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1 Introduction

In [1] the authors especially report on experiments they made comparing the distribu-
tions of scores for random targets and BDD targets. They discovered that the distribu-
tion of scores for BDD targets deviate from the predictions made under the independence
heuristic. Here, we want to derive approximations for the distributions which take into
account the dependency that occur in the scores. These approximations allow to find
heuristic estimates for the success probability of distinguishing between the two distri-
butions.

2 The Dual Distinguishing in [1]

We adopt the notation of [1] and repeat the approach described in [1, Section 2.3]. Given
a BDD sample t = v + e0 with v ∈ Λ for any dual vector w ∈ Λ∨ one has

⟨t, w⟩ ≡ ⟨e0, w⟩ mod 1.

One naturally considers the total score over many dual vectors W ⊂ Λ∨ given by

fW (t) =
∑
w∈W

fw(t) with fw(t) = cos(2π⟨t, w⟩).

In [1, Lemma 4] approximations of the expectation values and variances of a single fw(t)
are given for the two cases ”random targets vs. BDD targets”. In general, we have for
the variance of the score

V (fW (t)) =
∑
w∈W

V (fw(t)) +
∑

w,w̃∈W,w ̸=w̃

Cov(fw(t), fw̃(t))

If the [1, Heuristic 2 (Independence Heuristic)] is valid, the second sum over the single
covariances is equal to 0. However, in the following we want to derive approximations
of this second sum. In the end, this might explain that in the experiments in [1, Table
1] the measured variance is much larger as predicted.
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3 Computing the covariances for random targets

We use the definition as in [2, Definition 1 (Random target distribution)]. Let Λ be
a full-rank n-dimensional lattice, B is a basis of Λ. The random target distribution
for Λ corresponds to the distribution obtained by sampling target vectors t uniformly
at random from the fundamental parallelepiped generated by the basis B. (We write
vectors as columns. The components of α with t = Bα, are uniform on [−1

2 ,
1
2 ].) We fix

two dual vectors w, w̃ ∈ W,w ̸= w̃ and write explicitely

w = (B−1)Tµ, w̃ = (B−1)T µ̃

where the components of µ and µ̃ are integers. We consider the 2-dimensional distribu-
tion of (

⟨t, w⟩
⟨t, w̃⟩

)
=

(
⟨α, µ⟩
⟨α, µ̃⟩

)

and its reduction (
⟨α, µ⟩ mod 1
⟨α, µ̃⟩ mod 1

)

as a random variable in α. We want to compute the probabilities for −1/2 ≤ s, s̃ ≤ 1/2

P (⟨α, µ⟩ mod 1 ≤ s, ⟨α, µ̃⟩ mod 1 ≤ s̃)

= Vol(⟨α, µ⟩ mod 1 ≤ s, ⟨α, µ̃⟩ mod 1 ≤ s̃)

We can compute this volume as as sub-volume of the n-dimensional cube by counting
over the points (k1p , . . . ,

kn
p ), kj integers with −p/2 ≤ kj ≤ p/2, for very large prime p

and going to the limit. As approximation we get the sum∑
r,r̃, with
r/p≤s,r̃/p≤s̃

[ ∑
kj , with∑

j µjkj/p mod 1=r/p,∑
j µ̃jkj/p mod 1=r̃/p

1

pn

]

=
∑

r,r̃, with
r≤sp,r̃≤s̃p

[ ∑
kj , with∑

j µjkj mod p=r,∑
j µ̃jkj mod p=r̃

1

pn

]

where r, r̃ are integers in [−p/2, p/2]. We assume that µ and µ̃ are linearly independent
(over the rational numbers or the real numbers). Then the second sum has exactly pn−2

solutions. In the end, we derive as approximation∑
r,r̃, with
r≤sp,r̃≤s̃p

1

p2
≈ (s+

1

2
)(s̃+

1

2
)
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Therefore, the random variables ⟨α, µ⟩ mod 1 and ⟨α, µ̃⟩ mod 1 are independent and the
covariances vanish.

4 Approximations for computing the covariances for BDD targets

We now assume that t is chosen as a BDD sample by sampling e0 from an n-dimensional,
continuous gaussion distribution with covariance matrix σ2

0 ·1n . We fix two dual vectors
w, w̃ ∈ W,w ̸= w̃ and consider the 2-dimensional distribution of(

⟨e0, w⟩
⟨e0, w̃⟩

)

as a random variable in e0. This random variable is again gaussianly distributed with
covariance matrix

Σ = σ2
0

(
||w||2 ⟨w, w̃⟩
⟨w, w̃⟩ ||w̃||2

)
Let us assume that w and w̃ are linear independent and hence define a 2-dimensional
positive definite subspace of Rn and Σ is invertible. We set

P̃ (z) =
1

2π
√
det(Σ)

e−
1
2
zTΣ−1z

The distribution of the reduced random variable

c =

(
c1
c2

)
=

(
⟨e0, w⟩ mod 1
⟨e0, w̃⟩ mod 1

)

is equal to

P (c) =
∑
µ∈Z2

P̃ (c+ µ).

We use the well known Poisson summation formula and get

P (c) =
∑
µ∈Z2

P̃ (c+ µ) =
∑
v∈Z2

e−2πi⟨v,c⟩e−2π2vtΣv.

We now start the computation by

E(fw(t) · fw̃(t))

=

∫
c1,c2

cos(2πc1) · cos(2πic2)P (c1, c2)dc1dc2

=
∑
v∈Z2

e−2π2vtΣv

∫
c1

cos(2πc1)e
−2πiv1c1dc1 ·

∫
c2

cos(2πc2)e
−2πiv2c2dc2
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It is easily seen that each univariate integral (in c1 or c2, respectively) vanishes for all
v1, except for v1 = ±1 and for v2 = ±1, respectively. Namely, we have

2

∫ 1

0
cos(2πnt)e−2πimtdt =

∫ 1

0
e2πi(n−m)tdt+

∫ 1

0
e2πi(−n−m)tdt.

The first integral on the right-hand side vanishes except for n = m and the second
integral vanishes except for n = −m. Both integrals are equal to 1 if they do not vanish
and the claim follows.

Therefore, we get

E(fw(t) · fw̃(t))

=
1

4

∑
v1=±1,v2±1

e−2π2vtΣv

=
1

2
∆a +

1

2
∆b

where we set

∆a = e−2π2||w+w̃||2σ2
0

∆b = e−2π2||w−w̃||2σ2
0

∆c = e−2π2||w||2σ2
0

∆d = e−2π2||w̃||2σ2
0

[1, Lemma 4] states the equality for the expectation value

E(fw(t)) = e−2π2σ2
0 ||w||2

In the end, we derive for the covariance

Cov(fw(t), fw̃(t)) =
1

2
∆a +

1

2
∆b −∆c ·∆d (B)

We look at the sum over all single covariances∑
w,w̃∈W,w ̸=w̃

Cov(fw(t), fw̃(t)).

Instead of computing this sum via (B) directly we now want to find plausible approxi-
mations that give simple formulas. We set m0 = #W . Note that

1

m2
0

∑
w,w̃∈W,w ̸=w̃

Cov(fw(t), fw̃(t)). (C)
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can be interpreted as a computation of a mean, (and using m2
0 −m0 ≈ m2

0). Therefore,
we can expect that the expression (C) is near to the expectation value if we treat w, w̃ ∈
W,w ̸= w̃ as random variables. In the simplest approximation these random variables
are gaussian distributed with covariance matrix τ20 1n. The expectation value is of the
form

E(eγY )

where Y is (standard)-χ-square distributed. For γ < 0.5 this is identical to

E(eγY ) = (1− 2γ)−k/2,

where k denotes the degrees of freedom of Y . ∆a (resp. ∆b) depends on

||w + w̃||2, resp. ||w − w̃||2

which has n degrees of freedom, whereas ∆c ·∆d depends on

||w||2 + ||w̃||2

which has 2n degrees of freedom. In the end, we derive as an approximation of (C)

(1− 4γ0)
−n/2 − (1− 2γ0)

−n

where γ0 = −2π2σ2
0τ

2
0

For the total variance we therefore expect as approximation

V (fW (t)) =
∑
w∈W

V (fw(t)) +
∑

w,w̃∈W,w ̸=w̃

Cov(fw(t), fw̃(t))

≈ m0

2
+m2

0[(1− 4γ0)
−n/2 − (1− 2γ0)

−n] (D)

[1, Lemma 4] states as approximation for the expectation value

E(fW (t)) =
∑
w∈W

e−2π2σ2
0 ||w||2

Again, we further expect

E(fW (t)) ≈ m0(1− 2γ0)
−n/2
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5 Modelling the distribution of w in W

For any fixed e0 we write

1

m0

∑
w∈W

cos(2π⟨e0, w⟩) = F (e0) + δW,e0

where F (e0) is the expectation value when w is treated as random variable. δW,e0 does
depend on e0 as well as on the whole set W . If we assume the elements w in the score
as chosen independently, δW,e0 can be treated as a realization of an gaussian random
variable, (central limit theorem), with expectation value 0 and a certain variance. Here,
we want to assume that this variance is independent of e0 and given by 1

2m0
. In Chapter

4 we treat w as gaussian distributed with covariance matrix τ20 1n for computing the
covariance terms. In a more accurate approach, we should assume that w is a realization
of a random variable with values on the lattice Λ∨ where the distribution is induced by
the gaussian distribution with covariance matrix τ20 1n, i.e. the probability of w is

e−||w||2/(2τ20 )∑
w∈Λ∨ e−||w||2/(2τ20 )

Thus, we compute

F (e0) =

∑
w∈Λ∨ cos(2π⟨e0, w⟩)e−||w||2/(2τ20 )∑

w∈Λ∨ e−||w||2/(2τ20 )
(E)

The denominator and the numerator in the quotient (E) can be expressed as a sum over
the lattice Λ by using the Poisson summation formula. Note that the Fourier transform
of e2πi⟨e0,w⟩h(w) is just the Fourier transform of h(w) with the shift −e0. Therefore, we
further derive

F (e0) =

∑
z∈Λ e−2π2τ20 ||z−e0||2∑
z∈Λ e−2π2τ20 ||z||2

=
e−2π2τ20 ||e0||2 +

∑
0̸=z∈Λ e−2π2τ20 ||z−e0||2

1 +
∑

0̸=z∈Λ e−2π2τ20 ||z||2
(F )

In typical cases, we can expect that the value of
∑

0̸=z∈Λ e−2π2τ20 ||z||2 is very small: We
want to assume that the Gauss heuristic is valid for both lattices Λ,Λ∨. Here we use the

simple approximations
√
n√

2πe
det(Λ)1/n, resp.

√
n√

2πe
det(Λ)−1/n, for the shortest vectors

in Λ, resp. Λ∨. Furthermore, we define λ0 by the equation

τ0 = λ0
1√
2πe

det(Λ)−1/n, (G)

so that τ0
√
n is a λ0-multiple of the shortest vector in Λ∨. Then, the smallest non-trivial

vector of the stretched lattice
√
2πτ20Λ is of length λ0√

2πe

√
n. If λ0 ≥ e, we can directly

apply [3, Lemma (1.5, (i))] setting c = λ0√
2πe

≥ 1√
2π

in this lemma in order to derive a

bound on the sum
∑

0̸=z∈Λ e−2π2τ20 ||z||2 .
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6 The distribution of F (e0) in the BDD case

We want to assume that the denominator of (F) can be set to 1. We assume that e0
is chosen with length much smaller than the shortest vector in Λ. Therefore, we find a
certain value µ with

||z − e0||2 ≥ µ2||z||2 for all 0 ̸= z ∈ Λ

Again, we can use [3, Lemma (1.5, (i))] for deriving an explicit bound for the sum∑
0 ̸=z∈Λ e−2π2τ20 ||z−e0||2 ≤

∑
0̸=z∈Λ e−2π2τ20µ

2||z||2 . In the end, we want to assume that the
function

Z(e0) = e−2π2τ20 ||e0||2

is a valid approximation of F (e0). The distribution function of Z can be computed as

t 7→ c0(− ln(t))n/2−1t−1/(2γ0)−1

with a certain real number c0 and t ∈ [0, 1]. If |γ0| is small, then the distribution function
looks roughly like a gaussian function. If |γ0| > 1

2 , the exponent of t is negative and the
distribution function looks completely different.

Furthermore, we can compute the expectation value and the variance of Z(e0). We
derive the values which we computed before in chapter 4, i.e. (1 − 2γ0)

−n/2 for the
expectation value and

(1− 4γ0)
−n/2 − (1− 2γ0)

−n

for the variance.

7 The distribution of F (e0) in the case of uniform targets

We now consider the distribution of F (e0) in the case of targets uniformly chosen in
Rn/Λ. Again, we set the denominator of (F) to 1. Furthermore, the numerator in (F)
should be well approximated by just the restricted sum over the z ∈ Λ, which are closest
to e0. However, it seems to be difficult to find a simple approximation of the distribution
function of the score function in this case.

Since ⟨e0, w⟩ mod 1 is equally distributed on [−1
2 ,

1
2 ] for w ̸= 0, see chapter 3, we can

compute the expectation value of F (e0) as

1∑
w∈Λ∨ e−||w||2/(2τ20 )

We approximate the sum by an integral (alternatively using the Poisson summation
formula and neglecting terms in z ̸= 0) which gives

1∑
w∈Λ∨ e−||w||2/(2τ20 )

≈ 1√
2πτ20

n
det(Λ)
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Note that ∑
w,w′∈Λ∨

cos(2π⟨e0, w⟩) cos(2π⟨e0, w′⟩)e−||w||2/(2τ20 )e−||w′||2/(2τ20 )

=
1

2

∑
w,w′∈Λ∨

[cos(2π⟨e0, w + w′⟩) + cos(2π⟨e0, w − w′⟩)]e−||w||2/(2τ20 )e−||w′||2/(2τ20 )

This property allows us to compute the second moment of F (e0) as∑
w∈Λ∨ e−2||w||2/(2τ20 )

[
∑

w∈Λ∨ e−||w||2/(2τ20 )]2

We approximate the sums by integrals (alternatively using the Poisson summation for-
mula and neglecting terms in z ̸= 0) which gives∑

w∈Λ∨ e−2||w||2/(2τ20 )

[
∑

w∈Λ∨ e−||w||2/(2τ20 )]2
≈ 1√

4πτ20
n
det(Λ)

In typical cases, we can expect that the distribution of F (e0) is extremely near to 0
since both the expectation value and the standard deviation are negligible: Again as in
chapter 5, we want to assume that the Gauss heuristic is valid for both lattices Λ,Λ∨

and that τ0
√
n is not too small a multiple λ0 of the shortest vector in Λ∨ as in (G).

Then, the expectation value of F (e0) is of size

1√
2πτ20

n
det(Λ)

= [
λ0√
e
]−n

and the second moment is of size

1√
4πτ20

n
det(Λ)

= [
λ0

√
2√
e

]−n

8 Conditions for getting notable success probabilities

Based on the assumption that a conditional version of the central limit theorem is valid,
[4, Theorem 3.1], we suggest the following heuristic:

Heuristic: The score function 1
m0

∑
w∈W cos(2π⟨e0, w⟩) can be treated as a realization

of the sum F (e0) +X of two random variables F (e0) and X. X is a gaussian random
variable with expectation value 0 and variance 1

2m0
. F (e0) is the expectation value when

w is treated as random variable and therefore does not depend on m0.
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We want to distinguish the cases ”random targets vs. BDD targets” with good proba-
bility by checking if the score is higher or lower than a certain value α. If we have good
approximations for the distribution of F (e0), we can compute numerically a condition on
m0 based on the heuristic above. In the following, we want to derive a simple formular
that gives us a plausible condition on m0. To this end, we assume that the approxima-
tions in chapters 5 and 6 are valid. If e0 is chosen uniformly in Rn/Λ, we assume that
F (e0) is extremely small compared to X. Therefore, we approximate

P (
1

m0

∑
w∈W

cos(2π⟨e0, w⟩) ≤ α|case ”random targets”)

= P (F (e0) +X ≤ α|case ”random targets”) ≈ P (X ≤ α)

We therefore choose for simplicity

α =
µ0√
2m0

with a certain number µ0 ≥ 1. On the other hand, we want that

P (
1

m0

∑
w∈W

cos(2π⟨e0, w⟩) ≥ α|case ”BDD targets”)

is notably larger than 0.5. We consider

P (
1

m0

∑
w∈W

cos(2π⟨e0, w⟩) ≥ α|case ”BDD targets”)

= P (F (e0) +X ≥ α|case ”BDD targets”)

≈ P (Z(e0) +X ≥ α)

Since we know the distribution function of Z and X, the probability P (Z +X ≥ α) can
be computed numerically by a two-dimensional integral, if we further assume that Z and
X are independent. However, here we want to derive a rough estimate on m0 that gives
us a simple formula. Since the standard deviation of X is equal to 1√

2m0
= α

µ0
, we can

approximate P (Z +X ≥ α) by P (Z ≥ α) for moderate µ0. We further compute

P (Z +X ≥ α) ≈ P (Z ≥ α) = P (eγ0||e0||
2/σ2

0 ≥ α)

= P (||e0||2/σ2
0 ≤ ln(α)

γ0
)

||e0||2/σ2
0 is χ2-distributed. If we choose

n+
√
2n ≤ ln(α)

γ0
⇐⇒ α ≤ eγ0(n+

√
2n)
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we get a ”good” probability for P (Z ≥ α). (For n ≥ 50 this probability of the χ2-
distribution is very near to 0.84.) In the end, we derive the condition

eγ0(n+
√
2n) ≥ µ0√

2m0
⇐⇒ 2m0 ≥ µ2

0e
−2γ0(n+

√
2n) (H)

Remark 1: The condition (H) is very similar to the usual condition on m0 computed
under the independence heuristic. The main difference - ignoring µ0 ≥ 1 - is a slightly
higher number for the number of vectors m0 due to the new term n+

√
2n instead of n,

which results in an additional factor of the form e−2γ0
√
2n.

Remark 2: What happens in the asymptotic case, when m0 is extremely large? In the
derivation of (H) we assume that F (e0) is extremely small compared to X, if e0 is chosen
uniformly in Rn/Λ. This is certainly not true, when m0 is extremely large. Instead, we
consider

P (
1

m0

∑
w∈W

cos(2π⟨e0, w⟩) ≤ α|case ”random targets”)

= P (F (e0) +X ≤ α|case ”random targets”)

≈ P (F (e0) ≤ α|case ”random targets”)

If we assume that the approximations in chapters 5 and 6 are valid, we have different
distributions for F (e0) in both cases. This allows to distinguish the cases ”random tar-
gets vs. BDD targets” with certain fixed probabilities, that do not depend on m0.

Remark 3: A natural question arises: What are good weights in the formula for the
total score taking into account the approach above? We therefore consider weights βw
in

fβ(t) =
∑
w∈W

βw cos(2π⟨t, w⟩).

We can adapt the formulas above if we restrict ourselves by choosing

βw = e−ζ0||w||2

In this way, one can find an optimal ζ0 that gives a certain lower condition on m0

compared to (H).
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