
Infinite families of minimal binary codes via Krawtchouk

polynomials
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Abstract: Linear codes play a crucial role in various fields of engineering and mathematics,

including data storage, communication, cryptography, and combinatorics. Minimal linear codes,

a subset of linear codes, are particularly essential for designing effective secret sharing schemes.

In this paper, we introduce several classes of minimal binary linear codes by carefully selecting

appropriate Boolean functions. These functions belong to a renowned class of Boolean functions,

the general Maiorana-McFarland class. We employ a method first proposed by Ding et al. [7]

to construct minimal codes violating the Ashikhmin-Barg bound (wide minimal codes) by using

Krawtchouk polynomials. The lengths, dimensions, and weight distributions of the obtained

codes are determined using the Walsh spectrum distribution of the chosen Boolean functions.

Our findings demonstrate that a vast majority of the newly constructed codes are wide minimal

codes. Furthermore, our proposed codes exhibit a significantly larger minimum distance, in some

cases, compared to some existing similar constructions. Finally, we address this method, based

on Krawtchouk polynomials, more generally, and highlight certain generic properties related to

it. This study provides insights into the scope of this method.
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1 Introduction

Due to their simple description, uninvolved algebraic structure and their associated crypto-

graphic properties, linear codes have an ample range of applications in communication, data

storage, information security and cryptography (e.g., McEliece cryptosystem [12]). In particu-
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lar, as a special class of linear codes, minimal linear codes play an important role in designing

access structures for secret sharing schemes [1] and secure multi-party computation [14]. The

weight distributions of linear codes give more information on their structures and properties.

However, in general, it is difficult to determine the weight distributions of linear codes [5, 18, 19].

Therefore, the construction and full specification of new minimal linear codes have become an

interesting topic in coding theory and cryptography over the past years.

In 1998, Ashikhmin and Barg [2] proved a sufficient condition for a linear code over a finite

field with q elements to be minimal by using the maximum and minimum weight of the code,

wmax and wmin, namely, if wmin/wmax > (q − 1)/q then the code is minimal. This condition

is called the Ashikhmin-Barg condition (or bound). Following the terminology introduced in

[16, 17], linear codes satisfying the Ashikhmin-Barg condition are called narrow codes, and

otherwise they are referred as wide codes.

Cohen et al. [6] presented the first example of a wide minimal code, and later, a necessary

and sufficient condition for a linear code to be minimal was shown by Ding et al. [7, 9]. They

used this condition to build the first examples of infinite families of wide minimal binary codes.

As pointed out in [7], infinite families of wide minimal codes are in general harder to construct

than their narrow counterpart.

Based on the conclusions of Ding et al. [7], Mesnager et al. [13] proposed a novel method

using characteristic functions to construct minimal codes. More precisely, by applying the

Fourier transform and properties of characteristic functions, they developed a coding scheme

that achieves better error-correcting capabilities compared to conventional methods. In 2021,

Zhang et al. [16] extended the results in [7] to construct several classes of wide binary minimal

codes with larger minimum distances or higher dimensions. Very recently, with a similar idea

as in [7], Du et al. [8] constructed two classes of wide minimal codes, and determined their

weight distributions. Currently, there are many more constructions of infinite families of wide

minimal codes based on a large range of techniques and mathematical objects, see for instance

[3, 4, 10, 15].

Extending the work of Zhang et al. [16], we construct binary linear codes with larger minimum

distances. To this end, we first specify the underlying Boolean function f that belongs to the so-

called general Maiorana-McFarland class (GMM). It is important to highlight that the Boolean

function f is different from the ones used in [7, 8, 16]. Then, we show that the resulting codes Cf

derived from f are minimal and wide. To fully specify the weight distributions of the obtained

codes, we use Krawtchouk polynomials and their good combinatorial properties. Using the

method developed in [16, 17] and the code CDγ(f) that is defined via a suitable derivative of

the Boolean function f ∈ GMM, we also construct a class of wide binary minimal codes and

determine its weight distribution. Again, the function f used for CDγ(f) is different from the one

in [16]. Moreover, our codes CDγ(f) possess a larger minimum distance than those in [16]. Finally,
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the codewords in CDγ(f) can be adjoined to Cf to increase the dimension of the resulting codes

by one. In the second part of this paper, we study in greater detail the Krawtchouk-polynomials

method to handle the general case of our constructions. It is noteworthy that this approach not

only yields novel classes of linear codes but also produces a great variety of wide minimal codes.

We also determine the general scope and limitations of our methods.

This article is structured as follows. In Section 2, we introduce all fundamental concepts

related to Boolean functions, provide definitions and properties of minimal codes and set the

notation that will be used throughout the paper. In Section 3, we provide the construction

of classes of linear codes using certain functions (with an associated set) in the GMM class of

Boolean functions, prove they are wide and minimal under certain conditions, and fully specify

their weight distributions by employing the Krawtchouk method. Additionally, we present the

derivative method [16, 17] for a suitable choice of f and its derivative Dγ(f), and therewith

we obtain wide minimal codes with better parameters than those in [16, 17]. The Krawtchouk

method is analysed in depth in Section 4, where we address the general case for the choice of

the associated set of Boolean functions in GMM. Finally, our research findings are summarized

in Section 5.

2 Preliminaries

Let n be a positive integer, and Fn
2 denote the n-dimensional vector space over the finite field

F2. A binary [n, k, d] linear code C is a k-dimensional subspace of Fn
2 over F2 with minimum

(Hamming) distance d. Each vector c in the code C is called a codeword. The number of

codewords in C with (Hamming) weight i is denoted by Ai. The weight enumerator of C

is the polynomial with integer coefficients, 1 + A1z + · · · + Anz
n. Accordingly, the sequence

(1, A1, A2, . . . , An) is called the weight distribution of C. A code C is said to be a t-weight

code if the number of nonzero Ai in (A1, A2, · · · , An) is equal to t. The support of any c =

(c1, c2, . . . , cn) ∈ C is defined as

supp(c) := {i ∈ {1, . . . , n} : ci ̸= 0},

where {1, . . . , n} denotes the set of integers from 1 up to n (inclusive). If |S| denotes the number

of elements in a set S, then it is easy to see that the Hamming weight wt(c) of a codeword c

satisfies wt(c) = |supp(c)|. For any two vectors u,v ∈ Fn
2 , if supp(v) ⊆ supp(u), then we say v

is covered by u (or u covers v) and we write v ⪯ u. For a code C over F2, a codeword c ∈ C is

called minimal if in C it is covered only by itself.

Definition 1 A linear code C is called a minimal linear code (minimal code for short) if every

nonzero codeword in C is minimal.
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Lemma 1 (Ashikhmin–Barg [2]) Let wmin and wmax be the minimum and maximum nonzero

weights of the linear code C, respectively. If wmin/wmax > 1/2, then C is minimal.

Now, we introduce some basic facts about Krawtchouk polynomials [11] which will be ex-

tensively used for determining the Walsh transform of Boolean functions (which will be defined

below). Let m be a positive integer and x be a variable taking non-negative integer values. The

Krawtchouk polynomial is defined by

Pk(x,m) =

k∑
j=0

(−1)j
(
x

j

)(
m− x

k − j

)
, (2.1)

where 0 ≤ k ≤ m. For the sake of simplicity, we write Pk(x) := Pk(x,m) whenever there is

no ambiguity. The properties of Krawtchouk polynomials [11] lead to the following symmetry

property

Pk(i) = (−1)iPm−k(i), 0 ≤ i ≤ m, (2.2)

and the following conclusion.

Lemma 2 [11] For any u ∈ Fm
2 with Hamming weight wt(u) = i, 1 ≤ i ≤ m, one has∑

wt(v)=k

(−1)u·v = Pk(i).

To conclude this section, we present some fundamentals on Boolean functions and their

connections to minimal linear codes. A mapping f : Fm
2 → F2 is called an m-ary Boolean

function. Denote by Bm the set of all m-ary Boolean functions. The Walsh transform of a

function f ∈ Bm at w ∈ Fm
2 is defined by

Wf (w) =
∑
x∈Fm

2

(−1)f(x)+w·x,

where x = (x1, x2, . . . , xm) ∈ Fm
2 , w = (w1, w2, . . . , wm) ∈ Fm

2 , and “ · ” denotes the standard

inner product of these two vectors, that is, w · x :=
m∑
i=1

wixi. The support of f is defined to be

supp(f) = {x ∈ Fm
2 : f(x) = 1} .

We denote (0, 0, . . . , 0) ∈ Fm
2 by 0m and (1, 1, . . . , 1) ∈ Fm

2 by 1m.

Let f ∈ Bm be such that f is not affine, i.e., f(x) ̸= v · x + a for each v ∈ Fm
2 and a ∈ F2.

Define the code Cf by

Cf =
{
(uf(x) + v · x)x∈Fm

2
: u ∈ F2,v ∈ Fm

2

}
. (2.3)

The first lemma below presents the weight distribution of the linear code Cf constructed in

Eq.(2.3) and the second one provides a necessary and sufficient condition to determine whether

Cf is minimal via the Walsh transform of the function f .
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Lemma 3 [7] The binary linear code defined by Eq.(2.3) has length 2m, dimension m+ 1, and

the weight distribution is given by the following multiset:{
2m−1 − 1

2
Wf (α) : α ∈ Fm

2

}
∪
{
2m−1 : α ∈ Fm∗

2

}
∪ {0}.

Lemma 4 [7] The code Cf in Eq.(2.3) is minimal if and only if for every pair of distinct

λ1, λ2 ∈ Fm
2 , it holds that

Wf (λ1)±Wf (λ2) ̸= 2m.

2.1 Notation

Throughout this paper, we adopt the following notation unless otherwise stated.

(1) We will work on the vector space Fr
2, where r denotes an odd integer at least 7. We will

always identify the Cartesian product of subspaces Fk
2 × Fl

2 with Fr
2, where k = (r + 1)/2

and l = (r − 1)/2.

(2) The symbol Z∗ is reserved for the ring of positive integers and Su = {s2+u : s ∈ Z∗}, where
u is an odd integer.

(3) The function η : C → {0, 1} is given by η(a) = 1 if a ∈ {1, . . . , k}, and 0 otherwise.

(4) For a given integer i with 1 ≤ i ≤ k (equivalently, i ∈ {1, . . . , k}), define the following:

(a)

Γi =

{i, k + 1− i}, k is odd,

{i}, otherwise.
(2.4)

(b) a±b,i =
(k+1)±

√
4i(−i+1+k)−(k2+b)

2 , b = −1, 3.

(c) For a fixed b ∈ {−1, 3},

∆i =


{a+b,i, a

−
b,i}, k is odd, η(a+b,i) = 1, i ̸≡ a+b,i (mod 2),

{avb,i}, k is even, η(avb,i) = 1, i ̸≡ avb,i (mod 2),

∅, otherwise.

(2.5)

Note that ∆i is well-defined as there is exactly one value “+” or “–” for v, since

a+b,i ̸≡ a−b,i (mod 2) when k is even.
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3 The construction of wide binary minimal codes

In this section, we will use the properties of the general Maiorana-McFarland class of Boolean

functions and a derivative of a Boolean function to obtain two classes of wide minimal codes,

that is, codes not satisfying the Ashikhmin-Barg condition.

Suppose that r, k, l are positive integers satisfying r = k+l. The general Maiorana-McFarland

class of Boolean functions has the form

f(x,y) = ϕ(x) · y + g(x), (3.1)

where x ∈ Fk
2,y ∈ Fl

2, ϕ is an arbitrary mapping from Fk
2 to Fl

2 and g ∈ Bk.

The derivative of f ∈ Bm at direction γ ∈ Fm
2 is defined as

Dγf(x) = f(x+ γ) + f(x). (3.2)

Throughout this paper, we always use the symbol f to denote the Boolean function defined

in Eq.(3.1) with g ≡ 1 (the constant one function), i.e.,

f(x,y) = ϕ(x) · y + 1. (3.3)

For the specification of weight distributions in this section, we will need to study the following

quadratic polynomial A(x),

A(x) = 2x2 − (2 + 2k)x+
k(k + 1)

2
+ 1, (3.4)

where 1 ≤ x ≤ k. It is clear that A(x) = A(k + 1− x).

3.1 Wide binary minimal codes derived from GMM class

Set r to be an odd integer with r ≥ 11. To compute the sums in the Walsh transform of the

proposed Boolean function, we will need the following lemma that shows the relation between

A(i) and the set U0 of vectors with weight at most k − 3, i.e.,

U0 =
{
x ∈ Fk

2 : wt(x) ≤ k − 3
}
. (3.5)

Lemma 5 Let k ≥ 6 and U0 denote the set of vectors in Fk
2 with weight at most k− 3 given in

(3.5). Consider the quadratic polynomial A(i) in (3.4). Then

∑
x∈U0

(−1)v1·x =

{
|U0|, v1 = 0k,

(−1)i+1A(i), wt (v1) = i,
(3.6)

where v1 ∈ Fk
2, 1 ≤ i ≤ k.
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Proof: If v1 = 0k, then∑
x∈U0

(−1)v1·x = |U0| = 2k −
((

k

k − 2

)
+

(
k

k − 1

)
+ 1

)
= 2k − k(k + 1)

2
− 1.

If v1 ̸= 0k and wt (v1) = i, i = 1, 2, . . . , k, according to Eqs.(2.1), (2.2) and Lemma 2, we

have ∑
x∈U0

(−1)v1·x =
∑
x∈Fk

2

(−1)v1·x −
∑

x∈Fk
2 ,wt(x)≥k−2

(−1)v1·x

=0− (Pk(i) + Pk−1(i) + Pk−2(i))

=(−1)i+1

(
1 + k − 2i+

(k − 2i)2 − k

2

)
=(−1)i+1A(i).

The proof is completed. □

By analyzing the behaviour of some quadratic equations, it is easy to derive the following

properties of A(i).

Lemma 6 The polynomial A(x) = 2x2 − (2 + 2k)x+ k(k+1)
2 + 1 satisfies the following.

(1) A(i) = 0 if and only if k = s2 + 1 ∈ S1 and i = s2+2±s
2 .

(2) A(i) = 1 if and only if k = s2 − 1 ∈ S−1 and i = s2±s
2 .

(3) A(i) = −1 if and only if k = s2 + 3 ∈ S3 and i = s2+4±s
2 .

It follows from the relation between k and s given in Lemma 6(1)-(3) that 1+k±s is always

a positive even number smaller than 2k, thus 1+k±s
2 is a positive integer smaller than k.

The next lemma follows also from the definition of A(i) by analyzing some quadratic equa-

tions derived therefrom, hence we omit its proof.

Lemma 7 Let k ≥ 6. Let i, j be two distinct integers in {1, 2, . . . , k} and let B(i) = (−1)iA(i) =

(−1)i(2i2 − 2(k + 1)i+ k2+k+2
2 ).

(1) If i ≡ j (mod 2), then B(i) = B(j) if and only if i+ j = k + 1. In particular, this can only

happen when k is odd.

(2) If i ̸≡ j (mod 2), then B(i) = B(j) if and only if j = a±3,i (see Section 2.1).

(3) For every i, |B(i)| ≤ (k+1)(k−4)
2 + 3.
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Observe that the sets S1, S3 and S−1 are mutually disjoint. For instance, S1 ∩ S3 = ∅ since

if x = s2 + 1 = t2 + 3 then (s− t)(s+ t) = 2 so that either s+ t = 2 and s− t = 1 or s+ t = 1

and s − t = 2, which yields s = 3/2 and t = ±1/2. A contradiction to s, t ∈ Z∗. Similarly, one

can prove that S1 ∩ S−1 = ∅ and S−1 ∩ S3 = ∅. To simplify some notation, it will be convenient

to define the function χ : {1, . . . , k} → {0, 1} given by χ(i) = 0 if and only if i is even.

Now we are ready to present the fist class of wide minimal binary codes from the GMM

class.

Theorem 1 Let r be an odd integer with r ≥ 11. Let f : Fk
2×Fl

2 → F2 be the Boolean function

in GMM defined by Eq.(3.3), where ϕ is an injection from Fk
2\U0 to Fl

2\ {0l} and ϕ(x) = 0l for

any x ∈ U0. The code Cf in Eq.(2.3) is a [2r, r + 1, d] minimal code, where

d =

2r−1 − 2l−2(k2 − 7k + 10), k is odd,

2r−1 − 2l−2(k2 − 3k + 2), k is even.

Furthermore, if r ≥ 15, then Cf is wide. The weight distributions are given in Table 1 and the

relevant parameters related to k are given in Table 2 (see also Section 2.1).

Proof: First, we examine the Walsh transform of the function f in Eq.(3.3) at any (v1,v2) ∈
Fk
2 × Fl

2. According to Lemma 5, we have

∑
x∈U0

(−1)v1·x =

{
|U0|, v1 = 0k,

−A(i)(−1)i, wt (v1) = i,

and then we can get

Wf (v1,v2) =
∑
x∈Fk

2

∑
y∈Fl

2

(−1)ϕ(x)·y+1+v1·x+v2·y

=
∑

x∈(Fk
2\U0)

∑
y∈Fl

2

(−1)ϕ(x)·y+1+v1·x+v2·y +
∑
x∈U0

∑
y∈Fl

2

(−1)1+v1·x+v2·y

=


−
(
2k − k(k+1)

2 − 1
)
2l, v1 = 0k,v2 = 0l,

(−1)iA(i)2l, wt (v1) = i,v2 = 0l,

−(−1)v1·ϕ−1(v2)2l, v2 ∈ Im(ϕ)\ {0l} ,
0, v2 /∈ Im(ϕ),

(3.7)

where i = 1, 2, . . . , k.

Furthermore, combining Lemma 3 and Eq.(3.7) together, we get that the length and dimen-

sion of Cf are 2r and r + 1, respectively.

Then, we will determine the weight distribution of the codes and it suffices to determine the

frequency of Wf (v1,v2), where (v1,v2) ∈ Fk
2 × Fl

2, since its corresponding weight can be easily

obtained by Lemma 3.
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It is clear that the multiplicity of −
(
2k − k(k+1)

2 − 1
)
2l is 1. To derive the frequencies of

other Walsh values in Eq.(3.7), it is necessary to consider the following cardinalities given in

Eqs.(3.8)-(3.10) below.

|{v1 ∈ Fk
2 : wt(v1) = i}| =

(
k

i

)
, (3.8)

|{v2 ∈ Fl
2 : v2 ∈ Im(ϕ)}| = |Fk

2\U0|+ 1 = 2 +
k(k + 1)

2
, (3.9)

|{v2 ∈ Fl
2 : v2 /∈ Im(ϕ)}| = 2l − 2− k(k + 1)

2
. (3.10)

The exact frequencies of weights in Cf depend on the values of k. We will only present two

cases: when k ̸∈ S1 ∪ S−1 ∪ S3 and the case when k ∈ S1 and we will attempt to bring out the

main differences between these two cases since other cases can be proved following similar ideas.

(1) Suppose that k ̸∈ S1∪S−1∪S3. Lemma 6 implies that A(i) ̸∈ {0, 1,−1} for all 1 ≤ i ≤ k.

Hence, according to Eqs.(3.9) and (3.10), the multiplicities of 0 and ±2l are given by∣∣∣{(v1,v2) : v1 ∈ Fk
2,v2 /∈ Im(ϕ)

}∣∣∣ = 2k
(
2l − 2− k(k + 1)

2

)
,

2k−2k(k+1)+2k−1, respectively. To prove, for instance, the latter, notice there are 2k−1 vectors

v1 such that v1 · ϕ−1 (v2) = 0 for any choice of v2 in Im(ϕ)\{0l} (thus ϕ−1(v2) ̸= 0k), a set of

size
∣∣Fk

2\U0

∣∣ = k(k+1)
2 + 1.

On the other hand, Lemma 7 yields that the multiplicity of Walsh transform (−1)iA(i)2l in

Eq.(3.7) is
∑

x∈Γi∪∆i

(
k
x

)
where the sets Γi and ∆i are given by Eqs.(2.4) and (2.5), respectively.

(2) Suppose now that k ∈ S1 with k = s2+1 for some integer s. On the one hand, it follows

from Lemma 6 that A(i) ̸= ±1 and thus the multiplicities of ±2l are 2k−2k(k + 1) + 2k−1 by

Eq.(3.9). On the other hand, by Eqs.(3.8) and (3.10), one can deduce that the frequency of 0 is

then given by∣∣∣∣{(v1,0l) : wt(v1) =
k + 1± s

2

}∣∣∣∣+ ∣∣∣{(v1,v2) : v1 ∈ Fk
2,v2 /∈ Im(ϕ)

}∣∣∣
=

(
k

k+1+s
2

)
+

(
k

k+1−s
2

)
+ 2k

(
2l − 2− k(k + 1)

2

)
,

since A(k+1±s
2 ) = 0. The multiplicity of (−1)iA(i)2l for i ̸= k+1±s

2 can be completed by using a

similar approach as above.

Finally, we will examine the wideness and minimality of the code. It is an immediate result

from Lemma 4 that Cf is minimal since Eq.(3.7) leads to

Wf (v1,v2)±Wf (w1,w2) ̸= 2r

for any pair of distinct (v1,v2) , (w1,w2) ∈ Fk
2 × Fl

2.
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It can be easily verified (see also Tables 1 and 2) that the maximum weight

wmax = 2r−1 + 2l−1(2k − k(k + 1)

2
− 1), (3.11)

corresponding to wt (v1) = 0, wt (v2) = 0. To compute the minimum weight, note that the

quadratic function A(x) has a critical point at x = k+1
2 , thus the maximum attained at an

integer i must lie near the endpoint (depending on the parity of i). Therefore, when k is odd,

(−1)iA(i) ≤ A(2) = A(k − 1). On the other hand, when k is even, (−1)iA(i) ≤ A(k). Thus,

the minimum (nonzero) weight is achieved when wt (v1) = k,wt (v2) = 0 for k even and when

wt (v1) = 2, wt (v2) = 0 for k odd, which gives

wmin = 2r−1 − 2l−2(k2 − 3k + 2), (3.12)

for even k and

wmin = 2r−1 − 2l−2(k2 − 7k + 10), (3.13)

for odd k. Therefore, combining Eqs.(3.11)-(3.13) together, we get wmin/wmax ≤ 1/2 for k ≥ 8,

that is, Cf is a wide minimal code for r ≥ 13. This completes the proof. □

Table 1: The weight distribution of Cf , where 1 ≤ i ≤ k.

Weight Multiplicity

2r−1 + 2l−1(2k − k(k+1)
2 − 1) 1

2r−1 + (−1)i+1A(i)2l−1
∑

x∈Γi∪∆i

(
k
x

)
for i ̸∈ Θ

2r−1 − 2l−1 2k−2k(k + 1) + 2k−1 +N1

( k
1+k+s

2

)
+N2

( k
1+k−s

2

)
2r−1 + 2l−1 2k−2k(k + 1) + 2k−1 +N3

( k
1+k+s

2

)
+N4

( k
1+k−s

2

)
2r−1 2r − 1 + 2k(2l − 2− k(k+1)

2 ) +N5

(( k
1+k+s

2

)
+
( k

1+k−s
2

))
0 1

Table 2: Parameters in Table 1.

k ∈ S−1 k ∈ S1 k ∈ S3 k ̸∈ S1 ∪ S−1 ∪ S3

N1 1− χ(k+1+s
2 ) 0 χ(k+1+s

2 ) 0

N2 1− χ(k+1−s
2 ) 0 χ(k+1−s

2 ) 0

N3 χ(k+1+s
2 ) 0 1− χ(k+1+s

2 ) 0

N4 χ(k+1−s
2 ) 0 1− χ(k+1−s

2 ) 0

N5 0 1 0 0

Θ {k+1±s
2 } {k+1±s

2 } {k+1±s
2 } ∅

We now give some examples to illustrate the correctness of Theorem 1.
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Example 1 (1) Let r = 11, i.e., k = 6, l = 5, which implies that k ̸∈ S1 ∪ S−1 ∪ S3. Then Cf

described in Theorem 1 is a minimal [2048, 12, 864] code, whose weight enumerator polynomial is

1+z864+35992+704z1008+2623z1024+704z1040+21z1056+6z1184+z1696. Note that in this case,

the only solution (i, j) of j =
(k+1)±

√
4i(−i+1+k)−(k2+3)

2 that is relevant for the computation of

the weight distribution is (3, 2) (minus sign) (the other solution (3, 5) (plus sign) leads to i ≡ j

(mod 2)).

(2) Let r = 13, i.e., k = 7 = 22 + 3 ∈ S3, l = 6. Then Cf described in Theorem 1 is a

minimal [8192, 14, 3936] code, whose weight enumerator polynomial is 1+ 28z3936 +1912z4064 +

12543z4096 + 1856z4128 + 35z4192 + 8z4576 + z7264.

(3) Let r = 15, i.e., k = 8 = 32 − 1 ∈ S−1, l = 7. Then Cf described in Theorem 1 is a wide

minimal [32768, 16, 15040] code, whose weight enumerator polynomial is 1 + z15040 + 28z15808 +

56z16192 +4764z16320 +55807z16384 +4792z16448 +70z16576 +8z16960 +8z17728 + z30400. Observe

that indeed 15040
30400 = 47

95 < 1
2 .

3.2 Wide binary minimal codes from the derivative of a Boolean function

In what follows, we first show that a different characteristic set, i.e., U1 = {x ∈ Fk
2 : wt(x) ≥ 3},

can actually give rise to wide minimal codes if a suitable derivative Dγ(f) of f defined in Eq.(3.3)

is used. Then, we combine the codewords of CDγ(f) and of Cf to increase the dimension of the

resulting wide minimal codes.

From Eqs.(2.3) and (3.2), the code CDγ(f) is defined by

CDγ(f) =
{
(u(f(x) + f(x+ γ)) + v · x)x∈Fm

2
: u ∈ F2,v ∈ Fm

2

}
, (3.14)

where f(x) ̸= v · x+ a. For the choice of U1, we will study the polynomial

B(i) = A(i) + (−1)iA(i) =

4i2 − 4(k + 1)i+ k2 + k + 2, i is even,

0, i is odd,
(3.15)

for 1 ≤ i ≤ k.

Lemma 8 Consider the polynomial B(i) defined in (3.15). The following statements hold for

k ≥ 6.

(1) B(i) = 0 if and only if i is odd or i is even and k = s2 + 1 ∈ S1 and i = s2+2±s
2 .

(2) B(i) = −2 if and only if i is even and k = s2 + 3 ∈ S3 and i = s2+4±s
2 .

(3) B(i) = 2 if and only if i is even and k = s2 − 1 ∈ S−1 and i = s2±s
2 .

Similarly as in Sect 3.1, one can deduce that 1+k±s
2 is a positive integer smaller than k and

we also have the following lemma.
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Lemma 9 Let i, j be two distinct even integers in {1, 2, · · · , k} and B be defined in (3.15).

Then B(i) = B(j) if and only if i + j = k + 1. In particular, this can only happen when k is

odd.

For the code CDγ(f) in Eq.(3.14), we have the following.

Theorem 2 Let r ≥ 11 be an odd integer, U1 = {x ∈ Fk
2 : wt(x) ≥ 3} and ϕ be a mapping

such that it is an injection from Fk
2\U1 to Fl

2\ {0l} and ϕ(x) = 0l for any x ∈ U1. Consider

γ = (1k,0l) ∈ Fr
2. Then the derivative code CDγ(f) in Eq.(3.14) is a

[
2r, r + 1, 2l−1

(
k2 + k + 2

)]
minimal code. Furthermore, if r ≥ 13, then CDγ(f) is wide. The weight distribution is displayed

in Table 3 and the parameters related to k are given in Table 4, where Λ = {1 ≤ j ≤ k|j is even}∩
{1+k±s

2 }, Ω = {1 ≤ j ≤ k|j is odd} ∪ {1+k±s
2 }.

Proof: Similar as the proof of Theorem 1, we first determine the Walsh transform of the function

Dγ(f) given in Eq.(3.2). Note that U0 = U1 + 1k. It is easy to prove (see also [8, Lemma 6])

∑
x∈U1

(−1)v1·x =

{
|U1|, v1 = 0k,

−A(i), wt (v1) = i,
(3.16)

where |U1| = |U0| = 2k − k(k+1)
2 − 1 and A(i) is given by Eq.(3.4).

According to Lemma 5 and Eq.(3.16), we get

WDγ(f)(v1,v2) =
∑
x∈Fk

2

∑
y∈Fl

2

(−1)ϕ(x)·y+ϕ(x+1k)·y+v1·x+v2·y

=
∑

x∈(Fk
2\U1)

∑
y∈Fl

2

(−1)ϕ(x)·y+v1·x+v2·y +
∑

x∈(Fk
2\U0)

∑
y∈Fl

2

(−1)ϕ(x+1k)·y+v1·x+v2·y

+
∑

x∈(U1∩U0)

∑
y∈Fl

2

(−1)v1·x+v2·y

=



(
2k − k(k + 1)− 2

)
2l, v1 = 0k,v2 = 0l,

−
(
A(i) + (−1)iA(i)

)
2l, wt (v1) = i,v2 = 0l,(

1 + (−1)v1·1k
)
(−1)v1·ϕ−1(v2)2l, v2 ∈ Im(ϕ)\ {0l} ,

0, v2 /∈ Im(ϕ),

(3.17)

where i = 1, 2, . . . , k.

Now, we are ready to determine the frequencies in the Walsh spectrum of the values given

in Eq.(3.17). Although the specification of the weight distribution of the code is similar to that

of Theorem 1, we will provide some details for the reader’s convenience. We only present the

case when k is of the form s2 + 1 since the other cases can be proved with the same idea.

Note that the function −B(i) has a maximum at k+1
2 . Thus the Walsh value (2k−k2−k−2)2l

in Eq.(3.17) is attained only once and it corresponds to the minimum weight in CDγ(f). The

number of balanced codewords corresponds to the number of linear functions plus the frequency

of the zero Walsh values in Eq.(3.17), which includes the following four possibilities.



Infinite families of minimal binary codes via Krawtchouk polynomials 13

(i) v2 ∈ Fl
2 and v2 ̸∈ Im(ϕ) gives 2k(2l − k2+k

2 − 2) occurrences.

(ii) B(i) = 0, 1 ≤ i ≤ k, which yields 2k−1 +
∑

x∈Λ
(
k
x

)
codewords according to Lemma 8,

where

Λ = {j ∈ {1, . . . , k}|j is even} ∩
{
s2 ± s+ 2

2

}
.

(iii) v2 ∈ Im(ϕ)\ {0l} and 1 + (−1)v1·1k = 0, i.e., v1 has odd weight.

(iv) The case u = 0 which corresponds to 2r − 1 codewords.

Thus the total number of balanced codewords is

2r − 1 + 2k(2l − k(k + 1)

2
− 2) + 2k−1 +

∑
x∈Λ

(
k

x

)
+ 2k−1

(
k(k + 1)

2
+ 1

)
.

To count the frequency of 2l+1, note that
(
1 + (−1)v1·1k

)
(−1)v1·ϕ−1(v2) equals 2 when v1

has even weight and v1 is orthogonal to ϕ−1(v2) for v2 ∈ Im(ϕ)\ {0l}. That is, there are

2k−3k(k + 1) + 2k−1 such values. Similarly, the frequency of −2l+1 equals 2k−2(k(k+1)
2 ).

When B(i) ̸∈ {0, 2,−2}, the values −
(
A(i) + (−1)iA(i)

)
2l are different from each other for

even i with 1 ≤ i ≤ k, when k is even, thus its multiplicity is
(
k
i

)
. Otherwise, if k is odd, its

multiplicity equals
∑

x∈{i,k+1−i}
(
k
x

)
by Lemma 9. This completes the description of the weight

distribution.

Next, we show CDγ(f) is minimal and wide. From Eq.(3.17), we see that

WDγ(f) (v1,v2)±WDγ(f) (w1,w2) ̸= 2r

for any pair of distinct (v1,v2) , (w1,w2) ∈ Fk
2 × Fl

2. It follows from Lemma 4 that CDγ(f) is

minimal. Note that the minimum weight is clearly

wmin = 2l−1(k2 + k + 2), (3.18)

corresponding to wt (v1) = 0, wt (v2) = 0. The maximum weight corresponds to the vectors

wt (v1) = k,wt (v2) = 0, when k is even, and wt (v1) = 2, wt (v2) = 0, when k is odd. Thus,

wmax =

2r−1 + 2l−1(k2 − 3k + 2), k is even,

2r−1 + 2l−1(k2 − 7k + 10), k is odd.
(3.19)

Therefore, combining Eqs.(3.18) and (3.19) together, we get wmin/wmax ≤ 1/2 for k ≥ 7, i.e.,

CDγ(f) is wide minimal. This completes the proof. □
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Table 3: The weight distribution of CDγ(f), where 1 ≤ i ≤ k.

Weight Multiplicity

2l−1
(
k2 + k + 2

)
1

2r−1 +B(i)2l
∑

x∈Γi

(
k
x

)
for i ̸∈ Θ

2r−1 + 2l 2k−3k(k + 1) +N1
∑

x∈Λ
(
k
x

)
2r−1 − 2l 2k−1 + 2k−3k(k + 1) +N2

∑
x∈Λ

(
k
x

)
2r−1

2r − 1 + 2k(2l − 2− k(k+1)
2 ) +N3

∑
x∈Λ

(
k
x

)
+2k−1(k(k+1)

2 + 2)

0 1

Table 4: Parameters in Table 3.

k ∈ S−1 k ∈ S1 k ∈ S3 k ̸∈ S1 ∪ S−1 ∪ S3

N1 1 0 0 0

N2 0 0 1 0

N3 0 1 0 0

Θ Ω Ω Ω {1 ≤ j ≤ k|j is odd}

Example 2 (1) Let r = 11, i.e., k = 6 ̸∈ S1∪S−1∪S3, l = 5. Then CDγ(f) described in Theorem

2 is a minimal [2048, 12, 704] code, whose weight enumerator polynomial is 1 + z704 + 15z960 +

368z992 + 3359z1024 + 336z1056 + 15z1088 + z1344.

(2) Let r = 13, i.e., k = 7 ∈ S3, l = 6 and k ± s ≡ 1 (mod 4). Then CDγ(f) described

in Theorem 2 is a wide minimal [8192, 14, 1856] code, whose weight enumerator polynomial is

1 + z1856 + 35z3904 + 960z4032 + 14463z4096 + 896z4160 + 28z4416.

Now, we use the codewords of the codes specified in Theorem 1 together with those given

in Theorem 2 to increase the dimension of the resulting codes by one. Precisely, we define

Cf ⊕ CDγ(f) as

Cf ⊕ CDγ(f) :=
{
(af(x) + bDγf(x) + v · x)x∈Fn

2
: a, b ∈ F2,v ∈ Fn

2

}
. (3.20)

From the results of [8, Theorem 1], Theorems 1 and 2, we can similarly obtain the following

theorem. Its proof is lengthy and similar to that of [16, Theorem 5], thus we omit it.

Theorem 3 Let the symbols be given as above. Then the code Cf ⊕CDγ(f) given by Eq.(3.20),

is a
[
2r, r + 2, 2l−1

(
k2 + k + 2

)]
wide binary minimal code.

Remark 1 The codes CDγ(f) and Cf ⊕CDγ(f), presented in Th.2 and Th.3, respectively, attain

a larger minimum distance than the ones introduced in [16], obtained using the same method,

i.e., Th.4 and Th.5 in [16]. Namely, the number 2l−1
(
k2 + k + 2

)
is always larger than 2l(k+1).
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4 The general case

In this section, we present the general construction of (wide) minimal codes using the previ-

ously described form. For I ⊆ {1, . . . , n}, define the subset UI of Fm
2 as

UI := {v ∈ Fm
2 : wt(v) ̸∈ I}. (4.1)

For instance, in Fk
2, the sets defined in the previous sections are a special case of this definition,

namely, U{0,1,2} = U1 and U{k−2,k−1,k} = U0. Since UI contains every vector whose weight is not

in I, then we get the following result.

Lemma 10 Let m be any positive integer and I ⊆ {1, . . . ,m}. Consider the subset UI given in

(4.1). The following holds

∑
x∈UI

(−1)v·x =

{
|UI | = 2m −

∑
i∈I

(
m
i

)
, v = 0m,

−
∑

j∈I Pj(i), wt (v) = i,
(4.2)

for any v ∈ Fm
2 .

For suitable choices of I, one can explicitly obtain the values in the previous sum. For our

purposes, it will be enough to consider subsets I for which |UI | > 2k−1. Moreover, since the

Krawtchouck polynomials satisfy Eq.(2.2), we will restrict to cases when I ⊆ {0, 1, 2} ∪ {k −
2, k− 1, k}. Our previous discussion together with [7, 8, 13, 16] essentially cover the cases when

I equals {0, 1}, {k− 1, k}, {0, 1, 2}, {k− 2, k− 1, k} as it will become obvious after the following

lemma.

Lemma 11 Let r be an odd integer with r ≥ 7. Let I ⊆ {0, 2, . . . , k}. Consider the function f

defined in Eq.(3.3), where ϕ is an injective mapping from Fk
2\UI to Fl

2\ {0l} and ϕ(x) = 0l for

any x ∈ UI . Then, the Walsh transform of f takes the following values

Wf (v1,v2) =



−2l|UI |, v1 = 0k,v2 = 0l,

2l
∑

j∈I Pj(i), wt (v1) = i,v2 = 0l,

−(−1)v1·ϕ−1(v2)2l, v2 ∈ Im(ϕ)\ {0l} ,

0, v2 /∈ Im(ϕ),

where i = 1, 2, . . . , k.

Proof: The result follows immediately from Lemma 10. □

Comparing the previous result with Lemma 5 and Theorem 1, one can see that the key for

the results in Sect.3 is that the polynomial (−1)iA(i) = Pk(i)+Pk−1(i)+Pk−2(i) has degree two,

which implies that it is easy to find the critical points for A(i) = ±1 or A(i) = 0, thus allowing
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us to fully describe the weight distribution of the codes. In the following, we will illustrate this

general method by considering simple subsets I that yield polynomials of low degree (denoted

by AI(i)), namely, we will select I to be {0, k−2, k−1}, {0, 1, k−1} and {0, 1, k}. Other similar

choices of I can be handled analogously and are left as an exercise to the interested reader.

4.1 The case I = {0, k − 1, k − 2}.

Throughout this section, set I = {0, k − 1, k − 2}. The associated polynomial is now the

quadratic polynomial

AI(i) = (−1)i(2i2 − 2i(k + 1) +
k(k + 1)

2
) + 1,

where 1 ≤ i ≤ k. Similar to Lemma 6, we can easily derive the following properties of AI(i).

Lemma 12 For 1 ≤ i ≤ k, we have,

(1) AI(i) = 0 if and only if k = s2 − 3 ∈ S−3, i = s2−2±s
2 is odd, or k = s2 + 1 ∈ S1 and

i = s2+2±s
2 is even.

(2) AI(i) = −1 if and only if k = s2 − 5 ∈ S−5 and i = s2−4±s
2 is odd, or k = s2 + 3 ∈ S3 and

i = s2+4±s
2 is even.

(3) AI(i) = 1 if and only if k = s2 − 1 ∈ S−1 and i = s2±s
2 is odd, or k = s2 − 1 ∈ S−1 and

i = s2±s
2 is even.

Observe that the sets Su are almost always mutually disjoint with the unique exception

k = 4 ∈ S3 ∩ S−5 giving i = 2, j = 1 and AI(i) = AI(j) = −1. This implies that the conditions

are almost always mutually exclusive.

A result similar to Lemma 7 can now be derived.

Lemma 13 Let i ̸= j be two integers in {1, . . . , k}.

(1) If i ≡ j (mod 2), then AI(i) = AI(j) if and only if i + j = k + 1. In particular, this can

only happen when k is odd.

(2) If i ̸≡ j (mod 2), then AI(i) = AI(j) if and only if j = a±−1,i.

We now have all the ingredients to state and prove the following.

Theorem 4 Let r be an odd integer with r ≥ 7. Let I = {0, k−1, k−2}. Consider the function
f defined in Eq.(3.3) where ϕ is an injective mapping from Fk

2\UI to Fl
2\ {0l} and ϕ(x) = 0l for

any x ∈ UI . Then the code Cf in Eq.(2.3) is a [2r, r + 1, d] minimal code, where

d =

2r−1 − 2l−2(k2 − 7k + 10), k is odd,

2r−1 − 2l−2(k2 − 3k + 2), k is even.
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Furthermore, if r ≥ 15, then Cf is wide. The weight distributions are given in Table 5, whose

parameters related to k and the set Λs are shown in Tables 6 and 7, respectively.

Proof: The proof is similar to that of Theorem 1, so we only present a sketch here. Lemma 11

implies that

Wf (v1,v2) =


−
(
2k − k(k+1)

2 − 1
)
2l, v1 = 0k,v2 = 0l,

2lAI(i), wt (v1) = i,v2 = 0l,

−(−1)v1·ϕ−1(v2)2l, v2 ∈ Im(ϕ)\ {0l} ,
0, v2 /∈ Im(ϕ),

(4.3)

for i = 1, 2, . . . , k.

The exact frequencies of weights in Cf depend on the values of k. We will describe the case

when k ̸∈ ∪j∈{±1,±3,−5}Sj and when k ∈ S−3 since the other cases can be proved using a similar

reasoning.

(1) Suppose that k ̸∈ ∪j∈{±1,±3,−5}Sj . Lemma 12 implies that there is no solution for

AI(i) = 0, 1,−1. Hence the multiplicities of 0, 2l, and −2l are given by 2k
(
2l − 2 − k(k+1)

2

)
,

2k−2k(k + 1) and 2k−2k(k + 1) + 2k, respectively. Lemma 13, Eq.(2.4) and Eq.(2.5) yield the

frequency of 2lAI(i) in Eq.(4.3) to be
∑

x∈Γi∪∆i

(
k
x

)
.

(2) If k ∈ S−3 with k = s2 − 3, then by Lemma 12, AI(i) ̸= ±1. This implies that the

multiplicities of 2l and −2l are 2k−2k(k + 1) and 2k−2k(k + 1) + 2k, respectively. Now, to

compute the frequency of 0, we define

Λs :=



{ s2±s−2
2 }, s ≡ 0 (mod 4),

{ s2−s−2
2 }, s ≡ 1 (mod 4),

∅, s ≡ 2 (mod 4),

{ s2+s−2
2 }, s ≡ −1 (mod 4).

Thus, the multiplicity of 0 in the Walsh spectrum is given by
∑

ρ∈Λs

(
k
ρ

)
+ 2k

(
2l − 2− k(k+1)

2

)
.

Finally, the multiplicity of AI(i)2
l for i ̸∈ Λs is attained

∑
j∈Γi∪∆i

(
k
j

)
times.

Following the same reasoning as in the proof of Theorem 1, we can obtain that Cf is minimal

using the equation below

Wf (v1,v2)±Wf (w1,w2) ̸= 2r, (v1,v2) ̸= (w1,w2) ∈ Fk
2 × Fl

2.

Clearly, the maximum weight is

wmax = 2r−1 + 2l−1(2k − k(k + 1)

2
− 1).
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If wt (v1) = k is even and wt (v2) = 0, we have

wmin = 2r−1 − 2l−2(k2 − 3k + 2).

If k is odd and wt (v1) = 2, wt (v2) = 0, we have

wmin = 2r−1 − 2l−2(k2 − 7k + 10).

Thus, the code is wide and minimal for k ≥ 8. □

Table 5: The weight distribution of Cf , where 1 ≤ i ≤ k.

Weight Multiplicity

2r−1 + 2l−1(2k − k(k+1)
2 − 1) 1

2r−1 − 2lAI(i)
∑

j∈Γi∪∆i

(
k
j

)
for i ̸∈ Θ

2r−1 − 2l−1 2k−2k(k + 1) +N1

2r−1 + 2l−1 2k−2k(k + 1) + 2k +N2

2r−1 2r+1 − 1− 2k−1(k(k + 1) + 4) +N3

0 1

Table 6: Parameters in Table 5.

k ∈ S1 ∪ S−3 k ∈ S−5 ∪ S3 k ∈ S−1 k ̸∈ ∪j∈{±1,±3,−5}Sj

N1 0 0
( k

s2−s
2

)
+
( k

s2+s
2

)
0

N2 0
∑

j∈Λs

(
k
j

)
0 0

N3
∑

j∈Λs

(
k
j

)
0 0 0

Θ Λs Λs Λs ∅

Table 7: The values of the set Λs in Table 6.

k ∈ S−3 k ∈ S1 k ∈ S−5 k ∈ S3 k ∈ S−1

s ≡ 0 (mod 4) { s2±s−2
2 } ∅ ∅ { s2±s+4

2 } { s2±s
2 }

s ≡ 1 (mod 4) { s2−s−2
2 } { s2+s+2

2 } { s2−s−4
2 } { s2−s+4

2 } { s2±s
2 }

s ≡ 2 (mod 4) ∅ { s2±s+2
2 } { s2±s−4

2 } ∅ { s2±s
2 }

s ≡ −1 (mod 4) { s2+s−2
2 } { s2−s+2

2 } { s2+s−4
2 } { s2+s+4

2 } { s2±s
2 }

Example 3 (1) Let r = 11, i.e., k = 6 = 32 − 3 ∈ S−3, l = 5. Then Cf described in Theorem 4

is a wide minimal [2048, 12, 864] code, whose weight enumerator polynomial is 1+z864+20z960+

15z992 + 672z1008 + 26291024 + 736z1040 + 15z1056 + 6z1152 + z696.
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(2) Let r = 13, i.e., k = 7 = 22 + 3 ∈ S3, l = 6. Then Cf described in Theorem 4 is a

minimal [8192, 14, 3936] code, whose weight enumerator polynomial is 1 + 28z3936 + 56z4000 +

1792z4064 + 125434096 + 19204128 + 35z4192 + 8z4512 + z7264.

We have fully derived similar approaches for I = {0, 1, k} and I = {0, 1, k − 1}. These

theorems can be handled in a similar fashion as for the cases above. They are lengthy but

simpler, thus we present such detailed proofs in the appendix.

4.2 The case I = {0, 1, k}.

We now study the case I = {0, 1, k}, where the associated polynomial AI(i) is the linear

polynomial −2i+ k + (−1)i + 1 and AI(0) = 2k − |UI |.

Theorem 5 Let r be an odd integer with r ≥ 7. Let I = {0, 1, k}. Consider the function f

defined in Eq.(3.3), where ϕ is an injective mapping from Fk
2\UI to Fl

2\ {0l} and ϕ(x) = 0l for

any x ∈ UI . Then the code Cf in Eq.(2.3) is a [2r, r + 1, 2r−1 − 2l−1(k − 2)] minimal code.

Furthermore, if r ≥ 11, then Cf is wide. The weight distributions are displayed in Table 8,

where the parameters related to k are given in Table 9.

Table 8: The weight distribution of Cf , where 1 ≤ i ≤ k − 1 is odd.

Weight Multiplicity

2r−1 + 2l−1(2k − k − 2) 1

2r−1 − 2l−1(k − 2i)
(
k
i

)
+
(

k
i+1

)
for i ̸∈ Θ

2r−1 − 2l−1 2k−1(k + 1) +N1

2r−1 + 2l−1 2k−1(k + 1) + 2k +N2

2r−1 2r − 1 + 2k(2l − k − 3) +N3

0 1

Table 9: Parameters in Table 8.

k ≡ 0 (mod 4) k ≡ 1 (mod 4) k ≡ 2 (mod 4) k ≡ −1 (mod 4)

N1 0 0 0
( k

k−1
2

)
+
( k

k+1
2

)
N2 0

( k
k+1
2

)
+
( k

k+3
2

)
0 0

N3 0 0
( k

k+2
2

)
+
(k

k
2

)
0

Θ ∅ {k+1
2 } {k

2} {k−1
2 }
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Example 4 (1) Let r = 7, i.e., k = 4 ≡ 0 (mod 4), l = 3. Then Cf described in Theorem 5 is

a minimal [128, 8, 56] code, whose weight enumerator polynomial is 1+10z56+40z60+143z64+

56z68 + 5z72 + z104.

(2) Let r = 9, i.e., k = 5 ≡ 1 (mod 4), l = 4. Then Cf described in Theorem 5 is a minimal

[512, 10, 232] code, whose weight enumerator polynomial is 1+15z232+96z248+767z256+143z264+

z296 + z456.

(3) Let r = 11, i.e., k = 6 ≡ 2 (mod 4), l = 5. Then Cf described in Theorem 5 is a

wide minimal [2048, 12, 960] code, whose weight enumerator polynomial is 1+21z960+2241008+

3554z1024 + 288z1040 + 7z1088 + z1920. Note that indeed Cf is wide as 960
1920 = 1

2 .

(4) Let r = 13, i.e., k = 7 ≡ −1 (mod 4), l = 6. Then Cf described in Theorem 5 is a

minimal [8192, 14, 3936] code, whose weight enumerator polynomial is 1 + 28z3936 + 5824064 +

151034096 + 640z4128 + 28z4192 + z4320 + z7904.

4.3 The case I = {0, 1, k − 1}.

Consider I = {0, 1, k − 1}. This case is similar to the one described in the previous section,

however, some care must be taken when specifying all details. The associated polynomial AI(i)

is the linear polynomial ((−1)i + 1)(−2i+ k) + 1 and, again, AI(0) = 2k − |UI |.

Theorem 6 Let r be an odd integer with r ≥ 9. Let I = {0, 1, k − 1}. Consider the function

f defined in Eq.(3.3), where ϕ is an injective mapping from Fk
2\UI to Fl

2\ {0l} and ϕ(x) = 0l

for any x ∈ UI ,. Then the code Cf in Eq.(2.3) is a [2r, r+ 1, 2r−1 − 2l−1(2k− 7)] minimal code.

Furthermore, if r ≥ 15, then Cf is wide. Its weight distribution is given in Table 10, where the

parameters related to k are given in Table 11.

Table 10: The weight distribution of Cf , where 1 ≤ i ≤ k is even.

Weight Multiplicity

2r−1 + 2l−1(2k − 2k − 1) 1

2r−1 − 2l−1(−4i+ 2k + 1)
(
k
i

)
for i ̸∈ Θ

2r−1 − 2l−1 2kk + 2k−1 +N1

2r−1 + 2l−1 2k(k + 1) +N2

2r−1 2r − 1 + 2k(2l − 2k − 2)

0 1
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Table 11: Parameters in Table 10.

k ≡ 0 (mod 4) k ≡ −1 (mod 4) k ≡ 1 (mod 4) or k ≡ 2 (mod 4)

N1

(k
k
2

)
0 0

N2 0
( k

k+1
2

)
0

Θ {k
2} {k+1

2 } ∅

Example 5 (1) Let r = 9, k = 5 ≡ 1 (mod 4), l = 4. Then Cf described in Theorem 6 is

a minimal [512, 10, 232] code, whose weight enumerator polynomial is 1 + 10z232 + 176z248 +

639z256 + 192z264 + 5z296 + z424.

(2) Let r = 11, k = 6 ≡ 2 (mod 4), l = 5. Then Cf described in Theorem 6 is a wide minimal

[2048, 12, 944] code, whose weight enumerator polynomial 1 + 15z944 + 416z1008 + 3199z1024 +

448z1040 + 15z1072 + z1200 + z1840.

(3) Let r = 13, i.e., k = 7 ≡ −1 (mod 4), l = 6. Then Cf described in Theorem 6 is a

minimal [8192, 14, 3872]-code, whose weight enumerator polynomial is 1 + 21z3872 + 9604064 +

14335z4096 + 1059z4128 + 7z4384 + z7712.

(4) Let r = 15, i.e., k = 8 ≡ 0 (mod 4), l = 7. Then Cf described in Theorem 6 is

a wide minimal [32768, 16, 15808] code, whose weight enumerator polynomial is 1 + 28z15808 +

2246z16320+60927z16384+2304z16448+28z16832+z17344+z31680. Note that indeed 15808
31680 = 247

495 < 1
2 .

Remark 2 The code Cf in Theorem 5 has the largest minimum distance (for the given param-

eters), i.e., 2r−1 − 2l−1(k − 2), among the explicit binary codes constructed using the method of

Krawtchouk polynomials ([7, 8, 13, 16]) except for U = {k, k − 1} when k is even, which yields

a minimum distance of 2r−1 − 2l−1(k − 3) [Theorem 2, [16]].

5 Conclusion

In this paper, we have constructed several classes of new wide binary minimal codes by selecting

appropriate Boolean functions in the GMM class. The methods used in this paper are based on

[7, 8, 16], namely, we employed Krawtchouk polynomials to compute the Walsh distributions

of the chosen Boolean functions. The lengths, dimensions and weight distributions of these

codes have been determined. The results show that some of the new codes achieve a larger

minimum distance than those in [16]. Furthermore, we used the derivative method devised in

[16] to increase the dimension of our codes. To deepen the understanding of the Krawtchouk-

polynomials method, we have studied the general case by using suitable choices for subsets

in {1, . . . , k}. We have described some feasible choices for which we were able to study the

minimality and wideness properties of such codes. While these subsets of {1, . . . , k} give simple

descriptions of the codes, other more involved selections may give rise to possibly better codes
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(e.g., having a larger minimum distance). However, the difficulty lies in the analysis of specific

cubic or quartic polynomials. We leave this as a research challenge.
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Appendix A

A.1 Proof of Theorem 5

Proof: From Lemma 11, we have

Wf (v1,v2) =


−
(
2k − k − 2

)
2l, v1 = 0k,v2 = 0l,

2l((−1)i − 2i+ k + 1), wt (v1) = i,v2 = 0l,

−(−1)v1·ϕ−1(v2)2l, v2 ∈ Im(ϕ)\ {0l} ,
0, v2 /∈ Im(ϕ),

(-1)

for i = 1, 2, . . . , k.

We now turn to provide the full description of the weight distribution of the code.

For k even and any 1 ≤ i ≤ k, −2i + k + 1 + (−1)i is even, thus −2l and 2l are attained

2k−1(k + 1) + 2k and 2k−1(k + 1) times, respectively. Moreover, −2i+ k + 1 + (−1)i = 0 if and

only if i = k+1+(−1)i

2 . In other words, when k ≡ 2 (mod 4) and i = k+2
2 or i = k

2 . However, when

k ≡ 0 (mod 4) there is no solution i to this equation. Hence, for k ≡ 2 (mod 4), the value 0 has

multiplicity 2k(2l−k−3)+
( k

k+2
2

)
+
(k

k
2

)
and the (non-zero) values 2l(−2i+k+2) and 2l(−2i+k)

are both attained
(
k
i

)
times, where i ̸= k+2

2 and i ̸= k
2 , respectively. Whereas for k ≡ 0 (mod 4),

the value 0 is attained 2k(2l − k − 3) times and there is no restriction for 2l(−2i + k + 2) and

2l(−2i+ k) that are both attained
(
k
i

)
times.

Similarly, for odd k, −2i+ k+1+ (−1)i cannot be even, so that 0 is attained 2k(2l − k− 3)

times. The polynomial −2i+ k + 1 + (−1)i = ±1 has a solution if and only if i = k+1+(−1)i∓1
2 ,

that is, when either k ≡ 1 (mod 4) and i ∈
{
k+1
2 , k+3

2

}
or k ≡ −1 (mod 4) and i ∈

{
k−1
2 , k+1

2

}
.

Hence, for k ≡ 1 (mod 4), −2l has multiplicity 2k−1(k + 1) + 2k +
( k

k+1
2

)
+

( k
k+3
2

)
and 2l has

multiplicity 2k−1(k + 1). For k ≡ −1 (mod 4), 2l has multiplicity 2k−1(k + 1) +
( k

k−1
2

)
+

( k
k+1
2

)
and −2l has multiplicity 2k−1(k + 1) + 2k. The values 2l(−2i+ k + 2), i even, and 2l(−2i+ k),

i odd, for which −2i+ k + 2 ̸= ±1 are attained
(
k
i

)
times.

From Eq.(-1), we see that Cf is minimal by Lemma 4. Note that the minimum (nonzero)

weight is achieved when wt (v1) = 1, wt (v2) = 0, that is, wmin = 2r−1 − 2l−1(k − 2) and the

maximum weight is wmax = 2r−1 + 2l−1(2k − k − 2) corresponding to wt (v1) = 0, wt (v2) = 0.

Hence, wmin/wmax ≤ 1/2 when k ≥ 6. □

A.2 Proof of Theorem 6

Proof: Lemma 11 implies that

Wf (v1,v2) =


−
(
2k − 2k − 1

)
2l, v1 = 0k,v2 = 0l,

2l(((−1)i + 1)(−2i+ k) + 1), wt (v1) = i,v2 = 0l,

−(−1)v1·ϕ−1(v2)2l, v2 ∈ Im(ϕ)\ {0l} ,
0, v2 /∈ Im(ϕ),

(-2)
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for i = 1, 2, . . . , k.

Observe that the polynomial ((−1)i + 1)(−2i + k) + 1 has no integer roots i, thus 0 has

multiplicity 2k(2l − 2k − 2). Moreover, ((−1)i + 1)(−2i+ k) + 1 = 1 has an integer solution i if

and only if i is odd or i is even and k ≡ 0 (mod 4). Similarly, ((−1)i + 1)(−2i + k) + 1 = −1

has a solution i if and only if i is even and k ≡ −1 (mod 4). Therefore, for k ≡ 0 (mod 4), 2l

is attained 2kk +
(k

k
2

)
+ 2k−1 times and −2l is attained 2k(k + 1) times. The Walsh coefficient

2l(((−1)i + 1)(−2i + k) + 1) for even i and i ̸= k
2 is attained

(
k
i

)
times. Similarly, for k ≡ −1

(mod 4), 2l is attained 2kk + 2k−1 times and −2l is attained 2k(k + 1) +
( k

k+1
2

)
times. Finally,

2l(((−1)i + 1)(−2i+ k) + 1) for even i and i ̸= k+1
2 has frequency

(
k
i

)
.

Eq.(-2) yields minimality of Cf . The minimal (nonzero) weight is achieved when wt (v1) =

2, wt (v2) = 0, that is, wmin = 2r−1 − 2l−1(−8 + 2k + 1) = 2r−1 − 2l−1(2k − 7) and the maximal

weight is wmax = 2r−1 + 2l−1(2k − 2k − 1). Hence, the code Cf is wide when k ≥ 8. □
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