin . Intuitively, the program’s logic can be sufficiently expressed
in this minimal field, yet any larger prime field can still embed it. For example, consider an EQC with a
single constraint x(x−1) = 0, which enforces x to be binary. This EQC is pmin-satisfiable with pmin = 2.
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Definition 5 (pmin-Satisfiability). Let (Fp, C, io) be an EQC defined over some prime field Fp with
input/output values io ∈ Fp. We say it is pmin-satisfiable with respect to a minimal prime number pmin

if:

For any prime p′ ≥ pmin, there exists some io′ ∈ Fp′ ,2 such that (Fp′ , C, io′) is satisfiable if and only if
(Fp, C, io) is satisfiable.

3.3 The Gap Between Fpmin
and the Backend Field

We observe that for most computer programs involving only bit or small integer operations, their logic
can be expressed in small minimal prime fields. In particular, for AES, SHA2, and SHA3, the frontend
compilers [OBW22] [KPS18] [cir] output EQCs with pmin < 28.

However, to ensure SNARK soundness, Fpmin must be embedded in the backend field Fp∗ is often signif-
icantly larger—by orders of magnitude.

This substantial discrepancy in field sizes leads to considerable overhead for the prover. Conceptually,
much of the prover’s computational effort in the larger backend field is redundant, as a significant portion
of the work doesn’t contribute directly to the verification of the original program logic.

4 First Technique: CRT Packing
We now partially bridge the gap between Fpmin

and the backend field in the context of highly repetitive
computations using an information-theoretic packing technique based on the CRT isomorphism.

Informally, this isomorphism allows us to emulate the arithmetic behaviors of multiple small, distinct
prime fields using a larger ring of modulo arithmetic. This provides a compression mechanism that
absorbs more computations, thereby narrowing the field size gap. To illustrate this concept more clearly,
we begin by focusing on any SIMD EQC {(Fp, C, ioi)}i∈[ℓ]. As mentioned earlier, the circuits of all
repetitive computations can be reduced to this very essential form.

4.1 Pack: Efficient Frontend Compiler for SIMD EQC
Let pmin be the prime such that the above SIMD EQC is pmin-satisfiable. We design the following
frontend compiler, denoted as Pack (Fig. 2) that utilizes the CRT isomorphism to compress its ℓ internal
copies.

Pack({(Fp, C, ioi)}i∈[ℓ])
1. Choose CRT Basis: Choose ℓ smallest distinct prime numbers (q1, . . . , qℓ) such

that each qi ≥ pmin. Let q =
∏ℓ

i=1 qi.
2. Pack the input/output wire values: For each i ∈ [ℓ], let io′i be defined as in

Definition 5. Then apply CRT.Pack(io′1, . . . , io′ℓ)→ io′ with respect to the above
basis.

3. Define the final packed EQC instance to be (Zq, C, io′).

Figure 2: Pack: A Frontend Compiler for SIMD pmin-satisfiable EQCs.

Remark 1. When the CRT basis is clear from the given context, we denote by io← Pack({ioi}i∈[ℓ]) the
packed input/output values, and similarly for existential wire values.

Theorem 1 (Completeness and Soundness of Pack). Assuming that the SIMD EQC instance {(Fp, C, ioi)}i∈[ℓ]
is pmin-satisfiable, let the packed EQC instance (Zq, C, io′) be defined as in figure 2. Then, (Zq, C, io′) is
satisfiable if and only if {(Fp, C, ioi)}i∈[ℓ] is satisfiable.

Proof. The claim follows directly from the CRT ring isomorphism and the definition of pmin-satisfiability
of EQC.

2In almost all applications, we have io = io′ as integers.
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The Packing Factor: Attentive readers may notice that as the number of copies increases, the size
of the ring Zq also grows, gradually closing the gap between Zq and the backend field Fp∗ . Eventually,
this gap narrows to a point where further Packing is no longer feasible. To address this, we first define
a maximum limit on the number of copies that can be packed together, which we refer to as the packing
factor, denoted by ℓ. For any SIMD EQC consisting of N copies, we split them into N/ℓ batches and
Pack each batch individually.

4.2 Ensuring Backend Compatibility
While the frontend compiler Pack provides a powerful mechanism to compress highly repetitive circuits,
it introduces an incompatibility issue: Pack produces EQCs defined over the modular arithmetic ring
Zq, where q is a composite number, hence can no longer be embedded in the desirable backend field Fp∗ .

This incompatibility falls under the broader challenge of proving non-native arithmetic, which is a sig-
nificant hurdle in SNARK design. Existing solutions to this problem, while functional, are generally
inefficient. Some approaches, such as [KPS18], rely on bit decomposition, which introduces a large num-
ber of constraints, significantly reducing efficiency. Other methods, such as those involving special ring
encodings [GNSV21], sacrifice desirable SNARK features like public verifiability and still impose sub-
stantial overhead on the backend. The bottom line is that utilizing any of these solutions would negate
the frontend efficiency gains achieved through CRT packing.

5 Second Technique: Fast Ring Emulation
Our second major contribution is the development of an efficient frontend technique to handle the non-
native arithmetic present in this specific setting, which we call Fast Ring Emulation (FRE). The core
of this technique is an information-theoretic, degree-2 homomorphic embedding scheme. This scheme
enables the prover to embed elements from Zq into (potentially non-unique) elements of Fp∗ . Using
these embedded elements, the prover can efficiently emulate any degree-2 arithmetic operations over Zq,
including:

• Any constant number of additions or scalar multiplications, and
• One single multiplication.

These operations are crucial because they are considered SNARK-complete, meaning that they are suf-
ficient to express the EQCs typically used in SNARKs. For instance, [Set20, BCR+19, KST22] utilize
Rank-1 Constraint Systems (R1CS), while [GGPR13, Gro16] target Quadratic Arithmetic Programs
(QAP). Moreover, in practical applications, such as the Cairo zkVM project [GPR21], specifically degree-
2 Algebraic Intermediate Representations (AIR) are adopted.

To streamline our technical discussions, we first focus on characterizing degree-2 EQCs through the
following complete arithmetic constraint:

Definition 6 (Degree-2 Complete Arithmetic Constraint). Without loss of generality, for any degree-2
EQC (F, C, io) with existentially quantified wire values w, we assume that each arithmetic constraint in
C follows the pattern: (∑

ai∈S
ai

)
· b = c, (1)

where S ⊆ io ∪ w is a subset whose wire values sum to the left input of the multiplication gate, and
b, c ∈ io ∪ w are the right input and output values, respectively. We also assume, without loss of
generality, that all gate constraints have constant fan-in. That is, there exists a fixed constant c such
that |S| ≤ c.

5.1 Rational Representation
Our goal is to handle the aforementioned constraints over a non-native ring Zq. In reality, the prover
can only supply existential wire values from the native field Fp∗ . So we must view the values ai, b, and c
as elements of Fp∗ . Despite this, we aim to jump outside reality and reimagine these values and convert
them into a suitable embedding of Zq elements.

12



To achieve this, we utilize a less common but useful representation of Fp∗ elements, known as a rational
representation. Informally, we say that an element a ∈ Fp∗ can be represented by a rational expression
a1

a2
if it holds that a = a1

a2
mod p∗. For simplicity, let’s assume that p∗ is a prime, ensuring that this

relation is always well-defined. We defer further details on rational representatives to Section 5.5.

5.2 Reformulating Constraints Over the Field of Rationals
Substituting each Fp∗ element with its rational representation in 1, we obtain:∑

ai∈S

ai,1
ai,2
· b1
b2

=
c1
c2

mod p∗. (2)

Observe the following: If all these rational representatives have numerators and denominators much
smaller than p∗ (e.g., ai,1, ai,2, . . . , b1, · · · ≪ p∗), then Equation 2 indeed holds over the field of rational
numbers, not just modulo p∗.

To see this, let L be the least common multiple (LCM) of {ai,2}ai∈S . Multiplying both sides of Equation
2 by L · b2 · c2, we obtain: ∑

ai∈S

L

ai,2
· (ai,1b1c2) = L · b2c1 mod p∗. (3)

Since each individual variable is assumed to be much smaller than p∗, and both sides are products over a
constant number of variables, the resulting values remain small integers less than p∗. Therefore, due to
the absence of wrap-around, Equation 3 actually holds over the integers. Dividing both sides by L ·b2 ·c2,
we see that Equation 2 now holds over the rationals.

In other words, whenever the prover uses rational representatives with small numerators and denomina-
tors, they can completely avoid dependency on the field Fp∗ by reformulating the same arithmetic relation
over the field of rationals. This rational embedding technique is also employed in [CGKR22, GJJZ22]
for the purpose of proving arithmetic relations over rational numbers and developing range proofs.

5.3 Casting Rationals Back to Zq Elements
In this work, we extend the rational embedding technique one step further: On top of viewing Fp∗

elements as rationals, we once again cast these rational numbers as elements in a finite domain. More
specifically, we reimagine these rational numbers as rational representatives of Zq elements. This is
equivalent to taking the equation over modulo q. For simplicity, let’s assume that q is a prime, so that
any casted element ã = a1

a2
mod q is always well-defined. We ultimately obtain the following equation:(∑

ãi∈S
ãi

)
· b̃ = c̃ mod q. (4)

By using rational representations as intermediaries, the prover can prove Zq modulo arithmetic relations,
even though the witness values are actually Fp∗ elements. In summary, when the prover uses bounded
rational representatives (with small numerators and denominators), these elements can be viewed as em-
bedded Zq elements. This embedding is ”somewhat homomorphic,” meaning that arithmetic operations
in Fp∗ naturally project to operations in Zq.

Importantly, honest provers can safely use Zq elements for proving arithmetic relations. For instance,
any element a ∈ Zq can be written as its rational representative a

1 . Since a < q ≪ p∗, this representation
is always valid, ensuring no overhead for honest provers.

5.4 Enforcing Bounded Rationals with Batch-PoSO:
To enforce bounded rationals, we leverage a recent technique called Batch Proof-of-Short-Opening
(Batch-PoSO) [CGKR22, GJJZ22]. We refer readers back to section 1.2.5 for its high-level overview.
Its details are deferred to section 5.6.

13



Enforcing Well-defined Rationals: Since CRT packing requires q to be a composite number, rational
representatives in Zq may not always be well-defined due to the absence of an inverse. To mitigate this,
we observe that if a rational’s denominator is sufficiently bounded, i.e., smaller than the smallest divisor
of q, the rational remains well-defined. Batch-PoSO can also be used to enforce this condition. More
details are deferred to lemma 1.

5.5 Related Concepts of Rational Representatives
We adopt the following definition of rational representatives from [CKLR21, CGKR22]:

Definition 7 (Rational Representative). Let Q denote the set of rational numbers, where the numerator
and denominator are coprime:

Q =
{n
d
| n, d ∈ Z, gcd(n, d) = 1

}
.

For any element x ∈ Fp, we say x is represented by the rational n
d ∈ Q if it holds that x = n ·d−1 mod p.

Note that each element x ∈ Fp can have multiple rational representatives. This concept can be generalized
to any ring Zq where q is not necessarily prime. In this case, we restrict ourselves to the set of rational
numbers whose denominators are invertible modulo q.

Definition 8 (q-Invertible Rational Representative). Let Qq be the set of rationals where the denominator
is coprime to q:

Qq =
{n
d
| n, d ∈ Z, gcd(n, d) = 1, gcd(q, d) = 1

}
.

Definition 9 (Bounded Rational Representative). The set of bounded rationals QN,D ⊆ Q consists of
all rationals whose numerators are bounded by N and denominators are bounded by D:

QN,D =
{n
d
| |n| ≤ N, |d| ≤ D

}
⊆ Q.

We observe the following relationship between the set Qq and QN,D:

Lemma 1 (Criterion for q-Invertibility). Let qdivisormin be the smallest divisor of q. If D < qdivisormin , then all
rationals in QN,D are also q-invertible. That is, QN,D ⊆ Qq when D < qdivisormin .

Proof. Since any denominator smaller than qdivisormin must be coprime to q, the corresponding rational
number is q-invertible. In all our applications, we will set q such that qdivisormin is relatively large (e.g.,
qdivisormin ≈ 28).

5.6 Batch Proof of Short Opening (Batch-PoSO)
We slightly extend our notation as follows: for any x ∈ Fp∗ , we denote x ∈ QN,D if x has a rational
representative in QN,D. In our application, we aim to enforce that the prover’s wire values w are
contained within QN,D. This issue has been addressed in [CKLR21] and later works [CGKR22, GJJZ22],
which propose an efficient commit-and-prove protocol (definition 2) called Batch Proof of Short Opening
(Batch-PoSO). The name reflects its goal: proving that a ’short’ (i.e., bounded) rational representative
exists for each entry in a committed vector3, hence the term ’short opening.’

However, proving this exact condition efficiently is infeasible. Instead, Batch-PoSO works by relaxing
the goal slightly, introducing a gap in the relation it seeks to prove.

Definition 10 (Gap Relation (RR,1,RN,D)). A vector w ∈ Fn
p∗ is said to belong to the relation RR,1 if

w ⊆ QR,1. It belongs to the relation RN,D if w ⊆ QN,D.

In this gap relation setting, the verifier must always accept all instances in RR,1 and reject, with high
probability, all instances not in RN,D. When emulating the ring Zq, we set R = q ≪ N , ensuring that
all elements of the emulated ring fall into the accepting relation, so the honest prover always succeeds
in Batch-PoSO. This gap is a crucial component leveraged by our Fast Ring Emulation technique, as it
relaxes the tightness of relation, allowing for more efficient proof technique.

3In our final application, the wire values w are also represented as a committed vector.
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Batch-PoSO Overview: The core of Batch-PoSO is an information-theoretic property testing frame-
work outlined in fig. 3. This information-theoretic framework can be easily compiled into a commit-and-
prove system by having the prover first commit to w, after which the verifier samples the random vector
r. We defer the details of this compilation to the next section.

Property Testing Framework for Gap Relation (RR,1,RN,D)
• Protocol Description:

1. Sample a short random vector r ∈ Fn
p∗ such that each entry r[i] is small

(i.e. ∀i ∈ [n], r[i] ∈ [0, D)).
2. Compute v :=< w · r > over Fp∗ , and accept if and only if v ∈ [N ].

Figure 3: An Information-Theoretic Property Testing Protocol.

5.6.1 Security proof for Batch-PoSO

We prove that the property testing protocol described in figure 3 satisfies completeness and soundness.

Theorem 2 (Completeness). Whenever N ≥ R ·D · n, the protocol satisfies completeness.

Proof. It is easy to see that if for each i ∈ [n], w[i] ∈ [R], then v := (< w · r >) < (R ·D ·n) ≤ N . Thus
v ∈ [N ] and we will always accept.

Theorem 3 (Soundness). The protocol admits soundness error of at most 1/D.

We prove soundness by utilizing the following extraction lemma:

Lemma 2 (Extraction Lemma). For any fixed constant N , and for any w ∈ Fn
p∗ , if

Pr

[
r1, r2, . . . , rn ← [0, D) :

n∑
i=1

ri · w[i] < N mod p∗

]
> 1/D,

then for each i, there exists two integers wi,1 ∈ [−N,N ] and wi,2 ∈ [1, D] such that w[i] = wi,1

wi,2
mod p∗.

Proof. The proof relies on probabilistic method. More specifically, since we have:

Pr
r1,r2,...,rn←[0,D)

[
n∑

i=1

ri · w[i] < N mod p∗

]
> 1/D,

by averaging argument, for each i ∈ [n], there must exist some fixed (r∗1 , r
∗
2 , . . . , r

∗
i−1, r

∗
i+1, . . . , r

∗
n) such

that

Pr
ri←[0,D)

 n∑
j ̸=i

r∗j · w[j] + ri · w[i] < N mod p∗

 > 1/D.

Since there are only D choices of ri, there must exist two ri,1, ri,2 ∈ [0, D), (ri,1 > ri,2) such that
n∑

j ̸=i

r∗j · w[j] + ri,1 · w[i] ∈ [N ]
∧ n∑

j ̸=i

r∗j · w[j] + ri,2 · w[i] ∈ [N ].

Now we set wi,2 := ri,1 − ri,2 ∈ [1, D), and set

wi,1 :=

 n∑
j ̸=i

r∗j · w[j] + ri,1 · w[i]

−
 n∑

j ̸=i

r∗j · w[j] + ri,2 · w[i]


as the difference between previous two sums. Notice that wi,1 ∈ [−N,N ]. Finally, observe that w[i] = wi,1

wi,2

mod p∗, where wi,1 ∈ [−N,N ], wi,2 ∈ [1, D] as desired.
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5.7 FRE: Bringing Fast Ring Emulation into the Frontend
In this section, we formalize how to use Fast Ring Emulation (FRE) as a frontend technique to address
challenges related to non-native modulo arithmetic. Specifically, let (Zq, C, io) be an EQC instance
defined over a non-native ring Zq. Our goal is to design a frontend compiler that compiles such an EQC
into an equivalent instance defined over the native field Fp∗ , while maintaining the same satisfiability
condition as the original (Zq, C, io) with overwhelming probability. We name this frontend compiler the
Fast Ring Emulator (FRE).

5.7.1 Fitting Stage

In the first stage, FRE.Fit, we transform each wiring constraint in the non-native EQC instance (Zq, C, io)
into a corresponding constraint over Fp∗ by introducing shift wire values to account for the modulus dif-
ferences between Zq and Fp∗ . The goal of this transformation is to ensure that if (Zq, C, io) is satisfiable,
then (Fp∗ , CFit, ioFit) will also be satisfiable. However, the reverse implication (satisfiability of the trans-
formed instance implying satisfiability of the original instance) does not necessarily hold.

After this stage, the prover must also update the wire values from w to wFit, incorporating the shift
values. The full description of FRE.Fit is provided in figure 4.

Claim 1. For any satisfiable EQC instance (Zq, C, io) with existential wire values w, there exists a set
of shift wire values {kj} ∈ Zq such that w ∪ {kj} ∈ Zq makes the fitted EQC (Fp∗ , CFit, ioFit) satisfiable.

Proof. Since each constraint j is degree-2, there always exists kj ∈ Zq such that
(∑

aj
i∈Sj a

j
i

)
· bj =

cj+kj ·q holds over the integers, and thus it also holds over Fp∗ . Therefore, the fitted EQC (Fp∗ , CFit, ioFit)
is satisfiable.

5.7.2 Emulating Stage

The second stage, FRE.Emulate, ensures that all prover’s wire values wFit are valid embeddings of Zq

elements. As discussed in section 5.5, this is equivalent to enforcing that all wire values are bounded
rational representatives. This is achieved by arithmetizing the information-theoretic property testing
framework that underlies Batch-PoSO.

To achieve this, FRE.Emulate translates the property testing framework into an equivalent EQC instance
(Fp∗ , CPoSO, ioPoSO), such that the instance is satisfiable over Fp∗ with respect to the existential wires
wFit and ioPoSO if and only if the property testing framework accepts wFit over randomness ioPoSO. This
ensures wFit are valid embeddings with high probability, where the probability is taken over the random
input.

The final EQC instance after this stage is the concatenation of (Fp∗ , CFit, ioFit) and (Fp∗ , CPoSO, ioPoSO).
This ensures that the overall instance is satisfiable if and only if the original instance (Zq, C, io) is satisfied,
with all but the error probability introduced in property testing. By lemma 3, since a single invocation
incurs a statistical soundness error of 1/D, the final instance (Fp∗ , CPoSO, ioPoSO) will repeat property
testing λ/ log(D) times to achieve negligible soundness error. The full description of FRE.Emulate is
provided in figure 5.

Remark 2 (Existential Wiring Consistency). The final EQC instance is obtained by concatenating the
EQC constraints (CFit ∪ CPoSO), and the inputs (ioFit ∪ ioPoSO). Importantly, the concatenation must
respect the same set of existential wires across both circuits. This means wPoSO = wFit. In practice, this
requirement is naturally achieved by using commit-and-prove SNARK backends, where the commitment
to the existential wires is shared across both EQC instances.

Theorem 4 (Emulation Completeness). If the original EQC instance (Zq, C, io) is satisfiable, then the
concatenated instance (Fp∗ , CFit ∪ CPoSO, ioFit ∪ ioPoSO) must always be satisfiable.

Proof. Let w ∈ Z|w|q be the existential wires that satisfy (Zq, C, io). By theorem 1, there exists a set
of augmented wires wFit ∈ Z|wFit|

q that make (Fp∗ , CFit, ioFit) satisfiable. Since wFit ⊆ QR,1, it will pass
the property testing framework of Batch-PoSO (completeness in claim 2). Since (Fp∗ , CPoSO, ioPoSO) is
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FRE.Fit(Zq, C, io)
1. Initialize CFit = ∅. For each wire constraint j ∈ C:

• Parse it in the form of a degree-2 arithmetic constraint:∑
aj
i∈Sj

aji · b
j = cj mod q.

• Add a shift variable kj as an existential wire value, and append the following constraint to
CFit: ∑

aj
i∈Sj

aji · b
j = cj + kj · q mod p∗.

2. Output the updated instance (Fp∗ , CFit, ioFit = io).
After this stage, the existential wire values are updated to wFit = w ∪ {kj}j∈[1,|C|].

Figure 4: Fitting Stage of FRE

FRE.Emulate(Fp∗ , CFit, ioFit)
1. Let wFit be the wire values of the EQC instance (Fp∗ , CFit, ioFit).
2. Set PoSO Parameters:

Let qdivisormin be the smallest divisor of q. Define the gap relation (RR,1,RN,D), where R = q, D =
qdivisormin − 1, and N = q · (qdivisormin − 1) · |wFit|.

3. Create Equivalent EQC for λ/ log(D) repetitions of the property testing protocol:
(a) Initialize an empty EQC instance (Fp∗ , CPoSO, ioPoSO) with CPoSO = ∅, ioPoSO = ⊥, and exis-

tential wire values wPoSO = wFit. More details in remark 2.
(b) Sample vectors r1, . . . , rλ/ log(D), where each rj ← [0, D)|wFit|. Set ioPoSO = r1∥ . . . ∥rλ/ log(D).
(c) Add Inner Product Constraints:

For each repetition j ∈ [λ/ log(D)], append the following inner product constraint:

CPoSO ← CPoSO ∪ {vj :=< wPoSO · rj >}.

(d) Add Range Check Constraints:
Enforce that each vj < N by using bit-decomposition. For each vj , introduce its bit-
decomposition as existential wire values b1, . . . , blog(N). Add the following constraints:

i. For each bit i ∈ [log(N)], append the binary constraint:

CPoSO ← CPoSO ∪ {b2i − bi = 0}.

ii. Add the bit-decomposition constraint:

CPoSO ← CPoSO ∪ {vj =
log(N)∑
i=1

2i · bi}.

Although this is computationally expensive, notice that only one range check is needed per
repetition.

4. Output the concatenated EQC instance (Fp∗ , CFit ∪ CPoSO, ioFit ∪ ioPoSO).

Figure 5: Emulating Stage of FRE

the circuit arithmetizing this protocol, it must also be satisfiable. Thus, the augmented wires wFit make
both (Fp∗ , CFit, ioFit) and (Fp∗ , CPoSO, ioPoSO) satisfiable.

Theorem 5 (Emulation Soundness). Assuming that (qdivisormin )c+2 · q2 · |wFit|2 < p∗, if the concatenated
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EQC instance (Fp∗ , CFit∪CPoSO, ioFit∪ ioPoSO) is satisfiable, then one can extract a set of existential wires
w̃Fit that satisfy the original instance (Zq, C, io), with an error probability of at most 1/2λ.

Proof. Since the concatenated EQC is satisfiable and due to remark 2, there must exist existential wires
wFit that make both (Fp∗ , CFit, ioFit) and (Fp∗ , CPoSO, ioPoSO) satisfiable. The fact that (Fp∗ , CPoSO, ioPoSO)
is satisfiable implies that the vector wFit ∈ F|wFit|

p∗ passes λ/ log(D) repetitions of the property testing pro-
tocol with independently sampled random vectors r. By the soundness of the property testing framework
(claim 3), with an error probability of at most 1/2λ, the vector wFit belongs to the relation RN,D, where
D = qdivisormin − 1 and N = q · (qdivisormin − 1) · |wFit|.

Since wFit also makes (Fp∗ , CFit, ioFit) satisfiable, this means that for each constraint j ∈ [1, |CFit|], the
degree-2 constraint  ∑

aj
i∈Sj

aji

 · bj = cj + kj · q mod p∗

is satisfiable, where {aji}, bj , cj , kj ∈ RN,D. Substituting each wire value with its rational representation
yields:  ∑

aj
i∈Sj

aji,1

aji,2

 · bj1
bj2

=
cj1
cj2

+
kj1
kj2
· q mod p∗.

Let L denote the least common multiple (LCM) of denominators {aji,2} for aji ∈ Sj . Multiplying both
sides by L · bj2 · c

j
2 · k

j
2, we get: ∑

aj
i∈Sj

L

aji,2
· aji,1

 · bj1 · cj2 · kj2 = L · bj2 · k
j
2 · c

j
1 + L · bj2 · c

j
2 · k

j
1 · q mod p∗.

The LHS is an integer of at most D|S|+1 · N2 ≤ (qdivisormin )c+2 · q2 · |wFit|2. The RHS is an integer of at
most D|S|+2 ·N · q ≤ (qdivisormin )c+3 · q2 · |wFit|. We assume that qdivisormin < |wFit|, so the LHS is always larger.
Since (qdivisormin )c+2 · q2 · |wFit|2 < p∗, both LHS and RHS are less than p∗ as integers. Thus, the equation
holds over the integers, not just over Fp∗ . Dividing both sides by L · bj2 · c

j
2 · k

j
2, it is easy to see that the

equation holds over the rationals.

Finally, since D < qdivisormin , by the q-invertible criterion (lemma 1), every rational in the equation is q-
invertible. Therefore, we can cast each rational into a representation of Zq elements. Let {ãji}, b̃j , c̃j , k̃j ∈
Zq be the casted elements. Now observe that: ∑

ãj
i∈Sj

ãji

 · b̃j = c̃j mod q.

Hence, we have extracted a set of wire values {ãji}, b̃j , c̃j , k̃j ∈ Zq that satisfy the jth constraint of the
original EQC instance (Zq, C, io).

In general, we denote by w̃Fit ∈ Z|wFit|
q the full set of casted existential wire values. By similar reasoning,

we conclude that these wire values satisfy all the wiring constraints in the original EQC.

6 FREPack: More Prover-Efficient SNARK Frontend for Highly
Repetitive Computations

In this section, we propose Fast Ring Emulation-based Packing (FREPack), a combined SNARK fron-
tend compiler designed to construct more prover-efficient commit-and-prove SNARKs for highly repeti-
tive computations.

We outline the essential steps and components necessary before applying the FREPack frontend:
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Preparing Commit-and-Prove SNARK Backends: Let (Gen,Prove,Verify) be any commit-and-
prove SNARK backend for arbitrary relations (see definition 2) associated with a vector commitment
scheme over the native field Fp∗ .

Reduction to SIMD EQC: As discussed in section 3.1, any highly repetitive computation can be
reduced to a SIMD EQC with minimal additional wiring constraints, using standard SNARK frontends.
For simplicity, we assume this reduction yields some SIMD EQC relation RC,SIMD with ℓ copies. We
assume WLOG that the EQC is degree-2, defined over the native field Fp∗ , and pmin-satisfiable with
constant fan-in c.

6.1 How to Apply FREPack SNARK Frontend
In Figure 6, we demonstrate how to apply the FREPack frontend to any commit-and-prove SNARK
backend, producing prover-efficient SNARKs for any SIMD relation RC,SIMD. Since both Pack and FRE
allow independent compilation of the EQC constraints C and the input/output values io, when only
compiling constraints, we set io = ⊥ to indicate the absence of input/output values.

Prover Efficient Commit-and-Prove SNARK for Relation RC,SIMD

• Gen(1λ,RC,SIMD)→ (pk, vk) :
1. Pack: Compress the SIMD relation RC,SIMD: (Zq, C,⊥)← Pack({(Fp∗ , C,⊥)}i∈[ℓ].
2. FRE Fitting: Let (Fp∗ , CFit,⊥)← FRE.Fit(Zq, C,⊥) be the fitted instance. Assert that qdivisormin =

pmin and (pmin)
c+2 · q2 · |wFit|2 < p∗.

3. FRE Emulating: Let (Fp∗ , CFit ∪ CPoSO,⊥)← FRE.Emulate(Fp∗ , CFit,⊥).
4. Generating Proving Keys: Define two commit-and-prove relations RCFit

ck and RPoSO
ck . Generate

the proving/verifying key as (p̃k, ṽk) ← Gen(1λ,RCFit

ck ), (pk, vk) ← Gen(1λ,RCPoSO

ck ). Then set
pk = (p̃k, pk) and vk = (ṽk, vk).

• Commit(ck, {wi}i∈[ℓ])→ c :
1. Pack existential wires into w ← Pack({wi}i∈[ℓ]), and then update w → wFit.
2. Commit to updated wires c← Commit(ck, wFit).

• Prove(pk, {ioi}i∈[ℓ], {wi}i∈[ℓ])→ π :
1. Derive wFit from {wi}i∈[ℓ] as described in Commit. Similarly, derive ioFit from {ioi}i∈[ℓ]. Then

parse pk = (p̃k, pk).
2. Deriving randomness ioPoSO via Fiat-Shamir: Set ioPoSO ← H(c), where H is a cryptographic

hash function modeled as a random oracle.
3. Proof Generation: W.r.t. commitment c, generate π̃ ← Prove(p̃k, (ioFit, c), wFit) and π ←

Prove(pk, (ioPoSO, c), wFit), and set π = (c, π̃, π).
• Verify(vk, {ioi}i∈[ℓ], π)→ {0, 1} :

1. Derive ioFit from {ioi}i∈[ℓ] as described in Prove, and then parse vk = (ṽk, vk) and π = (c, π̃, π).
2. Deriving Randomness ioPoSO via Fiat-Shamir: Set ioPoSO ← H(c).
3. Final Verification: Accept if and only if Verify(ṽk, (ioFit, c), π̃) = 1 and

Verify(vk, (ioPoSO, c), π) = 1.

Figure 6: Commit-and-Prove SNARK for Highly Repetitive Computations

Completeness: Assuming that the instances and existential wires
(
{ioi}i∈[N ], {wi}i∈N

)
are in relation

RC,SIMD, we argue that the prover can generate accepting proof π with probability 1.

Since for all i ∈ [N ], the existential wires wi satisfy the ith EQC instance (Fp∗ , C, ioi), by completeness of
compiler Pack (claim 1), the packed wires w must satisfy the packed EQC instance (Zq, C, io). Moreover,
due to the completeness of FRE (theorem 4), the augmented wires wFit make both (Fp∗ , CFit, ioFit) and
(Fp∗ , CPoSO, ioPoSO) satisfiable. In other words, we have ((ioFit, c), wFit) ∈ RCFit

ck and ((ioPoSO, c), wFit) ∈
RCPoSO

ck . Finally, due to the completeness of underlying commit-and-prove SNARK, the prover can gen-
erate accepting proofs (π, π̃) for both relations RCFit

ck and RCPoSO

ck with probability 1.

19



Knowledge Soundness: We show that for any prover who generates accepting proofs π, one can
extract a set of valid witness {wi}i∈N such that

(
{ioi}i∈[N ], {wi}i∈N

)
are in relation RC,SIMD with all

but probability negl(λ).

Due to the knowledge soundness of underlying commit-and-prove SNARK, with all but probability
negl(λ), we can extract valid witness wFit which make both (Fp∗ , CFit, ioFit) and (Fp∗ , CPoSO, ioPoSO) satis-
fiable. Furthermore, by construction of Pack, we have qdivisormin = pmin. Since (pmin)

c+2 ·q2 · |wEmulate|2 < p∗,
by soundness of FRE (theorem 5), with all but probability 1/2λ = negl(λ), one can extract a set of existen-
tial wires w̃Emulate which satisfy the instance (Zq, C, io). Finally, since every EQC instance (Fp∗ , C, ioi)
is pmin-satisfiable, by soundness of compiler Pack (claim 1), we can further extract N set of existen-
tial wires {wi}i∈N such that each wi satisfies the ith EQC instance (Fp∗ , C, ioi). Therefore, we have(
{ioi}i∈[N ], {wi}i∈N

)
in relation RC,SIMD.

Succinct Verification: We achieve succinct proofs due to the succinctness of the commitment scheme
and the commit-and-prove SNARK. Nonetheless, the verifier’s runtime remains linear in the length of the
prover’s witness. Specifically, in the FRE emulation stage, the verifier must hash and generate λ/ log(D)
random vectors as the input ioPoSO, with each vector having a length of |wFit|. This becomes impractical
in scenarios that require succinct verification, where the verifier’s runtime should be bounded by O(p(λ))
for some fixed polynomial p(·), independent of witness size.

To address this, we reuse randomness during the emulation stage. Instead of executing the Batch-PoSO
protocol over the entire vector wFit, we split it into d = |wFit|

p(λ) chunks, where each chunk has size p(λ).
Let wFit = w1

Fit|| . . . ||wd
Fit represent the split witness vector. We then execute the Batch-PoSO protocol

for each chunk wi
Fit (i ∈ [d]). Crucially, the verifier samples only one random vector r ∈ Zp(λ)

D and reuses
this vector across all d Batch-PoSO executions. By the union bound, this introduces a soundness error
of at most d/D. To amplify the soundness to 1/2λ, we repeat the Batch-PoSO protocol λ

log(D)−log(d)
times. This reduces the randomness complexity to λ

log(D)−log(d) · p(λ) ≈ O(p(λ)), thus achieving succinct
verification.

Honest Verifier Zero-Knowledge: Since both frontend compilers do not require the prover’s witness
as public input, if the underlying commit-and-prove SNARK satisfies honest verifier zero-knowledge, the
resulting SNARK will also preserve this property.

7 Implementations and Evaluations
We implement FREPack and evaluate its performance by instantiating it with concrete SNARK frontend
compilers and commit-and-prove backends. For this evaluation, we focus on our motivating scenario—
generating constant-size proofs for a large number of hash evaluations, as found in real-world applications
such as zkRollup and proof recursion. We mainly compare our frontend compiler with lookup arguments,
the only alternative for frontend optimization in highly repetitive computations.

7.1 Setup and Parameters
Base Frontend and Backends: We use circom, a widely adopted SNARK frontend compiler, as the
base (naive) frontend. This frontend outputs circuit representations in the form of Rank-1 Constraint
Systems (R1CS). Our FREPack builds on top of circom to produce more efficient R1CS circuits for
repetitive computations.

Given the requirement of constant-size proofs, we only focus on all group-based backends, as so far they
are the only viable option for ensuring constant proof sizes. We evaluate against popular group-based
commit-and-prove backends, including Spartan [Set20] and a commit-and-prove variant of the well-known
Groth16 [Gro16], as described in [CFQ19]. Additionally, to demonstrate that our frontend improvements
complement rather than overlap with existing backend optimizations on any algorithmic level, we include
Nova [KST22], an algorithmically optimized, group-based backend specifically designed for incremental
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computations4.

Circuits and Packing Factor: To align with our motivating applications, we evaluate the perfor-
mance of SHA2-256 and SHA3-512, the primiary hash functions used in zkRollups and proof recursions5.
Additionally, to demonstrate the generality of our method, we include random binary/arithmetic pro-
grams. These random programs lack the small repetitive structures characteristic of SHA programs,
making them unsuitable for frontend optimizations like lookup arguments.

We use the elliptic curve group BLS12-381, which has an order of p∗ ≈ 2255. According to theorem 5,
for any packing factor ℓ and q =

∏ℓ
i=1 qi, we require (qdivisormin )c+2 · q2 · |wFit|2 < p∗. Thus in order to

determine the optimal packing factor ℓ, we first bound the size of q and express it as the product of as
many distinct primes as possible, while ensuring all primes are larger than qdivisormin .

For both SHA2 and SHA3 circuits (with slight modifications), we observe that qdivisormin = pmin < 28, c = 3,
and |wFit| < 216. This results in q < 297, allowing q to be represented as a product of up to 12 distinct
primes, all larger than qdivisormin . Thus, we set our packing factor ℓ to 12. For a soundness error less than
2−128, we repeat its property testing framework 17 times.

Measurements and Hardware Setup: In our experiments, we evaluate the efficiency of each fron-
tend by measuring three key metrics of the circuits they generate: the number of constraints (|C|), the
number of witness variables (|w|), and the backend prover runtime required for each backend. These
experiments were run on a machine with Intel Xeon Skylake 6130 CPU (2.1 GHz) and 96GB of RAM.

7.2 Experiment Design
Baselines: We compare FREPack against two baseline frontend compilers. The first baseline is the
’naive’ approach, where we use circom directly out-of-the-box. The second baseline is the lookup argu-
ment, powered by the LogUp method [Hab22]. Since no existing R1CS circuit implements a lookup-based
version of SHA2/SHA3, we designed our own version of SHA2, albeit slightly unfaithful. We use tables of
size 28 and break each word into 8 nibbles of size 24. While all other operations in SHA2 are implemented
faithfully, we simplify the Σ (rotation) operation by simulating it with 8 random tables, as it is complex
to represent with actual lookup tables. This simplification in fact reduces the overall circuit size, giving
an advantage to the lookup argument approach when it comes to benchmarking.

We implement lookup arguments within circom so as to generate R1CS circuits. Notably, LogUp method
represents the most efficient, backend-universal implementation of lookup arguments. While further op-
timizations of LogUp [PH23] and other efficient lookup arguments such as [STW24] exist, these methods
require specialized backends and do not meet constant proof sizes without resorting to recursion, which
introduces prohibitively expensive overheads and would be significantly slower.

Experiments: To simulate Merkle tree opening proofs in zkRollup and similar applications, our first
experiment focuses on incremental computations, specifically iterative SHA2 or SHA3 hashing. More
precisely, we consider n ·ℓ iterations of the SHA program, where ℓ is our packing factor and each iteration
corresponds to hashing a single block of a message. The value of n ranges from 1 to 24. For each
configuration, we compare the R1CS circuits generated by FREPack against the two baseline compilers,
benchmarking the aforementioned cost metrics.

Our second experiment evaluates the SIMD computation of random binary/arithmetic circuits. In this
case, we begin by generating random circuits of varying sizes and then evaluate ℓ copies of each circuit
over different inputs. We only benchmark the prover time in this experiment.

4Integrating Nova backend with FREPack requires minor tweaks. Intuitively, we first apply FREPack and then perform
the folding, hence effectively reducing the number of foldings required by a factor fo ℓ. We defer the details to the full
version.

5Although some zk-friendly hashing such as Poseidon is sometimes used as replacement, it is a relatively non-standard
construction and only provides heuristic security guarantees. So we do not consider them in this work.
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Figure 7: Backend Prover Runtime for SHA-2 Experiment

7.3 Evaluations
7.3.1 Experiment I: Merkle Opening

We present the circuit size measurements for iterative SHA2-256 hashing in a Merkle opening, as sum-
marized in section 7.3.2. For a large number of iterations, compared to the naive frontend, the lookup
method reduces constraints by 1.9× but increases variables by 1.7×. In contrast, FREPack reduces
both constraints by 8.5× and variables by 2.6×. These reductions directly lower backend prover costs:
FREPack improves Groth16 prover time by 3.6×, Nova by 3.8× and Spartan by 5.9×, as shown in fig. 7
and fig. 10 in appendix. The lookup method, however, underperforms even compared to the naive
approach due to prover committing to more variables.

7.3.2 Experiment II: Random Circuits

We report the prover runtimes for random arithmetic circuits in fig. 8 and random binary circuits in fig. 9
in appendix, with varying circuit sizes based on the number of constraints. As one can see, FREPack
reduces the Groth16 prover cost by 4× and Spartan by 6.4×.

Iterations 12 24 48 96 192 288
Constraints

Naive 371424 742848 1485696 2971392 5942784 8914176
Lookup 193152 386304 772608 1545216 3090432 4635648
FREPack 45470 88866 175658 351316 702632 1051874

Variables
Naive 371425 742849 1485697 2971393 5942785 8914177

Lookup 622860 1245720 2491440 4982880 9965760 14948640
FREPack 308210 444360 716660 1263317 2356629 3447888

Table 1: Comparison of Constraints and Variables for SHA2
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8 Appendix
8.1 Recursion Costs of Hash-based Backends
Since hash-based commit-and-prove SNARK backends do not directly produce constant-size proofs, a
group-based backend is often employed to recursively prove the verifier of these hash-based systems. This
step, known as proof recursion, can be computationally expensive.

We observe that most existing hash-based backends use an IOP-based framework, where the verifier’s
dominant task is verifying Merkle tree openings. These arise from the verifier’s queries to the prover’s
committed messages in any IOP. Among hash-based backends, the most efficient one requires the verifier
to make 55 queries for 128-bit security (assuming all Reed-Solomon code conjectures) and 140 queries
without such conjectures [Sta21]. Each query typically involves verifying a Merkle opening path of length
log(n) · log(1/ρ) + log2(n), where ρ is the code rate used in the IOP, and n is roughly the size of the
circuit to be proved.

Now suppose our goal is to generate a constant-size proof for n hash evaluations using proof recursion.
Plugging in minimum parameters used in industry, the recursion cost is at least evaluating 55 ·(log(1000 ·
n) · 4+ log2(1000 ·n)) hashes, which is only smaller than n when n > 215. For provable security (without
any conjectures), the cutoff threshold even exceeds 216. Therefore, unless one aims to prove more than
these number of hashes, the hashes need to be proved in recursion alone exceeds the number of hashes
one starts with. The implication is that in all practical scenarios such as zkRollup, it is much faster to
prove these hashes directly using a group-based backend rather than first using a hash-based backend
and then recursively proving with a group-based backend.
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