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Abstract

Multi-Party Computation (MPC) has become a major tool for protecting hundreds of bil-
lions of dollars in cryptocurrency wallets. MPC protocols are currently powering the wallets
of Coinbase, Binance, Zengo, BitGo, Fireblocks and many other fintech companies servicing
thousands of financial institutions and hundreds of millions of end-user consumers.

We present four novel key-extraction attacks on popular MPC signing protocols showing how
a single corrupted party may extract the secret in full during the MPC signing process. Our
attacks are highly practical (the practicality of the attack depends on the number of signature-
generation ceremonies the attacker participates in before extracting the key). Namely, we show
key-extraction attacks against different threshold-ECDSA protocols/implementations requiring
106, 256, 16, and one signature, respectively. In addition, we provide proof-of-concept code that
implements our attacks.
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1 Introduction

In distributed ledger systems, commonly known as blockchains, digital signatures are crucial for
maintaining integrity and authenticity. Each participant in these networks possesses a public key
that allows them to receive digital assets, and the corresponding private key enables them to
transfer assets to other participants. The secure management of this secret material is facilitated
by a ‘wallet’, which provides the owner with a secure means to sign transactions.

MPC Wallets. In recent years, Multi-Party Computation (MPC) [GMW87; Yao86] has emerged
as the gold standard for safeguarding digital assets. It is arguably the preferred tool for institutional
players, protecting hundreds of billions of dollars via ‘MPC wallets’. In a typical setting, several
geographically dispersed machines1 (referred to as parties) engage in an interactive key-generation
protocol to calculate the public key associated with the wallet, as well as to obtain their individ-
ual private key shares which they will use for calculating signatures in the future. Then, when
prompted to sign a message (e.g. at the request of some authenticated user), the parties engage in
an interactive signing protocol for calculating the desired signature. In this document, we refer to
the interactive signing process as threshold signing [Des87; DF89].

Informally speaking, MPC ensures that the underlying ‘master’ private key is never exposed, and
the only information revealed by the MPC protocol is the computation output (i.e. the signatures),
even in the presence of corrupted parties. Essentially, MPC may be viewed as a last line of defense
protecting against malicious insiders, provided that the system is not compromised in its entirety.

ECDSA. The most popular signature scheme in the blockchain space is the Elliptic Curve Digital
Signature Algorithm (ECDSA) [Nat23]. Unlike other signature schemes that can be ‘thresholdized’
in a natural way (e.g. Schnorr signatures [Sch91] or BLS [BLS04]), ECDSA requires the full power
of MPC to support threshold signing. That is, protocols for threshold ECDSA employ the full
spectrum of cryptographic techniques for multiparty computation. These techniques include, but
are not limited to, oblivious transfer (OT [Rab05]), pseudorandom correlation generators (PCGs
[Boy+19]), additive homomorphic encryption (such as Paillier encryption [Pai99], hereafter referred
to as ‘Paillier’) and zero-knowledge proofs (ZKPs [GMR85; GMW91]).

Protocols for threshold ECDSA are fairly abundant in the literature and they are widely im-
plemented for digital wallet applications. It is worth noting that the transaction volume of MPC
wallets is estimated to be in the trillions of US dollars.2

In this paper, we present attacks on Paillier-based threshold-ECDSA protocols. It is important
to note that our attacks can be extrapolated to any MPC protocol or implementation that utilizes
Paillier as a foundational building block. Below, we mention the three relevant signing protocols
potentially affected by these attacks.

1. Lindell17 : The Lindell17 protocol (CRYPTO’17 [Lin17a] and J. Cryptol.’21 [Lin21]) is ar-
guably the most popular ECDSA protocol tailored to two parties. It is utilized by vendors
such as ZenGo (see ZenGo) and Coinbase WaaS (Coinbase WaaS).

1Typically, certain machines are located with a vendor, or wallet provider, while others are situated with the
client, or end user.

2Fireblocks press release, quoting: “. . . surpassing $2 trillion in assets transferred.” Retrieved from fireblocks.

com (January 2024).
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2. GG18/20 : The ‘GG ’ family of protocols (CCS’18 [GG18], Manuscript’20 [GG20]3) are widely
implemented by various vendors and open-source projects, including e.g. Binance bnb-chain,
ING Bank (Open Source Project), ZenGo (Open Source Project), Safeheron.

3. BitGoTSS : Lastly, we mention BitGoTSS , a custom protocol by BitGo, a leading cryptocur-
rency custodian managing assets worth billions.4 BitGoTSS does not closely adhere to the
protocols in the literature. It is essentially a bare-bones version of [GG18], where all the
zero-knowledge proofs are omitted, c.f. BitGoJS library—(version 16.1.0).

MPC Wallet Threat Model. Following the usual convention, we assume that a single adver-
sary, denoted as Adv, controls a subset of parties in the multi-party protocol, potentially all-but-one
of the parties, and Adv can send any maliciously-crafted message on their behalf. In the context of
MPC wallets, attack outcomes include:

1. Denial-of-service: Preventing the parties from signing.

2. Signature forgery : Obtaining a signature on a different message than the prescribed message.

3. Key Extraction: Extracting the honest parties’ secret shares—eventually the entire key.

For signature forgery and key extraction, a critical metric for evaluating the efficiency of the
attack is the number of signature-generation sessions the attacker has access to before the attack
outcome occurs. Next, we discuss various ways in which attacks can arise.

Vulnerabilities & Attacks. Vulnerabilities that give rise to attacks in cryptographic protocols
typically emerge from one of three sources. The first and most common are implementation issues,
where the actual code deviates from the protocol’s intended specification. These discrepancies can
create critical security gaps. The second source is rooted in insecure assumptions—cases where the
security proof of a protocol is sound, but the underlying hardness assumption is weak, often seen in
‘experimental’ protocols. The third, albeit rarer, source of vulnerabilities comes from mistakes or
omissions in the security proof of the protocol itself. Furthermore, protocol-related vulnerabilities
are uncommon in well-established, commercially-used protocols, and usually only of theoretical
interest.

Related Work. Previous research has explored various attacks on Paillier-based threshold-
ECDSA protocols and implementations. Namely, [AS20a; AS20b; Ngu+23a; Ngu+23b; TS21]
have identified several implementation-related vulnerabilities potentially affecting most of the mul-
tiparty Paillier-based protocols, depending on the implementation. Notably, some of these attacks
allow for very efficient key extraction.

In a different vein, [MP21] found a protocol-related attack affecting both ‘GG ’ protocols, where
a malicious attacker could gain partial leakage into ephemeral secret randomness. However, this
attack was largely theoretical and not applicable to practical scenarios as the authors could not
leverage the leakage into a meaningful forgery and/or key extraction. Finally, we mention that
[TS21] show an assumptions-related attack on the lightweight, and experimental variant of [GG18]
that was based on non-standard assumptions.

3A variant of the main protocol from [GG20] was published in CCS’20 [Can+20] (as part of a merge with [CMP20]).
4BitGo press release. Retrieved from bitgo.com (January 2024).
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Remark 1.1 (Old & New GG18/20 ). In 2021, in response to the findings of [MP21] regarding
inadvertent leakage, both ‘GG ’ protocols from [GG18] and [GG20] were revised. The update
included a proposed fix involving the modification of a critical protocol parameter. Specifically,
the size of the beta parameter in the OLE was adjusted, as detailed in Section 2. However,
most implementations (e.g., Binance bnb-chain, ING Bank (Open Source Project), ZenGo (Open
Source Project)) did not incorporate this modification, leading to a situation where, in recent years,
nearly all implementations deviated from the updated paper(s). In this document, our attack(s)
apply equally to [GG18] and [GG20], so we will be referring to [GG18; GG20] as a single protocol
‘GG18/20 ’ with two regimes of parameters, old and new.

1.1 Our Contributions

We present four novel key-extraction attacks; Our attacks exfiltrate the private key in full, and it
suffices for the attacker to corrupt a single party in the MPC. The unifying element of our attacks is
the leveraging of misimplementations or design flaws within the protocol, specifically targeting the
Paillier encryption process. Depending on the scenario, this may involve encrypting a maliciously-
chosen plaintext or choosing a maliciously crafted Paillier public key for the compromised party.
In the latter case, the adversary selects the Paillier private key in a manner that deviates from the
standard Paillier key-generation process.

Furthermore, our attacks are highly practical, requiring 106, 256, 16, and one signature, respec-
tively. Additionally, two of our attacks have the potential for stealthiness, where the signature-
generation process is error-free and it appears benign. Finally, we provide proof-of-concept (PoC)
code [fir23a; fir23b; fir23c] implementing three of our attacks (the most practical ones).

The attack cost, specifically the number of signatures required for the adversary to extract the
key, along with the stealthiness of each attack, is summarized in Table 1. To our knowledge, all
the attacks presented here are novel, and, as previously noted, they are applicable to any MPC
protocol utilizing Paillier encryption, extending beyond threshold-ECDSA.

Attack Protocol # Parties # Signatures Stealthiness

Broken Record Lindell17 -Implementations 2 256 ✗

6ix1een GG18/20 (New) n 16 ✓
Death by 1M Cuts GG18/20 (Old) n ≈ (n− 1) · 106 ✗

Zero Proof BitGoTSS n 1 ✓

Table 1: Summary of our key-extraction attacks for each protocol. We note that the attacker is
assumed to compromise a single party in the MPC.

Validating the Attacks against Real-World Systems. In the process of validating Broken
Record and Zero Proof against actual systems, we established MPC wallets two well-known wallet
providers, ZenGo and BitGo. This entailed creating a shared key between our device and the
wallet provider’s server, specifically for an address on the Ethereum mainnet network. Utilizing
the PoC-code linked in this document, we were able to extract the wallet provider’s share of the
key. This extraction allowed us to combine it with our local share, effectively reconstructing the
complete private key. In our test against ZenGo, the Broken Record attack successfully retrieved
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the key after 256 signatures. For BitGo, using the Zero Proof attack, we managed to retrieve the
key with just a single signature.

Ease of Mounting the Attack(s). From a purely algorithmic perspective, compromising just a
single party in the MPC is sufficient for the attacker, and there is no inherent obstacle to executing
the attack as long as the malicious party goes undetected (see Section 1.2). As detailed in Table 1,
two of our attacks, 6ix1een and Zero Proof, have the potential for stealthiness, meaning that the
difficulty of those attacks solely depends on the initial corruption of a single MPC party.

In the context of cryptocurrency wallets, this typically involves compromising a mobile device
or a server. For other threshold signing applications, such as blockchain bridges, any participant in
the protocol can initiate an attack. Given that participation in the protocol is often permissionless,
staking some capital may be the sole requirement to launch an attack.

Remark 1.2. As indicated above, the first vulnerability, affecting Lindell17, is implementation-
specific. However, it important to note that we did not find a single implementation that was not
affected. Furthermore, as we discuss in the following section, rather than strictly adhering to the
existing protocol, we believe that the most effective way to remediate the issue is to augment the
protocol with additional safeguards.

1.2 Detection, Mitigation & Remediation

Each of our attacks presents unique challenges in terms of detection, mitigation, and remediation.
The common thread in remediation is the use of ZK proofs to ensure the integrity of key components
in the signing process.

In case it is not already known or simply as a reminder to the reader, the Paillier public key,
also referred to as a Paillier ‘modulus’, is essentially an RSA number, N = pq, which is the product
of two large prime numbers such that gcd(N, (p− 1)(q − 1)) = 1, when generated correctly.

Broken Record (Lindell17).

• Detection & Mitigation: The signature ceremony for Lindell17 results in an invalid signature.
This is a clear indication that something is amiss in the process. The immediate response, as
instructed in Lindell17 [Lin17a], should be to halt all signing activities as soon as an invalid
signature is detected.

• Remediation: Stopping the signing process in the event of invalid signatures can be somewhat
unrealistic and susceptible to misimplementation. For one, it may be hard to differentiate
between a benign software bug and an actual attack. Secondly, even if the protocol is strictly
adhered to and the wallet is locked after a failed signature, this approach could inadvertently
lead to an easy denial-of-service (DoS) attack: merely flipping a single bit of the payload
could lead to the wallet being locked indefinitely. This is in contrast to other protocols where
the adversary must continuously disrupt the signing process to achieve a similar DoS effect.
To address this issue, it is recommended to add a ZKP of well-formedness to the encrypted
partial signature (see Section 2). Such a ZKP can be found in [BMP22].
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6ix1een & Death by 1M Cuts (GG18/20).

• Detection: In this case, the detection involves identifying a corrupted Paillier modulus which
admits small factors, making it susceptible to factorization with advanced algorithms. Factors
of size 280 or smaller are considered critical vulnerabilities. For the Death by 1M Cuts attack,
the attack can further be the detected by the presence of invalid signatures.

• Mitigation: Attempting to factor the moduli before the signing process can help identify the
vulnerability. For the Death by 1M Cuts attack, the attack can also be mitigated by ceasing
all signing activities as soon as an invalid signature is detected.

• Remediation: Implementing a ZK proof of well-formedness for the Paillier Modulus is essen-
tial. This proof should verify that the modulus is a product of exactly two suitable primes
and does not contain small factors, thereby ensuring its integrity. Such a ZKP can be found
in [CMP20].

Zero Proof (BitGoTSS). For BitGoTSS, the situation is more complex. The protocol has
fundamental flaws that render it entirely broken; it is essentially an honest-but-curious protocol
devoid of any safeguards against active adversaries. Any attempt to patch the protocol to counter
our specific attack would be merely superficial. For instance, Death by 1M cuts can also be used
against BitGoTSS. We note that BitGoTSS was quickly deprecated as far as we know.

Remark 1.3. One may wonder why we include an attack against a custom protocol in our findings.
We believe we have valid reasons for this choice. First, the protocol itself is not particularly exotic;
it is a simplified version of the (old) GG18/20 protocol and it may be viewed as the honest-but-
curious version of GG18/20 where all the ZKPs are omitted. Second, the fact that we exfiltrate
the key in one5 signature is technically noteworthy as, to the best of our knowledge, extracting
more than a few bits of the key (in any number of signatures) was previously unknown.

1.3 Responsible Disclosure

We followed the standard 90-day responsible disclosure process for all the vulnerabilities and we
made best efforts to ensure all potentially affected parties were informed and had adequate time to
address the identified vulnerabilities.

1. Identification of Vulnerable Open Source Libraries: Initially, we identified potentially im-
pacted open-source libraries using the following list compiled by ZenGo.

2. Github Repository Analysis: We carefully analyzed forks of these repositories on github. Our
goal was to infer whether any companies were using or promoting vulnerable code.

3. Online Search for MPC Marketing Materials: We conducted online searches to identify com-
panies using marketing materials that mentioned ‘MPC’, ‘TSS’, ‘Lindell17 ’ or ‘GG18/20 ’.
This helped us to further pinpoint organizations that might be unknowingly at risk.

4. Compilation of a Suspected Companies List : Based on our research, we compiled a detailed
spreadsheet cataloging all companies we suspected might be using one of the vulnerable
protocols. This list was instrumental in guiding our outreach efforts.

5To be precise, the key is extracted in less than one signature. Namely, it is extracted in full in the first round of
the first signing session.
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5. Initiation of the 90-Day Disclosure Window : The 90-day responsible disclosure window was
initiated by sending our initial emails in early May 2023. A 90-day window is aligned with
industry best practices, providing companies with sufficient time to respond and remediate
the issues. As we initiated contact with the identified entities, we tracked progress in a
detailed tracking system. This system categorized companies into several stages: ‘Contacted’,
‘Responsive’, ‘Vulnerable’, ‘Mitigation Under Process’, and ‘Fixed’. It is worth mentioning
that no company requested an extension beyond the 90-day window.

6. Alternative Communication Channels: In cases where we did not receive a response through
the primary channel, typically the Chief Information Security Officer (CISO), we employed
alternative methods, including reaching out via social platforms, e.g. LinkedIn, or mutual
connections.

7. Follow-up on Severity Misunderstandings: Occasionally, affected parties did not initially grasp
the severity of the vulnerabilities. In these instances, we engaged in follow-up communications
to clarify the risks and urge prompt action.

8. Expanding Notification Based on Recommendations: On a few occasions, affected parties
recommended we contact third companies potentially affected by the vulnerability. We acted
promptly on these suggestions, expanding our notification efforts to these additional entities.

GG18/20. The vulnerability was discovered in early May, 2023. Over 10 vendors and/or open-
source libraries were impacted. The 6ix1een attack was then demonstrated on SafeHeron’s open-
source library.

Our findings on GG18/20 were publicly disclosed in August 2023, and a CVE has been assigned
to the identified vulnerability: CVE-2023-33241.

Lindell17 -Implementations. We validated the vulnerability by extracting the secret share from
ZenGo’s servers (associated with our own mainnet account) in late March 2023. Five vendors and/or
open-source libraries were impacted.

Our findings on Lindell17 were publicly disclosed in August 2023, and a CVE has been assigned
to the identified vulnerability: CVE-2023-33242.

BitGoTSS. We validated the vulnerability by extracting the secret share from BitGo’s servers
(related to our mainnet account) in December 2022. BitGo was informed of this issue immediately.
Public disclosure followed in March 2023.

1.4 Paper Organization

Section 2 contains a high-level overview of our attacks. The purpose of Section 2 is to provide
intuition and give the gist of the attacks, while minimizing non-essential details about the targeted
protocols (Lindell17, GG18/20, BitGoTSS ). Section 3 introduces notation and definitions for the
subsequent technical sections. In Sections 4, 5 and 6, we give the formal description of, respectively,
the Lindell17 protocol and the Broken Record attack, the GG18/20 protocol and the 6ix1een and
Death by 1M Cuts attacks, and, finally, the Zero Proof attack on BitGoTSS.
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2 High-Level Overview

We assume some familiarity with elementary number theory and basic group theory. For the
purposes of the current section, we will be using the following facts about Paillier encryption: (i)
The Paillier public key N = pq is an RSA number such that N and φ(N) are coprime, where φ
denotes Euler’s totient function. (ii) The plaintexts and ciphertexts exist in the spaces ZN and Z∗

N2 ,
respectively. (iii) Paillier is additive-homomorphic as long as N and ϕ(N) are coprime, meaning
that using C = EncN (x) ∈ Z∗

N2 corresponding to a plaintext x ∈ ZN , one can easily compute
D = EncN (γx− β) ∈ Z∗

N2 for any β, γ ∈ ZN .
We start our high-level overview by describing the threshold-ECDSA protocols from [Lin17a]

and [GG18; GG20].

2.1 Background

Lindell17. The Lindell17 protocol crucially relies on Paillier as follows: First, during key-
generation, letting x denote B’s secret share of the ECDSA key, party B sends Enc(x) to A encrypted
under a Paillier key that B owns, i.e. only B can decryt the ciphertext, but A can homomorphically
operate on it. Then, during signing, party A sends Enc(s′) to B where s′ is a partial ECDSA
signature, and Enc(s′) is calculated by homomorphically evaluating Enc(x). In the end, B finalizes
the signature by decrypting Enc(s′) and performing some lightweight data-processing.

GG18/20. The GG18/20 protocol crucially relies on Paillier encryption as well, but it is em-
ployed for a different function: to realize pairwise oblivious linear evaluation (OLE), which is
defined as follows. OLE takes input γ from A and x, β from B, and returns α to A such that
γ · x = α+ β mod N , where N is the Paillier public key associated with A (looking ahead, x corre-
sponds to the B’s ECDSA key share and β, γ are random ephemeral values, and all parties in the
MPC play the roles of A and B with every other party in separate instances of the OLE).

To instantiate the OLE, party A sends Enc(γ) to B who returns Enc(γ·x−β) by homomorphically
evaluating Enc(γ). To conclude the OLE, A decrypts the received ciphertext to outputs α =
x · γ − β mod N (the modulo N reduction occurs implicitly when B homomorphically computes
Enc(x · γ − β). We note that the roles of A and B have been reversed compared to Lindell17, and
the owner of the Paillier key is now A, and only A can decrypt the ciphertext).

After concluding all the OLE instances (requiring two rounds of interaction), the parties run
an additional seven rounds for [GG18] (or five rounds for [GG20]) in order to produce the final
output, i.e. the signature.

2.2 Broken Record

Our first attack is against implementations of the Lindell17 protocol. We show how the adversary
may craft a malicious partial signature that will cause the signature process to fail or succeed
depending on the value of a targeted bit of the honest party’s share. In the remainder, recall that
A sends Enc(s′) where s′ is a partial signature that depends on the honest party’s share.

The Attack. Adv corrupts A and sends Enc(σ′) to B such that σ′ = s′ if and only if the least
significant bit of x (B’s private share) is zero. Thus, the signature is valid at the end of the signature
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ceremony if and only if x’s least significant bit is zero and this value is inadvertently leaked to A
when it is notified that the signature failed or succeeded.

The attack can then be iterated (with suitable adjustments) to leak the higher-order bits, and,
after approximately two hundred signatures, the key can be recovered in full. We provide PoC code
implementing our attack at the referenced github repository [fir23c].

Remark 2.1. Our attack does not challenge the security analysis from [Lin17a] because [Lin17a]
assumes that failed signatures terminate signature operations and it specifically instructs parties
to stop signing once an invalid signature is detected by the honest party.6 In fact, [Lin17a] even
suggests the theoretical plausibility that bits of the key may be leaked with the success/failure of the
signature acting as an oracle (bottom paragraph, p. 11 of the full-version document [Lin17b]). In
this paper, our contribution lies in demonstrating that such an attack exists, as well as implementing
the attack against real-world systems.

2.3 6ix1een

Our second attack targets the post-updateGG18/20 protocol (under the new regime of parameters).
In the 6ix1een7 attack, a single corrupted party extracts the private key in full after sixteen signature
attempts for any number of honest parties.

OLE Parameters. Our attack targets the OLE phase of the protocol (so the solitary corrupted
party uses malicious inputs in the pairwise OLE instances with each of the other parties). Recall
that the OLE takes input γ from A and x, β from B, and returns α to A such that γ·x = α+β mod N ,
where N is the Paillier public key associated with A. Our attack specifically leverages the size of
the inputs and outputs in the OLE, so we note that x and γ are 256 bits and β is a random number
of roughly 1024 bits and so α = x · γ − β is also 1024 bits (in the ‘old’ regime of parameters, β
is chosen from the range {1, . . . , N}, so β ≈ 22048, cf. Remark 1.1). Adversary Adv corrupting A
extracts B’s secret x as follows.

The Attack. Adv chooses Paillier key N = p1 · . . . · p16 · q where p1 . . . p16 are sixteen random
primes of size 216 and q is a large prime chosen randomly to match the expected size of the Paillier
public key.

Then, in the OLE, Adv sets k = N/pi for a fixed pi ∈ {p1, . . . , p16}, cheats in the zero-knowledge
proof (this is the crux of the attack that we defer to the technical sections), and obtains the value of
x mod pi because α = x · (N/pi)− β mod N and β < N/pi and thus x mod pi ≈ α/(N/pi), i.e. the
closest multiple of (N/pi) to α leaks x mod pi (the exact calculations are deferred to Section 5).

Iterating the above for each prime yields x mod pi for all 16 possible values of pi. In the end, we
reconstruct x using Chinese Remainder Theorem. We provide PoC code implementing our attack
at the referenced github repository [fir23b].

Remark 2.2. The primary source of the vulnerability is that the zero-knowledge proofs relating to
the Paillier moduli only check for square-freeness (i.e. that N and φ(N) are coprime). So, the
malicious N described above will go undetected. The secondary aspect of the vulnerability, crucial
for our attack, arises from a flaw in the range-proof check. Specifically, the proof of soundness of
the ZKP breaks down when the verifier’s random challenge in the ZKP is a proper divisor of N ;

6In practical terms, this assumption means that the wallet must be locked (at least temporarily).
7‘6ix1een’ because it involves sixteen small primes of size sixteen bits, as well as sixteen signatures.
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this happens with noticeable probability (and thus can be brute-forced in our attack) because the
malicious N has small factors.

2.4 Death by 1M cuts

Our third attack targets the old version of GG18/20 where the beta parameter is chosen from
{1, . . . , N}. In this regime of parameters, the 6ixteen attack is no longer relevant because A’s
output in the OLE, α, completely hides x, for any value of γ. Instead, we will obtain information
leakage through the success/failure of the signature process, akin to the broken record attack.

The Attack. The first few steps of the attack are identical to the 6ix1een. Namely, the attacker
chooses a Paillier modulus with 16 small prime factors and it sets γ = N/pi during signing, where pi
is one of the small factors. When obtaining α, the attacker reassigns α := α−y ·N/pi mod N where
y denotes a random guess of the value x mod pi, and the attacker proceeds with the remaining steps
of the protocol as if it had selected γ = 0. By noticing that

α− y ·N/pi mod N = ((x mod pi)− y) ·N/pi − β{
= γ · x− β if y = x mod pi

̸= γ · x− β otherwise

it follows that the adversary’s reassigned α is consistent with γ = 0 if and only if the adversary
guessed x mod pi correctly, and thus the execution will result in a valid signature only when y =
x mod pi.

When all the remainders have been extracted (in 16 different signing sessions resulting in 16 valid
signatures8 ceremonies), the attacker can reconstruct the x in full using Chinese remainder theorem.
We note that the complexity of the attack, i.e. the number of signatures it requires, depends on
the size of the chosen primes as well as the number of parameters. For a single corrupted party in
a n-party protocol, choosing the smallest possible primes, our attack retrieves the private key with
probability 1/2n−1 after approximately (n− 1) · 106 signatures (cf. Section 5.3.1).

2.5 Zero Proof

Our last attack targets the BitGoTSS protocol which does not adhere closely to any paper from the
literature. BitGoTSS follows the same template as GG18/20, except that it devoid of any ZKPs.
This allows us to choose a malicious Paillier public key for the corrupted party that is even more
distorted than the malicious public key in the 6ix1een and the Death by 1M cuts attack. Namely,
we will not only choose N to have small factors, but we will make sure that N and φ(N) admit a
non-trivial GCD.

The Attack. The first step of our attack is choosing a Paillier key of the form

N = b ·
16∏
i=1

pi · qi (1)

8Failed signatures do not result in leakage (we have omitted the details of why in this initial presentation)
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where qi, pi are 16-bit primes such that qi = 2pi + 1 (i.e. qi is a strong prime with inner prime pi)
and b is a large prime chosen to compensate for the expected size of N .

In the first signature session’s OLE, we take advantage of the absence of a zero-knowledge proof
validating that the message from A is a legitimate ciphertext. We do this by sending the value 4,
which is an invalid ciphertext for the chosen key. Consequently, when B processes this message, it
outputs a value D. Reduced modulo N , this value equates to 4x mod N . (The value −4x is also
possible, but we ignore this case in this initial presentation). Finally, to extract the x, the attacker
obtains x mod pi by brute forcing 4x mod qi (because 4 generates a group of size pi in Z∗

qi). In
the end, the secret x is reconstructed using Chinese remainder theorem. We provide PoC code
implementing our attack at the referenced github repository [fir23a].

Remark 2.3 ([TS21] does not apply to BitGoTSS ). It is important to highlight that the attack
outlined in [TS21] is not applicable to BitGoTSS. The reason for this is the attacker in [TS21]
leverages the value gβ (where β denotes the honest party’s additve input in the OLE and g denotes
the generator of the ECDSA group), shared by the honest party during the OLE. In BitGoTSS,
however, such values are not exchanged among the parties, rendering the attack ineffective.

3 Preliminaries

3.1 Notation

Basic notation. Throughout the paper Q, Z and N denote the set of rational, integer and natural
numbers, respectively, and we write x mod n (or [x]n for conciseness) for the remainder of x modulo
n. Further, Z∗

n denotes the multiplicative group of inverses modulo n ∈ N, i.e. Zn = (Z/nZ)∗.
We let φ : N → N denote Euler’s totient function and we write gcd(a, b) for the greatest common
divisor of a and b.

Algorithms & Protocols. We use roman font (Enc,Dec,PailKeys, . . .) for algorithms and we
write x = Algo(m; ρ) for computing x according to (probabilistic) algorithm Algo on prescribed
inputm and randomizer (random input) ρ. When the randomizer is omitted, we write x← Algo(m)
and it is assumed the randomizer is chosen as prescribed. We use sans-serif letters (Orc∗,Prot, . . .)
to denote oracles and protocols. Oracles are distinguished from protocols using a star (∗) identifier.
All oracles except the single-party IntCom∗ (Definition 5.6) are two-party oracles, i.e. they receive
input and deliver output to both parties during the oracle-call.

Groups & ECDSA. We write (G, g, q) for the group-generator-order tuple associated with the
ECDSA algorithm and we use multiplicative notation for the relevant operations. For an arbitrary
set S, we write x ← S for x chosen uniformly at random from S. Finally, HASH : {0, 1}∗ → Zq

denotes the cryptographic hash function associated with ECDSA (and is instantiated with SHA2),
and we recall the ECDSA signing formula: for private key x ∈ Zq and message msg ∈ {0, 1}∗,
ECDSA signatures consist of pairs (R, s) such that{

R = gk s.t. k ∈ Zq

s = [k−1(HASH(msg) + r · x)]q s.t. r = R|proj
,

where (·)|proj : G→ Zq is the so-called ‘conversion function’ associated with ECDSA.
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3.2 Paillier Encryption & CRT

Definition 3.1 (Paillier Enc.). Define (PailKeys,Enc,Dec) as the three-tuple of algorithms below.

1. Let (N, σ)← PailKeys where N = p ·p′ is the public key and σ = (p−1)(p′−1) is the private
key such that p, p′ are random primes of bit-length 1024.

2. For m ∈ ZN , let EncN (m; ρ) = (1 +N)m · ρN mod N2, where ρ← Z∗
N .

3. For C ∈ Z∗
N2 , letting µ = σ−1 mod N , Decσ(C) =

(
[Cσ ]N2−1

N

)
· µ mod N.

(We use calligraphic letters to denote Paillier ciphertexts)

Fact 3.2. Paillier encryption is additively homomorphic. Namely, for every N ∈ N such that
gcd(N,φ(N)) = 1, it holds that EncN (m; ρ)α = EncN (α · m; ρα) mod N2 and EncN (m; ρ) ·
EncN (m′; ρ′) = EncN (m+m′; ρ · ρ′) mod N2, for every m,m′ ∈ ZN and ρ, ρ′ ∈ Z∗

N .

Theorem 3.3 (Chinese Remainder Theorem.). Let p1, . . . , pn denote n distinct primes and write
M =

∏n
i=1 pi and ui = [(M/pi)

−1]pi · M/pi. For x ∈ N such that x < M , it holds that x =∑n
i=1 ui · [x]pi mod M.

4 Our Attack on Implementations of Lindell17

In this section, we present our attacks on implementations of Lindell17. Specifically those imple-
mentations that ignore failed signatures. To simplify the presentation, we have opted to describe
Lindell17 (Protocol 4.3) in the presence of oracles that help the parties calculate certain correlated
values. These oracles don’t impact the attack and are solely for presentation purposes (the oracles
are defined below together with the protocol).

In our attack (Attack 4.5), corrupted A extracts B’s secret share share, xB, in 256 separate
signature sessions, and the adversary uses prior knowledge of the secret share to advance to the
next iteration of the overall attack. That is, in the ℓ-th attack, the adversary uses the bits of xB
that it extracted in the first ℓ − 1 attacks in order to craft a malicious partial signature that will
leak the ℓ-th bit of xB via the failure/success of the signature-generation process.

4.1 Protocol Description

Definition 4.1 (KeyGen∗). Define KeyGen∗ on input (G, g, q) from A and B such that KeyGen∗

returns the tuple (X,xA, N, C) ∈ G×Zq×Z×Z∗
N2 to A and the tuple (X,xB, N, σ) ∈ G×Zq×Z×Z

to B where xA, xB ← Zq are uniformly random and (X,N, σ, C) are set as follows

(N, σ)← PailKeys and

{
X = gxA+xB

C ← EncN (xB)
.

(PailKeys and Enc denote the key-generation and encryption algorithms from Definition 3.1)

Definition 4.2 (MulShare∗). Define MulShare∗ taking common input (G, g, q) and secret inputs kA
and kB ∈ Zq from A and B respectively such that MulShare∗ returns R = gkA·kB ∈ G.
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Protocol 4.3 (Lindell17 (A,B)).

Oracles: KeyGen∗, MulShare∗

Operations: (Key-Generation)

Upon activation, parties call KeyGen∗(·) and obtain the following output:

(a) Common Output: ECDSA pk X = gxA+xB ∈ G and Paillier pk N ∈ Z.

(b) Secret output: A gets xA ∈ Zq and C = EncN (xB)

(c) Secret output: B gets xB ∈ Zq and Paillier private key σ ∈ Z.

Operations: (Signing) When prompted on message msg, set m = HASH(msg) and do:

1. A, B, sample kA ← Zq and kB ← Zq respectively.

2. Parties call MulShare∗(G, g, q) on input kA and kB and obtain R = gkA·kB .

3. A sets r = R|proj and sends D ∈ Z∗
N2 to B where

D = EncN
(
[k−1

A (m+ rxA)]q
)
· C[r·k

−1
A ]q mod N2

4. B outputs (R, s) where s = k−1
B ·Decσ(C) mod q iff (R, s) is a valid signature.

4.2 Broken Record Attack

Claim 4.4. Under Attack 4.5, party B finalizes the signature correctly if and only if

xB − yB mod 2ℓ = 0.

Proof. Recall that the s-part of the signature in an honest execution of Protocol 4.3 satisfies s =
(2ℓkB)

−1(m+ r(xA + xB)) mod q when A chooses kA = 2ℓ. Next. we express Dec(D′) as a function
of s. Namely, for ζ = [2−ℓ(m+ rxA)]q and ζ ′ = yB · r′ · [2−ℓ]q,

Dec(D′) =
(
ζ + yB · r′ · ε

)
+ [xB · r′ · 2−ℓ]N mod N

= ζ + ζ ′ + (xB − yB) · r′ · [2−ℓ]N mod N

=

{
ζ + ζ ′ + xB−yB

2ℓ
· r′ if [xB − yB]2ℓ = 0

ζ + ζ ′ + xB−yB−2ℓ−1

2ℓ
· r′ + r′−1

2 + N+1
2 otherwise

and thus Dec(D′) =

{
s · kB mod q if [xB − yB]2ℓ = 0

s · kB +N · 2−1 mod q otherwise
. □

Note that xB − yB mod 2ℓ = 0 if and only if ℓ-the least significant bit of xB is zero. Thus, in
conclusion, B recovers the happy-flow formula and obtains s if xA − yB = 0 mod 2ℓ. (Otherwise, s
is offset by [k−1

B ·N · (q + 1)/2]q and the resulting signature is invalid).
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Attack 4.5 (Broken Record: Corrupted A in Protocol 4.3).

Auxiliary input: Adv holds yB = xB mod 2ℓ−1

(the attack is initialized with ℓ = 1 and yB = 0, and yB is updated after each attack.)

Operations:

1. Call MulShare∗ on inputs kA = 2ℓ (chosen by Adv) and kB (chosen by B).

All parties obtain R = g2
ℓ·kB ∈ G from MulShare∗.

Adv sets ε = [2−ℓ]q − [2−ℓ]N and

r′ =

{
r if r is odd (recall r = R|proj)
r + q otherwise

.

2. Adv sends D′ ∈ Z∗
N2 to B where, for ζ = [k−1

A (m+ rxA)]q,

D′ = EncN (ζ + yB · r′ · ε) · (Cr
′
)[2

−ℓ]N mod N2

3. Adv deduces that

xB mod 2ℓ =

{
yB if sig succeeds

yB + 2ℓ−1 if sig fails

5 Our Attack(s) on GG18/20

GGλ

SumShare∗ VeVole

PaillierWF∗ RngProof

IntCom∗

AffComb∗λ

Figure 1: Illustration of the GG protocol dependencies. We note that both of our attacks target
the VeVole and RngProof subprotocols. Specifically, corrupted party A uses maliciously-chosen
values in VeVole and RngProof when calculating the messages to be sent to B.

In this section, we present our attacks on GG18/20. To simplify the presentation, we describe
our attacks against a generic two-party protocol (Protocol 5.1)9 and we only briefly mention how

9Protocol 5.1 is expressed using the [DKLs23] framework, but it incorporates custom processes from GG18/20.
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the attack generalizes to the multiparty case. We note that each of our attacks is applicable to
specific parameter choices within the protocol, detailed further below. As before, the adversary
corrupts A.

In order to keep the description of Protocol 5.1 simple, we use a number of different oracles
and subprotocols according to the diagram in Figure 1 (where each edge denotes an oracle or
subprotocol invocation).

5.1 Protocol Description

As shown in Figure 1 the signing protocol invokes two subprotocols VeVole (Verifiable VOLE ) and
RngProof (Range Proof ), and four oracles AffComb∗λ (Affine Combination), PaillierWF∗ (Paillier
Well-Formedness), SumShare∗ (Additively Share), and IntCom∗ (Integer Commitment).We describe
each (sub)protocol starting from the root of the tree to the leaves, and each oracle is described
together with the relevant protocol.

Protocol 5.1 (GG18/20 (A,B)).

Oracle & Sub-protocol : SumShare∗(·) and VeVole(·)
Common Input: Group-generator-order tuple (G, g, q)

Operations: (Key-Generation)

Each P ∈ {A,B} samples xP ← Zq.

Parties call SumShare∗(G, g, q) on xA and xB and obtain:

(a) Common Output: ECDSA pk X = gxA+xB ∈ G.

(b) Secret Output: P gets xP ∈ Zq.

Operations: (Signing) When prompted on message msg, set m = HASH(msg) and do:

1. Each P ∈ {A,B} samples kP ← Zq.

2. Parties call SumShare∗ on input kP from P ∈ {A,B} and obtain R = gkA+kB .

3. Parties execute VeVole(. . .) on input (R,X, kP, xP) from P ∈ {A,B} and obtain:

(a) Common Output: Empty

(b) Secret Output: P gets random αP, βP, α̂P, β̂P, γP ∈ Zq such that: letting Q = {A,B} \ P{
αP + βQ = γP · xQ mod q

α̂P + β̂Q = γP · kQ mod q

4. Each P ∈ {A,B} sets r = R|proj and sends (ŝP, δP) ∈ Z2
q to Q ∈ {A,B} \ {P} where{

ŝP = γP ·m+ r · (xPγP + αP + βP) mod q

δP = kPγP + α̂P + β̂P mod q

5. Each P ∈ {A,B} outputs (R, s) where s = (δA+δB)
−1 ·(ŝA+ ŝB) mod q iff (R, s) is a valid signature.

None of the attacks in this paper apply to the [DKLs23] protocol itself.
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Definition 5.2 (SumShare∗). Define SumShare∗ taking secret inputs vA and vB ∈ Zq from A and
B respectively such that SumShare∗ returns R = gvA+vB ∈ G. (This oracle simply returns a random
a random group element to the parties as well as an additive share vP of the discrete log to each
P ∈ {A,B}.)

Each of our attacks is relevant to a certain value of parameter λ in AffComb∗λ, and λ is hardcoded
as one of two possible values: q5 (where q is the order of the ECDSA group) or 22048 (the size of the
Paillier modulus). Specifically, when λ = q5, Attack 5.8 applies which recovers the key in sixteen
signatures, regardless of the number of parties, and, when λ = 22048, Attack 5.11 applies which
recovers the key in approximately one million signatures per honest party because each share is
extracted separately (so each additional honest party incurs an additional 1M signatures to recover
their share).

5.1.1 Verifiable VOLE

Protocol 5.3 (VeVole (A,B)).

Oracles & Sub-protocol : PaillierWF∗(·), AffComb∗λ(·) and RngProof(·)
Common Input: Group Elements (R,X) ∈ G2

Secret Input: Each P ∈ {A,B} holds field elements (xP, kP) ∈ Z2
q

Operations: (One-time setup)

1. Each P ∈ {A,B} samples Paillier key pair (NP, σP)← PailKeys.

2. Parties call PaillierWF∗ on inputs (NA, σA) and (NB, σB) and obtain (NA, NB).

(If (NA, NB) =⊥, abort)

Operations: (VOLE)

1. Each P ∈ {A,B} samples γP ← Zq and ρP ← ZNP
and sets CP = EncP(γP; ρP).

2. Parties execute RngProof on inputs (CA, γA, ρA) and (CB, γB, ρB). Obtain:

(a) Common Output: (CA, CB) ∈ Z∗
N2

A
× Z∗

N2
B
. (If (CA, CB) =⊥, abort)

(b) Secret Output: N/A

3. Call AffComb∗λ on input (CA, NA, CB, NB, X,R) and secret input (xP, kP) from P ∈ {A,B}.

(a) Common Output: (DA, D̂A) ∈ Z∗2
N2

A
and (DB, D̂B) ∈ Z∗2

N2
B
.

(b) Secret Output: Each P ∈ {A,B} gets βP, β̂P.

4. Each P ∈ {A,B} sets

{
αP = DecP(DP) mod q

α̂P = DecP(D̂P) mod q
and outputs (γP, αP, α̂P, βP, β̂P).

Definition 5.4 (PaillierWF∗). Define PaillierWF∗ taking secret input (NP, σP) from each P ∈ {A,B}
such that PaillierWF∗ returns (NA, NB) to A and B if φ(NP) = σ and gcd(NP, σP) = 1. Else, return
⊥. (This oracle takes a Paillier public key and the corresponding private key from each party and
validates that the private key is coprime to the public key.)
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Definition 5.5 (AffComb∗λ). Define AffComb∗λ taking common input (CA, NA, CB, NB, X,R) and
secret input (xP, kP) ∈ Z2

q from each P ∈ {A,B} such that

1. If gxA+xB ̸= X ∈ G or gkA+kB ̸= R ∈ G, AffComb∗λ returns ⊥.

2. Else, AffComb∗λ returns (DP, D̂P, βP, β̂P) ∈ Z∗2
N2

P
×Z2

q to P ∈ {A,B} where (for Q ∈ {A,B}\{P}){
DP = CxQ

P · EncNP
(νQ) mod N2

P for νQ ← Zλ

D̂P = CkQP · EncNP
(νQ) mod N2

P for ν̂Q ← Zλ

and

{
βP = −νP mod q

β̂P = −ν̂P mod q
.

(This oracle finalizes the VOLE operation in a verifiable way)

5.1.2 Range Proof

Definition 5.6 (IntCom∗). Define IntCom∗ to be a single-party oracle such that:

1. On input (com, α), IntCom∗ returns X← {0, 1}256 and stores (X, α) in memory.

2. On input (eval, z, X, e, Y), IntCom∗ retrieves (X, α) and (Y, β) from memory and returns true
if z = α · e+ β. Else, return false.

For conciseness, we write X← IntCom∗(α) and true/false← IntCom∗(eval, z, X, e, Y) respectively.
(This single-party oracle serves as an integer commitment scheme that verifies linear combination
of commited values over Z—rather than some finite algebraic structure)

Protocol 5.7 (RngProof (A,B)).

Oracles: IntCom∗(·)
Common Input: Paillier pks (NA, NB) ∈ N2 and Ring Elements (CA, CB) ∈ Z∗

N2
A
× Z∗

N2
B

Secret Input: Each P ∈ {A,B} holds (γP, ρP) ∈ Zq × Z∗
NC

s.t. CP = EncP(γC; ρP)

Operations:

1. Each P ∈ {A,B} does

(a) Call XP ← IntCom∗(com, γP).

(b) Call YP ← IntCom∗(com, uP) where uP ← Zq3 .

(c) Sample µP ← Z∗
NP

, and set FP = EncP(uP;µP) ∈ Z∗
NP

.

(d) Send (CP,FP, XP, YP, zP, wP) to Q ∈ {A,B} \ {P}, where
zP = uP + eP · γP (no modulo reduction)

wP = µP · ρePP mod NP

eP = HASH(P, CP,FP, XP, YP)

2. When P ∈ {A,B} obtains (CQ,FQ, XQ, YQ, zQ, wQ) from Q ∈ {A,B} \ {P}, do:

(a) Set eQ = HASH(PQ, CQ,FQ, XQ, YQ) and b← IntCom∗(eval, zQ, XQ, eQ, YQ).

(b) Verify that EncQ(zQ;wQ) = FQ · CeQQ mod N2
Q and zQ ∈ {1, . . . , q3}

(c) If no error was detected and b = true, output (CA, CB).
Else, output ⊥.
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5.2 6ix1een Attack

We now describe our attack on GGq5 that extracts the key in 16 signatures. Recall that the attacker
corrupting A chooses a malicious Paillier modulus comprising of sixteen small primes. Then, in the
j-th signature ceremony, the attacker sets CA = EncNA

(NA/pj) where pj is the j-th small factor of
NA. Observe that NA/pj > 22000, suggesting that the verification in Item 2b of Protocol 5.7 or the
integer commitment RngProof in Item 2a of Protocol 5.7 should detect such a malicious input. As
we shall see next, however, there is a way for the CA to slip through without detection.

Cheating in RngProof. The attacker cheats in RngProof by brute-forcing eA until eA = 0 mod pj
(such an eA will be found with overwhelming probability because pj is small). We note that, for
such eA, the attacker is able to cheat because FA · CeAA = FA ·EncNA

(0) mod N2
A, and thus the range

proof will not yield an error for zA = uA + eA · 0 when using γA = 0.
Then, when the honest party operates on CA and returns DA, simple data processing will yield

the value of xB mod pi. Iterating the attack sixteen times with different primes allows the attacker
to obtain xB in full, using CRT (Theorem 3.3).

Attack 5.8 (6ix1een: Corrupted A in Protocol 5.1 – λ = q5).

Operations:

1. Sample p1, . . . , p16 primes of size 216 and prime b such that b ·
∏16

j=1 pj ≈ 22048.

Set NA = b ·
∏16

j=1 pj and σA = φ(NA)

2. In the VeVole execution of the j-th signature session do:

(a) Set γA = 0 and CA = EncA(NA/pj) (all other values are sampled as prescribed).

(b) When executing RngProof do:

– Brute force uA ← Zq until eA = HASH(. . .) = 0 mod pj .
(if no such value is found after 232 tries, output NoCheat)

(c) When obtaining DA, set

yj =
DecσA

(DA)− [DecσA
(DA)]NA/pj

NA/pj

Multi-Party Case. In multiparty GG18/20, each pair of parties essentially execute Protocol 5.1,
except that they need to adjust the last round messages. Specifically, letting αi,j denote Pi’s output
in the OLE with Pj (when playing A) and βi,j denote Pi’s ephemeral input in the OLE with Pj

(when playing B), party Pi sends ŝi, δi where{
ŝi = γi ·m+ r · (xPi

γi +
∑

j ̸=i αi,j + βi,j) mod q

δi = kPi
γi +

∑
j ̸=i α̂i,j + β̂i,j mod q

The signature is set as (r, s) where s = (
∑

j ŝj) · (
∑

j δj)
−1 mod q. It is not hard to see that Adv

can perform Attack 5.8 on all counterparties simultaneously, thus obtaining the key in full after
sixteen signatures.
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Stealthiness. To avoid causing failures, Attack 5.8 can be made stealthy as follows. The attacker
reassigns DA := DA · (yj ·NA/pj)

−1 mod N2
A and D̂A := D̂A · (ŷj ·NA/pj)

−1 mod N2
A where

ŷj =
DecσA

(D̂A)− [DecσA
(D̂A)]NA/pj

NA/pj

and subsequently proceeding with the protocol as prescribed. That is, the attacker ‘corrects’ DA

and D̂A by the offset it caused with the malicious input, and then proceeds normally.

5.2.1 Quality of the Attack

We conclude this section by estimating the quality of Attack 5.8. Namely, we heuristically model
the hash function as a random oracle and we find that Adv recovers the key after sixteen signatures,
almost surely (cf. Claims 5.9 and 5.10).

Claim 5.9. For fixed j, attacker Adv outputs NoCheat with probability at most 2−1000.

Proof. Modelling the hash function as a random oracle, it holds that Pr[eA ̸= 0 mod pj ] = (1−1/pj)
in a single trial. Thus, Pr[NoCheat] = (1− 1/pj)

232 ≤ exp(−232/pj) < 2−1000 since pj ≈ 216. □

Claim 5.10. For fixed j, it holds that xB mod pj =
DecσA (DA)−[DecσA (DA)]NA/pj

NA/pj
.

Proof. By the definition of the AffComb∗λ oracle, notice that DA = EncNA
([xB · NA/pj + νB]NA

)
where νB ∈ {1, . . . , q5}. Thus, since νB < NA/pj (because NA is 2048 bits and pj is roughly 16 bits)
it follows that

DecNA
(DA)− [DecNA

(DA)]NA/pj = [xB ·NA/pj + νB]NA
− νB

= [xB]pj ·NA/pj

□

5.3 Death by 1M Cuts Attack

Attack 5.11 (Death by 1M Cuts: Corrupted A in Protocol 5.1 for λ = 22048).

Operations:

1. Same as items Item 1 in Attack 5.8.

2. In the VeVole execution of the j-th signature session sample (α, β)← Zpj
and do:

(a) Same as items Items 2a and 2b in Attack 5.8.

(b) When obtaining DA, D̂A, reasign (continue the process as the protocol prescribes hereafter){
DA := DA · EncNA

(−α · (NA/pj)) mod N2
A

D̂A := D̂A · EncNA
(−β · (NA/pj)) mod N2

A

(c) If the process terminates in a valid signature deduce that (xB, kB) = (α, β) mod pj .
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We now describe our attack on GG22048 that extracts the key in 16 successful signatures, i.e. leak-
age is only obtained when the signature process yields a valid signature. The attack proceeds almost
identically to Attack 5.8 except that, when the attacker obtains DA and D̂A, it reassigns those value
according to a (random) guess of the pair (xB, kB) mod pj and it continues the execution as the
protocol prescribes.

In the end, if the the execution leads to valid signature, the attacker deduces the value of
(xB, kB) mod pj , In the event that the signature is invalid, no leakage is obtained on xB, because
of the kB which is a fresh random value every time, and thus the attack must be repeated with the
same pj .

5.3.1 Quality of the Attack

We conclude this section by estimating the quality of Attack 5.11.

Claim 5.12. For fixed j, attacker Adv outputs NoCheat with probability at most 2−1000.

Proof. Same as Claim 5.9. □

Claim 5.13. Using the notation from Attack 5.11, in the j-th iteration, if (xB, kB) ̸= (a, b) mod pj
and m ̸= −(xA + xB)r mod q then the protocol yields an invalid signature with probability at least
1− p2j/q ≈ 1.

Proof. Let ε = −[xB−a]pj ·N/pj mod q and ε̂ = −[kB−b]pj ·N/pj mod q. Write s′ for the signature
string reconstructed by the parties, and note that

s′ = (δA + δB + ε̂)−1 · (ŝA + ŝB + ε)

= (γ · (m+ rx) + ε) · (kγ + ε̂)−1

= (s+ ε · (kγ)−1) · (1 + ε̂ · (kγ)−1)−1 mod q,

where x = xA + xB, γ = γA + γB and k = kA + kB mod q. So, assuming m = HASH(msg) ̸=
−xr mod q, note that the signature verifies if s′ = s mod q which, letting ρ = (kγ)−1, is equivalent
to s · (1 + ε̂ρ) = (s + ε · ρ) mod q and thus s = ε · (ε̂)−1 mod q (assuming ρ, ε̂ ̸= 0). For random
k ← Zq, ε · (ε̂)−1 has at most p2j possible values whereas s has q. Thus, with probability at least

1− p2j/q, it holds that s ̸= s′ and the signature invalid. □

On the number of required signatures for extracting the key. We conclude this section
by estimating the number of signature sessions required in order to extract the key. Recall that
Attack 5.11 yields a valid signature (and thus useful leakage) only when (a, b) = (xB, kB) mod q,
i.e. the attacker correctly guesses the remainders of both xB and kB modulo pj . The claim below
relates the key-extraction probability to the the number of signatures, with respect to parameter
τ ∈ [0, 1] (which captures the probability that a single remainder was extracted successfully).

Claim 5.14. For fixed τ ∈ [0, 1], letting ℓ ∈ N denote the number of primes, Attack 5.11 successfully
extracts the key with probability at least τ ℓ after

∑ℓ
i=1 fτ (pi) signatures, where fτ (p) = ⌈log(1 −

τ)/ log(1− 1/p2)⌉.

Proof. We know that the attack yields a valid signature for a given pj with probability 1/p2j . Thus,

after fτ (pj) tries, our attack does not yield leakage with probability (1 − 1/p2j )
fτ (pj) ≤ 1 − τ (by

the definition of fτ ), and the claim follows immediately. □
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In conclusion, when combining with brute-force techniques, Attack 5.11 extracts the key with
probability 0.44 after 1.4 × 106 signatures (choosing {p1, . . . , pℓ} = {3, 5, 7, . . . , 173}, i.e. the first
39 odd primes). If the Paillier moduli are checked for very small factors (as many implementations
do), then the malicious modulus can be suitably chosen to avoid detection (though it makes the
attack more expensive in terms of signatures required to extract the key). For instance, choosing
{p1, . . . , pℓ} = {6481, 6491, . . . , 6653}, Attack 5.11 extracts the key with probability 0.15 after
1.8× 109 signatures.

6 Our Attack on BitGoTSS

In this section, we present the Zero Proof attack on BitGoTSS. Since the protocol is quite similar
to Protocol 5.1 (in fact it is a bare-bones version), we only explain how it differs from Protocol 5.1.

BitGo TSS

SumShare∗ VeVole

AffComb∗22048

Figure 2: Illustration of the BitGo TSS protocol dependencies. Zero Proof targets the VeVole
subprotocol, and the beta parameter is chosen from the maximum range (λ = 22048).

BitGoTSS. In a nutshell, BitGoTSS protocol is the same as Protocol 5.1 except that there is
no range proof subprotocol (RngProof) or well-formedness check (PaillierWF∗) when invoking the
Verifiable VOLE protocol. Instead, each party simply sends the relevant values over the communi-
cation channel, namely the Paillier public key NA and ciphertext CA, which are used to carry out
the protocol to its conclusion.

6.1 Zero Proof Attack

Claim 6.1. Using the notation from Attack 6.2, it holds that yj = xB mod pj for all j ∈ {1, . . . , 16}.

Proof. For some µ, ν ∈ Z∗
N chosen by B, note that

DA = 4xB · (1 + µ ·N) · νNA mod N2
A = 4xB · νNA mod NA

= 4xB · (νpj )qjb
∏

ℓ̸=j pℓqℓ mod qj =

{
4xB if ν is a square mod qj

−4xB otherwise
,

where the last equality holds by Lagrange’s theorem (because Z∗
qj has order 2pj). In conclusion,

since 4 has order pj in Zqj , we deduce that D
2·[2−1]pj
A = 42·[2

−1]pj ·xB = 4xB mod qj and yj = xB mod
pj , as desired. □
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Attack 6.2 (Zero Proof: Adv corrupting A in BitGoTSS ).

Operations:

1. Sample q1, . . . , q16 strong primes of size 217, i.e. such that qj and pj = (qj − 1)/2 are both primes,

for all j ∈ {1, . . . , 16}. Sample arbitrary prime b s.t. b ·
∏16

j=1 qjpj ≈ 22048.

Set NA = b ·
∏16

j=1 qjpj .

2. When signing, do: (only one signature ceremony)

(a) Set CA = 4. After obtaining DA, do:

(b) For j ∈ {1, . . . , 16}, brute force yj ∈ {1, . . . , pj} such that

4yj = D
2·[2−1]pj
A mod qj .

(c) When obtaining yj = xB mod pj for all j, reconstruct xB using CRT (Theorem 3.3).

Multi-Party Case. Similarly to Attack 5.8, Attack 6.2 retrieves the key in a single signature
regardless of the number of parties, because all the honest parties fall into the same trap and
calculate D in the same way.

Stealthiness. ‘Stealthifying’ Attack 6.2 is somewhat tricky because the Pallier key is so distorted
that it is not obvious how use it in order to ‘decrypt’ DA (since DA is not even a ciphertext for the
chosen Paillier key). However, with the knowledge of xB, the attacker can compute DA · 4−xB =
EncNA

(νB) mod N2
A and subsequently infer νB. By following a similar process for D̂A, the attacker

can extract kB and deduce ν̂B, and, in conclusion, the attacker sets γA = 0 and{
ŝA = νB + βA mod q

δA = ν̂B + β̂A mod q

which yields an error-free signature process.
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