
Parallel SAT Framework to Find Clustering of
Differential Characteristics and Its Applications

Kosei Sakamoto1, Ryoma Ito2, and Takanori Isobe3

1 Mitsubishi Electric Corporation, Kamakura, Japan.
Sakamoto.Kosei@dc.MitsubishiElectric.co.jp

2 National Institute of Information and Communications Technology, Koganei,
Japan. itorym@nict.go.jp

3 University of Hyogo, Kobe, Japan.
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. The most crucial but time-consuming task for differential
cryptanalysis is to find a differential with a high probability. To tackle
this task, we propose a new SAT-based automatic search framework to
efficiently figure out a differential with the highest probability under a
specified condition. As the previous SAT methods (e.g., the Sun et al’s
method proposed at ToSC 2021(1)) focused on accelerating the search for
an optimal single differential characteristic, these are not optimized for
evaluating a clustering effect to obtain a tighter differential probability
of differentials. In contrast, our framework takes advantage of a method
to solve incremental SAT problems in parallel using a multi-threading
technique, and consequently, it offers the following advantages compared
with the previous methods: (1) speedy identification of a differential with
the highest probability under the specified conditions; (2) efficient con-
struction of the truncated differential with the highest probability from
the obtained multiple differentials; and (3) applicability to a wide class of
symmetric-key primitives. To demonstrate the effectiveness of our frame-
work, we apply it to the block cipher PRINCE and the tweakable block
cipher QARMA. We successfully figure out the tight differential bounds
for all variants of PRINCE and QARMA within the practical time, thereby
identifying the longest distinguisher for all the variants, which improves
existing ones by one to four more rounds. Besides, we uncover notable
differences between PRINCE and QARMA in the behavior of differential,
especially for the clustering effect. We believe that our findings shed
light on new structural properties of these important primitives. In the
context of key recovery attacks, our framework allows us to derive the
key-recovery-friendly truncated differentials for all variants of QARMA.
Consequently, we report key recovery attacks based on (truncated) dif-
ferential cryptanalysis on QARMA for the first time and show these key
recovery attacks are competitive with existing other attacks.

Keywords: Differential · SAT-based automatic search · Incremental
SAT problem · Low-latency primitives.

2 K. Sakamoto et al.

1 Introduction

Background. The most crucial but time-consuming part of differential cryptanl-
ysis [7] is to determine a pair of plaintext differences and the corresponding
ciphertext differences and construct a differential distinguisher with high prob-
ability. To this end, cryptographers frequently use a differential characteristic,
which is a sequence of the internal differences in each round. However, from
the attackers’ viewpoint, they are interested in not the internal differences but
only a pair of the input and output differences, which is called a differential in
literature. A differential is more useful than a differential characteristic for the
attackers, as a differential has a higher probability than that of a differential
characteristic.

Several studies investigated the relationship between a differential character-
istic and a differential, revealing that a gap between their probabilities can be
significant [2,8,22]. Most of these studies focused on a differential constructed by
only a differential characteristic with the highest probability, which is called the
optimal differential characteristic. This seems reasonable, as the probability of
the optimal differential characteristic dominates the probability of a differential
in numerous designs. However, Kölbl and Roy [23] demonstrated an interesting
case in Simeck32 [39] where a differential with a higher probability can be con-
structed by the non-optimal differential characteristic. Although this appears to
be a special case, it can be valid for any design. From these aspects, finding a
differential with a higher probability still remains a challenging task.

Finding such a differential is not only useful from the attackers’ aspect but
also crucial from the designers’ aspect. In particular, the ultra-low-latency de-
signs must be carefully designed against differential cryptanalysis, because they
are usually based on a substitution–permutation network with a small number
of rounds, and the growth of the differential probability is not sufficient at the
beginning of the rounds. In fact, the designers of MANTIS [6] and SPEEDY [25]
invested significant efforts into guaranteeing the resistance against differential
cryptanalysis in their works. Nevertheless, they were broken by differential crypt-
analysis [11, 17]. Furthermore, the best attack to the first low-latency design
PRINCE [10] is also (multiple) differential cryptanalysis on 10 (out of 12) rounds
proposed by Canteaut et al. [14]. Hence, it is evidently essential to investigate a
differential in detail, especially for low-latency designs.

Limitations of SAT-based Automatic Search Tools. The existing SAT-based au-
tomatic search tools, proposed by Sun et al. [34,35], focused on accelerating the
search for an optimal differential characteristic by incorporating the Matsui’s
bounding conditions [29]. These tools are valid for evaluating a single differen-
tial characteristic, but the Matsui’s bounding conditions are not suitable for the
purpose of evaluating the clustering effect of multiple differential characteristics;
thus, the existing tools are not suitable for efficiently finding a differential with
a higher probability. Certainly, it can be applied to evaluate the clustering ef-
fect of multiple differential characteristics by removing the Matsui’s bounding
conditions and adding some new conditions. However, such a straightforward

Parallel SAT Framework to Find Clustering of Differential Characteristics 3

adjustment can be inefficient because Sun et al. assumed only an environment
with a single-thread execution even though their SAT solver accepts an exe-
cution on multiple threads. Considering that the evaluation for the clustering
effect of multiple differential characteristics having different input and output
differences requires a much more computational cost than that for finding the
optimal differential characteristic, the tool for finding a differential with the high-
est possible probability should be optimized for execution on multiple threads.
Moreover, it is also of great importance to investigate the impact of the rela-
tion on the efficiency in which between the number of threads to be assigned to
solve a single SAT problem and the degree of the parallelization for the eval-
uation of the clustering effect, as we have to evaluate the clustering effect for
each found differential characteristic having different input and output differ-
ences with a high probability. Therefore, without these considerations, it is hard
to efficiently investigate the clustering effect of numerous differential character-
istics having different input and output differences in detail. This investigation
leads to understanding the behavior of the probability about differentials more
deeply; thus, optimizing these SAT-based tools to evaluate for the clustering
effect of differential characteristics is crucial.

Our Contributions. In this study, we propose a new generic SAT-based au-
tomatic search framework that aims to figure out a differential with a higher
probability under the specified condition, in contrast to existing approaches. The
main concept of the framework involves investigating the clustering effect of all
differential characteristics having different input and output differences with a
specified range of weight and identifying the good differential. Our framework
fully leverages a method to solve incremental SAT problems, which can effi-
ciently solve a SAT problem with small modifications multiple times, in parallel
using a multi-threading technique. As an incremental SAT problem can be effi-
ciently solved by the bounded variable elimination method [18], it is known that
we can efficiently evaluate the clustering effect by converting the evaluation of
the clustering effect into an incremental SAT problem. In our method, we also
take advantage of an incremental SAT problem to efficiently find all differential
characteristics having different input and output differences that are seeds to
construct differentials, as well as the evaluation of the clustering effect. By care-
fully investigating the most suitable parameters, such as the number of threads
to be assigned to solve a single incremental SAT problem and the degree of
the parallelization for the evaluation of the clustering effect, to solve multiple
incremental SAT problems efficiently, our framework enables us to thoroughly
evaluate the clustering effect of such all differential characteristics not only with
the highest probability but also with any probability. Hence, we evaluate the
probability of differentials more comprehensively than any other previous meth-
ods.

Identifying Good Differentials on PRINCE and QARMA. To demonstrate the
effectiveness of our framework, we apply it to PRINCE [10] and QARMA [3], which

4 K. Sakamoto et al.

Table 1: Comparison of our results with existing ones regarding distinguishers.

Cipher
Total Attacked

Setting† Type‡ Time/Data Reference
Rounds # Rounds

PRINCE
12

4 SK ID – [16]

PRINCEv2

6 SK D 262 [2]
6 SK I 262 [12]
6 SK D 256.42 [14]
7 SK D 255.771 Sect. 4.1

QARMA64 16

6 SK ID – [38]
7 SK D 258.921 Sect. 4.2

4.5 RT ID – [27]
7 RT ID – [41]
8 RT SS 257 [26]
9 RT ZC/I 244 [1]
10 RT D 260.831 Sect. 4.2

QARMA128 24

6 SK ID – [38]
10 SK D 2121.549 Sect. 4.2
6.5 RT ID – [27]
8 RT TDIB 2124.1 [26]
12 RT D 2120.024 Sect. 4.2

† SK: Single-Key, RT: Related-Tweak
‡ D: Differential, I: Integral, ID: Impossible Differential, SS: Statistical Saturation,
ZC: Zero-Correlation, TDIB: Tweak Difference Invariant Bias

are the reflection ciphers for low-latency applications. As a result, we significantly
improve previous differential bounds for all variants of these ciphers as shown in
Table 1, and our differential distinguishers are the longest ones among existing
ones. It is important to note that while the previous attacks may have been
adjusted for key recovery, identifying the longest distinguisher is very important
to deeply comprehend the structural properties of these primitives as pseudo
random permutations. These results demonstrate that the proposed framework
is effective for evaluating tight differential bounds.

Difference in Behavior of Clustering Effect between PRINCE and QARMA. We
look into the difference between PRINCE and QARMA in the behavior of a dif-
ferential. Our experiments observe that the gaps in the probability between a
differential characteristic and a differential can be large in QARMA under the SK
setting compared to that in PRINCE. Specifically, QARMA under the single-key
(SK) setting has a large impact on the clustering effect, and the case reported
by Kölbl and Roy [23] can occur in QARMA under the SK setting. A detailed

Parallel SAT Framework to Find Clustering of Differential Characteristics 5

investigation of such gaps reveals that they are influenced by different design
strategies for the linear layers (i.e., matrices). After conducting the additional
experiments using four types of matrices with different properties, we find that
the target cipher has good resistance to a clustering effect when each output bit
of the round function depends on as many input bits of the round function as
possible. We conclude that a cipher using a matrix with the same property as
that used in QARMA has a large impact on a clustering effect, and a clustering
effect in non-optimal weights can strongly affect the probability of a differential.

To date, no study has been reported on a key recovery attack based on
straightforward differential cryptanalysis against QARMA. One possible issue is
that it was difficult to find the key-recovery-friendly differentials for QARMA, as
QARMA has a large impact on a clustering effect. Our proposed SAT-based au-
tomatic search framework can solve this issue, and consequently, a key recovery
attack based on the straightforward differential cryptanalysis can be performed
with the time and data complexities comparable to the best attacks. Our frame-
work can be applied to any symmetric-key primitive. Also, it is very important
to analyze the tight differential bound in the field of symmetric-key cryptanaly-
sis. Therefore, we believe that our work is a significant contribution in terms of
the tight security analysis for a wide class of symmetric-key primitives.

Extension for Finding Key-Recovery-Friendly Differentials. We provide key re-
covery attacks on QARMA under the RT setting, which are inspired by Guo et
al.’s truncated differential attacks [20]. Unlike the existing SAT-based automatic
search tools [34, 35], the proposed framework enables us to efficiently construct
the key-recovery-friendly truncated differentials with a high probability. To this
end, we take a closer look at the round function of QARMA and consider strate-
gies for finding the key-recovery-friendly differential. Then, we specify the condi-
tions for finding the key-recovery-friendly differentials and conduct experiments
using the proposed framework. Table 2 lists our key recovery attacks and the
previous ones. We note here that the designer [3] claims that the multiplication
of time and data complexities for QARMA64 and QARMA128 should be less than
2128−ϵ and 2256−ϵ for a small ϵ (e.g., ϵ = 2), respectively. Hence, the attack can
be considered to be valid when it is feasible within the designer’s security claim.

Our results can be summarized as follows. For QARMA64 under the RT set-
ting, our attack is valid up to 10 rounds. In addition, our 11-round attack cannot
outperform the designer’s security claim, but we provide the attack that outper-
forms the standard security notion (i.e., security against the exhaustive search
for the secret key). However, the previous best attack on QARMA64 under the
RT setting [1] is valid for up to 12 rounds; thus, our attacks cannot outperform
the previous best attack. For QARMA128 under the RT setting, our attack is
valid up to 11 rounds. This can achieve the best key recovery attack on the
11-round QARMA128 under the RT setting. In addition, our 12- and 13-round
attacks cannot outperform the designer’s security claim, but we provide the at-
tack that outperforms the standard security notion. However, the previous best
attack on QARMA128 under the RT setting [27] is valid for up to 12 rounds;
thus, our attacks cannot outperform the previous best attack.

6 K. Sakamoto et al.

Table 2: Comparison of our results with existing ones regarding key recovery.

Cipher Attacked
Type‡

Outer
Time Data Memory Validity$ Reference

(Setting†) # Rounds whitening

QARMA64
10 (3+2+5) MITM No 270.1 253 2116 ✓ [40]

(SK)
10 (3+2+5) ID Yes 2119.3 261 272 × [38]
11 (3+2+6) ID Yes 2120.4 261 2116 × [38]

QARMA64

10 (2+2+6) ID Yes 2125.8 262 237 × [41]

(RT)

10 (4+2+4) TD Yes 283.53 247.06 280 × Sect. 5.2
10 (3+2+5) TD Yes 275.13 247.12 272 ✓ Sect. 5.2
10 (3+2+5) SS Yes 259.0 259.0 229.6 ✓ [26]
11 (4+2+5) TD Yes 2111.16 234.26 2108 × Sect. 5.2
11 (4+2+5) ID No 264.92 258.38 263.38 ✓ [27]
12 (3+2+7) ZC/I Yes 266.2 248.4 253.7 ✓ [1]

QARMA128
10 (3+2+5) MITM No 2141.7 2105 2232 ✓ [40]

(SK)
10 (3+2+5) ID Yes 2237.3 2122 2144 × [38]
11 (3+2+6) ID Yes 2241.8 2122 2232 × [38]

QARMA128

11 (4+2+5) TDIB Yes 2126.1 2126.1 271 ✓ [26]

(RT)

11 (4+2+5) ID No 2137.0 2111.38 2120.38 ✓ [27]
11 (7+2+2) TD Yes 2104.60 2124.05 248 ✓ Sect. 5.3
12 (7+2+3) TD Yes 2154.53 2108.52 2144 × Sect. 5.3
12 (3+2+7) MITM Yes 2156.06 288 2154 ✓ [27]
13 (8+2+3) TD Yes 2238.02 2106.63 2240 × Sect. 5.3

† SK: Single-Key, RT: Related-Tweak
‡ MITM: Meet-in-the-Middle, ID: Impossible Differential, TD: Truncated Differ-
ential, SS: Statistical Saturation, ZC: Zero-Correlation, I: Integral, TDIB: Tweak
Difference Invariant Bias
$ The designer claims that the multiplication of time and data complexities for
QARMA64 and QARMA128 should be less than 2128−ϵ and 2256−ϵ for a small ϵ
(e.g., ϵ = 2), respectively. The symbol ‘✓’ indicates that the attack is feasible
within the designer’s security claim and the symbol ‘×’ indicates otherwise.

– For QARMA64 under the RT setting, our attack is valid up to 10 rounds.
In addition, our 11-round attack cannot outperform the designer’s security
claim, but we provide the attack that outperforms the standard security no-
tion (i.e., security against the exhaustive search for the secret key). However,
the previous best attack on QARMA64 under the RT setting [1] is valid for up
to 12 rounds; thus, our attacks cannot outperform the previous best attack.

– For QARMA128 under the RT setting, our attack is valid up to 11 rounds.
This can achieve the best key recovery attack on the 11-round QARMA128
under the RT setting. In addition, our 12- and 13-round attacks cannot
outperform the designer’s security claim, but we provide the attack that

Parallel SAT Framework to Find Clustering of Differential Characteristics 7

outperforms the standard security notion. However, the previous best attack
on QARMA128 under the RT setting [27] is valid for up to 12 rounds; thus,
our attacks cannot outperform the previous best attack.

To date, no study has been reported on a key recovery attack based on
straightforward differential cryptanalysis against QARMA. One possible issue is
that it was difficult to find the key-recovery-friendly differentials for QARMA,
as QARMA has a large impact on a clustering effect. Our proposed SAT-based
automatic search framework can solve this issue, and consequently, a key recov-
ery attack based on straightforward differential cryptanalysis can be performed
with the time and data complexities comparable to the previous best attack.
Our framework can be applied to any symmetric-key primitive. Also, it is very
important to analyze the tight differential bound in the field of symmetric-key
cryptanalysis. Therefore, we believe that our work is a significant contribution in
terms of the tight security analysis for a wide class of symmetric-key primitives.

Finally, we attempt to explore key-recovery-friendly differentials on PRINCE
and PRINCEv2 by our tool. Specifically, we take two approaches: (1) using the
same approach as in the case of QARMA discussed earlier, and (2) enhancing the
probability of differentials utilized in the known best attack proposed by Can-
teaut et al. [14]. As a result, our tool confirms that the existing differentials [14]
are the best ones for the purpose of key recovery attacks.

2 Preliminaries

2.1 Definitions of Differential Characteristic and Differential

We frequently use terms differential characteristic and differential throughout
this paper. To avoid mixing these terms, we specify their definitions and how to
calculate their probabilities. Further, we provide the definition of weight that is
also frequently used in this paper. Notably, we explain a differential characteristic
and differential over an r-round iterated block cipher E(·) = fr(·) ◦ · · · ◦ f1(·).

Definition 1 (Differential characteristic) A differential characteristic is a
sequence of differences over E defined as follows:

C = (c0
f1−→ c1

f2−→ · · · fr−→ cr) := (c0, c1, · · · , cr),

where (c0, c1, · · · , cr) denotes the differences in the output of each round, i.e.,
c0 and cr denote the differences in a plaintext and a ciphertext, respectively.

The probability of a differential characteristic is estimated by the product of
the corresponding differential probabilities for each round on the Markov cipher
assumption [24] as follows:

Pr(C) =

r∏
i=1

Pr(ci−1
fi−→ ci).

8 K. Sakamoto et al.

Definition 2 (Differential) A differential is a pair of the input and output
differences (c0, cr).

The probability of a differential is estimated by a sum of probabilities for all
differential characteristics sharing the same input and output differences (c0, cr)
as follows:

Pr(c0
E−→ cr) =

∑
c1,c2,···cr−1

Pr(c0
f1−→ c1

f2−→ · · · fr−→ cr).

We finally provide the definition of weight which corresponds to the proba-
bility of a differential characteristic.

Definition 3 (Weight) A weight w is a negated value of the binary logarithm
of the probability Pr defined as follows:

w = − log2 Pr

2.2 SAT-Based Automatic Search for Differential Characteristics

SAT. When a formula consists of only AND (∧), OR (∨), and NOT (·) opera-
tions based on Boolean variables, we refer to it as a Boolean formula. In a SAT
problem, a SAT solver checks whether there is an assignment of Boolean vari-
ables that can validate a Boolean formula or not. If such an assignment exists,
a SAT solver returns satisfiable or “SAT”. Generally, a SAT problem is an NP-
complete [15]. However, owing to numerous efforts for SAT problems, nowadays,
there are numerous excellent SAT solvers that can solve a SAT problem very
efficiently, such as CaDiCaL, Kissat, and CryptoMiniSat5.

A Boolean formula can be converted into a Conjunctive Normal Form (CNF),
which is expressed by the conjunction (∧) of the disjunction (∨) on (possibly
negated) Boolean variables, such as

∧i
a=0(

∨ja
b=0 ci,j), where ci,j is a Boolean

variable. We call each disjunction
∨ja

b=0 ci,j in a Boolean formula a clause.

SAT-Based Automatic Tools. SAT-based automatic tools are known as a valid
approach to find optimal differential/linear characteristics and are more pow-
erful than MILP-based ones as shown in [35]. To implement its approach with
the SAT method, the differential/linear propagation over all operations in a
primitive must be converted into a CNF, and then we check if there exists a
differential/linear characteristic along with a specified weight as a SAT problem.
We can know the optimal differential/linear characteristics by solving some SAT
problems by changing the number of specified weights.

SAT Models for Basic Operations. Our framework is based on a pure-SAT model
proposed by Sun et al. [34, 35]. We give the detailed modeling method for each
operation in Appendix B. Herein, we specify some basic notations that are used
in this study to construct a whole SAT model as follows:

Parallel SAT Framework to Find Clustering of Differential Characteristics 9

MSAT : A whole SAT model that we solve.
Mcla.operations : Clauses to express the propagation of differences in a certain

operation. These clauses also contain variables to express a weight corre-
sponding to the propagation of differences in a probabilistic operation.

Mvar : Variables to construct clauses.

In this study, we useMcla.xor,Mcla.matrix, andMcla.sbox as clauses to express
the propagation of differences in PRINCE and QARMA. In addition, we also use
Mcla.input andMcla.sec(B) to evaluate a minimum weight. These clauses play a
role as follows:

Mcla.input : Clauses to avoid a trivial differential propagation, such as all input
differences being zero at the same time.

Mcla.sec(B) : Clauses to count the total weight of a primitive. More specifically,
the constraint of

∑j
i=0 pi ≤ B can be added, where pi is a Boolean variable

to express a weight and j is the total number of pi. There are several methods
to realize such a constraint in a Boolean formula [4,33,37]. Among these, we
employ Sequential Encoding Method [33] that was used in numerous works.

Finding Differential Characteristics with Minimum Weight. With the clauses
and variables introduced in this section, we construct a whole SAT model as
follows:

MSAT ← (Mcla.matrix, Mcla.sbox, Mcla.sec, Mcla.input).

Now, we are ready to find a differential characteristic with the minimum weight
by feedingMSAT andMvar to a SAT solver. If a SAT solver returns “UNSAT”,
there is no differential characteristic with a weight of ≤ B. In that case, we
increment B and repeat it until a SAT solver returns “SAT”. This means that
we obtain a differential characteristic with the minimum weight of B.

Modeling for a Clustering Effect. To take a clustering effect into account, we
must solve a SAT problem multiple times with the same input and output dif-
ferences, while the identical internal differential propagation is deleted from the
solution space of the initial SAT problem. To realize this procedure, we introduce
the following clauses:

Mcla.clust : Clauses to fix the input and output differences to find multiple
differential characteristics with the same input and output differences.

Mcla.clust : Clauses to remove the internal differential propagation from a SAT
model. These will be repeatably added to a SAT model whenever another
internal differential propagation is found.

When evaluating a clustering effect, we attempt to find a differential characteris-
tic with the weight of B, not the weight of ≤ B so as to calculate the exact prob-
ability of a differential. due to the same reason mentioned in [34].

∑r·i−1
j=0 pj = B

can be obtained by applying both
∑r·i−1

j=0 pj ≤ B and
∑r·i−1

j=0 pj ≥ B. The first

10 K. Sakamoto et al.

constraint is already given above, and the second one can be easily obtained from∑r·i−1
j=0 pj ≤ B with a small change. More information is provided in the previous

study [34]. Hereafter,Mcla.sec(B) denotes the clauses to express
∑r·i−1

j=0 pj ≥ B.
The detailed comprehensive algorithm for finding differential characteristics and
evaluating the clustering effect will be given in the following section.

3 A New SAT Framework to Find the Best Differential

In this section, we propose a new generic SAT-based automatic search frame-
work to find a differential with a higher probability under a specified condition
(we refer to it as a good differential in this paper). Specifically, our framework
can efficiently investigate the clustering effect of all differential characteristics
having different (c0, cr) with a specified range of probability and identify a good
differential. Our framework leverages a method to solve incremental SAT prob-
lems in parallel using a multi-threading technique, leading to an efficient search
for all differentials under the specified condition. Specifically, the unique features
of our framework are listed as follows:

Speedy identification of a good differential. Most of the existing studies
on the solver-aided search methods have focused on searching for the op-
timal differential characteristics as efficiently as possible. In contrast, our
framework aims to identify a good differential among numerous differential
characteristics having different (c0, cr) by evaluating the clustering effect of
them within the practical time. This can be realized by taking a method
to solve incremental SAT problems in parallel using a multi-threading tech-
nique into consideration. Thereby, our framework enables us to find good
differentials under the specified range of the weight that the corresponding
differential characteristic has.

Efficient construction of a good truncated differential. Our framework also
enables us to find a good truncated differential. This can be realized by com-
bining all the obtained differentials under the specified truncated differential.
The truncated differential attack is more powerful than the ordinary differ-
ential attack; thus, our framework leads to a better differential attack on
many symmetric-key primitives.

Applicability to a wide class of the symmetric-key primitives. Our frame-
work leverages the existing SAT-based automatic search method proposed
by Sun et al. [35] and maintains its availability of applications; thus, our
framework can be applied to a wide class of the symmetric-key primitives.
Therefore, compared with existing solver-aided tools, our framework can be
the best tool to construct the (truncated) differential distinguisher for a wide
class of symmetric-key primitives.

3.1 Our Approach

Conventionally, when we attempt to obtain a good differential, we adopt a strat-
egy of searching for it based on the optimal differential characteristic. This strat-

Parallel SAT Framework to Find Clustering of Differential Characteristics 11

Prob.Popt Popt · 2
−1

Popt · 2
−3

Popt · 2
−2

differential characteristics

(a) Conventional approach
Prob.Popt Popt · 2

−1
Popt · 2

−3
Popt · 2

−2

differential characteristics

(b) Our approach

Fig. 1: Approaches to identifying a good differential. “# differential character-
istics” denotes the total number of differential characteristics having different
(c0, cr) with the corresponding probability in horizontal axis. Popt denotes the
probability of an optimal differential characteristic. The gray area depicts eval-
uated differentials.

egy seems reasonable in many cases; therefore, most of the existing studies fol-
lowed this strategy and improved the differential attacks based on the differen-
tials obtained by this strategy. However, this strategy might overlook the better
one because the non-optimal differential characteristic sometimes constructs the
better differentials than that by the optimal differential characteristic, as the
case on Simeck32 reported by Kölbl and Roy [23].

To investigate differentials in more detail, we need to evaluate a clustering
effect of numerous differential characteristics having different (c0, cr). Since this
requires a huge computational cost, it is a time-consuming task even with the
state-of-the-art approach, such as a pure SAT-based automatic search method
proposed by Sun et al. [35]. To tackle this task, we focus on a method to efficiently
solve an incremental SAT problem and consider a new strategy to speedily obtain
all differential characteristics having different (c0, cr) with a specified range of
weight to evaluate the clustering effect of them. The essential idea of our search
strategy is very simple; we first enumerate all single differential characteristics
having different (c0, cr) with a relatively high probability and then investigate
the clustering effect of every obtained differential characteristic. Fig. 1 illustrates
the overview of our approach in comparison with the conventional one.

3.2 Incremental SAT Problem

An incremental SAT problem is a kind of SAT problem, which solves a general
SAT problem multiple times with a small modification, which the bounded vari-
able elimination method [18] can efficiently realize. Several SAT solvers support
the function to efficiently solve the incremental SAT problem, such as Crypto-
MiniSAT which is the most popular SAT solver in the field of symmetric-key
cryptography. Fig. 2 illustrates flowcharts of solving the general and incremental
SAT problems.

12 K. Sakamoto et al.

Start

Give a CNF

Output ”SAT” Output ”UNSAT”

End

UNSAT

SAT

Judge if a CNF is SAT or not

(a) General SAT problem

Start

Output ”SAT” Output ”UNSAT”

EndAdd clauses

Give a CNF

UNSAT

SAT

Judge if a CNF is SAT or not

(b) Incremental SAT problem

Fig. 2: Flowcharts of solving the general and an incremental SAT problem.

Some Insights about Solving an Incremental SAT Problem. According to the
Erlacher et al’s work [19], assigning multiple threads to solve a single general
SAT problem has a positive impact on reducing the runtime, but does not obtain
the same degree of gain as the degree of the parallelization. From this fact, our
work starts by investigating whether the same phenomenon happens in the case
of an incremental SAT problem. As a result, we find that it happens in the case
of an incremental SAT problem as well. Moreover, we also find that assigning
multiple threads to solve a single incremental SAT problem does not improve
the efficiency of the evaluation at all (see Sect. 3.4). This means that solving
multiple incremental SAT problems in parallel on each single thread is more
efficient than solving a single incremental SAT problem on multiple threads. We
leverage this insight into our framework.

Good Solver for an Incremental SAT Problem. There are numerous excellent
SAT solvers tending to solve a general SAT problem, while not so many of them
support solving an incremental SAT problem. Since our framework requires to
efficiently solve not a general SAT problem but an incremental SAT problem, we
must employ a SAT solver suitable for solving an incremental SAT problem. To
the best of our knowledge, CryptoMiniSat54 is the most efficient SAT solver to
solve an incremental SAT problem5. Hence, we use CryptoMiniSat5 throughout
all of our evaluations.

3.3 Finding a Good Differential

We present a new method to find a good differential under a specified condition.
Our method requires several basic algorithms to find differential characteristics,
such as the ones presented in [35]. We leave a detailed explanation of them in
Appendix C.
4 https://www.msoos.org/cryptominisat5/
5 CryptoMiniSat5 is the winner of the incremental library track at SAT competition

2020.

Parallel SAT Framework to Find Clustering of Differential Characteristics 13

Algorithm 1: Finding the best differential.
input : Wmin, r, Tw, Tc

output: D,N

1 begin
2 D ← (D0,D1, . . . ,DTw−1)
3 N ← (N0,N1, . . . ,NTw−1)
4 for i = Wmin to Wmin + Tw − 1 do
5 Di−Wmin ← SATdiff.all(i, r,1,1)
6 Ni−Wmin ← ∅
7 j ← 0
8 for all pairs in Di−Wmin do
9 add SATdiff.clust(i, i+ Tc − 1, r,D

(j)
i−Win

) to Ni−Win

10 j ← j + 1

11 /* j denotes the index of Di−Win
, i.e., MAX(j) = |Di−Win

| */

12 return (D,N)

The idea of our method is to investigate a clustering effect about all differen-
tial characteristics having different (c0, cr) with not only the minimum weight,
but also a specified range of weight, and then identify a good differential. Be-
fore giving a detailed algorithm of our method, we explain the procedure of this
method step by step as follows:

Step 1: Identify the weight Wmin of the r-round optimal differential character-
istic by SATdiff.min().

Step 2: Obtain all differential characteristics having different (c0, cr) with the
weight from Wmin to Wmin + α by SATdiff.all().

Step 3: Evaluate the clustering effect of all differential characteristics obtained
in Step 2, and then find a good differential.

As can be seen in the above steps, this method can investigate the probability
of differentials in more detail than any other existing tools. We give the detailed
algorithm of this method in Algorithm 1.

As inputs to Algorithm 1, we provide the minimum weight Wmin, the num-
ber of target rounds r, and two thresholds Tw and Tc. We can obtain Wmin

by SATdiff.min() and decide Tw as the range of weights taken into account in
the whole evaluation. For example, suppose that we obtain Wmin = 60 by
SATdiff.min() and set Tw = 3, Algorithm 1 searches a good differential in all
differential characteristics having different (c0, cr) with the weight of 60, 61, and
62. We can also decide Tc as the range of weight taken into account in a clus-
tering effect for each differential characteristic. After executing Algorithm 1, we
obtain lists of D and N which store all differentials (c0, cr) and the number of
the differential characteristics for each weight in each differential, respectively.
Then, we can calculate the probability for each differential with D and N .

The computational cost of Algorithm 1 highly depends on Tw and Tc, because
these two thresholds highly influence the number of times to solve an incremental

14 K. Sakamoto et al.

SAT problem in the whole procedure of Algorithm 1. Therefore, Tw and Tc must
be set depending on the computational environment. It should be noted that
the clustering effect for each differential will be evaluated in parallel because of
some observations discussed in Sect. 3.4.

3.4 Optimizing the Efficiency by a Multi-Threading Technique

To optimize the efficiency of our algorithms, we investigate the feature of an in-
cremental SAT problem, e.g., the most efficient way to solve multiple incremental
SAT problems. More specifically, we examine the difference in the runtimes de-
pending on the relationship between the number of threads assigned to solve each
incremental SAT problem and the degree of parallelization to solve multiple in-
cremental SAT problems. To this end, we define a rule for assigning the number
of threads and the degree of parallelization to satisfy the following equation:

Pdeg =
Tm

Ts
, (1)

where Pdeg, Tm, and Ts denote the degree of parallelization to solve multiple
incremental SAT problems, the total number of threads assigned for our eval-
uations, and the number of threads assigned to solve a single incremental SAT
problem, respectively. Based on the above assignment rule, to clarify the re-
lationship between the number of threads and the degree of parallelization, we
conduct experimental evaluations for the 5-round PRINCE, the 9-round PRINCE,
and the 6-round QARMA64 under the SK setting based on Algorithm 1. Due to
the limitations of our experimental environments, the total number of threads
Tm assigned for our evaluations of PRINCE and QARMA is 8 and 16, respectively.

Fig. 3 shows the runtime of each evaluation. In this figure, the vertical axis
represents the runtime of each evaluation and the horizontal axis represents the
degree of parallelization Pdeg. Besides, to further investigate the effect of the
number of threads assigned to a single incremental SAT problem, we conduct
additional experiments for PRINCE and QARMA on the environment of (Pdeg =
4, Tm = 4, Ts = 1) and (Pdeg = 8, Tm = 8, Ts = 1), respectively6. These results
show the runtime of 1h8m8s, 1h26m31s, and 35m15s for the 5-round PRINCE,
the 9-round PRINCE, and the 6-round QARMA64, respectively. From all our
evaluations, we can see the following interesting observations:

– Increasing the degree of parallelization is greatly useful to improve the run-
time of our algorithms. This can be intuitively seen from Fig. 3.

– Assigning many threads to solve a single incremental SAT problem does
not improve the runtime of our algorithms even though we can improve
in the case of a general SAT problem by the same approach to some ex-
tent. Unfortunately, it worsens the efficiency of our algorithms in the case of
the 6-round QARMA64. This is because our experimental results for the
6-round QARMA64 show the runtime of 35m15s on the environment of

6 Both evaluations are conducted by the same computers as the evaluation in Fig. 3.

Parallel SAT Framework to Find Clustering of Differential Characteristics 15

1 2 8 16

1

4

2

3

4

5

11

12

Pdeg

Hour

QARMA64 SK setting (6 round Wmin = 52)

PRINCE (5 round Wmin = 40)

PRINCE (9 round Wmin = 74)

13

Fig. 3: The runtime for each environment according to Eq. (1). The evaluations
of PRINCE and QARMA are conducted on computers with 8 and 16 threads,
respectively. Wmin denotes the weight of the differential characteristics evaluated
for the clustering effect.

(Pdeg = 8, Tm = 8, Ts = 1) but the runtime of 1h6m4s on the environment
of (Pdeg = 8, Tm = 16, Ts = 2).

These features probably could come from how to solve a given SAT problem
on multiple threads in a SAT solver. CryptoMiniSat5 employs the portfolio ap-
proach7 that provides the interface to efficiently share the learned clauses for a
set of CDCL solver instances [21]. The essence of this approach is to assign the
same SAT problems to each thread, each of which attempts to solve them indi-
vidually by sharing learned clauses with other threads. Hence, it seems natural
that this approach is more effective for a difficult SAT problem than for an easy
SAT problem because the overhead for sharing learned clauses cannot be negli-
gible in a small SAT problem. In the evaluation of the clustering effect, we solve
an incremental SAT problem that aims to very efficiently solve a general SAT
problem with a modification multiple times. Therefore, we expect that evaluat-
ing the clustering effect of a single differential by multiple threads does not have
a positive effect on the efficiency of our algorithms. We would like to mention
that this phenomenon could be also observed in not only SAT solvers with port-
folio approach but also ones with other approaches because assigning multiple
threads to a single small SAT problem is excess even in other approaches.

From the above observations, we conclude that assigning a single incremental
SAT problem to each thread is more advantageous than assigning many threads
to a single incremental SAT problem. It should be mentioned that this observa-
tion may be consistent between incremental SAT problems whose the number
7 The portfolio approach is a popular approach to solve a given SAT problem on

multiple threads. Note that the portfolio approach is not for an incremental SAT
problem but for a general SAT problem.

16 K. Sakamoto et al.

of clauses and Boolean variables vary because we can see the same feature in
the results of the 5-round PRINCE and the 9-round PRINCE. Thus, we decide to
assign an independent incremental SAT problem to each thread when evaluating
the clustering effect.

Therefore, based on the above observations, we incorporate a method to
solve incremental SAT problems in parallel using a multi-threading technique
into Algorithm 1.

3.5 A More Efficient Algorithm to Find a Good Differential

Algorithm 1 can find a good differential under the specified condition, while a
computational cost becomes vast along with increasing Tw and Tc. The downside
of Algorithm 1 is that it never returns any result when all differentials cannot be
found out, and this situation happens often along with a weight far from Wmin.

To address this problem, we propose Algorithm 2, which can evaluate a clus-
tering effect whenever a differential characteristic having different (c0, cr) is
found. In Algorithm 2, it is not always possible to identify a good differen-
tial under a specified condition, as we discard some differentials (c0, cr) in the
middle of the procedure. However, we emphasize evaluating a clustering effect as
efficiently as possible. To reduce the entire computational cost, we screen the dif-
ferential (c0, cr) depending on its differential probability by a certain threshold
whenever evaluating a clustering effect. If it does not satisfy a certain threshold,
the evaluation of a clustering effect for this differential (c0, cr) halts, and this
differential is discarded. In Algorithm 2, we assume to execute it in parallel on
an environment with multiple threads based on the fact in Sect. 3.4. We explain
the overview of the procedure step by step as follows:

Step 1: Find the same number of differential characteristics having different
(c0, cr) with the weight Wmin as the degree of parallelization.

Step 2: Evaluate the clustering effect for each obtained differential characteris-
tic in parallel. During this evaluation, we store or update the information of a
differential (c0, cr) with the highest probability (specifically, the differential
and its probability), and this information is used to specify the threshold. If
the probability of a differential (c0, cr) in the middle of evaluating the clus-
tering effect does not surpass a certain threshold, this evaluation halts, and
such a differential is discarded. Otherwise, the evaluation proceeds and the
highest probability is updated if the probability of the resulting differential
exceeds the previous highest one.

Step 3: Repeat Step 1–2 until all differential characteristics having different
(c0, cr) with the weight Wmin are found. If it is infeasible to find all dif-
ferential characteristics having different (c0, cr), we stop the evaluation and
obtain the highest probability of a differential in this evaluation so far.

Step 4: Increase Wmin and repeat Step 1–3 until Wmin reaches a specified
weight.

As inputs to Algorithm 2, we provide the same parameters in Algorithm 1
and the additional two thresholds Ts and Tt which are the bounding condition

Parallel SAT Framework to Find Clustering of Differential Characteristics 17

Algorithm 2: Finding the (almost) good differential for a multi-thread
programming technique

input : Wmin, r, Tw, Tc, Ts, Tt, Nthr

output: (copt.in, copt.out), Popt

1 begin
2 Popt ← 0, Pthr ← (P 0

thr, P
1
thr, . . . , P

Nthr−1
thr)

3 D ← (D0,D1, . . . ,DNthr−1)
4 for i = Wmin to Wmin + Tw − 1 do
5 (MSAT ,Mvar)← SETmodel(i, r)
6 add auxiliary Boolean variables of Mcla.sec(i) toMvar

7 addMcla.sec(i) toMSAT

8 count← 0
9 /* incremental SAT problem */

10 while SATdiff.char(MSAT ,Mvar) = (“SAT”, Cr) do
11 Dcount mod Nthr ← (c0, cr)
12 count← count+ 1
13 if count mod Nthr = 0 then
14 for each thread do
15 P thread

thr ← Thread(i, r, Tc, Ts, Tt, Popt,Dthread)

16 if MAX(Pthr) > Popt then
17 (Dopt, Popt)←MAX(D,Pthr)

18 add
∨n−1

k=0 (v0,k ⊕ c0,k) ∨ (vr,k ⊕ cr,k) toMSAT

19 if count mod Nthr ̸= 0 then
20 for each thread do
21 P thread

thr ← Thread(i, r, Tc, Ts, Tt, Popt,Dthread)

22 if MAX(Pthr) > Popt then
23 (Dopt, Popt)←MAX(D,Pthr)

24 return (Dopt, Popt)

25 Function Thread(W, r, Tc, Ts, Tt, Popt,D) // A multi-threading technique
26 begin
27 N ← (N0, N1, . . . , NTc−1)
28 N ← SATdiff.clust(W,W + Tt − 1, r,D)

29 Ptmp ←
∑W+Tt−1

i=W (Ni−W · 2−i)
30 if Ts · Ptmp > Popt then
31 N ← SATdiff.clust(W + Tt,W + Tc − 1, r,D)

32 Ptmp ← Ptmp +
∑W+Tc−1

i=W+Tt
(Ni−W · 2−i)

33 return Ptmp

used to narrow down the search space. We specify Tt and Ts as a range of the
evaluated weight in the clustering effect before screening and a specific threshold
of screening, respectively. Besides, we specify the degree of parallelization in

18 K. Sakamoto et al.

Table 3: Differential probabilities of (almost) good differentials of PRINCE. Wmin

denotes the same parameter as in Algorithms 1 and 2. #differentials denotes the
number of different differentials with a particular weight. The minimum weight
of a differential characteristic for each round is written in bold. The highest
differential probability for each round is written in red. The probabilities in a
white and gray cell are obtained by Algorithms 1 and 2, respectively. For all
results, we set Tw = 1 and Tc = 10.
PRINCE

Rounds 4 (1+2+1) 5 (1+2+2/2+2+1)
Wmin 32 33 34 35 36 39 40 41 42 43
Prob. 2−30.868 2−31.861 2−32.587 2−33.333 2−32.979 2−38.810 2−39.385 2−40.017 2−40.607 2−40.837

differentials 477452 3792944 4929816 5537848 5547896 576 12512 113840 598592 2231756
Time 6h06m57s 48h48m43s 47h34m17s 47h35m06s 48h01m15s 1m21s 26m09s 4h08m26s 23h14m24s 48h03m32s

Rounds 6 (2+2+2) 7 (2+2+3/3+2+2)
Wmin 44 45 46 47 48 56 57 58 59 60
Prob. 2−43.907 2−44.907 2−45.195 2−46.111 2−46.374 2−55.771 2−55.887 2−56.810 2−57.37 2−57.990

differentials 64 512 1984 6592 25968 5632 100976 835456 205272 212280
Time 51s 4m21s 17m57s 1h07m16s 4h46m53s 5h07m16s 90h40m16s 48h00m00s 73h03m01s 71h43m12s

Rounds 8 (3+2+3) 9 (3+2+4/4+2+3)
Wmin 66 67 68 69 70 74 75 76 77 78
Prob. 2−64.389 2−65.384 2−66.303 2−66.970 2−67.075 2−73.888 2−74.881 2−74.970 2−75.970 2−76.166

differentials 256 3584 46736 18352 24056 64 544 3400 26592 13968
Time 1h55m50s 24h34m09s 290h41m48s 47h32m37s 48h4m28s 34m49s 5h11m49s 32h10m51s 235h42m42s 48h04m53s

Step 2 by Nthr. After executing Algorithm 2, we obtain a good differential Dopt

with its probability Popt.
In Appendix D, we show experimental results for some parameters of Ts and

Tt and discuss how parameters are acceptable to be set.

4 Applications to PRINCE and QARMA

We apply our framework to PRINCE and QARMA in some rounds. To make our
results clear, we show the results on each Wmin with Tw = 1, i.e., we consistently
set Tw = 1 for each Wmin. Furthermore, we set Tc = 10 unless noted otherwise.

4.1 Good Differentials for PRINCE

Table 3 shows the results of PRINCE, which are evaluated on Apple M1 MAX
with 64 GB of main memory. In the case where the number of all differential
characteristics having different (c0, cr) is not so many, and the number of rounds
is small, we can apply Algorithm 1, i.e., we can find a good differential with
Tc = 10. In other cases, the cost of the evaluation of a clustering effect becomes
so high that we apply Algorithm 2. For the results by Algorithm 1, the evaluation
of a clustering effect is parallelized on multiple threads to make the most of our
computational environment, as described in Sect. 3.3 and 3.4. For the results
by Algorithm 2, we pick up the best one among results on several combinations
of Tt and Ts.

Parallel SAT Framework to Find Clustering of Differential Characteristics 19

Table 3 shows that the distinguishing attack can be applied up to seven
rounds of PRINCE/PRINCEv2 that improves the previous best attack by one
round [2,14]. It must be mentioned that the previous best distinguishing attack
by differential cryptanalysis is adjusted for the key recovery that restricts the
space of the input and output differences.

4.2 Good Differentials for QARMA

Table 4 shows the results of QARMA64 and QARMA128, both of which are
evaluated on three Linux machines with Intel Xeon Gold 6258R CPU (2.70
GHz) and 256 GB of main memory. As with the case of PRINCE, we apply
Algorithm 1 when the number of all differential characteristics having different
(c0, cr) is not so many, and the number of rounds is small. Otherwise, we ap-
ply Algorithm 2. Particularly, the computational cost becomes excessive in the
evaluation of QARMA128, because the state length is 128 bits. Hence, we apply
only Algorithm 2 in most cases of the evaluation of QARMA128. For the results
by Algorithm 1, the evaluation of a clustering effect is parallelized on multi-
ple threads to make the most of our computational environment, as well as the
evaluation of PRINCE. For the results by Algorithm 2, we pick up the best one
among results on several combinations of Tt and Ts.

As shown in Table 4, the distinguishing attack in the SK setting can be
applied up to 7 and 10 rounds of QARMA64 and QARMA128, both of which
improve the previous best attack [38] by 1 and 4 rounds, respectively. Further,
the distinguishing attack in the RT setting can be applied up to 10 and 12
rounds of QARMA64 and QARMA128, both of which improve the previous best
attacks [1, 26] by 1 and 4 rounds, respectively. As with the case of PRINCE, we
note that the previous best distinguishing attack may be adjusted for the key
recovery. Besides, it must be mentioned that the same case reported by Kölbl
and Roy [23] often happens in both QARMA64 and QARMA128, i.e., there are
some better differentials corresponding to a differential characteristic with not
the highest probability than that by the optimal differential characteristic.

4.3 Discussion: Comparison with PRINCE and QARMA

We observe that the gaps in the probability between a differential characteristic
and a differential can be large in QARMA64 and QARMA128 under the SK set-
ting compared to that in PRINCE. When looking at each construction in detail,
for the non-linear layer, the 4-bit S-boxes used in PRINCE and QARMA have
the same property in terms of security, such as a full diffusion property and
guaranteeing the maximum differential probability and the absolute linear bias
of 2−2. In contrast, their linear layers are designed with a different strategy. The
linear layer of PRINCE is designed to ensure 16 active S-boxes in consecutive
four rounds, while that of QARMA is designed based on an almost MDS matrix
suitable for hardware implementation. We summarize the difference in their ma-
trices from the macro and micro perspectives as follows. Hereafter, we mainly

20 K. Sakamoto et al.

Table 4: Differential probabilities of (almost) good differentials of QARMA. Wmin

denotes the same parameter as in Algorithms 1 and 2. #differentials denotes the
number of different differentials with a particular weight. The minimum weight
of a differential characteristic for each round is written in bold. The highest
differential probability for each round is written in red. The probabilities in a
white and gray cell are obtained by Algorithms 1 and 2, respectively. For all
results, we set Tw = 1 and Tc = 10.
QARMA64 under the SK setting

Rounds 6 (2+2+2) 7 (2+2+3/3+2+2) 8 (3+2+3)

Wmin 52 53 54 64 65 66 72 73 74

Prob. 2−45.741 2−46.019 2−46.112 2−60.278 2−60.111 2−58.921 2−64.845 2−64.503 2−64.693

differentials 1024 18048 315360 512 16896 313280 400 21904 333776

Time 35m15s 19h47m31s 109h51m44s 48m19s 39h48m41s 186h21m10s 15h47m58s 53h01m41s 508h11m56s

QARMA64 under the RT setting

Rounds 6 (2+2+2) 7 (2+2+3/3+2+2) 8 (3+2+3)

Wmin 14 15 16 28 29 30 36 37 38

Prob. 2−14.000 2−14.913 2−15.193 2−27.541 2−28.000 2−28.286 2−36.000 2−36.679 2−36.679

differentials 17 202 2571 84 3030 48840 20 840 18509

Time 36s 1m44s 13m33s 5m35s 1h15m24s 15h28m20s 11m16s 30m22s 10h18m25s

Rounds 9 (3+2+4/4+2+3) 10 (4+2+4) 11 (4+2+5/5+2+4)

Wmin 52 53 54 62 63 64 77 78 79

Prob. 2−51.415 2−51.415 2−52.246 2−60.831 2−60.831 2−60.831 2−77.000 2−77.415 2−77.509

differentials 8 688 11290 273 4822 49585 64 7616 18424

Time 6h32m25s 10h27m32s 49h31m02s 96h12m59s 114h45m17s 303h33m25s 596h07m26s† 1317h17m08s† 1317h16m57s†

QARMA128 under the SK setting

Rounds 6 (2+2+2) 7 (2+2+3/3+2+2) 8 (2+2+4/4+2+2)

Wmin 60 61 62 76 77 78 87 88 89

Prob. 2−54.494 2−54.521 2−54.581 2−71.930 2−72.321 2−72.614 2−84.850 2−85.093 2−85.539

differentials 1312 98984 391352 516 32880 31960 16 708 14300

Time 15h27m17s 499h19m12s 1316h25m40s† 40h57m50s 530h05m58s 430h44m47s 57h59m37s 92h7m23s 693h25m04s

Rounds 9 (3+2+4/4+2+3) 10 (3+2+5/5+2+3)

Wmin 106 107 108 125 126 127

Prob. 2−104.285 2−103.616 2−103.255 2−121.549 2−121.667 2−122.304

differentials 240 561 1172 12 54 31

Time 249h25m14s† 1004h00m44s† 1004h00m32s† 794h25m35s† 794h25m23s† 794h25m13s†

QARMA128 under the RT setting

Rounds 7 (2+2+3/3+2+2) 8 (3+2+3) 9 (3+2+4/4+2+3)

Wmin 28 29 30 42 43 44 64 65 66

Prob. 2−28.000 2−27.415 2−28.000 2−42.000 2−42.415 2−42.187 2−63.679 2−64.415 2−64.679

differentials 32 2144 64368 64 5248 203200 1815 6870 26105

Time 38m43s 4h51m52s 48h32m23s 21h17m20s 52h32m19s 470h54m17s 1154h39m26s† 1154h39m16s† 1154h39m05s†

Rounds 10 (4+2+4) 11 (4+2+5/5+2+4) 12 (5+2+5)

Wmin 80 81 82 100 101 102 125 126 127

Prob. 2−78.005 2−79.005 2−78.408 2−96.466 2−97.929 2−96.521 2−120.024 2−123.499 2−124.084

differentials 2 72 51 9 6 2 3 3 2

Time 978h51m03s† 1316h34m33s† 1316h33m53s† 794h24m09s† 794h23m59s† 1036h39m39s† 794h16m56s† 1036h44m17s† 1036h44m02s†

† These experiments were stopped before all differentials were obtained because the
program took too long to run.

take a comparison between PRINCE and QARMA64 as an example for a better
understanding.

Parallel SAT Framework to Find Clustering of Differential Characteristics 21

Table 5: Probability of differential characteristic and differential.
PRINCE (6 (2+2+2) rounds) Tw = 1, Tc = 10

Matrix Original Me1 Me2 Me3

Wmin 44 40 44 42
Prob. 2−43.907 2−38.526 2−38.616 2−37.458

Gap (Prob./2−Wmin) 20.093 21.474 25.384 24.542

differentials 64 256 8 272

Macro perspective. When looking at the matrices of PRINCE and QARMA64
as a single 64 × 64 matrix, the matrix of PRINCE consists of two 16 × 16
matrices M̂ (0) and M̂ (1) while that of QARMA64 consists of only one 16×16
matrix M . Hence, the (forward and backward) round function of PRINCE
can be seen as constructed on two super S-boxes, while that of QARMA64
can be seen as constructed on the one super S-box.

Micro perspective. When focusing on output nibbles, each output nibble in
the matrix of PRINCE comes from four input nibbles, while that of QARMA64
comes from three input nibbles. Thus, each output bit of the round function
of PRINCE depends on 16 input bits of the round function, while that of
QARMA64 depends on 12 input bits of the round function.

To further investigate an impact of a matrix on a gap in the probability, we
conduct three experiments with a change of the matrix in PRINCE focusing on
the above perspectives. Hence, we change the matrix in PRINCE to:

Me1 = diag(M̂ (0), M̂ (0), M̂ (0), M̂ (0));
Me2 = diag(circ(0, ρ1, ρ2, ρ1), circ(0, 1, ρ2, 1), circ(0, 1, ρ2, 1), circ(0, ρ1, ρ2, ρ1));
Me3 = diag(circ(0, ρ1, ρ2, ρ1), circ(0, ρ1, ρ2, ρ1), circ(0, ρ1, ρ2, ρ1), circ(0, ρ1, ρ2, ρ1)).

Notably, circ(0, 1, ρ2, 1) in Me2 has the same diffusion property as circ(0, ρ1, ρ2, ρ1)
given in [3]. With Me1, the round function can be viewed as constructed on the
one super S-box, but each output bit of the round function still depends on 16
input bits of the round function. With Me2, the round function can be viewed as
constructed on two super S-boxes like the original PRINCE, but each output bit
of the round function depends on 12 input bits of the round function. With Me3,
the matrix in PRINCE changes to the same matrix as QARMA64 into PRINCE,
that is, the round function can be viewed as constructed on the one super S-box
and each output bit of the round function depends on 12 input bits of the round
function.

Tables 5 and 6 show the gap in the probability of the differential charac-
teristic and differential on the six rounds of each variant of PRINCE and their
distribution of the differential characteristics, respectively. From a macro per-
spective, the number of super S-boxes based on a primitive does not seem to
have an impact on the gap as far as comparing the cases of the original matrix
with Me1 and Me2 with Me3. Meanwhile, the number of the input bits influenc-
ing each output bit seems to have a large impact on the gap as far as comparing

22 K. Sakamoto et al.

Table 6: Distribution of differential characteristics.
PRINCE (6 (2+2+2) rounds) Tw = 1, Tc = 10

Matrix
Weight

Wmin Wmin + 1 Wmin + 2 Wmin + 3 Wmin + 4 Wmin + 5 Wmin + 6 Wmin + 7 Wmin + 8 Wmin + 9

DC†

Original 1 0 0 0 1 0 0 0 1 0
Me1 2 0 0 0 11 0 0 0 23 0
Me2 1 2 7 16 55 116 452 848 2152 3498
Me3 1 0 5 2 56 38 358 210 1719 1102

† DC: Differential Characteristic

the cases of the original matrix with Me2 and Me1 with Me3. These observations
can fit into MIDORI64 [5] and SKINNY64 [6], both of which have the matrix
with each output nibble depending on less than four input nibbles. Ankele and
Kölbl showed that the probability of the optimal differential characteristic in
MIDORI64 and SKINNY is dramatically increased by considering a clustering
effect [2]. When each output bit depends on 16 input bits, the number of the dif-
ferential characteristics for each weight is curbed very few. Therefore, we predict
that a cipher can have good resistance to a clustering effect when each output
bit of the round function depends on more input bits of the round function.

In the RT setting, this gap of QARMA becomes small compared to that in
the SK setting, i.e., the permutation-based tweak update function like that used
in QARMA brings resistance to a clustering effect. That is mainly because the
transition of the differential propagation is uniquely fixed in the tweak update
function, and it contributes to making clustering difficult in the whole cipher.
Therefore, we expect that a tweakable block cipher with a linear tweak (tweakey)
update function can have good resistance to the clustering effect.

Finally, the case reported by Kölbl and Roy [23] can occur in any cipher, as
a clustering effect in non-optimal weights can strongly affect the probability of
a differential, especially for a cipher like QARMA.

5 Key Recovery Attacks on QARMA

In this section, we provide key recovery attacks on QARMA. First, we discuss
two strategies to search for key-recovery-friendly differentials under both single-
key (SK) and related-tweak (RT) settings. When we use the best differentials
presented in Sect. 4.2 for key recovery attacks, we cannot append more than two
key-recovery rounds to the differential distinguisher. In contrast, key-recovery-
friendly differentials allow us to append at most four key-recovery rounds to
the differential distinguisher. Next, we present key-recovery-friendly differentials
derived based on the proposed search strategies; and then, we obtain the best
truncated differential from key-recovery-friendly differentials for our key recov-
ery attacks. Finally, we launch key recovery attacks using the best truncated
differentials. Our attacks are inspired by Guo et al.’s truncated differential at-
tacks [20].

Parallel SAT Framework to Find Clustering of Differential Characteristics 23

Hereafter, we denote the r-round internal state matrix and the r-round tweak
matrix by IS(r) = s

(r)
0 ||s

(r)
1 || · · · ||s

(r)
15 = s

(r)
{0,1,...,15} and T (r) = t

(r)
0 ||t

(r)
1 || · · · ||t

(r)
15 =

t
(r)
{0,1,...,15}, respectively.

5.1 Key-Recovery-Friendly Differentials for QARMA

Search Strategy for QARMA under SK Setting. We discuss here a strategy
to search for key-recovery-friendly differentials for QARMA under the SK setting.
Before proceeding with our discussion, we provide the following properties of the
MixColumns and ShuffleCellsInv operations in the round function.

Property 1. Regarding the propagation of active cells through the MixColumns
operation, when there exists only one active cell in the input column to the
operation, the corresponding cell position is always inactive after the operation,
but the others in the corresponding output column are always active. In contrast,
there exist two or more active cells in the input column to the operation, at most
four cells in the corresponding output column are active after the operation.

This is directly derived from Fig. 5 in the literature [3]. We should assume
the worst case when considering the propagation of active cells through key-
recovery rounds. For this reason, when there exist two or more active cells in
the input column to the MixColumns operation, we assume that four cells in the
corresponding output column are always active after the operation.

Property 2. Regarding the propagation of active cells through the ShuffleCellsInv
operation, when there exist four active cells in a certain column to the operation,
these active cells are evenly propagated across the four columns after the oper-
ation. For example, assuming that four cells in the first column are active (i.e.,
the active cells of IS(r) are 0th, 4th, 8th, and 12th cell positions), these active
cells are evenly propagated across the first, third, second, and fourth column
after the ShuffleCellsInv operation, respectively.

This is also directly derived from the ShuffleCells operation, as described in
Appendix A.

Based on these properties, we first examine to append some key-recovery
rounds to the differential distinguisher. As an example, we use the best 6-round
differential under the SK setting. In this case, the active cells of both input and
output differentials are 0th, 1st, 10th, and 11th cell positions; thus, there exists
one active cell in each column at the input and output differentials. We note
here that the input differential is the input matrix to the SubCells operation in
the forward round function (FR) and the output differential is the output matrix
from the SubCellsInv operation in the backward round function (BR). In other
words, to append some key-recovery rounds to the differential distinguisher, we
examine the propagation of active cells through the MixColumns operation as
the first step in both FR and BR directions. From Property 1, 12 cells except
for the 0th, 1st, 10th, and 11th cell positions are always active after the first
MixColumns operation. The next step is the ShuffleCellsInv operation. From

24 K. Sakamoto et al.

Property 2, 12 cells except for the 0th, 3rd, 9th, and 11th cell positions are
always active after the first ShuffleCellsInv operation. This means that there
exist more than two active cells in each column after the first ShuffleCellsInv
operation. Subsequently, the propagation of active cells is not changed during
the AddRoundTweakey and SubCellsInv operations. This completes the process
of appending one key-recovery round in both FR and BR directions. Here, we
further examine to append one more key-recovery round in both FR and BR
directions. Similarly in the above steps, from Property 1, all cells are always
active after the second MixColumns operation. This is because there exist two
or more active cells in each column before the second MixColumns operation. It
is obvious that a key recovery attack is infeasible when all cells become active;
therefore, when we use best differentials presented in Sect. 4.2 for key recovery
attacks, we cannot append more than two key-recovery rounds in total to the
differential distinguisher.

Next, we consider how to append as many key-recovery rounds as possible
while avoiding all cells becoming active. To resolve this issue, we provide the
following property.

Property 3. One active cell is propagated across at least three columns of the
state matrix during the MixColumns and ShuffleCellsInv operations.

This is directly derived from Properties 1 and 2. Property 3 implies that to
minimize the propagation of active cells, we need to examine a strategy to search
for input/output differentials in such a way that active cells are propagated
across only three columns of the state matrix (i.e., all cells in a certain column
of the state matrix are inactive) after the first ShuffleCellsInv operation in
the key-recovery round. To tackle this task, we provide the following property.

Property 4. When the active cell positions of the input/output difference cor-
respond to any combination in one of the following four patterns, all cells in a cer-
tain column of the state matrix are always inactive after the first ShuffleCellsInv
operation in the key-recovery round:

(0, 13, 11, 6), (5, 8, 14, 3), (15, 2, 4, 9), or (10, 7, 1, 12).

This is also directly derived from Properties 1 and 2. As an example, we assume
that the active cells in an input differential are 0th, 13th, 11th, and 6th cell
positions. We note that any combination of these four active cell positions (e.g.,
0th and 11th cell positions, etc) also satisfies Property 4. In this case, from Prop-
erty 1, 12 cells except for the 0th, 13th, 11th, and 6th cell positions are always
active after the first MixColumns operation. Subsequently, from Property 2, 12
cells except for the 0th, 4th, 8th, and 12th cell positions (i.e., all cells in the first
column of the state matrix) are always active after the first ShuffleCellsInv
operation. Finally, considering the propagation of active cells when appending
two key-recovery rounds to the FR or BR direction, the 0th, 5th, 10th, and 15th
cell positions are always inactive.

We conclude that a strategy to search for key-recovery-friendly differentials
for QARMA under the SK setting is equivalent to finding input/output differen-
tials such that Property 4 is satisfied. To implement this strategy, all we have to

Parallel SAT Framework to Find Clustering of Differential Characteristics 25

do is to add a constraint into Algorithm 1 that controls input/output differentials
based on the strategy.

Search Strategy for QARMA under RT Setting. We discuss here a strategy
to search for key-recovery-friendly differentials for QARMA under the RT setting.
The only difference between the SK and RT settings is whether tweak differences
are used or not. This fact implies that based on the search strategy for the SK
setting, we need to examine a new strategy to search for input/output and tweak
differentials in such a way that tweak differences do not accelerate the increase in
the number of active cells. To tackle this task, we provide the following property.

Property 5. Assuming that two key-recovery rounds are appended to the FR
direction from the differential distinguisher. Regarding four active cell patterns
for the input differential described in Property 4, when the active cell positions
of the tweak differential correspond to any combination of the pattern shown in
the following table, such a tweak differential does not accelerate the increase in
the number of active cells:

Table 7: Constraints for active cell positions of the input/output and tweak
differentials.

Input/Output differential Tweak differential

0, 13, 11, 6 0, 3, 10, 13, 14
5, 8, 14, 3 3, 4, 8, 9, 11, 12, 14
15, 2, 4, 9 1, 3, 5, 7, 9, 15
10, 7, 1, 12 1, 5, 6, 10, 11

As an example, assuming that the active cell positions in an input differential
are s

(2)
{0,13,11,6}. In this case, retracing the propagation of active cells to the FR di-

rection, at least t(2){0,4,8,12} must be inactive. This is because s
(2)
{0,4,8,12} are always

inactive when executing the AddRoundTweakey operation of T (2) (i.e., after the
first ShuffleCellsInv operation). Similarly, further retracing to the FR direc-
tion, t(1){0,5,10,15} and t

(0)
{0,5,10,15} must be inactive. From these conditions, consid-

ering the propagation of inactive cells based on the tweak update function, all
cells except for t(3){0,3,10,13,14} must be inactive. Therefore, activating t

(3)
{0,3,10,13,14}

does not accelerate the increase in number of active cells.
We conclude that a strategy to search for key-recovery-friendly differentials

for QARMA under the RT setting is equivalent to finding input/output and
tweak differentials such that Properties 4 and 5 are satisfied. To implement
this strategy, all we have to do is to add a constraint into Algorithm 1 that
controls input/output and tweak differentials based on the strategy. We note here
that once a tweak differential is determined, all tweak differences are uniquely

26 K. Sakamoto et al.

Table 8: Best truncated differentials of QARMA.
Cipher

Rounds
Constraints for active cell positions

Probability
(Setting) Input differential Tweak differential Output differential

QARMA64 6 (2+2+2) 0 – 0 2−46.171

(SK) 7 (2+2+3) 0 – 5, 10, 15 2−48.582

6 (1+2+3) 13 13 2, 3, 6, 7, 11, 13, 14 2−11.947

QARMA64 7 (2+2+3) 4, 9 1, 9 0, 11, 12, 14, 15 2−18.296

(RT) 8 (2+2+4) 4, 9 1, 9 1, 2, 5, 11 2−31.565

9 (2+2+5) 4, 9 1, 9 0, 7, 12, 15 2−48.230

QARMA128
7 (3+2+2) 5, 14 – 0, 1, 4, 5, 10, 11 2−63.660

(SK)
8 (4+2+2) 0, 11 – 1, 4, 14 2−86.459

9 (4+2+3) 0, 11 – 0, 1, 3, 4, 5, 6, 12, 14, 15 2−102.261

7 (2+2+3) 4, 9 1, 9 0, 1, 4, 5, 11, 12, 15 2−17.986

QARMA128 8 (2+2+4) 4, 9 1, 9 2, 4, 5, 7, 11, 13, 14 2−33.625

(RT) 9 (2+2+5) 4, 9 1, 9 0, 2, 5, 12, 13, 14 2−60.789

10 (6+2+2) 4, 9 1, 9 1, 4, 11, 14 2−80.431

determined by the tweak update function. This means that when considering a
tweak differential such that Property 5 is satisfied, tweak differences cannot be
controlled in the BR direction.

Best Truncated Differentials for QARMA. To obtain key-recovery-friendly
differentials, we implement the proposed two search strategies into our SAT-
based method (specifically, Algorithm 1) and then apply it to QARMA under
the SK and RT settings. Our experimental procedure and environment are the
same as described in Sect. 4.

As mentioned in the beginning of this section, our key recovery attacks are
inspired by Guo et al.’s truncated differential attacks [20]. For this reason, we
provide here the best truncated differentials based on the obtained key-recovery-
friendly differentials for use in the following subsections. Table 8 shows the best
truncated differentials of QARMA under the SK and RT settings. Due to page
limitations, the table lists only the experimental results with the lowest number
of active cells and the highest truncated differential probability in each target
round. It can be derived from the table that only in the case of the 6-round
QARMA64 under the SK setting, the obtained truncated differentials enable us
to append two key-recovery rounds before and after the differential distinguisher,
respectively. In contrast, the other cases enable us to append two and one key-
recovery rounds before and after the differential distinguisher, respectively.

We use these truncated differentials to launch our key recovery attacks on
QARMA in the following subsections.

Parallel SAT Framework to Find Clustering of Differential Characteristics 27

5.2 Truncated Differential Attacks on Reduced-Round QARMA64

In this subsection, we provide truncated differential attacks on reduced-round
QARMA64, especially under the RT setting. Incidentally, under the SK setting,
our attack was invalid more than eight rounds, whereas existing studies [38, 40]
reported that key recovery attacks were valid up to 10 and 11 rounds8.

Under the RT setting, the noticeable studies [1, 26, 27] reported that key
recovery attacks were valid up to 10, 11, and 12 rounds. Ankele et al. [1] proposed
a related-tweak zero-correlation linear attack on 12-round QARMA64 with the
time, data, and memory complexities of 266.2, 248.4, and 253.7, respectively. Li
et al. [26] proposed a related-tweak statistical saturation attack on 10-round
QARMA64 with the time, data, and memory complexities of 259.0, 259.0, and
229.6, respectively. Liu et al. [27] presented a related-tweak impossible differential
attack on 11-round QARMA64 with the time, data, and memory complexities of
264.92, 258.38, and 263.38, respectively. We note that the Liu et al.’s attack did
not consider the outer whitening key. From these reports, our targets are 10 or
more rounds of QARMA64 under the RT setting, and our attacks do consider
the outer whitening key.

We first focused on the use of the 9-round truncated differential listed in
Table 8, but we were faced with the fact that it would be difficult to launch
an attack with this truncated differential. For this reason, we provide here key
recovery attacks on the 10- and 11-round QARMA64 under the RT setting with
the 8-round truncated differential listed in Table 8. We can only append at most
three key-recovery rounds to the 8-round truncated differential distinguisher;
thus, it must be mentioned that the feasibility of our attacks is up to 11 rounds.

10-round Attack on QARMA64 under RT Setting. To launch our 10-
round attack, we append one key-recovery round before and after the 8-round
truncated differential distinguisher. Fig. 4 shows the propagation of active cells
for the 10-round attack on QARMA64 under the RT setting, where the gray cubes
represent the active cells and tki denotes the i-th tweakey (i.e., the combination
of the i-th round tweak T (i) and the core key k0). We note that a(1), a(9), and
tk(2) represent the target input, output, and tweak differences, respectively. Our
attack is based on the following two phases: data collection and key recovery
phases.

Data Collection Phase. From Fig. 4, the plaintext P{0,1,4,5,8,11,12,15} and the
tweak T

(0)
{1,8} are always active. In addition, ∆a

(0)
8 = ∆P8⊕∆T

(0)
8 = 0 (i.e., ∆P8 =

∆T
(0)
8) must hold. Under these conditions, the details of the data collection phase

are described as follows.

Step 1: We prepare S structures. In each structure, there are 236 plaintext-
tweak pairs such that the plaintext P and the tweak T (0) satisfying the above

8 The attacks in [40] did not consider the outer whitening key. Besides, the complexity
of the attacks in [38] beyond the designer’s security claims.

28 K. Sakamoto et al.

!

"# !

!
$ %

!

&!

!
&$ %

' " (") " *
"

+

&!
! !

* !#

, - , - .

/01234

5 ! !

"#
#

* #
'
! (!

)
! * !

6!

6#

"#
""# !#

Fig. 4: Propagation of active cells for the 10-round attack on QARMA64 under
the RT setting, where the gray areas represent the active cells and tki denotes
the i-th tweakey (i.e., the combination of the i-th round tweak T (i) and the core
key k0).

conditions traverse all possible values while the remaining cells are fixed to
some random constants. Each structure leads to approximately (236)2/2 =
271 differential pairs.

Step 2: For each structure, we simulate the encryption oracle to get the ci-
phertexts C from (P, T (0)) pairs. Then, we insert every ciphertext with its
corresponding plaintext-tweak pair (P, T (0), C) into a hash table H at in-
dex C{0,6,8,10,15}. Thus, each pair from the same index of H satisfies the
differential pattern of ∆C{0,6,8,10,15} = 0. All pairs violating its differential
pattern are discarded without further processing because these pairs have
no hope to comply with the target truncated differential. This step reduces
the differential pair used in the next phase from 271 × S to 251 × S.

Key Recovery Phase. Hereafter, we denote wk0 = w0 ⊕ k0 and wk1 = w1 ⊕ k0.
In the key recovery phase, we try to recover all bits of wk0 and wk1. Once these
bits are recovered, all of the outer whitening and core keys (i.e., w0, w1, k0, and
k1) can be naturally obtained based on the key specialization of QARMA (see
Appendix A). The details of the key recovery phase are described as follows.

Step 1: For each possible 12-bit value of wk0{5,10,15}, we compute ∆a
(1)
{0,4,8,12}

from the plaintexts P and check whether ∆a
(1)
{0,8,12} = 0. This step leads to

a 12-bit filter; thus, the number of surviving differential pairs after this step
is approximately 239 × S.

Parallel SAT Framework to Find Clustering of Differential Characteristics 29

Step 2: For each possible 12-bit value of wk0{1,4,11}, we compute ∆a
(1)
{1,5,9,13}

from the plaintexts P and check whether ∆a
(1)
{1,5,13} = 0. This step leads to

a 12-bit filter; thus, the number of surviving differential pairs after this step
is approximately 227 × S.

Step 3: For each possible 4-bit value of wk012, we compute ∆c
(1)
12 from the plain-

texts P and check whether ∆c
(1)
12 = 0. This step leads to a 4-bit filter; thus,

the number of surviving differential pairs after this step is approximately
223 ×S. Here, we obtain N = 223 ×S pairs that match the input truncated
differential of the 8-round truncated distinguisher.

Step 4: For each possible 4-bit value of wk15, we compute ∆c
(9)
5 from the cipher-

texts C and check whether ∆c
(9)
5 = 0. This step leads to a 4-bit filter; thus,

the number of surviving differential pairs after this step is approximately
219 × S.

Step 5: For each possible 12-bit value of wk1{3,9,12}, we compute ∆a
(9)
{2,6,10,14}

from the ciphertexts C and check whether ∆a
(9)
{6,10,14} = 0. This step leads

to a 12-bit filter; thus, the number of surviving differential pairs after this
step is approximately 27 × S.

Step 6: For each possible 12-bit value of wk1{2,7,13}, we compute ∆a
(9)
{3,7,11,15}

from the ciphertexts C and check whether ∆a
(9)
{3,7,15} = 0. This step leads to

a 12-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2−5 × S.

Step 7: For each possible 16-bit value of wk1{1,4,11,14}, we compute ∆a
(9)
{1,5,9,13}

from the ciphertexts C and check whether ∆a
(9)
{9,13} = 0. This step leads to

a 8-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2−13 × S.

Step 8: For the 72-bit key guesses in total, we prepare counters to confirm the
number of right pairs that validate the differential pairs of the 8-round trun-
cated differential distinguisher. The number of right pairs follows a binomial
distribution with parameters (N, p0 = 2−31.565) in the case of the good key
and (N, p1 = 2−48) otherwise.

Step 9: We fix the threshold as Υ , and the key guess will be accepted as a
candidate if the counter of right pairs is no less than Υ . For all surviving
candidates for the 72-bit key, we exhaustively search for the remaining key
bits with at most two plaintext-ciphertext pairs.

Complexity Analysis. We apply the method in [9] to estimate the complexity.
We denote here α and β as the non-detection error probability and the false
alarm error probability, respectively. Then, we have

β
N→∞∼

(1− p1)
√

Υ/N

(Υ/N − p1)
√

2πN(1− Υ/N)
exp

[
−N ·D

(
Υ

N

∥∥∥∥p1)], (2)

α
N→∞∼

p0
√

1− (Υ − 1)/N

(p0 − (Υ − 1)/N)
√

2π(Υ − 1)
exp

[
−N ·D

(
Υ − 1

N

∥∥∥∥p0)], (3)

30 K. Sakamoto et al.

Table 9: Detailed computation of the time complexity for the 10-round attack.
Step Guessed key bits Time complexity # of remaining pairs Note

Step 1 wk0
{5,10,15} 251 × 212 × 1

10
× S ≈ 259.67 × S 251 × 2−12 × S = 239 × S 1-round enc

Step 2 wk0
{1,4,11} 239 × 224 × 1

10
× S ≈ 259.67 × S 239 × 2−12 × S = 227 × S 1-round enc

Step 3 wk0
12 227 × 228 × 1

10
× S ≈ 251.67 × S 227 × 2−4 × S = 223 × S 1-round enc

Step 4 wk1
5 223 × 232 × 1

10
× S ≈ 251.67 × S 223 × 2−4 × S = 219 × S 1-round dec

Step 5 wk1
{3,9,12} 219 × 244 × 1

10
× S ≈ 259.67 × S 219 × 2−12 × S = 27 × S 1-round dec

Step 6 wk1
{2,7,13} 27 × 256 × 1

10
× S ≈ 259.67 × S 27 × 2−12 × S = 2−5 × S 1-round dec

Step 7 wk1
{1,4,11,14} 2−5 × 272 × 1

10
× S ≈ 263.67 × S 2−5 × 2−8 × S = 2−13 × S 1-round dec

Step 9 remaining bits 2128 × β × (1− 2−64) - 10-round enc

where D(p∥q) ∆
= p · ln(pq) + (1 − p) · ln(1−p

1−q) is the Kullback-Leibler divergence
between two Bernoulli probability distributions with parameters being p and q,
respectively.

Table 9 lists the detailed computation of the time complexity for the 10-
round attack. As with the Guo et al.’s work [20], we try to select the values of
Υ and S such that the following two conditions are validated simultaneously:

– the success probability PS = 1− α is not lower than 80%;
– the overall time complexity of the attack is minimized.

When we set the threshold as Υ = 4 and the number of structures as S =
211.12, we derive the success probability of PS = 80.0% and the false alarm error
probability of β = 2−60.07. To summarize, the 10-round attack on QARMA64
under the RT setting is feasible with the time, data, and memory complexities
of 275.13, 247.12, and 272.00, respectively.

Discussion. We also apply the best differentials presented in Sect. 4.2 for the
10-round attack under the RT setting. Specifically, we append one key-recovery
round before and after the 8-round truncated differential distinguisher with the
probability of 2−28.236 and use the active cell positions of input, tweak, and
output differentials as (3, 6, 12), (2, 6), and (3, 6, 12), respectively. Due to page
limitations, we omit the details of the attack, but the attack can be applied in
a similar way as the above procedure. To summarize, the attack with the best
differential is performed with the time, data, and memory complexities of 283.53,
247.06, and 280.00, respectively, and the success probability of PS = 80.1%. It can
be seen from these results that the 10-round attack with the key-recovery-friendly
differential is about 28.4 times more efficient in terms of the time complexity
than that with the best differential. Therefore, our results suggest that finding
key-recovery-friendly differentials rather than the best differentials is of critical
importance for key recovery attacks based on differential cryptanalysis.

Regarding the designer’s security claim, the multiplication of time and data
complexities (TD) for QARMA64 should be less than 2128−ϵ for a small ϵ (e.g.,

Parallel SAT Framework to Find Clustering of Differential Characteristics 31

ϵ = 2). From this point of view, our 10-round attack is valid because TD =
275.13×247.12 = 2122.25 < 2126. However, our 10-round attack cannot outperform
the existing best one [26] since its performance is TD = 259.0 × 259.0 = 2118.0 <
2122.25. Li et al’s work [26] is based on the technique using the bias of a linear
hull called the key difference invariant bias; thus, it can be regarded as one of
the fields of linear cryptanalysis. In contrast, our work provides the first key
recovery attack based on straightforward differential cryptanalysis. As described
in Sect. 3.3, the proposed SAT-based method enables us to obtain the best
differentials under the specified conditions. Thanks to this, our key recovery
attack based on the straightforward differential cryptanalysis can be performed
with the time and data complexities comparable to the existing best attack on
the 10-round QARMA64 under the RT setting. Therefore, we believe that this is
a significant contribution in terms of the tight security analysis of QARMA64.

11-round Attack on QARMA64 under RT Setting. Our 11-round attack
can be launched in a similar way as described in Sect. 5.2. We provide the details
of the attack in Appendix E. As a result, the 11-round attack on QARMA64
under the RT setting is feasible with the time, data, and memory complexities
of 2111.16, 234.26, and 2111.00, respectively. Our attack appears to be valid when
compared to the exhaustive search for the secret key because 2111.16 < 2128, but
in fact, the attack is invalid in terms of the designer’s security claim because
TD = 2111.16 × 234.26 = 2145.42 > 2126. Also, our attack cannot outperform the
existing best one [27] since its performance is TD = 264.92 × 258.38 = 2123.30 <
2145.42. We note that our attack considers the outer whitening key, whereas the
Liu et al.’s attack [27] did not consider it.

To summarize, our 11-round attack cannot outperform the designer’s security
claim, but we provide the attack that outperforms the standard security notion
(i.e., security against the exhaustive search for the secret key). In addition, our
work provides the first key recovery attack on the 11-round QARMA64 under
the RT setting with the outer whitening key.

5.3 Truncated Differential Attacks on Reduced-Round QARMA128

In this subsection, we provide truncated differential attacks on reduced-round
QARMA128, especially under the RT setting. As with the case of QARMA64,
under the SK setting, our attack was invalid more than nine rounds, whereas
existing studies [38, 40] reported that key recovery attacks were valid up to 10
and 11 rounds9.

Under the RT setting, the noticeable studies [26,27] reported that key recov-
ery attacks were valid up to 11 and 12 rounds. Li et al. [26] proposed a tweak
difference invariant bias attack on 11-round QARMA128 with the time, data,
and memory complexities of 2126.1, 2126.1, and 271.0, respectively. Liu et al. [27]
presented a related-tweak impossible differential attack on 11-round QARMA128
9 The attacks in [40] did not consider the outer whitening key. Besides, the complexity

of the attacks in [38] beyond the designer’s security claims.

32 K. Sakamoto et al.

!

"# !

!
$ %

!

&!

'
!!

(! !

) * + *+

,-./01

2 ! !

"#
"

' "
3
! 4 !

5
! ' !

6!

6"

"# !!

Fig. 5: Propagation of active cells for the 11-round attack on QARMA128 under
the RT setting, where the gray areas represent the active cells and tki denotes
the i-th tweakey (i.e., the combination of the i-th round tweak T (i) and the core
key k0).

with the time, data, and memory complexities of 2137.0, 2111.38, and 2248.38, re-
spectively. Moreover, Liu et al. [27] presented a related-tweak meet-in-the-middle
attack on 12-round QARMA128 with the time, data, and memory complexities
of 2156.06, 288.00, and 2244.06, respectively. We note that the Liu et al.’s related-
tweak impossible differential attack did not consider the outer whitening key.
From these reports, our targets are 11 or more rounds of QARMA128 under the
RT setting, and our attacks do consider the outer whitening key.

We first focused on the use of the 9-round truncated differential listed in
Table 8, but we were faced with the fact that it would be difficult to validate the
11-round attack with this truncated differential. For this reason, we provide here
key recovery attacks on the 11-, 12-, and 13-round QARMA128 under the RT
setting with the 10-round truncated differential listed in Table 8. We can only
append at most three key-recovery rounds to the 10-round truncated differential
distinguisher; thus, it must be mentioned that the feasibility of our attacks is up
to 13 rounds.

11-round Attack on QARMA128 under RT Setting. To launch our 11-
round attack, we append only one key-recovery round before the 10-round trun-
cated differential distinguisher. Fig. 5 shows the propagation of active cells for
the 11-round attack on QARMA128 under the RT setting, where the gray areas
represent the active cells and tki denotes the i-th tweakey (i.e., the combina-
tion of the i-th round tweak T (i) and the core key k0). We note that a(1), a(11),

Parallel SAT Framework to Find Clustering of Differential Characteristics 33

and tk(2) represent the target input, output, and tweak differentials, respectively.
Our attack is based on the following two phases: data collection and key recovery
phases.

Data Collection Phase. From Fig. 5, the plaintext P{0,1,5,7,8,13,15} and the tweak
T

(0)
1 are always active. In addition, ∆a

(0)
1 = ∆P1⊕∆T

(0)
1 = 0 (i.e., ∆P1 = ∆T

(0)
1)

must hold. Under these conditions, the details of the data collection phase are
described as follows.

Step 1: We prepare S structures. In each structure, there are 256 plaintext-
tweak pairs such that the plaintext P and the tweak T (0) satisfying the above
conditions traverse all possible values while the remaining cells are fixed to
some random constants. Each structure leads to approximately (256)2/2 =
2111 differential pairs.

Step 2: For each structure, we simulate the encryption oracle to get the ci-
phertexts C from (P, T (0)) pairs. Then, we insert every ciphertext with its
corresponding plaintext-tweak pair (P, T (0), C) into a hash table H at in-
dex C{0,2,3,5,6,7,8,9,10,12,13,15}∥tk

(11)
5 . Thus, each pair from the same index of

H satisfies the differential pattern of ∆C{0,2,3,6,7,8,9,10,12,13,15} = 0. In ad-
dition, ∆a

(11)
5 = ∆C5 ⊕ ∆tk

(11)
5 = 0 (i.e., ∆C5 = ∆tk

(11)
5) must hold. All

pairs violating its differential pattern are discarded without further process-
ing because these pairs have no hope to comply with the target truncated
differential. This step reduces the differential pair used in the next phase
from 2111×S to 215×S. Here, we obtain N = 215×S pairs that match the
output truncated differential of the 10-round truncated distinguisher.

Key Recovery Phase. Hereafter, we denote wk0 = w0 ⊕ k0 and wk1 = w1 ⊕ k0.
In the key recovery phase, we try to recover all bits of wk0 and wk1. Once these
bits are recovered, all of the outer whitening and core keys (i.e., w0, w1, k0, and
k1) can be naturally obtained based on the key specialization of QARMA (see
Appendix A). The details of the key recovery phase are described as follows.

Step 1: For each possible 24-bit value of wk0{0,5,15}, we compute ∆a
(1)
{0,4,8,12}

from the plaintexts P and check whether ∆a
(1)
{0,8,12} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2−9 × S.

Step 2: For each possible 24-bit value of wk0{7,8,13}, we compute ∆a
(1)
{3,7,11,15}

from the plaintexts P and check whether ∆a
(1)
{3,7,11} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2−33×S. ∆a

(1)
{1,2,5,6,9,10,13,14} = 0 must be derived from the

collected data; thus, the key guessing part is completed here.
Step 3: For the 48-bit key guesses in total, we prepare counters to confirm the

number of right pairs that validate the differential pairs of the 10-round trun-
cated differential distinguisher. The number of right pairs follows a binomial

34 K. Sakamoto et al.

Table 10: Detailed computation of the time complexity for the 11-round attack.
Step Guessed key bits Time complexity # of remaining pairs Note

Step 1 wk0
{0,5,15} 215 × 224 × 1

11
× S ≈ 235.54 × S 215 × 2−24 × S = 2−9 × S 1-round enc

Step 2 wk0
{7,8,13} 2−9 × 248 × 1

11
× S ≈ 235.54 × S 2−9 × 2−24 × S = 2−33 × S 1-round enc

Step 4 remaining bits 2256 × β × (1− 2−128) - 11-round enc

distribution with parameters (N, p0 = 2−80.431) in the case of the good key
and (N, p1 = 2−112) otherwise.

Step 4: We fix the threshold as Υ , and the key guess will be accepted as a
candidate if the counter of right pairs is no less than Υ . For all surviving
candidates for the 48-bit key, we exhaustively search for the remaining key
bits with at most two plaintext-ciphertext pairs.

Complexity Analysis. We use the same method for the complexity analysis as
described in Sect. 5.2, but the non-detection error probability α cannot be cal-
culated correctly using Equation (3). This is likely due to the very large value
of N and the very small value of p0. For this reason, to correctly calculate α,
we use the well-known de Moivre–Laplace theorem to approximate the binomial
distribution to the normal distribution, and then directly exploit the probability
density function of the normal distribution. Table 10 lists the detailed computa-
tion of the time complexity for the 11-round attack. When we set the threshold
as Υ = 5 and the number of structures as S = 268.05, we derive the success
probability of PS = 80.3% and the false alarm error probability of β = 2−158.84.
To summarize, the 11-round attack on QARMA128 under the RT setting is feasi-
ble with the time, data, and memory complexities of 2104.60, 2124.05, and 248.00,
respectively.

Discussion. Regarding the designer’s security claim, the multiplication of time
and data complexities (TD) for QARMA128 should be less than 2256−ϵ for a
small ϵ (e.g., ϵ = 2). From this point of view, our 11-round attack is valid
because TD = 2104.60×2124.05 = 2228.65 < 2254. In addition, our 11-round attack
outperforms the existing best one with the outer whitening key [26] since its
performance is TD = 2126.1×2126.1 = 2252.2 > 2228.65. Therefore, we provide the
best key recovery attack on the 11-round QARMA128.

12/13-round Attack on QARMA128 under RT Setting. Our 12- and 13-
round attacks can be launched in a similar way as described in Sect. 5.3. We
provide the details of the attacks in Appendices F and G.

The 12-round attack on QARMA128 under the RT setting is feasible with the
time, data, and memory complexities of 2154.53, 2108.52, and 2144.00, respectively.
Our 12-round attack appears to be valid when compared to the exhaustive search
for the secret key because 2154.53 < 2256, but in fact, the attack is invalid in terms
of the designer’s security claim because TD = 2154.53 × 2108.52 = 2263.05 > 2254.

Parallel SAT Framework to Find Clustering of Differential Characteristics 35

Also, our 12-round attack cannot outperform the existing best one [27] since
its performance is TD = 2156.06 × 288.00 = 2244.06 < 2263.05. In contrast, the
13-round attack on QARMA128 under the RT setting is feasible with the time,
data, and memory complexities of 2238.02, 2106.63, and 2211.00, respectively. Our
13-round attack is also invalid in terms of the designer’s security claim because
TD = 2238.02×2106.63 = 2344.65 > 2254. We note that this is the first key recovery
attack on the 13-round QARMA128 under the RT setting.

To summarize, our 12- and 13-round attacks cannot outperform the designer’s
security claim, but we provide the attack that outperforms the standard security
notion (i.e., security against the exhaustive search for the secret key). In addition,
our work provides the first key recovery attack on the 13-round QARMA128 under
the RT setting with the outer whitening key.

6 Difficulty of Applying the Key-Recovery Attack on
PRINCE

In this section, we examine the key-recovery attack on PRINCE and PRINCEv2 us-
ing the (truncated) differentials discovered by our method. Similarly to QARMA,
the security claim of PRINCE relies on the concept of the tradeoff security,
i.e, the attacker is restricted to exploiting the time/data complexity of up to
2(time×data) < 2126. For PRINCEv2, the designers claim its security to be below
< 2112 and < 247 of time and data complexities, respectively.

6.1 Key-Recovery Attack on PRINCE

As demonstrated in the multiple differential attacks proposed by Canteaut et
al. [14], we can append the key-recovery rounds up to 2 rounds to both encryption
and decryption sides by searching differentials started from the output of MC
to the input of SB−1. To improve the known best attack, we adopt the following
two approaches:

Approach 1. We attempt to mount the key-recovery attack on the 6- or 7-
round truncated differentials to attack the 10- or 11-round PRINCE with a
similar approach as described in Sect. 5.

Approach 2. We attempt to enhance the probability of the multiple differen-
tials utilized in the attack proposed by Canteaut et al. to improve their time
and data complexities.

Approach 1. To explore the differentials for approach 1, we endeavor to con-
struct the truncated differentials with a probability being greater than 2−64 on
the 6- and 7- round PRINCE by Algorithm 1. To minimize the time and data
complexities, we place limitations on the truncated differentials: only the same
two rows are affected by active cells in the input and output differences after
appending the key-recovery rounds. Fig. 6a displays the six patterns conform-
ing to these restrictions, and we search for such differentials with the highest

36 K. Sakamoto et al.

Din Dout

2 round

Plaintext Ciphertext

2 round

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Pattern 5

Pattern 6

(a) Differentials for approach 1.

SB MC SR SB

WKin K1 ⊕RC4−r1

Plaintext

SB−1 MC−1 SR−1 SB−1

Ciphertext

WKout K1 ⊕RC7+r1

6 rounds

Din

Dout

(b) Differentials for approach 2.

Fig. 6: Key-recovery-friendly (truncated) differentials for PRINCE and PRINCEv2.
In Fig. 6b, WKin/out, K1, and RCi denote the whitening keys in the in-
put/output, round key, and round constant, respectively. The index of the cells
follows that of QARMA.

probability. As a result, we successfully discovered several truncated differen-
tials that fit these patterns with a probability greater than 2−64 in both 6 and
7 rounds. For 6 rounds, we identified a truncated differential with a probability
of 2−52, with four active cells in both Din and Dout in the pattern 1, 2, and 5.
We here take pattern 1 as an example and attempt to apply the key-recovery
attack to the 10-round PRINCE. We first prepare S structures, each of which
contains 232 plaintext with the same selection manner as in Sect. 5. Since the
corresponding ciphertext differences in row 1 and 2 must hold 0, we obtain the
263 × 2−32 × S = 231 × S pairs that possibly match the truncated differential.
In the key recovery phase from the encryption side, 231×S pairs are reduced to
215 × S by a 16-bit filter because the truncated differential that we found has
four active cells in Din. As we can construct at most S ≤ 232 structures, this
attack does not work due to 215×232 ≤ 252. The same situation occurs with the
7-round truncated differential because its probability10 is much lower than that
of the 6-round truncated differential. Therefore, we conclude that improving the
known best attack to PRINCE by the truncated differential attack is hard.

Approach 2. We search for the differentials illustrated in Fig. 6b by Algorithm 1,
which is the ones used in the known best key recovery attack [14]. As a result,
we discover four differentials with the probability 2−57.678, as well as some dif-
ferentials with the probability 2−58.607. However, since Canteaut et al. employ
twelve differentials with a probability of 2−56.42 in their multiple differential at-
tacks, our differentials do not allow for any improvements to their attack. This

10 We found the 7-round truncated differential with the probability 2−62.985 in the
pattern 1.

Parallel SAT Framework to Find Clustering of Differential Characteristics 37

gap in the probabilities comes from the difference in the method of construction
differentials. Canteaut et al. theoretically construct differentials based on the
transition matrix while our method does it by directly gathering multiple differ-
ential characteristics with the weight from 62 to 81. We expect that it is possible
to further improve the probability of our differentials by taking the wider range
of the clustering effect into account. However, it takes more computational cost,
and we cannot do it with our computational environment. Therefore, our tool
confirms that the existing differentials by Canteaut et al. [14] are the best ones
for the purpose of key recovery attacks.

6.2 Key-Recovery Attack on PRINCEv2

The known best attack is proposed by the designers which is the 8-round attack
by the integral attack. Hence, we aim to carry out a key-recovery attack on the
9-round PRINCEv2. As approach 2 to PRINCEv2 has already been tried by the
designers and showed that it did not work, we focus solely on approach 1.

We cannot employ the 6-round truncated differentials discovered in Sect. 6.1
for the key-recovery attack on PRINCEv2 because of the limitation of the data
complexity being less than 247. Therefore, we search for truncated differentials in
5 rounds under the same limitation as depicted in Fig. 6a. As a result, we found
the truncated differentials with the probability 2−43.977 in pattern 2. However,
we found applying them to the key-recovery attack impossible because the same
situation, as in the case of PRINCE, occurs if a more than 4-bit filter is applied in
the key-recovery phase. To avoid this issue, we construct truncated differentials
that the pairs of the plaintext are unfiltered in the key-recovery phase, but this
leads to the probability of the wrong-key suggestion p1 being considerably greater
than the probability of the right-key suggestion p0, thus rendering the recovery
of the correct key impossible. Thus, we conclude that it is difficult to mount the
key-recovery attack on the 9-round PRINCEv2.

7 Conclusion

We provide a new generic SAT-based automatic search framework to find a good
differential under the specified conditions. Our framework introduces a method
to solve incremental SAT problems in parallel using a multi-threading technique,
and consequently, it allows us to evaluate differentials more comprehensively
than any other previous methods.

Our framework can be applied to a wide class of symmetric-key primitives.
In this study, to demonstrate the effectiveness of our framework, we apply it to
PRINCE and QARMA from aspects of distinguishing and key recovery attacks.
Our results are summarized as follows:

– We specify the conditions for finding a good differential to build a distin-
guisher and conduct experiments using our framework. As a result, we im-
prove previous differential bounds for all variants of the target ciphers.

38 K. Sakamoto et al.

– We investigate the gap in the probability between a differential characteristic
and a differential for PRINCE and QARMA and find that different design
strategies for the linear layers has a significant impact on this gap.

– We specify the conditions for finding the best differentials for performing
the key recovery attacks and conduct experiments using our framework. As
a result, our attacks cannot outperform the previous best attack for almost
all variants of the target ciphers, but we demonstrated that our framework is
valid in evaluating the tight security of the symmetric-key primitives against
key-recovery attacks based on straightforward differential cryptanalysis.

For future direction, it would be interesting to expand the incremental SAT
problem to more efficiently find the optimal differential/linear characteristics
and other kinds of distinguishers. Further, it would be useful for future designs
to more comprehensively investigate the impact of the design construction on
the gap in the probability between a differential characteristic and a differential.

Acknowledgments

Takanori Isobe is supported by JST, PRESTO Grant Number JPMJPR2031.
These research results were also obtained from the commissioned research (No.05801)
by National Institute of Information and Communications Technology (NICT),
Japan.

References

1. Ankele, R., Dobraunig, C., Guo, J., Lambooij, E., Leander, G., Todo, Y.: Zero-
correlation attacks on tweakable block ciphers with linear tweakey expansion. IACR
Trans. Symmetric Cryptol. 2019(1), 192–235 (2019)

2. Ankele, R., Kölbl, S.: Mind the gap - A closer look at the security of block ciphers
against differential cryptanalysis. In: SAC. Lecture Notes in Computer Science,
vol. 11349, pp. 163–190. Springer (2018)

3. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017)

4. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: CP. Lecture Notes in Computer Science, vol. 2833, pp. 108–122.
Springer (2003)

5. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A block cipher for low energy. In: ASIACRYPT (2). Lecture
Notes in Computer Science, vol. 9453, pp. 411–436. Springer (2015)

6. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO (2). Lecture Notes in Computer Science, vol. 9815,
pp. 123–153. Springer (2016)

7. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
CRYPTO. Lecture Notes in Computer Science, vol. 537, pp. 2–21. Springer (1990)

Parallel SAT Framework to Find Clustering of Differential Characteristics 39

8. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: FSE. Lecture Notes in Computer Science, vol. 8540, pp. 546–570.
Springer (2014)

9. Blondeau, C., Gérard, B., Tillich, J.: Accurate estimates of the data complexity
and success probability for various cryptanalyses. Des. Codes Cryptogr. 59(1-3),
3–34 (2011)

10. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: ASIACRYPT. Lecture Notes in Computer
Science, vol. 7658, pp. 208–225. Springer (2012)

11. Boura, C., David, N., Boissier, R.H., Naya-Plasencia, M.: Better steady than
speedy: Full break of SPEEDY-7-192. IACR Cryptol. ePrint Arch. p. 1351 (2022)

12. Bozilov, D., Eichlseder, M., Knezevic, M., Lambin, B., Leander, G., Moos, T.,
Nikov, V., Rasoolzadeh, S., Todo, Y., Wiemer, F.: Princev2 - more security for
(almost) no overhead. In: SAC. Lecture Notes in Computer Science, vol. 12804,
pp. 483–511. Springer (2020)

13. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI Synthesis, The Kluwer International Se-
ries in Engineering and Computer Science, vol. 2. Springer (1984)

14. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.: Multiple
differential cryptanalysis of round-reduced PRINCE. In: FSE. Lecture Notes in
Computer Science, vol. 8540, pp. 591–610. Springer (2014)

15. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC. pp. 151–
158. ACM (1971)

16. Ding, Y., Zhao, J., Li, L., Yu, H.: Impossible differential analysis on round-reduced
PRINCE. J. Inf. Sci. Eng. 33(4), 1041–1053 (2017)

17. Dobraunig, C., Eichlseder, M., Kales, D., Mendel, F.: Practical key-recovery attack
on MANTIS5. IACR Trans. Symmetric Cryptol. 2016(2), 248–260 (2016)

18. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: SAT. Lecture Notes in Computer Science, vol. 3569, pp. 61–75.
Springer (2005)

19. Erlacher, J., Mendel, F., Eichlseder, M.: Bounds for the security of ascon against
differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2022(1),
64–87 (2022)

20. Guo, H., Sun, S., Shi, D., Sun, L., Sun, Y., Hu, L., Wang, M.: Differential attacks
on CRAFT exploiting the involutory s-boxes and tweak additions. IACR Trans.
Symmetric Cryptol. 2020(3), 119–151 (2020)

21. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. J. Satisf. Boolean
Model. Comput. 6(4), 245–262 (2009)

22. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 9215, pp. 161–185.
Springer (2015)

23. Kölbl, S., Roy, A.: A brief comparison of simon and simeck. In: LightSec. Lecture
Notes in Computer Science, vol. 10098, pp. 69–88. Springer (2016)

24. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In:
EUROCRYPT. Lecture Notes in Computer Science, vol. 547, pp. 17–38. Springer
(1991)

25. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY family of block
ciphers engineering an ultra low-latency cipher from gate level for secure proces-

40 K. Sakamoto et al.

sor architectures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 510–545
(2021)

26. Li, M., Hu, K., Wang, M.: Related-tweak statistical saturation cryptanalysis and
its application on QARMA. IACR Trans. Symmetric Cryptol. 2019(1), 236–263
(2019)

27. Liu, Y., Zang, T., Gu, D., Zhao, F., Li, W., Liu, Z.: Improved cryptanalysis of
reduced-version QARMA-64/128. IEEE Access 8, 8361–8370 (2020)

28. Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with ap-
plications to SPECK and chaskey. In: ACNS. Lecture Notes in Computer Science,
vol. 9696, pp. 485–499. Springer (2016)

29. Matsui, M.: On correlation between the order of s-boxes and the strength of DES.
In: EUROCRYPT. Lecture Notes in Computer Science, vol. 950, pp. 366–375.
Springer (1994)

30. McCluskey, E.J.: Minimization of Boolean functions. The Bell System Technical
Journal 35(6), 1417–1444 (1956)

31. Quine, W.V.: The problem of simplifying truth functions. The American mathe-
matical monthly 59(8), 521–531 (1952)

32. Quine, W.V.: A way to simplify truth functions. The American mathematical
monthly 62(9), 627–631 (1955)

33. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
CP. Lecture Notes in Computer Science, vol. 3709, pp. 827–831. Springer (2005)

34. Sun, L., Wang, W., Wang, M.: More accurate differential properties of LED64 and
midori64. IACR Trans. Symmetric Cryptol. 2018(3), 93–123 (2018)

35. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear
characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1),
269–315 (2021)

36. Wang, S., Feng, D., Hu, B., Guan, J., Shi, T., Zhang, K.: The simplest SAT model of
combining matsui’s bounding conditions with sequential encoding method. IACR
Cryptol. ePrint Arch. p. 626 (2022)

37. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

38. Yang, D., Qi, W., Chen, H.: Impossible differential attack on QARMA family of
block ciphers. IACR Cryptol. ePrint Arch. p. 334 (2018)

39. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck Family
of Lightweight Block Ciphers. In: CHES. Lecture Notes in Computer Science,
vol. 9293, pp. 307–329. Springer (2015)

40. Zong, R., Dong, X.: Meet-in-the-middle attack on QARMA block cipher. IACR
Cryptol. ePrint Arch. p. 1160 (2016)

41. Zong, R., Dong, X.: Milp-aided related-tweak/key impossible differential attack
and its applications to qarma, joltik-bc. IEEE Access 7, 153683–153693 (2019)

A Specifications of PRINCE, PRINCEv2, and QARMA

PRINCE and PRINCEv2. PRINCE [10] and PRINCEv211 [12] are two families
of a block cipher with a 64-bit block and 128-bit key. Both ciphers have the
11 The differential characteristics and differentials are identical since PRINCE and

PRINCEv2 have the same round function except for the round constants and how to
insert the round keys and we do not care about the influence of the round keys on
the internal differences in this work.

Parallel SAT Framework to Find Clustering of Differential Characteristics 41

Table 11: 4-bit S-box of SB.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) b f 3 2 a c 9 1 6 7 8 0 e 5 d 4

Table 12: Permutation of SR.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

same structure except for the round constant, key scheduling, and how to insert
the round keys. Both PRINCE and PRINCEv2 are constructed in the same three
functions the forward round function FR, middle round function MR, and backward
round function BR as follows:

FR(·) = SR ◦MC ◦ SB(·),
MR(·) = SB−1 ◦MC ◦ SB(·),
BR(·) = SB−1 ◦MC−1 ◦ SR−1(·).

SB is the parallel use of the 4-bit S-box defined by Table 11. SR is the shift row
operation that applies the same permutation used in AES as shown in Table 12.
MC is the MixColumns operation composed from the following four basic 4× 4
binary matrices:

M1 = diag(0, 1, 1, 1), M2 = diag(1, 0, 1, 1), M3 = diag(1, 1, 0, 1), M4 = diag(1, 1, 1, 0),

where diag() denotes a diagonal matrix. These four matrices build two 16× 16
binary matrices as follows:

M̂ (0) =


M1 M2 M3 M4

M2 M3 M4 M1

M3 M4 M1 M2

M4 M1 M2 M3

 , M̂ (1) =


M2 M3 M4 M1

M3 M4 M1 M2

M4 M1 M2 M3

M1 M2 M3 M4

 .

Finally, M̂ (0) and M̂ (1) build the 64× 64 matrix M ′ applied in MC as follows:

M ′ = diag(M̂ (0), M̂ (1), M̂ (1), M̂ (0)).

The total number of rounds can be expressed as (r1+2+r2) when the number
of rounds for FR, MR, and BR are r1, 2, and r2, respectively. Notably, MR has two
rounds while FR and BR have one, i.e., the number of rounds is counted by the
number of SB and SB−1. More information is provided in [10,12].

QARMA. QARMA [3] is a family of lightweight tweakable block ciphers. It has
two variants, QARMA64 and QARMA128, that support the block size n of 64
bits and 128 bits, respectively. The corresponding tweak size is equal to n bits,
while the master key K has 2n bits. All n-bit values can be viewed as an array
of 16 m-bit cells or 4× 4 matrices, i.e.,

IS = s0||s1|| · · · ||s14||s15 =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15



42 K. Sakamoto et al.

so that 4×4 matrices operate column-wise on these values by left multiplication.
Next, we briefly introduce the round and tweak update functions.

Round Function. The round function is composed of the following operations:

AddRoundTweakey. The i-th round tweakey, which consists of the round key and
round constant, is XORed to IS.

ShuffleCells. (τ(IS))i = sτ(i) for 0 ≤ i ≤ 15, where τ is the cell permutation
of Midori [5], i.e., τ = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

MixColumns. Each column of IS is multiplied by the matrix M , i.e., IS = M · IS.
The matrix M is defined as follows:

M = circ(0, ρa, ρb, ρc) =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ,

where ρi is a simple left circular rotation of the element by i bits. The
matrix of QARMA64 is selected as M = M = Q = circ(0, ρ1, ρ2, ρ1), while
the matrix of QARMA128 is selected as M = M = Q = circ(0, ρ1, ρ4, ρ5).

SubCells. si ← σ(si) for 0 ≤ i ≤ 15, where σ is the chosen S-box. We choose
σ0 = [0, 14, 2, 10, 9, 15, 8, 11, 6, 4, 3, 7, 13, 12, 1, 5]. Details are provided in [3].

In this study, we separate the round function of QARMA into five parts: the
initial tweakey masking IT, forward round function FR, middle round function
MR, backward round function BR, and final tweakey masking FT. Notably, this
separation differs from that of the original design [3]. IT and FT execute only
AddRoundTweakey. FR, MR, and BR are redefined as follows:

FR(IS) = M ◦ τ ◦ AddRoundTweakey ◦ S(IS),
MR(IS) = S ◦ τ ◦ AddRoundTweakey ◦Q ◦ τ ◦ S(IS),
BR(IS) = S ◦ AddRoundTweakey ◦ τ ◦M(IS).

This structural separation allows QARMA to be considered to have the same
structure as PRINCE and PRINCEv2, i.e., MR has two rounds in these ciphers. In
the following, the total number of rounds is expressed as (r1+2+r2) when the
number of rounds for FR, MR, and BR are r1, 2, and r2, respectively.

Tweak Update. The cells of the tweak are permuted as h(T) = th(0)|| · · · ||th(15),
where h is the same permutation h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11]
used in MANTIS [6]. Then, an LFSR ω updates the tweak cells with indexes 0, 1,
3, 4, 8, 11, and 13. For QARMA64, ω is a maximal period LFSR that maps cell
(b3, b2, b1, b0) to (b0 ⊕ b1, b3, b2, b1). For QARMA128, it maps cell (b7, b6, . . . , b0)
to (b0 ⊕ b2, b7, b6, . . . , b1).

Parallel SAT Framework to Find Clustering of Differential Characteristics 43

B Modeling for Each Operation

We provide a detailed description of how to construct a SAT model for each
operation by referring to the existing method proposed by Sun et al. [34,35] and
Wang et al. [36].

B.1 Modeling for an XOR [34,35]

Let (a0, a1, . . . , ai−1) and b be the input and output differences of an XOR
operation with i inputs, respectively. Hence, a0 ⊕ a1 ⊕ · · · ⊕ ai−1 = b. Let X
be the set {(x0, x1, . . . , xi) ∈ Fi+1

2 | (x0 ⊕ x1 ⊕ · · · ⊕ xi) = 1}. The following
variables and clauses are sufficient to express the differential propagation for an
XOR operation with i inputs:

Mvar ← (a0, a1, . . . , ai−1, b, x0, x1, . . . , xi),

Mcla.xor ← (a0 ⊕ x0) ∨ (a1 ⊕ x1) ∨ · · · ∨ (ai−1 ⊕ xi−1) ∨ (b⊕ xi) ∈ X.

B.2 Modeling for a Copy [34,35]

Let a and (b0, b1, . . . , bi−1) be the input and output differences of a copy opera-
tion, respectively. Hence, a = b0 = b1 = · · · = bi−1. The following variables and
clauses are sufficient to express the differential propagation for a copy operation:

Mvar ← (a, b0, b1, . . . bi−1),

Mcla.copy ←

{
a ∨ bj for 0 ≤ j ≤ i− 1,

a ∨ bj for 0 ≤ j ≤ i− 1.

B.3 Modeling for a Matrix

Let (a0, a1, . . . , ai−1) and (b0, b1, . . . , bi−1) be the input and output differences
of an i × i matrix, respectively. As a matrix can be decomposed to XOR and
copy operations, the differential propagation for an i × i matrix can be ex-
pressed by Mcla.xor and Mcla.copy with some auxiliary Boolean variables. Let
(x0, x1, . . . , xj−1) be the auxiliary Boolean variables, where j is equal to the
total number of the input terms in all equations decomposed from an i× i ma-
trix. The following variables and clauses are sufficient to express the differential
propagation for an i× i matrix:

Mvar ← (a0, a1, . . . , ai−1, b0, b1, . . . bi−1, x0, x1, . . . , xj−1),

Mcla.matrix ←

{
Mcla.xor for all XORs to be decomposed from a matrix,
Mcla.copy for all copies to be decomposed from a matrix.

For a better understanding, we take the following 3× 3 matrix as an example:0 1 1
1 0 1
1 1 0

a0
a1
a2

 =

b0
b1
b2

 .

44 K. Sakamoto et al.

This 3× 3 matrix can be decomposed as follows:

a1 ⊕ a2 = b0,

a0 ⊕ a2 = b1,

a0 ⊕ a1 = b2.

Because these are six input terms in total, we prepare six auxiliary Boolean
variables (xi,0, xi,1) for 0 ≤ i ≤ 2. Then, we can construct the model for this
matrix as follows:

Mvar ← (a0, a1, a2, b0, b1, b2, x0,0, x0,1, x1,0, x1,1, x2,0, x2,1),

Mcla.xor ←


x1,0 ∨ x2,0 ∨ b0,

x1,0 ∨ x2,0 ∨ b0,

x1,0 ∨ x2,0 ∨ b0,

x1,0 ∨ x2,0 ∨ b0,


x0,0 ∨ x2,1 ∨ b1,

x0,0 ∨ x2,1 ∨ b1,

x0,0 ∨ x2,1 ∨ b1,

x0,0 ∨ x2,1 ∨ b1,


x0,1 ∨ x1,1 ∨ b2,

x0,1 ∨ x1,1 ∨ b2,

x0,1 ∨ x1,1 ∨ b2,

x0,1 ∨ x1,1 ∨ b2,

Mcla.copy ←

{
ai ∨ xi,j 0 ≤ i ≤ 2, 0 ≤ j ≤ 1,

ai ∨ xi,j 0 ≤ i ≤ 2, 0 ≤ j ≤ 1,

Mcla.matrix ←

{
Mcla.copy,

Mcla.xor.

Apart from the above method, another method exists to model a matrix more
efficiently. Instead of introducing the auxiliary Boolean variable, we can directly
place each input variable to each equation which is decomposed from a 3 × 3
matrix, as follows:

Mvar ← (a0, a1, a2, b0, b1, b2),

Mcla.xor ←


a1 ∨ a2 ∨ b0,

a1 ∨ a2 ∨ b0,

a1 ∨ a2 ∨ b0,

a1 ∨ a2 ∨ b0,


a0 ∨ a2 ∨ b1,

a0 ∨ a2 ∨ b1,

a0 ∨ a2 ∨ b1,

a0 ∨ a2 ∨ b1,


a0 ∨ a1 ∨ b2,

a0 ∨ a1 ∨ b2,

a0 ∨ a1 ∨ b2,

a0 ∨ a1 ∨ b2,

Mcla.matrix ←Mcla.xor.

The above model does not contain a model for a copy operation by removing the
auxiliary Boolean variable. In fact, a model for a copy operation must not be
used through a whole SAT model, because all copy operations can be realized by
inputting the proper Boolean variables into the suitable clauses. Because keeping
the number of Boolean variables and clauses in a whole SAT model as few as
possible contributes to reducing runtime to solve a SAT problem, we do not use
a model for a copy operation in our modeling.

B.4 Modeling for an S-box [34–36]

Let a = (a0, a1, . . . , ai−1) and b = (b0, b1, . . . , bi−1) be the input and out-
put differences of an i-bit S-box, respectively. Additionally, we must introduce

Parallel SAT Framework to Find Clustering of Differential Characteristics 45

additional Boolean variables p = (p0, p1, . . . , pj−1), where j is the maximum
weight of the differential propagation through an i-bit S-box and pq ∈ {0, 1} for
1 ≤ q ≤ j − 1, to count the differential probability as an S-box is a probabilis-
tic operation. With these Boolean variables, we construct the following Boolean
formula:

f(a, b,p) =

{
1 if Pr(a→ b) = 2−

∑j−1
q=0 pq ,

0 otherwise.
(4)

Notably, these are multiple choices of p for each possible propagation a →
b. For example, we have three choices (p0, p1, p2) ∈ {(0, 1, 1), (1, 1, 0), (1, 0, 1)}
when 2−

∑2
q=0 pq = 2−2. In Eq. (4), we chose only one arbitrary choice, namely

f(a, b,p) can be one if and only if p is this one arbitrary choice. Then, we extract
a set A, which contains all vectors satisfying f(x,y, z) = 0 as follows:

A = {(x,y, z) ∈ F2i+j
2 | f(x,y, z) = 0},

where x = (x0, x1, . . . , xi−1), y = (y0, y1, . . . , yi−1), and z = (z0, z1, . . . , zj−1).
Because A is a set of invalid patterns in a model of an S-box, we ban these
patterns by the following clauses:

i−1∨
c=0

(ac ⊕ xc) ∨
i−1∨
d=0

(bd ⊕ yd) ∨
j−1∨
e=0

(pe ⊕ ze) = 1, (x,y, z) ∈ A. (5)

The remaining vectors that are identical to A are a set of valid patterns. There-
fore, these clauses extract the differential propagation with corresponding weight
over an i-bit S-box. Note that the solution space of |A| clauses about (a, b,p) in
Eq. (5) is identical to that of the following Boolean function:

g(a, b,p) =

|A|−1∧
η=0

(
i−1∨
c=0

(ac ⊕ xη
c) ∨

i−1∨
d=0

(bd ⊕ yηd) ∨
j−1∨
e=0

(pe ⊕ zηe)

)
= 1.

This Boolean function is equivalent to

g(a, b,p) =
∧

(x,y,z)∈F2i+j
2

(
g(x,y, z) ∨

i−1∨
c=0

(ac ⊕ xη
c) ∨

i−1∨
d=0

(bd ⊕ yηd) ∨
j−1∨
e=0

(pe ⊕ zηe)

)
.

This equation is called the product-of-sum of g. The issue of reducing the num-
ber of clauses in g is turned into the issue of simplifying the product-of-sum
representation of the Boolean function. Owing to previous works [28,34,35], we
know that this can be solved by the Quine-McCluskey algorithm [30–32] and
Espresso algorithm [13]. When this problem is relatively small, we can solve it
by software, such as Logic Friday12, although it is NP-complex. In this study, we
12 http://www.sontrak.com/

46 K. Sakamoto et al.

construct a model for an S-box by Logic Friday to reduce the number of clauses
in g. Therefore, the following variables and clauses are sufficient to express the
differential propagation with corresponding weight over an i-bit S-box:

Mvar ← (a0, a1, . . . , ai−1, b0, b1, . . . , bi−1, p0, p1, . . . , pj−1),

Mcla.sbox ← min (g(a, b,p)) .

B.5 Modeling for a Sequential Encoding Counter [33]

Let (p
(r)
0 , p

(r)
1 , . . . , p

(r)
i−1) be the Boolean variables to explain the weight of an

S-box, where r and i denote the number of rounds and the total number of such
variables in a single round, respectively. For a better understanding, we redefine
them as the sequential Boolean variables like (p0, p1, . . . , pr·i−1). Additionally,
we introduce the auxiliary Boolean variables (s0,k, s1,k, . . . , sr·i−1,k) for 0 ≤ k ≤
B−1, where B denotes a certain bound. The following variables and clauses are
sufficient to express the sequential encoding counter

∑r·i−1
j=0 pj ≤ B:

Mvar ← (p0, p1, . . . , pr·i−1, s0,0, s1,0, . . . , sr·i−1,B−1),

Mcla.sec(B) ←



p0 ∨ s0,0,

s0,m, 1 ≤ m ≤ B − 1,

pn ∨ sn,0,

sn−1,0 ∨ sn,0,

pn ∨ sn−1,l−1 ∨ sn,l,

sn−1,l ∨ sn,l,

}
1 ≤ l ≤ B − 1

pn ∨ sn−1,B−1,


1 ≤ n ≤ r · i− 2

pr·i−1 ∨ sr·i−2,B−1.

B.6 Modeling for Constraint of Input Differences

Let (a0, a1, . . . , ai−1) be Boolean variables to express the differences at the first
operation in a cipher (basically, i matches the block size of a cipher). The follow-
ing clauses are sufficient to avoid trivial differential characteristics, as all input
differences are zero at the same time:

Mcla.input ← a0 ∨ a1 ∨ · · · ∨ ai−1.

B.7 Modeling for Evaluation of a Clustering Effect

Let (aj,0, aj,1, . . . , aj,i−1) be Boolean variables to express the differences in the
input of the j-th round, where i is the position of bits. With an r-round differ-
ential characteristics C = (c0, c1, . . . , cr), where cm = (cm,0, cm,1, . . . , cm,i−1),
we can fix the input and output differences to c0 and cr, respectively, by the
following clauses:

Mcla.clust ←

{
a0,n ⊕ c0,n for 0 ≤ n ≤ i− 1,

ar,n ⊕ cr,n for 0 ≤ n ≤ i− 1.

Parallel SAT Framework to Find Clustering of Differential Characteristics 47

To avoid solving a SAT model with the same internal differential propagation
(c1, c2, . . . , cr−1) multiple times during the evaluation of a clustering effect, we
add the following clauses to a SAT model:

Mcla.clust ←
r−1∨
x=1

i−1∨
y=0

(ax,y ⊕ cx,y).

These clauses will be repeatably added to a SAT model, whenever we find another
internal differential propagation.

C Basic Algorithms

We describe the basic algorithms employed to construct our framework with the
notations in Sect. 2.2. Sun et al. [34,35] already briefly presented the algorithm
to evaluate the clustering effect of certain differential characteristics. Herein, we
describe it more formally, such that we must adjust some parameters appropri-
ately in our new search framework. In the following sections, all our SAT models
assume that the target cipher is based on an S-box, permutation, and matrix
(XOR), such as PRINCE and QARMA.

Algorithm to Construct a Certain Differential. As a first step to investigate the
clustering effect of the differential characteristics, we must find such differential
characteristics with a high probability, which are the seeds of differentials in
advance. Let Cr = (c0, c1, . . . , cr) be an r-round differential characteristic with
the minimum weight Wmin on an n-bit cipher, where ci = (ci,0, ci,1, . . . , ci,n−1)
for 0 ≤ i ≤ r. Note that c0 and cr imply the input and output differences,
respectively. Algorithm 3 shows the procedure to obtain the differential char-
acteristics Cr with the minimum weight Wmin for an r-round cipher. vr =
(vr,0, vr,1, . . . , vr,n−1) denotes Boolean variables to express the input differences
of the r-th round, where v0 and vr express differences in plaintext and cipher-
text, respectively. We describe each function as follows:

Function SATdiff.min(): This function takes the lower threshold T and the num-
ber of target rounds r as inputs. T is basically set to the minimum weight of
(r − 1) rounds. As outputs, it returns an r-round differential characteristic
Cr with the minimum weight Wmin.

Function SETmodel(): This function takes the weight T and the number of target
rounds r as inputs. It is used to set a SAT model to verify whether there is a
differential characteristic with the weight of ≤ T on the r-round cipher. As
outputs, it returns a SAT model MSAT and its Boolean variables Mvar.

Function SATdiff.char(): This function takes a SAT modelMSAT and its Boolean
variables Mvar as inputs. It is used to check whether the given SAT model
is “SAT” or “UNSAT”. If a SAT solver Solver() returns “SAT”, this func-
tion returns “SAT” and Boolean variables to express the input differences
of each round which are equal to the differential characteristics Cr. Other-
wise, it returns “UNSAT” and ∅. In Algorithm 3, SATdiff.min() does not use

48 K. Sakamoto et al.

Algorithm 3: The underlying functions to obtain the differential char-
acteristics Cr with the minimum weight Wmin for an r-round cipher.
1 Function SATdiff.min(T, r)
2 begin
3 (MSAT ,Mvar)← SETmodel(T, r)
4 while SATdiff.char(MSAT ,Mvar) = (“UNSAT”, ∅) do
5 T ← T + 1
6 (MSAT ,Mvar)← SETmodel(T, r)

7 Wmin ← T
8 return (Cr,Wmin)

9 Function SETmodel(T, r)
10 begin
11 Mvar ← All Boolean variables to produce all clauses, such as vi for 0 ≤ i ≤ r

12 MSAT ←


Mcla.matrix for all matrices in the r-round cipher
Mcla.sbox for all S-boxes in the r-round cipher
Mcla.sec(T)

Mcla.input

13 return (MSAT ,Mvar)

14 Function SATdiff.char(MSAT ,Mvar)
15 begin
16 if Solver(MSAT ,Mvar) = “SAT” then
17 for i = 0 to r do
18 ci ← vi

19 return (“SAT”, Cr)
20 else
21 return (“UNSAT”, ∅)

Cr, whereas SATdiff.char() returns Cr because the algorithm described later
utilizes it to take a clustering effect into account.

After obtaining (Cr,Wmin) from SATdiff.min(), the clustering effect of Cr is
evaluated by Algorithm 4, namely, this algorithm find the differential character-
istics with the same input and output differences (c0, cr) for a specified range
of weight. Notably, we do not solve a general SAT problem but an incremental
SAT problem to find differential characteristics in Algorithm 4.

As inputs to Algorithm 4, we provide two thresholds Tlow and Tupp, the num-
ber of target rounds r, as well as a pair of input and output differences, namely
(c0, cr). We specify the two thresholds Tlow and Tupp as the lower and upper
weights taken into account in a clustering effect, respectively. Upon executing
Algorithm 4, we obtain a list indicating the number of differential characteristics
with (c0, cr) for each weight. Subsequently, we can compute the probability of
the differential (c0, cr) by applying the formula

∑Tupp

i=Tlow
Ni−Tlow

· 2−i.

Parallel SAT Framework to Find Clustering of Differential Characteristics 49

Algorithm 4: The basic algorithm to evaluate the clustering effect.
1 Function SATdiff.clust(Tlow, Tupp, r, (c0, cr))
2 begin
3 NTupp−Tlow+1 ← (N0, N1, . . . , NTupp−Tlow)
4 for i = Tlow to Tupp do
5 (MSAT ,Mvar)← SETmodel(i, r)
6 addMcla.clust toMSAT

7 add auxiliary Boolean variables of Mcla.sec(i) toMvar

8 addMcla.sec(i) toMSAT

9 Ni−Tlow ← 0
10 while SATdiff.char(MSAT ,Mvar) = (“SAT”, Cr) do
11 Ni−Tlow ← Ni−Tlow + 1
12 addMcla.clust toMSAT

13 return NTupp−Tlow+1

Note that our new method described later employs a variety of values of Tlow

while Tlow is generally set to the minimum weight of the differential character-
istics Wmin.

Algorithm to Enumerate All Differential Characteristics in a Certain Weight.
Our new method requires all differential characteristics having different (c0, cr)
with a specified range of weight to evaluate their clustering effects and identify
the best differential. This can be easily realized by Algorithm 3 with a small
modification, as shown in Algorithm 5. However, a SAT problem changes from a
general SAT problem to an incremental SAT problem to efficiently find all differ-
ential characteristics. As inputs to Algorithm 5, we provide a weight W and the
number of target rounds r. Additionally, we can optionally provide the constraint
in the input and output differences to search the specific (truncated) differentials,
denoted by (din,dout) where din/out = (din/out,0, din/out,1, · · · , din/out,n−1), din/out,i ∈
F2. We specify din/out as the position of inactive bits, that is, the i-th bit in the
input/output differences is fixed to 0 if din/out,i = 0. Otherwise, the i-th bit in
the input/output differences can take either 1 or 0. After executing Algorithm 5,
we obtain a list of all differential characteristics having different (c0, cr) with
the weight W .

D Good Parameters for Algorithm 2

As mentioned in Sect. 3.5, the result by Algorithm 2 depends on the parameters
Tt and Ts, i.e., we must appropriately set Tt and Ts to obtain the best differential.
However, it is impossible to show the specific parameters of Tt and Ts for any
primitive, as they depend on several factors, including the construction of a
primitive and the number of rounds. Hence, we provide some experimental results
about Tt and Ts on PRINCE and QARMA128 in Table 13. To investigate an effect

50 K. Sakamoto et al.

Algorithm 5: Finding all the input and output differences.
1 Function SATdiff.all(W, r,din,dout)
2 begin
3 D = ∅
4 (MSAT ,Mvar)← SETmodel(W, r)
5 for i = 0 to n− 1 do
6 /* n denotes the index of bits in the input and output differences */
7 if din,i = 0 then
8 add v0,i ⊕ din,i toMSAT

9 if dout,i = 0 then
10 add vr,i ⊕ dout,i toMSAT

11 add auxiliary Boolean variables of Mcla.sec(W) toMvar

12 addMcla.sec(W) toMSAT

13 while SATdiff.char(MSAT ,Mvar) = (“SAT”, Cr) do
14 add (c0, cr) to D

15 add
∨n−1

k=0 (v0,k ⊕ c0,k) ∨ (vr,k ⊕ cr,k) toMSAT

16 return D

of a combination of Tt and Ts on a range of results that is as wide as possible, we
show the results of all combinations 3 ≤ Tt ≤ 7 and 1.1 ≤ Ts ≤ 2.0 in increments
of 0.1, i.e., 50 combinations.

Table 13 shows that we can obtain the best differential when 5 ≤ Tt in both
cases of PRINCE and QARMA128. In particular, we can obtain the best differ-
ential of the six rounds of PRINCE, regardless of a choice of Tt and Ts. This is
because the distribution of the differential characteristics for a weight in PRINCE
is sparse, and the most contributing differential characteristic to the probability
of a differential is the one with a weight of Wmin. Hence, the probability of the
best differential is dominated by that of the differential characteristics with a
weight of Wmin.

In contrast, for QARMA128, we often fail to determine the best differential
when Tt is low. This is because the distribution of the differential characteristics
is dense, like QARMA64, in contrast to PRINCE, i.e., the differential characteris-
tics with not only a weight of Wmin but also a weight of > Wmin contribute to
enhancing the probability of a differential.

For Ts, it is trivially better to set it to high, but it seems like that the choice
of Ts does not have as significant influence on the obtained differential compared
with that of Tt. Besides, it also does not so affect a runtime compared with that
of Tt. From these observations, we summarize our recommendation for the choice
of Tt and Ts as follows:

For a cipher with a big clustering effect like QARMA. For Tt, it is rec-
ommended to set it to about half of Tc. For Ts, it is recommended to set it
around 2.0. It must be mentioned that a differential with not the highest,

Parallel SAT Framework to Find Clustering of Differential Characteristics 51

Table 13: Comparison of several combinations of Tt and Ts.
PRINCE (4 (1+2+1) rounds) Wmin = 32, Tw = 1, Tc = 10, Nthr = 8

Tt 3
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 2h36m23s 2h33m48s 2h33m08s 2h36m26s 2h35m35s 2h35m08s 2h37m57s 2h36m29s 2h35m21s 2h37m09s

Tt 4
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 3h08m50s 3h11m28s 3h10m50s 3h11m35s 3h06m52s 3h09m32s 3h11m20s 3h11m11s 3h09m16s 3h12m30s

Tt 5
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 3h42m41s 3h43m46s 3h43m39s 3h41m44s 3h46m42s 3h47m24s 3h46m00s 3h45m41s 3h47m00s 3h49m03s

Tt 6
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 4h19m52s 4h21m12s 4h20m16s 4h22m59s 4h22m59s 4h19m27s 4h20m31s 4h18m33s 4h19m39s 4h23m02s

Tt 7
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 4h56m43s 4h56m51s 4h53m21s 4h57m08s 4h55m13s 4h54m22s 4h53m10s 4h55m17s 4h53m59s 4h56m03s

QARMA128 under the SK setting (6 (2+2+2) rounds) Wmin = 60, Tw = 1, Tc = 10, Nthr = 8

Tt 3
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−55.177 2−55.805 2−54.494 2−54.494 2−55.177 2−55.177 2−55.177 2−55.177 2−54.494 2−54.494

Time 7h02m02s 6h47m35s 7h24m59s 6h40m27s 6h46m13s 6h48m24s 6h18m13s 6h16m06s 6h50m11s 7h24m04s

Tt 4
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−54.494 2−54.494 2−55.177 2−55.177 2−55.177 2−55.177 2−54.494 2−54.494 2−54.494 2−54.494

Time 8h04m30s 8h19m41s 8h56m52s 8h50m04s 8h58m59s 8h59m46s 9h20m47s 8h35m39s 8h58m39s 8h49m44s

Tt 5
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494

Time 9h34m53s 9h31m51s 9h40m25s 9h40m37s 10h02m59s 9h53m17s 10h35m23s 10h24m21s 10h03m32s 10h13m55s

Tt 6
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494

Time 11h24m58s 11h23m24s 10h55m20s 10h44m30s 11h44m56s 12h19m07s 11h22m33s 11h33m24s 11h23m19s 12h43m52s

Tt 7
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494

Time 12h31m34s 11h25m49s 11h11m23s 11h55m37s 11h47m58s 12h14m15s 12h41m06s 12h39m31s 12h42m19s 13h08m30s

but a high probability can be obtained, even though Tt is set to a low value
in our experiments. Therefore, it is another choice to set Tt to a low value if a
computational environment is not expensive and finding the best differential
is not required.

For a cipher with a small clustering effect like PRINCE. For Tt, it is rec-
ommended to set it around one-third of Tc. For Ts, it is recommended to set
it around 2.0 as well as for cipher with a high clustering effect like QARMA.
Note that our experimental results imply that we can set Tt to a lower value

52 K. Sakamoto et al.

!" !

!
$

%

&%

!
&# $

' "# ("#
)
"# * "#

+

&%
! !

* ""

, - , - .

/01234

'
!

(
!

) ! *
!

5
" !" "#!" ""

%

!"
"

!
$

%

6 ! !

!" #

* # ' " (") " *
"

5
#

Fig. 7: Propagation of active cells for the 11-round attack on QARMA64 under
the RT setting, where the gray areas represent the active cells and tki denotes
the i-th tweakey (i.e., the combination of the i-th round tweak T (i) and the core
key k0).

than our recommendation. However, we highly recommend to investigate a
feature of a target cipher before setting it to a low value, because that is
expected to depend on each cipher.

E 11-round Attack on QARMA64 under RT Setting

To launch our 11-round attack, we append two and one key-recovery rounds
before and after the 8-round truncated differential distinguisher, respectively.
Fig. 7 shows the propagation of active cells for the 11-round attack on QARMA64
under the RT setting, where the gray areas represent the active cells and tki
denotes the i-th tweakey (i.e., the combination of the i-th round tweak T (i) and
the core key k0). We note that a(2), a(10), and tk(3) represent the target input,
output, and tweak differentials, respectively. Our attack is based on the following
two phases: data collection and key recovery phases.

Parallel SAT Framework to Find Clustering of Differential Characteristics 53

Data Collection Phase. From Fig 7, the plaintext P{0,1,2,4,5,7,8,10,11,13,14,15} and
the tweak T

(0)
{5,7} are always active. Under this condition, the details of the data

collection phase are described as follows.

Step 1: We prepare S structures. In each structure, there are 256 plaintext-
tweak pairs such that the plaintext P and the tweak T (0) satisfying the above
condition traverse all possible values while the remaining cells are fixed to
some random constants. Each structure leads to approximately (256)2/2 =
2111 differential pairs.

Step 2: For each structure, we simulate the encryption oracle to get the ci-
phertexts C from (P, T (0)) pairs. Then, we insert every ciphertext with its
corresponding plaintext-tweak pair (P, T (0), C) into a hash table H at in-
dex C{0,6,8,10,15}. Thus, each pair from the same index of H satisfies the
differential pattern of ∆C{0,6,8,10,15} = 0. All pairs violating its differential
pattern are discarded without further processing because these pairs have
no hope to comply with the target truncated differential. This step reduces
the differential pair used in the next phase from 2111 × S to 291 × S.

Key Recovery Phase. Hereafter, we use the following notations. We denote wk0 =
w0 ⊕ k0 and wk1 = w1 ⊕ k0. When representing the bit position of each cell, we
denote it as s

(r)
i [0], . . . , s

(r)
i [3], where i represents the cell number, r represents

the number of rounds, s
(r)
i [0] represents the most significant bit, and s

(r)
i [3]

represents the least significant bit.
In the key recovery phase, we try to recover all bits of wk0 and wk1. Once

these bits are recovered, all of the outer whitening and core keys (i.e., w0, w1,
k0, and k1) can be naturally obtained based on the key specialization of QARMA
(see Appendix A). The details of the key recovery phase are described as follows.

Step 1: For each possible 4-bit value of wk15, we compute ∆c
(10)
5 from the ci-

phertexts C and check whether ∆c
(10)
5 = 0. This step leads to a 4-bit filter;

thus, the number of surviving differential pairs after this step is approxi-
mately 287 × S.

Step 2: For each possible 16-bit value of wk1{1,4,11,14}, we compute ∆a
(10)
{1,5,9,13}

from the ciphertexts C and check whether ∆a
(10)
{9,13} = 0. This step leads to

an 8-bit filter; thus, the number of surviving differential pairs after this step
is approximately 279 × S.

Step 3: For each possible 12-bit value of wk1{3,9,12}, we compute ∆a
(10)
{2,6,10,14}

from the ciphertexts C and check whether ∆a
(10)
{6,10,14} = 0. This step leads

to a 12-bit filter; thus, the number of surviving differential pairs after this
step is approximately 267 × S.

Step 4: For each possible 12-bit value of wk1{2,7,14}, we compute ∆a
(10)
{3,7,11,15}

from the ciphertexts C and check whether ∆a
(10)
{3,7,15} = 0. This step leads to

a 12-bit filter; thus, the number of surviving differential pairs after this step
is approximately 255×S. Here, we obtain N = 255×S pairs that match the
output truncated differential of the 8-round truncated distinguisher.

54 K. Sakamoto et al.

Step 5: For each possible 16-bit value of wk0{1,4,11,14}, we compute ∆a
(1)
{1,5,9,13}

from the plaintexts P and check whether ∆a
(1)
{9,13} = 0. This step leads to

an 8-bit filter; thus, the number of surviving differential pairs after this step
is approximately 247 × S.

Step 6: For each possible 16-bit value of wk0{2,7,8,13}, we compute ∆a
(1)
{3,7,11,15}

from the plaintexts P and check whether ∆a
(1)
{3,7} = 0. This step leads to an

8-bit filter; thus, the number of surviving differential pairs after this step is
approximately 239 × S.

Step 7: For each possible 16-bit value of wk0{0,5,10,15}, we compute ∆a
(1)
{0,4,8,12}

from the plaintexts P and check whether ∆a
(1)
8 = 0. This step leads to a

4-bit filter; thus, the number of surviving differential pairs after this step is
approximately 235 × S.

Step 8: Hereafter, we guess k0 using the previously guessed key bits. When
guessing each possible 5-bit value of k0{1,4,7,11,13}[0], we can uniquely deter-
mine the 36-bit value of k0{1,2,4,5,7,11,13,14}, k

0
{3,12}[0], and k0{0,10}[3] in total.

To clarify this reason, we consider the case of guessing k01[0] as an example.
From the relationship between wk0 and wk1, we can derive wk01[0] = w0

1[0]⊕
k01[0] and wk11[0] = w0

0[3] ⊕ k01[0]. Since we have already guessed wk0{0,1,2}
and wk1{1,2,3} (i.e., we have the values of w0

1[0] ⊕ k01[0] and w0
0[3] ⊕ k01[0]),

once the value of k01[0] is guessed, we can uniquely determine the values of
w0

1[0] and w0
0[3]. Based on these values, we can also uniquely determine the

value of k00[3], k01[1], and w0
1[1] since we have the values of w0

0[3] ⊕ k00[3],
w0

1[0]⊕ k01[1], and w0
1[1]⊕ k01[1], respectively. By repeating such a procedure,

we can uniquely determine the 10-bit value of k0{1,2}, k
0
3[0], and k00[3] when

guessing the 1-bit value of k01[0]. Getting back to track, for each possible 5-
bit value of k0{1,4,7,11,13}[0], we compute ∆a

(2)
{6,13} from the plaintexts P and

check whether ∆a
(2)
13 = 0. This step leads to a 4-bit filter; thus, the number

of surviving differential pairs after this step is approximately 231 × S.
Step 9: For each possible 4-bit value of k08, we compute ∆a

(2)
0 from the plain-

texts P and check whether ∆a
(2)
0 = 0. This step leads to a 4-bit filter; thus,

the number of surviving differential pairs after this step is approximately
227 × S.

Step 10: For each possible 6-bit value of k0{0,10}[0, 1, 2], we compute ∆c
(2)
12 from

the plaintexts P and check whether ∆c
(2)
12 = 0. When ∆c

(2)
12 = 0 holds,

∆a
(2)
{2,6,10,14} = 0 also always holds. This step leads to a 4-bit filter; thus,

the number of surviving differential pairs after this step is approximately
223 × S.

Step 11: For each possible 4-bit value of k015, we compute ∆a
(2)
{1,4,5,8,9,12} from

the plaintexts P and check whether ∆a
(2)
{1,5,8,12} = 0. This step leads to a

16-bit filter; thus, the number of surviving differential pairs after this step is
approximately 27 × S.

Parallel SAT Framework to Find Clustering of Differential Characteristics 55

Table 14: Detailed computation of the time complexity for the 11-round attack.
Step Guessed key bits Time complexity # of remaining pairs Note

Step 1 wk1
5 291 × 24 × 1

11
× S ≈ 291.54 × S 291 × 2−4 × S = 287 × S 1-round dec

Step 2 wk1
{1,4,11,14} 287 × 220 × 1

11
× S ≈ 2103.54 × S 287 × 2−8 × S = 279 × S 1-round dec

Step 3 wk1
{3,9,12} 279 × 232 × 1

11
× S ≈ 2107.54 × S 279 × 2−12 × S = 267 × S 1-round dec

Step 4 wk1
{2,7,14} 267 × 244 × 1

11
× S ≈ 2107.54 × S 267 × 2−12 × S = 255 × S 1-round dec

Step 5 wk0
{1,4,11,14} 255 × 260 × 1

11
× S ≈ 2111.54 × S 255 × 2−8 × S = 247 × S 1-round enc

Step 6 wk0
{2,7,8,13} 247 × 276 × 1

11
× S ≈ 2119.54 × S 247 × 2−8 × S = 239 × S 1-round enc

Step 7 wk0
{0,5,10,15} 239 × 292 × 1

11
× S ≈ 2127.54 × S 239 × 2−4 × S = 235 × S 1-round enc

Step 8 k0
{1,4,7,11,13}[0] 235 × 297 × 2

11
× S ≈ 2129.54 × S 235 × 2−4 × S = 231 × S 2-round enc

Step 9 k0
8 231 × 2101 × 2

11
× S ≈ 2129.54 × S 231 × 2−4 × S = 227 × S 2-round enc

Step 10 k0
{0,10}[0, 1, 2] 227 × 2107 × 2

11
× S ≈ 2131.54 × S 227 × 2−4 × S = 223 × S 2-round enc

Step 11 k0
15 223 × 2111 × 2

11
× S ≈ 2131.54 × S 223 × 2−16 × S = 27 × S 2-round enc

Step 13 remaining bits 2128 × β × (1− 2−64) - 11-round enc

Step 12: For the 111-bit key guesses in total, we prepare counters to confirm
the number of right pairs that validate the differential pairs of the 8-round
truncated differential distinguisher. The number of right pairs follows a bi-
nomial distribution with parameters (N, p0 = 2−31.565) in the case of the
good key and (N, p1 = 2−56) otherwise13.

Step 13: We fix the threshold as Υ , and the key guess will be accepted as a
candidate if the counter of right pairs is no less than Υ . For all surviving
candidates for the 111-bit key, we exhaustively search for the remaining key
bits with at most two plaintext-ciphertext pairs.

Complexity Analysis. We use the same method for the complexity analysis as de-
scribed in Sect. 5.2. Table 14 lists the detailed computation of the time complex-
ity for the 11-round attack. When we set the threshold as Υ = 2 and the number
of structures as S = 2−21.74, we derive the success probability of PS = 80.0%
and the false alarm error probability of β = 2−46.42. To summarize, the 11-round
attack on QARMA64 under the RT setting is feasible with the time, data, and
memory complexities of 2111.16, 234.26, and 2111.00, respectively.

F 12-round Attack on QARMA128 under RT Setting

To launch our 12-round attack, we append one key-recovery round before and
after the 10-round truncated differential distinguisher, respectively. Fig. 8 shows
the propagation of active cells for the 12-round attack on QARMA128 under the
RT setting, where the gray areas represent the active cells and tki denotes the
i-th tweakey (i.e., the combination of the i-th round tweak T (i) and the core key
13 This attack uses the 8-round truncated differential distinguisher from the output to

the input directions.

56 K. Sakamoto et al.

!

"# !

!
$ %

!

&!

!
&$ %

' !! (!!) !! *
!!

+

&!
! !

* !"

, - . - .

/01234

5 ! !

"#
#

* #
'
! (!

)
! * !

6!

6#

"#
!!"# !"

Fig. 8: Propagation of active cells for the 12-round attack on QARMA128 under
the RT setting, where the gray areas represent the active cells and tki denotes
the i-th tweakey (i.e., the combination of the i-th round tweak T (i) and the core
key k0).

k0). We note that a(1), a(11), and tk(2) represent the target input, output, and
tweak differentials, respectively. Our attack is based on the following two phases:
data collection and key recovery phases.

Data Collection Phase. From Fig. 8, the plaintext P{0,1,5,7,8,13,15} and the tweak
T

(0)
1 are always active. In addition, ∆a

(0)
1 = ∆P1⊕∆T

(0)
1 = 0 (i.e., ∆P1 = ∆T

(0)
1)

must hold. Under these conditions, the details of the data collection phase are
described as follows.

Step 1: We prepare S structures. In each structure, there are 256 plaintext-
tweak pairs such that the plaintext P and the tweak T (0) satisfying the above
conditions traverse all possible values while the remaining cells are fixed to
some random constants. Each structure leads to approximately (256)2/2 =
2111 differential pairs.

Step 2: For each structure, we simulate the encryption oracle to get the ci-
phertexts C from (P, T (0)) pairs. Then, we insert every ciphertext with its
corresponding plaintext-tweak pair (P, T (0), C) into a hash table H at index
C{8,9,10,11}. Thus, each pair from the same index of H satisfies the differen-
tial pattern of ∆C{8,9,10,11} = 0. All pairs violating its differential pattern
are discarded without further processing because these pairs have no hope
to comply with the target truncated differential. This step reduces the dif-
ferential pair used in the next phase from 2111 × S to 279 × S.

Parallel SAT Framework to Find Clustering of Differential Characteristics 57

Key Recovery Phase. Hereafter, we denote wk0 = w0 ⊕ k0 and wk1 = w1 ⊕ k0.
In the key recovery phase, we try to recover all bits of wk0 and wk1. Once these
bits are recovered, all of the outer whitening and core keys (i.e., w0, w1, k0, and
k1) can be naturally obtained based on the key specialization of QARMA (see
Appendix A). The details of the key recovery phase are described as follows.

Step 1: For each possible 24-bit value of wk0{0,5,15}, we compute ∆a
(1)
{0,4,8,12}

from the plaintexts P and check whether ∆a
(1)
{0,8,12} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 255 × S.

Step 2: For each possible 24-bit value of wk0{7,8,13}, we compute ∆a
(1)
{3,7,11,15}

from the plaintexts P and check whether ∆a
(1)
{3,7,11} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 231 × S. ∆a

(1)
{1,2,5,6,9,10,13,14} = 0 must be derived from the

collected data; thus, we obtain here N = 231×S pairs that match the input
truncated differential of the 8-round truncated distinguisher.

Step 3: For each possible 24-bit value of wk1{0,5,15}, we compute ∆a
(11)
{0,4,8,12}

from the ciphertexts C and check whether ∆a
(11)
{0,8,12} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 27 × S.

Step 4: For each possible 24-bit value of wk1{1,4,14}, we compute ∆a
(11)
{1,5,9,13}

from the ciphertexts C and check whether ∆a
(11)
{5,9,13} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2−17 × S.

Step 5: For each possible 24-bit value of wk1{3,6,12}, we compute ∆a
(11)
{2,6,10,14}

from the ciphertexts C and check whether ∆a
(11)
{2,6,10} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2−41 × S.

Step 6: For each possible 24-bit value of wk1{2,7,13}, we compute ∆a
(11)
{3,7,11,15}

from the ciphertexts C and check whether ∆a
(11)
{3,7,15} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2−65 × S.

Step 7: For the 144-bit key guesses in total, we prepare counters to confirm
the number of right pairs that validate the differential pairs of the 10-round
truncated differential distinguisher. The number of right pairs follows a bi-
nomial distribution with parameters (N, p0 = 2−80.431) in the case of the
good key and (N, p1 = 2−96) otherwise.

Step 8: We fix the threshold as Υ , and the key guess will be accepted as a
candidate if the counter of right pairs is no less than Υ . For all surviving
candidates for the 144-bit key, we exhaustively search for the remaining key
bits with at most two plaintext-ciphertext pairs.

58 K. Sakamoto et al.

Table 15: Detailed computation of the time complexity for the 12-round attack.
Step Guessed key bits Time complexity # of remaining pairs Note

Step 1 wk0
{0,5,15} 279 × 224 × 1

12
× S ≈ 299.41 × S 279 × 2−24 × S = 255 × S 1-round enc

Step 2 wk0
{7,8,13} 255 × 248 × 1

12
× S ≈ 299.41 × S 255 × 2−24 × S = 231 × S 1-round enc

Step 3 wk1
{0,5,15} 231 × 272 × 1

12
× S ≈ 299.41 × S 231 × 2−24 × S = 27 × S 1-round dec

Step 4 wk1
{1,4,14} 27 × 296 × 1

12
× S ≈ 299.41 × S 27 × 2−24 × S = 2−17 × S 1-round dec

Step 5 wk1
{3,6,12} 2−17 × 2120 × 1

12
× S ≈ 299.41 × S 2−17 × 2−24 × S = 2−41 × S 1-round dec

Step 6 wk1
{2,7,13} 2−41 × 2144 × 1

12
× S ≈ 299.41 × S 2−41 × 2−24 × S = 2−65 × S 1-round dec

Step 8 remaining bits 2256 × β × (1− 2−128) - 12-round enc

Complexity Analysis. We use the same method for the complexity analysis as de-
scribed in Sect. 5.3. Table 15 lists the detailed computation of the time complex-
ity for the 12-round attack. When we set the threshold as Υ = 7 and the number
of structures as S = 2−52.52, we derive the success probability of PS = 80.0% and
the false alarm error probability of β = 2−109.74. To summarize, the 12-round
attack on QARMA128 under the RT setting is feasible with the time, data, and
memory complexities of 2154.53, 2108.52, and 2144.00, respectively.

G 13-round Attack on QARMA128 under RT Setting

To launch our 13-round attack, we append two and one key-recovery rounds
before and after the 10-round truncated differential distinguisher, respectively.
Fig. 9 shows the propagation of active cells for the 13-round attack on QARMA128
under the RT setting, where the gray areas represent the active cells and tki de-
notes the i-th tweakey (i.e., the combination of the i-th round tweak T (i) and
the core key k0). We note that a(2), a(12), and tk(3) represent the target input,
output, and tweak differentials, respectively. Our attack is based on the following
two phases: data collection and key recovery phases.

Data Collection Phase. From Fig. 9, the plaintext P{0,1,2,4,5,7,8,10,11,13,14,15} and
the tweak T

(0)
5 are always active. Under this condition, the details of the data

collection phase are described as follows.

Step 1: We prepare S structures. In each structure, there are 2104 plaintext-
tweak pairs such that the plaintext P and the tweak T (0) satisfying the above
conditions traverse all possible values while the remaining cells are fixed to
some random constants. Each structure leads to approximately (2104)2/2 =
2207 differential pairs.

Step 2: For each structure, we simulate the encryption oracle to get the ci-
phertexts C from (P, T (0)) pairs. Then, we insert every ciphertext with its
corresponding plaintext-tweak pair (P, T (0), C) into a hash table H at index
C{8,9,10,11}. Thus, each pair from the same index of H satisfies the differen-
tial pattern of ∆C{8,9,10,11} = 0. All pairs violating its differential pattern

Parallel SAT Framework to Find Clustering of Differential Characteristics 59

!" !

!
$

%

&%

!
&# $

' "! ("!
)
"! * "!

+

&%
! !

* "#

, - . - .

/01234

'
!

(
!

) ! *
!

5
" !" "!!" "#

%

!"
"

!
$

%

6 ! !

!" $

* $ ' " (") " *
"

5
$

Fig. 9: Propagation of active cells for the 13-round attack on QARMA128 under
the RT setting, where the gray areas represent the active cells and tki denotes
the i-th tweakey (i.e., the combination of the i-th round tweak T (i) and the core
key k0).

are discarded without further processing because these pairs have no hope
to comply with the target truncated differential. This step reduces the dif-
ferential pair used in the next phase from 2207 × S to 2175 × S.

Key Recovery Phase. Hereafter, we use the following notations. We denote wk0 =
w0 ⊕ k0 and wk1 = w1 ⊕ k0. When representing the bit position of each cell, we
denote it as s

(r)
i [0], . . . , s

(r)
i [3], where i represents the cell number, r represents

the number of rounds, s
(r)
i [0] represents the most significant bit, and s

(r)
i [3]

represents the least significant bit.
In the key recovery phase, we try to recover all bits of wk0 and wk1. Once

these bits are recovered, all of the outer whitening and core keys (i.e., w0, w1,
k0, and k1) can be naturally obtained based on the key specialization of QARMA
(see Appendix A). The details of the key recovery phase are described as follows.

60 K. Sakamoto et al.

Step 1: For each possible 24-bit value of wk1{0,5,15}, we compute ∆a
(12)
{0,4,8,12}

from the ciphertexts C and check whether ∆a
(12)
{0,8,12} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2151 × S.

Step 2: For each possible 24-bit value of wk1{1,4,14}, we compute ∆a
(12)
{1,5,9,13}

from the ciphertexts C and check whether ∆a
(12)
{5,9,13} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2127 × S.

Step 3: For each possible 24-bit value of wk1{3,6,12}, we compute ∆a
(12)
{2,6,10,14}

from the ciphertexts C and check whether ∆a
(10)
{2,6,10} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 2103 × S.

Step 4: For each possible 24-bit value of wk1{2,7,13}, we compute ∆a
(12)
{3,7,11,15}

from the ciphertexts C and check whether ∆a
(12)
{3,7,15} = 0. This step leads to

a 24-bit filter; thus, the number of surviving differential pairs after this step
is approximately 279×S. Here, we obtain N = 279×S pairs that match the
output truncated differential of the 10-round truncated distinguisher.

Step 5: For each possible 32-bit value of wk0{0,5,10,15}, we compute ∆a
(1)
{0,4,8,12}

from the plaintexts P and check whether ∆a
(1)
{4,12} = 0. This step leads to a

16-bit filter; thus, the number of surviving differential pairs after this step is
approximately 263 × S.

Step 6: For each possible 32-bit value of wk0{1,4,11,14}, we compute ∆a
(1)
{1,5,9,13}

from the plaintexts P and check whether ∆a
(1)
{1,9} = 0. This step leads to a

16-bit filter; thus, the number of surviving differential pairs after this step is
approximately 247 × S.

Step 7: For each possible 32-bit value of wk0{2,7,8,13}, we compute ∆a
(1)
{3,7,11,15}

from the plaintexts P and check whether ∆a
(1)
{3,11} = 0. This step leads to a

16-bit filter; thus, the number of surviving differential pairs after this step is
approximately 231 × S.

Step 8: Hereafter, we guess k0 using the previously guessed key bits. When
guessing each possible 3-bit value of k0{0,4,7}[0], we can uniquely determine
the 82-bit value of k0{0,1,2,4,5,7,8,13,14,15} and k0{3,6}[0] in total. This is the same
technique used in Step 8 in the key recovery phase of the 11-round attack on
QARMA64 (see Appendix E for details). In addition, for each possible 8-bit
value of k010, we compute ∆a

(2)
{3,8} from the plaintexts P and check whether

∆a
(2)
3,8 = 0. This step leads to a 16-bit filter; thus, the number of surviving

differential pairs after this step is approximately 215 × S.
Step 9: For each possible 8-bit value of k011, we compute ∆a

(2)
{0,4,7,11,12,15} from

the plaintexts P and check whether ∆a
(2)
{0,7,11,12} = 0. This step leads to a

32-bit filter; thus, the number of surviving differential pairs after this step is
approximately 2−17 × S.

Parallel SAT Framework to Find Clustering of Differential Characteristics 61

Table 16: Detailed computation of the time complexity for the 13-round attack.
Step Guessed key bits Time complexity # of remaining pairs Note

Step 1 wk1
{0,5,15} 2175 × 224 × 1

13
× S ≈ 2195.29 × S 2175 × 2−24 × S = 2151 × S 1-round dec

Step 2 wk1
{1,4,14} 2151 × 248 × 1

13
× S ≈ 2195.29 × S 2151 × 2−24 × S = 2127 × S 1-round dec

Step 3 wk1
{3,6,12} 2127 × 272 × 1

13
× S ≈ 2195.29 × S 2127 × 2−24 × S = 2103 × S 1-round dec

Step 4 wk1
{2,7,13} 2103 × 296 × 1

13
× S ≈ 2195.29 × S 2103 × 2−24 × S = 279 × S 1-round dec

Step 5 wk0
{0,5,10,15} 279 × 2128 × 1

13
× S ≈ 2203.29 × S 279 × 2−16 × S = 263 × S 1-round enc

Step 6 wk0
{1,4,11,14} 263 × 2160 × 1

13
× S ≈ 2219.29 × S 263 × 2−16 × S = 247 × S 1-round enc

Step 7 wk0
{2,7,8,13} 247 × 2192 × 1

13
× S ≈ 2235.29 × S 247 × 2−16 × S = 231 × S 1-round enc

Step 8 k0
{0,4,7}[0]∥k0

10 231 × 2203 × 2
13
× S ≈ 2231.29 × S 231 × 2−16 × S = 215 × S 2-round enc

Step 9 k0
11 215 × 2211 × 2

13
× S ≈ 2223.29 × S 215 × 2−32 × S = 2−17 × S 2-round enc

Step 11 remaining bits 2256 × β × (1− 2−128) - 13-round enc

Step 10: For the 211-bit key guesses in total, we prepare counters to confirm
the number of right pairs that validate the differential pairs of the 10-round
truncated differential distinguisher. The number of right pairs follows a bi-
nomial distribution with parameters (N, p0 = 2−80.431) in the case of the
good key and (N, p1 = 2−112) otherwise14.

Step 11: We fix the threshold as Υ , and the key guess will be accepted as a
candidate if the counter of right pairs is no less than Υ . For all surviving
candidates for the 211-bit key, we exhaustively search for the remaining key
bits with at most two plaintext-ciphertext pairs.

Complexity Analysis. We use the same method for the complexity analysis as de-
scribed in Sect. 5.3. Table 16 lists the detailed computation of the time complex-
ity for the 13-round attack. When we set the threshold as Υ = 2 and the number
of structures as S = 22.63, we derive the success probability of PS = 80.2% and
the false alarm error probability of β = 2−64.56. To summarize, the 13-round
attack on QARMA128 under the RT setting is feasible with the time, data, and
memory complexities of 2238.02, 2106.63, and 2211.00, respectively.

14 This attack uses the 8-round truncated differential distinguisher from the output to
the input directions.

