
Verifiable Secret Sharing Simplified

Sourav Das∗, Zhuolun Xiang†, Alin Tomescu†, Alexander Spiegelman†, Benny Pinkas†‡, Ling Ren∗
∗University of Illinois at Urbana-Champaign, †Aptos Labs, ‡ Bar-Ilan University

{souravd2, renling}@illinois.edu, {xiangzhuolun, tomescu.alin, sasha.spiegelman}@gmail.com, benny@pinkas.net

Abstract—Verifiable Secret Sharing (VSS) is a fundamental
building block in cryptography. Despite its importance and
extensive studies, existing VSS protocols are often complex
and inefficient. Many of them do not support dual thresholds,
are not publicly verifiable, or do not properly terminate in
asynchronous networks. This paper presents a new and simple
approach for designing VSS protocols in synchronous and
asynchronous networks. Our VSS protocols are optimally fault-
tolerant, i.e., they tolerate a 1/2 and a 1/3 fraction of malicious
nodes in synchronous and asynchronous networks, respectively.
They only require a public key infrastructure and the hardness
of discrete logarithms. Our protocols support dual thresholds,
and their transcripts are publicly verifiable. We implement
our VSS protocols and evaluate them in a geo-distributed
setting with up to 256 nodes. The evaluation demonstrates
that our protocols offer asynchronous termination and public
verifiability with performance that is comparable to that of
existing schemes that lack these features. Compared to the
existing schemes with similar guarantees, our approach lowers
the bandwidth usage and latency by up to 90%.

1. Introduction

A Verifiable Secret Sharing (VSS) scheme lets a party
holding a secret, also referred to as a dealer, share the secret
in a verifiable manner among a set of nodes where a fraction
of the nodes, including the dealer, could be malicious [28].
The secret sharing process is verifiable in the sense that
each node can verify the validity and correctness of its
share. VSS is a fundamental building block for secure-
multiparty computation (MPC) [11], threshold cryptogra-
phy [61], Byzantine fault tolerant systems [51], distributed
key generation (DKG) [38], randomness beacon [27], and
more.

Over the years, numerous works have studied VSS with
different properties and in different settings, such as differ-
ent cryptographic assumptions, network conditions, fault-
tolerance, and so on [28], [36], [56], [38], [49], [50], [14],
[34], [6], [65], [67], [66], [62]. In this paper, we focus
on VSS protocols that use Shamir secret sharing [61],
are secure against a computationally bounded adversary,
and have optimal fault tolerance in both synchronous and
asynchronous networks. We also seek to achieve several
additional desirable properties of VSS, which we will briefly
discuss next.

A desirable property of VSS protocols is completeness
which ensures that every honest node receives its share of
the secret. Applications such as DKG, MPC, and proactive
secret sharing crucially rely on the completeness property.

Another desirable property of VSS, especially asyn-
chronous VSS (AVSS), is the support for dual thresh-
olds [18]. Briefly, in an asynchronous network of n ≥ 3t+1
nodes where at most t nodes are malicious, a dual-threshold
AVSS scheme with parameter ℓ ∈ [t, n − t) guarantees se-
crecy against any coalition of up to ℓ nodes. Dual-threshold
AVSS with ℓ = n − t − 1 is used to design high-threshold
asynchronous DKG [35], which is in turn used to achieve
better secrecy in threshold cryptosystems [63] and better
efficiency in Byzantine fault tolerant (BFT) algorithms [19],
[64]. Dual-threshold VSS is also useful in designing optimal
fault-tolerant BFT systems that rely on sampling for scal-
ability, an approach that is getting wide adoption in recent
proof-of-stake blockchains [39], [25], [7].

Finally, some randomness beacon [14], [32] and DKG
protocols [44], [42], [48] also require the VSS transcript to
be publicly verifiable by any external entity. A VSS scheme
with a publicly verifiable transcript is also called a Publicly
Verifiable Secret Sharing (PVSS) scheme.

In this paper, unless stated otherwise, we always con-
sider VSS protocols with the completeness property, and
primarily study VSS protocols that support dual thresholds
in asynchrony and provide publicly verifiable transcripts.
Existing work. Despite years of efforts, there are no VSS
schemes that satisfy all our requirements (see §2 for a
detailed discussion). For example, the historically dominant
approach of designing synchronous VSS protocols relies
on interactive complaints [36], [56], [38], [47], [14], [12],
[8]. This approach incurs high latency, is fairly complex,
and is not publicly verifiable. Moreover, when extended to
asynchronous networks, this approach suffers from a subtle
termination issue [65], [34], [62] (more details in §2) and
does not support dual thresholds. Several recent AVSS de-
signs deviate from the interactive complaint framework. But
these schemes rely on trusted setups and bilinear pairing for
efficiency [50], [6], [4], [67], and they also do not support
dual thresholds or public verifiability. On the other hand,
existing publicly verifiable VSS uses verifiable encryption
schemes to let the dealer prove statements over encrypted
data, making them expensive [37], [42], [35], [48] or suitable
only for limited applications [60], [22], [23].
Our contributions. We present a new and simple approach
for designing VSS protocols for synchronous and asyn-

chronous networks. Our VSS protocols are optimally fault-
tolerant, i.e., they tolerate 1/2 and 1/3 fractions of malicious
nodes in synchronous and asynchronous networks, respec-
tively. Our VSS protocols guarantee completeness and have
efficient publicly verifiable transcripts. Our asynchronous
protocol also guarantees asynchronous termination without
relying on additional cryptographic setups or bilinear pair-
ings and only assumes public key infrastructure.

Our VSS protocols achieve the above-mentioned proper-
ties while maintaining the same asymptotic communication
and computation costs of best-known VSS protocols. More
precisely, in a synchronous network with n nodes, our VSS
protocol incurs a communication cost of O(κn2+CBB(κn)).
Here κ is a computational security parameter and CBB(x) is
the communication cost of broadcasting a message of size
x via a Byzantine broadcast channel. Our AVSS protocol
incurs a communication cost of O(κn2).

We then augment our AVSS to support dual thresholds
for any secrecy threshold ℓ ∈ [t, n − t). Our augmented
AVSS protocol maintains the total communication cost of
O(κn2) without relying on a trusted setup. Our dual-
threshold AVSS protocol has the following nice properties:
(i) The best-case performance with any ℓ is the same as
our low-threshold AVSS, where the best-case is when the
network is synchronous and the number of malicious nodes
is less than 2t− ℓ; and, (ii) the worst-case performance de-
grades gradually with ℓ. In contrast, existing dual-threshold
AVSS protocols [35], [42], [48] incur a high cost indepen-
dently of ℓ, and their performance does not improve even
under the best-case scenario.

Another useful property of our VSS scheme is that, if
we use an external broadcast channel (e.g., in a blockchain
setting), nodes only need to communicate with the dealer.
This also means that assuming the presence of an external
broadcast channel, the synchronous timing assumption needs
to apply only between the dealer and other nodes. This
assumption is less stringent than requiring bounded com-
munication delays between all pairs of nodes. This property
also makes the implementation simpler, as only the dealer
needs to establish communication with the other nodes.

As an independent contribution, we design an efficient
verifiable encryption scheme for Pedersen commitments.
Existing verifiable encryption schemes are designed for
the non-hiding Feldman commitment scheme and cannot
be used to encrypt messages with low entropy [37], [20],
[42], [48]. Our verifiable encryption scheme addresses this
limitation and supports arbitrary message distribution and is
thus more suitable for general applications, including VSS.
Evaluation. We implement our VSS protocol in Rust and
evaluate it with up to 256 nodes in geographically distributed
Amazon EC2 instances. Our evaluation illustrates that our
AVSS protocol has performance that is comparable to that of
the best known AVSS schemes [65], [34] while additionally
achieving asynchronous termination and public verifiability.
Compared to an existing AVSS protocol with these proper-
ties [42], our AVSS scheme has 5-11× better latency, and
uses about 8× less bandwidth.
Paper organization. The rest of the paper is organized as

follows. We review related work in more detail in §2. In §3,
we formally define the problem of verifiable secret sharing
and provide an overview of our approach. We describe the
required preliminaries in §4. We describe our synchronous
VSS in §5, asynchronous VSS in §6, and dual-threshold
AVSS in §7. We present our implementation and evaluation
results in §8, and conclude with a discussion in §10.

2. Related Work

VSS protocols consist of two phases: Sharing and Re-
construction. During the sharing phase, nodes along with the
dealer run a protocol so that each node receives its share of
the secret at the end of the sharing phase. In the recon-
struction phase, nodes interact to recover the shared secret.
We categorize existing VSS schemes into three approaches
based on the design of their sharing phase. We describe
each approach and outline its core idea, advantages, and
disadvantages below.
Complaint-based VSS. Historically, the most common ap-
proach to designing VSS protocols is to rely on interactive
complaints [36], [56], [38], [47], [14], [12]. Briefly, in these
protocols the dealer embeds the secret into a univariate
low degree polynomial and publishes a commitment to the
polynomial via a broadcast channel. The dealer additionally
sends each node its share using a private channel. Upon
receiving its share and the commitment, each node validates
them for correctness. Nodes that receive no share or invalid
shares from the dealer publish complaints against the dealer.
The dealer responds to the complaints by revealing the
share of each complaining node. Intuitively, these protocols
rely on complaints to ensure completeness, i.e., prevent
malicious dealers from sending valid shares to only a subset
of the honest nodes.

While this approach provides reasonable efficiency in
synchronous networks, they do not extend well to the more
realistic partially synchronous and asynchronous networks.
Asynchronous VSS (AVSS) protocols that rely on com-
plaints to provide completeness [65], [34], [43], [62] suffer
from a subtle termination issue (even without batching)
that prevents honest nodes from terminating the protocol,
even after outputting their shares. More concretely, these
protocols have a step where, after outputting their share,
honest nodes wait for either acknowledgments or complaints
from all other nodes before terminating. This step is crucial
because, in the case of complaints, nodes must assist the
complaining nodes in recovering their shares. This allows
malicious nodes to prevent honest nodes from terminating
by simply not sending acknowledgments or complaints.

In addition, complaint-based VSS protocols have other
limitations. They do not support dual thresholds and are
not publicly verifiable. They incur higher latency (even on
the optimistic path) as all honest nodes must allow time
to receive complaints from others before outputting from
the sharing phase; otherwise, an adversary can ensure that
only a subset of honest nodes output valid shares during the
sharing phase, violating the Completeness property.

2

Verifiable Encryption-based VSS. One approach to VSS
design that addresses the above issues, is to use verifiable
encryption (VE) (see Definition 4). Briefly, in a VE-based
VSS scheme, the dealer locally generates a transcript that
includes encryptions of the shares of all nodes, each under
the public key of the corresponding node, along with a non-
interactive zero-knowledge (NIZK) proof of the correctness
of the encrypted shares. The dealer then publishes the
transcript to all the nodes using a broadcast channel. Upon
receiving the transcript over the broadcast channel, each
node validates the correctness of all encrypted shares using
the NIZK proof and recovers its own share by decrypting
its encrypted share.

Existing VE-based schemes achieve several nice prop-
erties. First, they are non-interactive, i.e., only the dealer
broadcasts a single message in the entire protocol. Second,
they are also publicly verifiable. Third, the same protocol
approach, with appropriate instantiations of the broadcast
channel, works in both synchronous and asynchronous net-
works. However, VE-based protocols are generally ineffi-
cient or rely on non-standard assumptions, particularly due
to their reliance on NIZK over encrypted data [37], [42],
[35], [48], [24]. Some works [60], [22], [23] bypass this
efficiency issue by weakening the VSS functionality. More
precisely, these schemes require the VSS secret to be an
elliptic curve group element rather than an element in a field.
Hence, they are not compatible with off-the-self threshold
cryptosystems whose keys are field elements [17].
Bivariate polynomial-based AVSS. A more recent ap-
proach to designing AVSS is to rely on a bivariate polyno-
mial [50], [6], [4], [9], [5].* In these schemes, the dealer em-
beds its secret as the constant term of a random low-degree
bivariate polynomial. The dealer then publishes a commit-
ment to the bivariate polynomial using reliable broadcast.
Additionally, the dealer privately sends partial evaluations of
the polynomials to each node. Each node, upon receiving its
partial evaluation, communicates with others to recover its
share of the secret. Intuitively, the sharing phase terminates
only when the dealer sends valid partial evaluations to
a majority of the honest nodes. By sending valid partial
evaluations to the majority of the honest nodes, the dealer
provides these nodes with sufficient information to assist
each other in recovering their shares.

Unlike complaint-based AVSS schemes, this approach
guarantees asynchronous termination, i.e., a node can termi-
nate the protocol after outputting its share. Another advan-
tage of this approach is that it works in the plain authenti-
cated channel model and does not require public key infras-
tructure (PKI). However, these approaches require the dealer
to perform O(n2) group exponentiations. Moreover, these
protocols require a trusted setup and strong cryptographic
assumptions in the Algebraic Group Model for efficient
communication. More precisely, Haven [6] and Bingo [4]
assume hardness of q-SDH in a pairing-friendly group and

*Haven [6] uses t degree-t polynomials instead of a single bivariate
polynomial to share the secrets, but the high-level idea follows the bivariate-
polynomial based approach.

require a powers-of-tau setup [49] to achieve O(κn2) to-
tal communication. Without the setup, the state-of-the-art
protocol Haven incurs O(κn2 log n) total communication
cost and has O(n2) per-node computation cost. Lastly, these
protocols are not publicly verifiable.

One approach to achieve public verifiability in the
complaint-based and bivariate-based VSS schemes is to use
additional rounds of (multi-)signatures. Concretely, once the
VSS finishes, nodes send signatures to each other. Each
node then waits to receive n − t valid signatures, validate
them, and add them as part of its transcript. Indeed, this
will work. However, applying this technique to an existing
scheme will inherit the drawbacks of that scheme, such as
non-termination or worse efficiency. Our scheme is a simpler
and more efficient way to achieve public verifiability.
Other related works. A number of works have studied
VSS protocols with information-theoretic security [31], [45],
[11], [21], [54], [55], [29], [41], in both synchronous and
asynchronous networks. However, these have high worst-
case communication costs, only guarantee security with
abort, or have sub-optimal fault tolerance. A series of
works [18], [10], [34] study VSS protocols without com-
pleteness, and the latest among them achieve [34] a commu-
nication cost of O(κn2) assuming collision resistance hash
functions and hardness of discrete logarithm.

3. Definitions and Overview

Let F be a field of prime order q. We use κ to denote the
security parameter. For example, when we use a signature
scheme, κ denotes the size of the secret key. Similarly, we
also use κ to denote the size of an element in F. For any
integer a, we use [a] to denote the ordered set {1, 2, . . . , a}.
Throughout the paper, we will use “←” for probabilistic
assignment and “:=” for deterministic assignment.
Threat model. We consider a network of n nodes denoted
by {1, 2, . . . , n}, where each node is connected with the
dealer via a pairwise private and authenticated channel. We
assume nodes have access to a broadcast channel that the
dealer can use to send a value to all nodes. A broadcast chan-
nel ensures that the dealer cannot send inconsistent values
to different nodes. We can efficiently realize such optimal
fault-tolerant broadcast channels in synchronous and asyn-
chronous networks by running a Byzantine broadcast [51],
[53] and a reliable broadcast [16], [34], respectively. We will
give their interfaces in Appendix A. When such external
broadcast channels are unavailable, and nodes implement
the broadcast channels themselves, as in our experiments
(see §8), we assume that nodes are pairwise connected, i.e.,
form a complete graph.

We consider a static adversary A that can corrupt a
threshold fraction of the nodes upfront. For our synchronous
VSS protocol, we assume that A can corrupt less than half
of the nodes, i.e., at most t out of n ≥ 2t + 1 nodes.
Also, let ∆ be an upper bound on the delay between the
honest dealer and any honest node. For our AVSS and dual-
threshold AVSS protocols, we assume that for n ≥ 3t + 1,
at most t nodes are malicious. Each node i has its private

3

signing key ski and the corresponding public verification
key pki. We also assume a public key infrastructure (PKI),
i.e., all nodes have access to {pkj}j∈[n].

3.1. Definition of Verifiable Secret Sharing

Definition 1 (Verifiable Secret Sharing). A verifiable secret
sharing (VSS) protocol consists of two phases: Sharing and
Reconstruction. During the sharing phase, a dealer L shares
a secret s ∈ F. During the reconstruction phase, nodes
interact to recover the secret. We say that a VSS protocol is
t-resilient if the following properties hold with probability
1−negl(κ) against any probabilistic polynomial time (PPT)
adversary A that corrupts up to t nodes:
• Correctness. If L is honest and has a secret s, then the

sharing phase will result in all honest nodes eventually
outputting a share of s. Once the sharing phase finishes,
if all honest nodes start the reconstruction phase, they will
output s.

• Completeness: If any honest node outputs in the sharing
phase, then there exists a secret s̃ ∈ F such that all honest
nodes eventually output a share of s̃. Also, s̃ is guaranteed
to be reconstructed during the reconstruction phase.

• Secrecy. If L is honest, then the view of A during the
sharing phase in the real protocol can be simulated given
the shares of up to t corrupted parties.

• Termination. All honest nodes will eventually terminate
the Sharing phase.

VSS protocols in synchronous and asynchronous net-
works can tolerate up to 1/2 and 1/3 fractions of failures,
respectively [3]. It is well known that the standard Ter-
mination property is impossible in asynchronous networks
since it is impossible to tell apart a slow dealer from a
malicious one. Thus, AVSS protocols instead guarantee the
asynchronous termination property, similar to that of reliable
broadcast [16].
• Asynchronous termination. If any honest node outputs

in the sharing phase, then all honest nodes will eventually
terminate the sharing phase.

Many applications of VSS additionally require the VSS
scheme to be publicly verifiable, as defined below.

Definition 2 (Publicly verifiable). A publicly verifiable
secret sharing (PVSS) protocol outputs a transcript that
enables any third party, not just the original nodes, to verify
that the dealer has ensured each node receives its share.

Another desirable property of AVSS protocol is dual-
threshold, as defined below.

Definition 3 (Dual-threshold AVSS). A (n, ℓ, t) dual-
threshold AVSS for n ≥ 3t+1 is a t-resilient AVSS scheme
where for any given ℓ ∈ [t, n− t), the secrecy of the secret
holds against any coalition of up to ℓ nodes. We refer to ℓ
as the secrecy threshold.

Remark. The dual-threshold guarantees achieved by some
VSS and DKG protocols [6], [50], [4], [33] are weaker

than Definition 3. Those schemes achieve a secrecy thresh-
old of ℓ > t only after the protocol terminates. During the
protocol execution, their secrecy threshold is t. In contrast,
Definition 3 requires a secrecy threshold of ℓ even during
the protocol execution.

3.2. Overview of Our Approach

Our starting point is the classical complaint-based syn-
chronous VSS schemes described in §2. In those schemes,
nodes publish complaints if they receive an invalid share or
no share from the dealer. The dealer responds to complaints
by publishing the shares of the complaining nodes. If the
dealer fails to do so, it is considered malicious, and nodes
output default values. This approach prevents a malicious
dealer from violating completeness while still ensuring
secrecy. This is because honest nodes will not complain
against an honest dealer, thereby safeguarding the shares
of honest nodes. Moreover, when the dealer is malicious,
secrecy is vacuous.

Note from §2 that the conflict is always between achiev-
ing completeness and ensuring secrecy. Without secrecy,
achieving completeness is trivial: the dealer simply broad-
casts shares of everyone (or even the secret) to all. With
this in mind, let us take another look at the complaint-
based schemes. Here, the dealer reveals shares of a subset of
parties, and the protocol ensures that an honest dealer only
reveals shares of malicious nodes. Our approach achieves
a similar property but uses a different approach, as we
describe next.

The first crucial change we introduce is that, instead
of sending explicit complaints, we only send explicit ac-
knowledgments. The absence of an acknowledgment is in
some way a complaint. Specifically, the dealer computes
the shares of its secret using a low-degree polynomial, along
with a commitment to the polynomial. The dealer, instead
of publishing the commitment, first privately sends each
node i the commitment along with the share of node i.
Each node, upon receiving its share of the secret, validates
it for correctness. Upon successful validation, the node
responds to the dealer with a signed acknowledgment. This
acknowledgment can serve as proof that node i has received
its valid share corresponding to the commitment.

The dealer waits to receive an appropriate number of
signed acknowledgments. (The dealer cannot wait for ac-
knowledgments from all nodes because malicious nodes
may never send acknowledgments.) Next is where our sec-
ond crucial change comes in. The dealer then publishes, us-
ing a broadcast channel, the VSS transcript, which consists
of the commitment to the polynomial, the signed acknowl-
edgments it has received, and the shares of nodes who did
not respond with a signed acknowledgment. Looking ahead,
we will argue that despite the dealer publicly revealing
shares of a subset of nodes, an adversary does not learn
enough points on an honest dealer’s polynomial, so secrecy
is maintained.

Upon receiving the transcript over the broadcast channel,
nodes validate it by checking that, for each node i ∈ [n],

4

either its signature or its share of the secret is included in
the transcript. Upon successful validation, each node outputs
the commitment and its share and terminates the sharing
phase. If the validation fails, a node outputs a default value.
Intuitively, completeness is satisfied because a node either
explicitly acknowledges receiving its share or will receive
its share from the validated transcript.

It is easy to see that the transcript the dealer broadcasts
is publicly verifiable. The public verification check of the
transcript is precisely the verification check each node per-
forms on the transcript before terminating the sharing phase.

Based on these insights, designing a synchronous VSS
protocol is straightforward. In a synchronous network of
n = 2t+1 nodes, with pair-wise latency ∆, the dealer shares
its secret using a degree t polynomial. The dealer then waits
for 2∆ time units to receive signed acknowledgments from
all honest nodes and reveal the remaining shares using a
broadcast channel.

However, this approach fails in asynchronous networks
with n = 3t + 1. Under asynchrony, the dealer needs to
make progress upon receiving n − t = 2t + 1 signed ac-
knowledgments. Note that t of these 2t+1 acknowledgments
could be from malicious parties. Now, if the dealer reveals
the remaining t honest shares, it would reveal a total of 2t
shares to A, which is sufficient to reconstruct the degree t
polynomial the dealer uses to share its secret. We address
this issue by requiring the dealer to share its secret using
a degree 2t polynomial. This prevents A from learning the
secret even after learning 2t shares.

Finally, to construct a dual-threshold AVSS with secrecy
threshold ℓ for ℓ ∈ [t, n− t), we combine ideas from veri-
fiable encryption-based VSS with our low-threshold AVSS,
i.e., AVSS with ℓ = t. More precisely, for any ℓ, the dealer
still uses a degree 2t polynomial to share its secret, but cru-
cially does not reveal all remaining t shares after receiving
2t+1 signed acknowledgments. Instead, the dealer publicly
reveals only 2t− ℓ of the remaining t shares, encrypts, and
broadcasts the remaining t − (2t − ℓ) = ℓ − t shares using
a verifiable encryption scheme. Intuitively, this ensures that
any coalition of at most ℓ nodes learns at most 2t points
on the polynomial. The protocol still ensures completeness
because the nodes whose shares are not revealed by the
dealer will receive their share from the verifiable encryp-
tions revealed by the dealer. Since the leader broadcasts
ℓ − t shares using verifiable encryption, the performance
degrades gradually with ℓ. And if the leader receives more
than 2t+ 1 signed acknowledgments (e.g., in the best case
with a synchronous network and few malicious parties), the
performance will further improve.

4. Preliminaries

4.1. Threshold Secret Sharing

A (n, d + 1) threshold secret sharing scheme allows a
secret s ∈ F to be shared into n shares such that any
set of d + 1 shares are sufficient to recover the original

secret, but any set of d shares give no information about
the original secret [61], [15]. We use the common Shamir
secret sharing [61] scheme, where the secret is embedded in
a random degree d polynomial in the field F. Specifically,
to share a secret s ∈ F, a polynomial p(·) of degree d is
chosen such that s = p(0) and other coefficients are chosen
uniformly randomly from F. The i-th share of the secret is
then p(i), i.e., the polynomial evaluated at i. Given d + 1
points on the polynomial p(·), one can efficiently reconstruct
the polynomial using Lagrange interpolation. Also note that
s is information-theoretically hidden from an adversary that
knows d or fewer evaluation points on the polynomial p(·)
other than p(0) [61].

4.2. Polynomial Commitment Scheme

The dealer in our VSS scheme commits to its secret by
committing to a polynomial p(·) of degree d. A polynomial
commitment scheme PC has the following interface.
• PC.Setup(1κ) → pp. On input the security parameter κ,

outputs the public parameters for the polynomial commit-
ment scheme. All the interfaces below implicitly takes the
public parameters pp as an input.

• PC.Commit(p(·), n) → (v,w). On input a polynomial
p(·) and number of evaluations n, outputs the commitment
v of the polynomial p(·) and witness w.

• PC.Open(w, p(·), i)→ (p(i), π). On input the witness w,
the polynomial p(·), and an index i, outputs p(i), and a
valid opening proof π.

• PC.DegCheck(v, d)→ 0/1. On input a polynomial com-
mitment v and a degree d, outputs 1 if v is a commitment
to a polynomial of degree at most d, and outputs 0
otherwise.

• PC.Verify(v, i, u, π) → 0/1. On input the polynomial
commitment v to a polynomial p(·), an index i, a poly-
nomial evaluation u and a proof π, outputs 1 if u = p(i)
and outputs 0 otherwise.

Batch interfaces. Looking ahead, the dealer in our VSS
protocols provides opening proofs for a batch of indices and
each node verifies them locally. Thus, we use the batched
interfaces PC.BatchOpen and PC.BatchVerify for better
exposition. Briefly, PC.BatchOpen takes a set I of indices
along with (v,w) and outputs (s,π). Here s is the vector
of openings for each index in I , and π consists of corre-
sponding opening proofs. Similarly, PC.BatchVerify takes
as input a set I of indices along with (s,π), and outputs
1 if all the opening proofs are valid. We formally define
these interfaces in Appendix A.3 and present mechanisms
to verify a batch of polynomial evaluations more efficiently
than verifying each evaluation independently.

A polynomial commitment scheme PC is secure if it
satisfies the Completeness, Evaluation binding, and Hid-
ing [49]. Intuitively, the completeness property ensures that
verification of honestly generated commitments and opening
proofs are always successful. The evaluation binding prop-
erty prevents A from successfully opening to two different
evaluations at the same index. Lastly, the hiding property

5

Algorithm 1 Synchronous VSS
PUBLIC PARAMETERS: n ≥ 2t + 1, {pki}i∈[n], maximum
network latency ∆, and the polynomial commitment scheme PC
PRIVATE INPUT: Signing key ski.

SHARING PHASE:
// Dealer L at time τ = 0 and with secret m

101: Sample a t-degree random polynomial s(·) with s(0) = m
102: v,w ← PC.Commit(s(·), n)
103: for i := 1, 2, ..., n :
104: Let πi := PC.Open(s(·), i,w)
105: send ⟨SHARE,v, s(i), πi⟩ to node i

// Each node i
106: upon receiving ⟨SHARE,v, s(i), πi⟩ from dealer L :
107: Check PC.DegCheck(v, t) = 1
108: Check PC.Verify(v, i, s(i), πi) = 1
109: if both checks are succesful :
110: Let σi := sign(ski,v)
111: send ⟨ACK, σi⟩ to L

// Dealer L at time τ = 2∆
112: Let σ be the set of received valid signatures on v
113: Let I be the indices of nodes with missing signatures
114: Let s,π := PC.BatchOpen(p(·), I,w)
115: send (v, I,σ, s,π) using the broadcast channel

// Each node i once the broadcast outputs (v, I,σ, s,π)
116: Check if each σ ∈ σ is valid and |σ|≥ t+ 1
117: Check if PC.BatchVerify(v, I, s,π)
118: Check that I includes all nodes with missing signatures
119: if all the checks pass :
120: output (v, s(i), πi); return
121: output 0 as the default share; return

RECONSTRUCTION PHASE:
// every node i after finishing the sharing phase

201: send ⟨RECON, s(i), πi⟩ to all.
202: upon receiving ⟨RECON, s(j), πj⟩ from node j :
203: if PC.Verify(v, s(j), πj) :
204: T := T ∪ {sj}
205: if |T |= t+ 1 :
206: output s(0) using Lagrange interpolation; return

guarantees that the commitment v reveals no information
about the polynomial. We describe a concrete polynomial
commitment scheme with these properties in Appendix A.2.

5. Synchronous VSS

Our synchronous VSS protocol is given in Algorithm 1.
We assume n = 2t + 1. Let PC be the polynomial com-
mitment scheme and ∆ be the upper bound on the delay
between the honest dealer and any honest node. For any
node i ∈ [n], let ski, pki be its private signing key and
public verification key.

5.1. Design

Sharing phase. Let m ∈ F be the secret the dealer L wants
to share. L samples a degree-t polynomial

s(x) = m+ s1x+ s2x
2 + · · ·+ stx

t (1)

with uniformly random si ∈ F for each i ∈ [n]. L then com-
putes the commitment of s(·) along with the commitment
witness as v,w ← PC.Commit(s(·), n).

At time τ = 0, L computes the opening proof πi =
PC.Open(s(·), i,w) for each i ∈ [n] and sends the tuple
⟨SHARE,v, s(i), πi⟩ to node i. Node i, upon receiving the
SHARE message from L, validates that v is a polynomial
of degree t by checking that PC.DegCheck(v, t) = 1, and
checks that its share is valid using PC.Verify(v, i, s(i), πi).
If both these checks are successful, node i sends a message
⟨ACK, σi⟩ where σi is its signature on v.

L waits for 2∆ units of time to collect ACK messages.
Here, for ease of exposition, we assume ∆ has accounted
for the time required to validate v and check the validity
of a share. At time τ = 2∆, let σ be the set of valid
signatures L receives and let I be the set of nodes from
whom L does not receive valid signatures. L then computes
(s,π) := PC.BatchOpen(s(·), I,w) where s is of size |I|
and consists of s(k) for each k ∈ I , and π is the opening
proof. Then, L sends the message ⟨v, I,σ, s,π⟩ using the
broadcast channel.

When the broadcast channel outputs ⟨v, I,σ, s,π⟩, each
node locally checks that: (i) σ is a valid set of signa-
tures on v and |σ|≥ t + 1; (ii) I includes all nodes
whose signatures are not included in σ; and (iii) s in-
cludes valid shares of nodes in I with respect to v, i.e.,
PC.BatchVerify(v, I, s,π). If all these checks are success-
ful, node i outputs its share s(i), the commitment v, and
the proof πi. A node gets these from either the broadcast
message or the SHARE message it received from the dealer.

Using multisignatures. One simple concrete optimiza-
tion is to have each node sign its ACK message using a
multisignature scheme. More precisely, the ACK message
from node i includes its partial signature on v. L then
broadcasts the multisignature σ on v instead of broadcasting
a list of signatures.
Reconstruction phase. Let T be a set of t + 1 nodes
(including itself) from which node i receives valid shares
s(j). Upon receiving t + 1 such valid shares, node i com-
putes the secret m using Lagrange interpolation as m :=∑

k∈T µk · s(k), for Lagrange coefficients µk =
∏

j ̸=k
j

j−k .
Optimized reconstruction. In certain situations, it is pos-

sible to optimize the reconstruction phase. A node may not
need to always wait for t + 1 RECON messages. If, during
the sharing phase, the dealer has already revealed k shares
as part of s, a node only needs to wait for t+1− k RECON
messages for shares not included in s.

5.2. Analysis

Correctness. An honest dealer L will receive signed ACK
messages from all honest nodes within 2∆ time under syn-
chrony. Since there are at least t+1 honest nodes, |σ|≥ t+1.
Let ⟨v, I,σ, s,π⟩ be the transcript broadcast by L. By the
Validity property of Byzantine agreement, each honest node
will output ⟨v, I,σ, s,π⟩. Then, by the Correctness property
of the signature scheme and the Completeness property of

6

Dealer waits for .
1. Let 𝛔
2. Let

𝛔Dealer

Given to share, dealer computes:
1.
2. PC.Commit
3. PC.Open

Each node checks:
1. Signatures in 𝛔 are valid and 𝛔
2. includes valid shares of nodes whose
 signatures are not in 𝛔

B
ro

ad
ca

st
C

ha
nn

el

𝛔

𝛔

𝛔

Output

Output

Each node checks:
1. is a commitment to
 polynomial of degree .
2. Check PC.Verify

Figure 1: Our synchronous VSS protocol involves three nodes, one of which is malicious (shaded red in the diagram).

the polynomial commitment scheme, every honest node will
accept the VSS transcript and output its share.

Finally, during the reconstruction protocol, each honest
node will multicast a valid RECON message. Thus, every
honest node will receive at least t + 1 valid shares, which
is sufficient to reconstruct the degree t polynomial s(·), and
hence s(0). Moreover, the Evaluation binding of the poly-
nomial commitment ensures that honest nodes only accept
valid shares on the committed polynomial. This implies that
all honest nodes output the same unique secret s(0).
Termination. Follows directly from the Termination prop-
erty of the Byzantine broadcast scheme (cf. Definition 5).
Completeness. An honest party outputs its share only upon
receiving a valid transcript (v, I,σ, s,π) over the Byzantine
broadcast channel. The Agreement property of the Byzantine
broadcast guarantees that every honest node outputs the
same transcript, and hence the same polynomial commit-
ment. Successful validation of the transcript implies that at
least t + 1 node, hence at least one honest node, signed
the commitment. This implies with 1− negl(κ) probability,
v is a commitment to a polynomial of degree at most t.
Also, for each node i ∈ [n], either a signature of i or its
valid share is included in σ. In the former case, assuming
the existential unforgeability of the signature scheme, node
i already received its share. In the latter case, node i will
receive its valid share from s.

During the reconstruction phase, each honest node re-
constructs the degree t polynomial s(·) corresponding to the
commitment v, and hence outputs the unique secret s(0).
Secrecy. We prove Secrecy using simulatability: for every
PPT adversary A that corrupts up to t nodes, there exists a
PPT simulator SVSS that can simulate the view of A during
the sharing phase in the real protocol can be simulated given
the shares of up to t corrupted parties. We formally prove
Secrecy in Appendix C.
Performance. We will analyze our performance using Fig-
ure 7 as the polynomial commitment scheme. The dealer
performs O(n log n) field operations to compute shares of
each node (using FFT). The dealer then performs O(n)
group exponentiations to compute the commitments and
O(n) signature verifications. Since group exponentiation is
more expensive than log n field operations, we treat the
dealer’s computation cost as O(n) group exponentiations.
The running time of each node is as follows. Each node
performs O(n) group exponentiations to verify the polyno-
mial commitment, signatures of O(n) nodes, and shares of
O(n) nodes. Finally, the dealer privately sends an O(κn)-

bit commitment to each node and broadcasts an O(κn)-
bit transcript. Hence, the total communication cost of our
VSS protocol is O(κn2 + CBB(κn)) where CBB(a) is the
communication cost of broadcasting a message of length a.

Combining all the above, we get the following theorem.

Theorem 1 (Synchronous VSS). In a synchronous network
of n ≥ 2t + 1 nodes among which at most t nodes are
malicious, assuming a polynomial commitment scheme, a
signature scheme, and a Byzantine broadcast channel, Al-
gorithm 1 implements a t-resilient publicly verifiable VSS
protocol with O(κn2+CBB(κn)) communication cost. Here
κ is the security parameter, and CBB(κn) is the communi-
cation cost of broadcasting a message of length κn using
the broadcast channel.

6. Asynchronous VSS
In this section, we will describe the modifications to

make our protocol work in an asynchronous or partial
synchronous network. As we mention in §3, we seek to
design an asynchronous VSS (AVSS) with the Completeness
property. Since AVSS with completeness implies an asyn-
chronous reliable broadcast (RBC), n/3 is the maximum
number of failures any AVSS protocol can tolerate [16].
Throughout this section, we will assume n = 3t+ 1.

6.1. Design

The natural attempt to adapt the synchronous VSS in an
asynchronous network of n = 3t + 1 is to let the dealer
share its secret using a degree t polynomial and keep the
rest of the protocol as is. However, as we briefly mention
in §3.2, this approach will not work. In asynchrony, there is
no fixed upper bound on the message delays, so the dealer
cannot wait to receive acknowledgments from all honest
nodes. Instead, the dealer must move on upon receiving only
n−t = 2t+1 signed acknowledgments. But t of these n−t
signed acknowledgments could be from malicious nodes,
and the missing t acknowledgments correspond to honest
but slow nodes. In this case, an honest dealer would reveal
to A a total of 2t shares on a degree t polynomial, which
is sufficient for A to recover the secret.

We address this issue with the following key observation:
We let the dealer share the secret using a degree 2t poly-
nomial (instead of degree t). The rest of the protocol, given
in Algorithm 2, follows a similar structure, with a few natu-
ral changes highlighted in gray compared to Algorithm 1.
The dealer waits for n − t valid signed acknowledgments

7

Algorithm 2 Asynchronous VSS

PUBLIC PARAMETERS: n ≥ 3t+ 1 , {pki}i∈[n], and the poly-
nomial commitment scheme PC
PRIVATE INPUT: Signing key ski

SHARING PHASE:
// Dealer L with input m:

101: Sample a 2t-degree random polynomial s(·) with s(0) = m

102: v,w ← PC.Commit(s(·), n)
103: for i := 1, 2, ..., n :
104: Let πi := PC.Open(s(·), i,w)
105: send ⟨SHARE,v, s(i), πi⟩ to node i

// Each node i
106: upon receiving ⟨SHARE,v, s(i), πi⟩ from dealer L :
107: Check PC.DegCheck(v, 2t) = 1
108: Check PC.Verify(v, i, s(i), πi) = 1
109: if both the checks pass :
110: Let σi := sign(ski,v)
111: send ⟨ACK, σi⟩ to L

// Dealer L waits for 2t+ 1 valid signatures on v
112: Let σ be the set of valid signatures on v.
113: Let I be the indices of nodes with missing signatures.
114: Let s,π := PC.BatchOpen(p(·), I,w)

115: send (v, I,σ, s,π) using a reliable broadcast channel
// Each node i once the broadcast outputs (v, I,σ, s,π)

116: Check if each σ ∈ σ is valid and |σ|≥ 2t+ 1

117: Check that I includes all nodes with missing signatures.
118: Check if PC.BatchVerify(v, I, s,π)
119: if all the checks pass :
120: output (v, s(i), πi); return

RECONSTRUCTION PHASE:
// every node i after finishing the sharing phase

201: send ⟨RECON, s(i), πi⟩ to all.
202: upon receiving ⟨RECON, s(j), πj⟩ from node j :
203: if PC.Verify(v, s(j), πj) :
204: T := T ∪ {sj}
205: if |T |≥ 2t+ 1 :
206: output s(0) using Lagrange interpolation; return

instead of a pre-specified time bound, and publishes the
t shares from the t slow nodes. Intuitively, by using a
degree 2t polynomial, we ensure that A does not learn the
secret even after learning 2t shares. Finally, using a degree
2t polynomial does not affect the reconstructability of the
secret as n− t > 2t, i.e., there are enough honest nodes to
reconstruct the secret.

We want to note that although the dealer in Algorithm 2
shares its secret using a degree 2t polynomial, the protocol
is not dual-threshold. This is because A learns up to 2t
points on the polynomial by corrupting only t nodes.
Reducing the storage costs. In Algorithm 2, each node
stores the entire v, which is O(κn) for Pedersen polynomial
commitment. We can reduce the storage cost to O(κ),
using error-correcting code [58] and online error correc-
tion [21]. More specifically, each node encodes v using
a [n, t, n − t] Reed-Solomon code. Let v̂ be the encoded

commitment. Each node i then stores v̂[i] and deletes the
rest of v̂. During the reconstruction phase, each node i
sends ⟨RECON, v̂[i], s(i), πi⟩ to all. Upon receiving RECON
messages, nodes first recover v using online error correction
and then reconstruct the polynomial.

6.2. Analysis

Correctness. Since n − t ≥ 2t + 1, an honest dealer L
will eventually receive 2t + 1 signed acknowledgments.
Then, using a similar argument as our synchronous VSS,
each honest node will eventually output and accept the
transcript broadcast by the honest dealer. Similarly, during
the reconstruction phase, each node will eventually receive
2t + 1 valid shares, which is sufficient to reconstruct the
degree 2t polynomial s(·), and hence s(0). Also, honest
nodes will accept only valid shares and hence will output
the same unique secret shared by the dealer.
Asynchronous Termination. Follows directly from the To-
tality property of the Byzantine RBC (cf. Definition 6).
Completeness. Follows using a similar argument as the
synchronous VSS protocol.
Secrecy. We will prove the Secrecy in Appendix C.
Performance. The computation cost of the dealer and nodes
are similar to that of the synchronous VSS protocol, except
the dealer uses a degree 2t degree polynomial to share its
secret. Precisely, both the dealer and nodes need to perform
O(n) group exponentiations. In terms of the bandwidth
cost, the dealer sends O(κn) length private message to
each node and O(κn) bit long message using a broadcast
channel. Thus, using the broadcast channel from [34], the
total communication cost is O(κn2). Finally, our AVSS
requires two additional rounds of communication compared
to the VE-based approach and the optimistic path of the
state-of-the-art complaint-based AVSS scheme. As we will
illustrate in §8.2, these additional rounds of communication
are not a bottleneck.

Combining all the above, we get the following theorem.

Theorem 2 (Asynchronous VSS). In an asynchronous net-
work of n ≥ 3t+1 nodes among which at most t nodes are
malicious, assuming a polynomial commitment scheme, a
signature scheme, and a Byzantine reliable broadcast chan-
nel, Algorithm 2 implements a t-resilient publicly verifiable
asynchronous VSS protocol with O(κn2) communication
costs. Here κ is the security parameter.

7. Dual-threshold AVSS

In this section, we use our approach to design an (n, ℓ, t)
dual-threshold AVSS scheme.
Protocol intuition. For any given ℓ, the dealer in our dual-
threshold AVSS shares its secret using a degree 2t polyno-
mial and follows the AVSS protocol until it receives 2t+1
signed acknowledgments. Then, unlike the AVSS scheme,
the dealer does not reveal all remaining t shares. Instead, the
dealer publicly reveals only 2t− ℓ of the remaining t shares

8

and shares the remaining t− (2t− ℓ) = ℓ− t shares using
a verifiable encryption scheme. More precisely, for each of
the remaining t−(2t−ℓ) = ℓ− t shares, the dealer encrypts
it with the public key of the corresponding recipient node
and computes a NIZK proof of its correctness. Intuitively,
by publicly revealing only 2t − ℓ shares, we ensure that
any coalition of ℓ nodes learns at most 2t points on the
polynomial. The protocol still ensures Completeness, as the
nodes whose shares are not revealed by the dealer will
receive their share from the verifiable encryptions.

7.1. Verifiable Encryption of Committed Messages

Our dual-threshold AVSS scheme relies on verifiable
encryptions of committed messages, as defined below.

Definition 4 (Verifiable Encryption of a Committed Mes-
sage). Verifiable encryption (VE) of a committed message
involves three parties: a prover P , a verifier V , and a receiver
R. The receiver R has a public-private key pair (pk, sk). Let
Cm be a commitment scheme. Given (v, c, pk), P wants to
convince V that c is a public key encryption of a message
s under public key pk, and that v is an commitment to s
and P knows s. A verifiable encryption scheme provides
the following interfaces.
• VE.Setup(1κ,Cm)→ ppVE. On input the security param-

eter κ, and the commitment scheme Cm, the algorithm
outputs the public parameters ppVE.

• VE.KeyGen(ppVE) → (pk, sk). The algorithm outputs a
public-private key pair for the encryption scheme.

• VE.EncProve(ppVE, pk, s, v, w) → (c, πVE): The algo-
rithm takes as input the message s, commitment v with
witness w, where v, w ← Cm.Commit(s). It outputs an
encryption c of the tuple (s, π = Cm.Open(v, s, w)) along
with a NIZK proof πVE of their correct encryptions.

• VE.Verify(ppVE, pk, v, c, πVE) → 0/1. The algorithm
outputs 1, if πVE is a valid proof that there exists α, π such
that α, π = VE.Dec(sk, c) and Cm.Verify(v, α, π) = 1.
Note that πVE needs to be verifiable without access to
the secret key or the underlying message α.

• VE.Dec(sk, c)→ s, π: Given the ciphertext c and a secret
key sk, the algorithm outputs a decryption of c using sk.

A verifiable encryption scheme is secure if it satisfies
the standard Completeness, Soundness, and Zero-knowledge
properties of verifiable computation schemes [40]. Intu-
itively, the Completeness property ensures that verification
of an honestly generated πVE is always successful, even if
a malicious node generates the public key. The soundness
property prevents a malicious prover from convincing an
honest node about the correctness of an incorrectly gener-
ated ciphertext. Stating differently, if VE.Verify is successful
for a ciphertext c and public key pk, then a node with
secret key sk will always be able to recover its share
and the opening proof. Lastly, the Zero-knowledge property
guarantees that the ciphertext c and the proof πVE reveal no
information about the share other than whatever is revealed
by the polynomial commitment scheme.

Batch verifiable encryptions. Looking ahead, the dealer
in our dual-threshold VSS computes verifiable encryptions
for a batch of shares. Thus, we define the VE scheme to
additionally support batched interfaces VE.BatchEncProve
and VE.BatchVerify. Trivially, every VE can be modified
to support VE.BatchEncProve and VE.BatchVerify by in-
ternally invoking the VE.EncProve and VE.Verify for each
index in the batch, respectively. We define these additional
interfaces is to support the design of batch encryption and
verification that are more efficient than the trivial approach.
• VE.BatchEncProve(ppVE, I, pkI , s,v,w) → (c, πVE).

On input a vector s of messages, their commitments v,
corresponding witness w, the algorithm outputs encryp-
tions c for each s ∈ s, along with a NIZK proof πVE that
satisfy VE.BatchVerify.

• VE.BatchVerify(ppVE, I, pkI ,v, c, πVE) → 0/1. The al-
gorithm outputs 1 if πVE is a valid proof that, for each i ∈
I there exists (αi, πi) such that αi, πi = VE.Dec(ski, ci)
and PC.Verify(v, αi, πi) = 1

Constructions. Only a few VE schemes are known for
discrete logarithm-based commitment schemes [37], [20],
[42], [48]. These VE schemes are designed to work with the
Feldman commitment scheme, where the dealer commits to
a secret s as gs for some generator g in a group G. Note
that the Feldman commitment scheme is not hiding. For
instance, if the secret has low entropy, an adversary can
recover the committed message by running a brute-force
search on possible messages. As a result, these VE schemes
cannot be directly used in general VSS schemes with arbi-
trary message distributions. Indeed, these VE schemes were
designed for VSS schemes for Distributed Key Generation
(DKG) protocols [42], [48], where the shared secret is a
random element from a large field.

Our dual-threshold AVSS requires a VE scheme for the
Pedersen commitment scheme, where commitment s is gshr

for some randomness r ∈ F and generators g, h ∈ G. To
our knowledge, no such VE scheme has been described.
We present modifications to Groth’s VE [42] to make it
compatible with Pedersen commitments in Appendix B.
Remark. If our dual-threshold VSS scheme is used to share
secrets with high entropy, we can also employ existing VE
schemes, such as those mentioned in [37], [20], [42], [48].

7.2. Dual-threshold AVSS Design

Let L be the dealer of the (n, ℓ, t) dual-threshold AVSS
scheme (cf. Definition 3). Let PC and VE be the polynomial
commitment and verifiable encryption scheme, respectively.
We summarize our scheme in Algorithm 3 where we high-
light the changes with respect to Algorithm 2 in gray .
Sharing phase. The first part of the Sharing phase is the
same as the AVSS protocol in Algorithm 2. L shares its
secret using a degree 2t polynomial s(·), computes its
commitment v,w ← PC.Commit(s(·), n), and then sends
⟨SHARE,v, s(i)⟩ to each node. Each node i upon receiving
the SHARE message, validates it as in Algorithm 2, computes
σi := sign(ski,v), and responds to L with ⟨ACK, σi⟩.

9

Algorithm 3 Dual-threshold AVSS
PUBLIC PARAMETERS: n ≥ 3t+ 1, ℓ ≥ t, {pki}i∈[n], polyno-
mial commitment PC and verifiable encryption VE.
PRIVATE INPUT: Signing key ski.

SHARING PHASE:
// Line 101 to 111 same as Algorithm 2
// Dealer L waits for 2t+ 1 valid signatures

112: Let σ be the set of valid signatures on v
113: Let I be the indices of nodes with missing valid signatures
114: Partition I into subsets IR and IVE with |IR|= 2t− ℓ
115: s,π := PC.BatchOpen(v, IR, p(·),w)
116: Let sIVE := {p(i)} for all i ∈ IVE.
117: c, πVE ← VE.BatchEncProve(IVE, pkIVE , sIVE ,vIVE ,wIVE)
118: send (v, IR, IVE,σ, s,π, c, πVE) using a reliable broadcast

// Node i upon broadcast outputs (v, IR, IVE,σ, s,π, c, πVE)
119: Check if each σ ∈ σ is valid and |σ|≥ 2t+ 1.
120: Check IR ∪ IVE includes all nodes with missing signatures
121: Check if PC.BatchVerify(v, IR, s,π)
122: Check if VE.BatchVerify(IVE, pkIVE ,v, c, πVE)

123: if all the checks pass :
124: if received no valid SHARE message and (s(i), πi) /∈ s :
125: Let s(i), πi := VE.Dec(c[i], ski)

126: output (v, s(i), πi); return

RECONSTRUCTION PHASE: // Identical to Algorithm 2

L waits for 2t+ 1 valid signed acknowledgements. Let
σ be the set of valid acknowledgments, and let I ⊆ [n]
be the set of nodes from whom L does not receive ACK
messages. Note that these include nodes who sent invalid
ACK messages as well as nodes whose messages have not
arrived. Next, L arbitrarily partitions I into two disjoint
subsets IR and IN , such that |IR|= 2t− ℓ and |IVE|= ℓ− t.
L then computes s,π := PC.BatchOpen(p(·), IR,w) and
c, πVE ← VE.BatchEncProve(p(·),v, IVE).

L then reliably broadcast the dual-threshold AVSS tran-
script (v, IR, IVE,σ, s,π, c, πVE) to all nodes. Upon re-
ceiving the transcript, nodes validate it by checking that:
(i) σ is a valid set of signatures on v and |σ|≥ 2t + 1;
(ii) IR ∪ IVE includes all nodes whose signatures are not
included σ; (iii) s includes of valid shares of nodes in IR
with respect to v i.e., PC.BatchVerify(v, IR, s,π); (iv) c
includes verifiable ciphertexts using VE.BatchVerify.

Upon successful verification, each node i locally outputs
the commitment v, its share s(i), along with the commit-
ment opening proof πi to be used during the reconstruction
phase. Node i either receives s(i), πi from SHARE message,
or computes s(i), πi := VE.Dec(c[i], ski).
Reconstruction phase. The reconstruction phase is identical
to the reconstruction phase of our AVSS scheme.

7.3. Optimization for Common Case Execution

In the dual-threshold AVSS we have described so far,
L always verifiably encrypts ℓ− t of the remaining shares,
which can be expensive for both L and other nodes. The

following optimizations can significantly lower the number
of shares L needs to encrypt in the common case: when the
number of active failures is low and the network between
L and most honest nodes is synchronous.

In the optimized design, in addition to waiting for
2t + 1 signed acknowledgments, L also waits for the net-
work latency 2∆ for some ∆, whichever occurs later. Let
2t + 1 + k for k ≥ 0 be the number of signed acknowl-
edgments the dealer receives. L then verifiably encrypts
shares of max{0, ℓ − (t + k)} nodes. This implies that
with more signed acknowledgments, L needs to verifiably
encrypt fewer shares. In the best-case scenario, i.e., when L
receives ℓ − t additional signed acknowledgments, it need
not compute any verifiable encryptions. Thus, in the best
case, we get the dual-threshold property for free.
Remark. This optimization is also applicable to Algo-
rithm 2. Similarly, the storage cost optimization we describe
in §6.1 also applies to our dual-threshold AVSS scheme.
Remark. We reiterate that some prior dual-threshold AVSS
schemes such as [4], [9], [5] provide secrecy against ℓ > t
colluding nodes only after the sharing phase has finished. In
contrast, our dual-threshold AVSS scheme and the schemes
from [42], [48], [24] guarantee a secrecy threshold of ℓ > t,
even during the sharing phase.

7.4. Analysis

Correctness and Asynchronous termination. Follows
from similar arguments as the AVSS protocol.
Completeness. The soundness guarantees of the VE scheme
ensure that nodes whose signature or share is not included
in the VSS transcript will still receive its valid share upon
decryption. This, combined with an argument similar to the
synchronous VSS protocol, guarantees Completeness.
Secrecy. We formally prove Secrecy in Appendix C.
Performance. The computation cost of the dealer and nodes
is similar to that of the AVSS protocol, except the transcript
includes verifiable encryptions for a subset of nodes. Since
the (amortized) computation cost of both computing verifi-
able encryptions and verifying them is linear in the number
of encrypted shares [42], [48], both the dealer and nodes
need to perform O(n) group exponentiations. Additionally,
the dealer sends a private message of length O(κn) to each
node and a broadcast channel message of length O(κn)
bits. Thus, using the broadcast channel from [34], the total
communication cost is O(κn2).

Combining all the above, we get the following theorem.

Theorem 3 (Dual-threshold AVSS). In an asynchronous
network of n ≥ 3t+ 1 nodes among which at most t nodes
are malicious, assuming a polynomial commitment scheme,
a signature scheme, a Byzantine reliable broadcast channel,
and a Verifiable Encryption scheme, Algorithm 3 implements
a t-resilient publicly verifiable (n, ℓ, t) dual-threshold AVSS
protocol for any ℓ ∈ [t, n− t) with O(κn2) communication
costs. Here κ is the security parameter.

10

8. Implementation and Evaluation

We evaluate our VSS schemes and the baseline VSS
schemes by implementing them in Rust. Our implementa-
tion is publicly available at https://github.com/sourav1547/
e2e-vss. Our implementation uses the blstrs library [1],
which implements efficient finite field and elliptic curve
arithmetic. We also use (for both our implementation and
the baselines) the multi-exponentiation of group elements
using Pippenger’s method [13, §4] for efficiency. For our
dual threshold AVSS, we implement the VE scheme we
describe in Appendix B. For networking, we re-use the
network crate from the open-source implementation of [46].
We also separately benchmark the computation costs of
the various steps of both our and baseline VSS schemes.
We implement the asynchronous RBC protocol from [34],
with the optimistic path where nodes first run the Bracha’s
RBC [16] on the cryptographic hash of the dealer’s message,
and outputs it if the RBC output matches with the hash of
the dealer’s message. We use the Schnorr signature using
ed25519 elliptic curve [59] as the signature scheme.
Baselines. The first baseline VSS protocol we compare
with is the complaint-based AVSS protocol of [65] with
optimizations from [34], and here on, we will refer to it
as the complaint based VSS. Recall from §2, this scheme
relies on complaints and does not terminate even with a
single faulty node. We chose this as one of our baselines
as it is the most efficient AVSS scheme, and by comparing
it with this scheme, we seek to demonstrate that our AVSS
guarantees asynchronous termination and public verifiability
with comparable performance. We measure the baseline’s
best-case performance, i.e., without any faulty nodes. We
implement the polynomial commitment scheme in Figure 7
instead of standard Pedersen commitment to coefficients.
Although committing to the evaluation points increases the
dealing time, we adopt this approach as it lowers the com-
putation cost during the complaint and reconstruction phase.

Our second baseline is the VE-based VSS scheme
from [42] with our modifications in Appendix B. This
scheme achieves similar properties to our scheme: it sup-
ports dual-threshold, is publicly verifiable, and works in
synchronous and asynchronous networks. We want to note
that this scheme has a parameter m that indicates the number
of chunks we divide a secret into. A smaller m results in
quicker dealing and verification time and a smaller transcript
size but leads to longer worst-case decryption times. For our
evaluations, we opt for m = 16 to favor the baseline, i.e., to
give it faster dealing and verification time, shorter transcript
size, and hence lower latency and bandwidth usage in the
absence of failures. However, with m = 16, in the worst
case, a node would have to perform more than 221 group
exponentiations to decrypt its shares.

We do not implement synchronous VSS schemes due
to the lack of agreed-upon choice of synchronous broadcast
protocols. Here, we provide some estimates for the state-of-
the-art synchronous VSS protocol iVSS in [14]. It requires
the dealer and non-dealer nodes to verify n signatures.
Additionally, each non-dealer node verifies n shares of other

parties. Hence, we expect the per-node computation cost to
be similar to ours. iVSS requires six rounds of communica-
tion, including two broadcast rounds. Hence, we expect its
communication costs to be higher than ours. Synchronous
VSS schemes using the framework of [57] require n parallel
broadcasts, and hence O(n3) communication costs.

Finally, in §8.3, we will provide estimates of our per-
formance comparison with various other AVSS schemes and
also discuss why we do not implement them.

8.1. Computation Costs Measurement

We measure the computation costs of dealing, verifi-
cation, and reconstruction of the VSS schemes. We run
these benchmarks on an Amazon Web Services (AWS)
c5.4xlarge virtual machine with 16 vCPUs, and 32GB RAM.
We describe each of these metrics and our associated results.
Dealing time. The dealing time measures the computation
cost of the dealer in preparing the transcript, i.e., the time
the dealer takes: (i) to compute the polynomial commitment,
(ii) to compute the opening proofs for each non-dealer node
and (iii) to verify ACK messages (wherever applicable). For
dual-threshold AVSS, the dealing time also includes the
computation time required to generate verifiable encryptions
of a subset of shares.

We report the dealing time (in milliseconds) in Figure 2.
For the low threshold scheme, we expected a similar dealing
time between our approach and the complaint-based AVSS,
as the dealer in the complaint-based AVSS also needs to
compute the public key encryptions of each share, which has
costs similar to verifying ACK messages. The slight discrep-
ancy is due to using different elliptic curve groups for the
public key operations. More precisely, we use the ElGamal
encryption scheme in bls12381 elliptic curve group as the
encryption scheme in the complaint-based scheme, whereas
our scheme uses Schnorr signatures in ed25519 elliptic
curve group. Each group operation in bls12381 is more
expensive. Hence, we observe a slightly higher dealing time
in the complaint-based scheme.

For dual threshold with ℓ = 2t, our AVSS dealing time
is about 40% of the VE-based baseline. This is because
the dealer in our dual-threshold AVSS scheme verifiably
encrypts ℓ − t shares instead of all n shares. We reiterate
that for ℓ > t, in the best-case scenario, our dual-threshold
AVSS has a dealing time comparable to our low-threshold
AVSS. Hence, in the best case, our dual-threshold AVSS
improves the dealing time by 17×.
Verification time. The verification time measures the com-
putation cost experienced by the non-dealer nodes. It refers
to the time a node takes: (i) to verify the degree of the
committed polynomial, (ii) sign the polynomial commitment
and verify signatures of other nodes, (iii) validate the re-
vealed shares (including its own), and (iv) and the verifiable
encryptions (wherever applicable) provided by the dealer.

We report the verification time (in milliseconds) in Fig-
ure 3. For ℓ = t, our verification time is about 3× worse
than the best-case verification time of the complaint-based
scheme. This is because each node in our schemes needs to

11

https://github.com/sourav1547/e2e-vss
https://github.com/sourav1547/e2e-vss

64 128 256

20

40

60

Number of nodes

D
ea

lin
g

tim
e

(m
s) Complaint-based

Ours

(a) Low-threshold, ℓ = t

64 128 256

200

400

600

800

Number of nodes

VE based

Ours, ∆ = 0

(b) Dual-threshold, ℓ = 2t
Figure 2: Dealing time

64 128 256

2

4

6

8

Number of nodes

V
er

ifi
ca

tio
n

tim
e

(m
s)

Complaint-based

Ours

(a) Low-threshold, ℓ = t

64 128 256

200

400

Number of nodes

VE based

Ours, ∆ = 0

(b) Dual-threshold, ℓ = 2t
Figure 3: Verification time

Table 1: AVSS reconstruction time (in milliseconds). For syn-
chronous VSS, our reconstruction time is the same as the baseline.

Scheme n = 64 n = 128 n = 256

Baseline 3.62 7.07 14.22

Ours 7.06 14.05 28.44

additionally validate the signatures and shares of other nodes
revealed by the dealer. However, the absolute verification
time is very small, e.g., only 7.35 milliseconds for 256
nodes. For high threshold ℓ = 2t, compared to VE-based
VSS schemes, the verification time of our protocol is 3×
and 47-60× better in the worst and best case, respectively.
Reconstruction time. The reconstruction time measures the
computation cost of reconstructing a secret from its shares.
It includes the cost of: (i) verifying shares from each node,
(ii) computing appropriate Lagrange coefficients, (iii) and
the final inner product. Note that the reconstruction time of
a VSS scheme depends on the degree of the polynomial
used to share the secret and the cost of verifying each
share. Since our synchronous VSS protocol uses the same
polynomial degree and the same share verification procedure
as existing synchronous VSS schemes, it does not add any
additional overhead. On the other hand, the dealer in our
AVSS scheme uses a degree 2t polynomial, compared to the
degree t polynomial used by all existing AVSS schemes.We
report the reconstruction time (in milliseconds) in Table 1.
As expected, our reconstruction time is twice as expensive
as the baseline. Nevertheless, the absolute values are small,
e.g., 29 milliseconds for 256 nodes.

8.2. Geo-Distributed End-to-End Evaluation

With our end-to-end evaluation, we seek to show that
our scheme maintains the efficiency of the most efficient
AVSS scheme while ensuring asynchronous termination and
public verifiability. Moreover, we will also illustrate that our
scheme significantly improves the performance over the VE-
based scheme, which also achieves these properties.
Experimental setup. We evaluate the AVSS schemes end-
to-end with 64, 128, and 256 nodes. For any given n ≥
3t+1, depending upon the VSS scheme, we evaluate them
with varying reconstruction threshold ℓ ∈ [t, n− t− 1]. We
also evaluate our dual-threshold AVSS with the common
case optimization we discuss in §7.3 where the dealer either
waits to receive n− t valid ACK messages or for 2∆ units of

time to as many ACK messages possible, whichever happens
later. We report our results for ∆ values of 125, 137 and
150 milliseconds, for 64, 128, and 256 nodes, respectively.

We run all nodes on c5.4xlarge AWS instances with
one node per VM, where we let one among the n AVSS
recipients to be the AVSS dealer. We place the recipients
evenly across eight AWS regions: Canada, Ireland, North
California, North Virginia, Oregon, Ohio, Singapore, and
Tokyo. We create an overlay network among the parties
where all parties are pair-wise connected.
Metrics. We evaluate VSS schemes using two key metrics:
bandwidth usage and latency of the sharing phase.

The bandwidth usage is the amount of data a node sends
and receives during the sharing phase. For the dealer, this
includes the data it sends over the private channel to each
non-dealer node, the bandwidth usage for receiving ACK
messages, and during the broadcast. For a non-dealer node,
this includes bandwidth usage for receiving messages from
the dealer, sending acknowledgment signatures (if any), and
data sent and received during the broadcast protocol.

We measure latency as the time between the dealer
starting the sharing phase of the AVSS protocol and the time
the recipient nodes finish the sharing phase. As a result, the
latency subsumes the computation cost of dealer and non-
leader nodes and the communication latency.

We report our results after averaging over ten executions.
We also want to note that during our 256-node experiments,
we observed some unresponsive nodes for both the baseline
and our schemes. However, since such nodes are less than
1/3 of the total nodes, our experiments gracefully finish.
The slow nodes, however, increase the overall latency and
bandwidth usage, especially in our dual-threshold AVSS
experiments. Our results include the latency and bandwidth
usages from runs with slow nodes, where we discard the
measurements from unresponsive nodes.
Results. We report the bandwidth usage of dealer (in
Megabytes) and non-dealer nodes (in Kilobytes) in Fig-
ures 4 and 5, respectively. The bandwidth usage of our low-
threshold scheme is comparable to that of the complaint-
based scheme. This is because the dealer in the complaint-
based scheme also broadcasts the public key encryptions of
the shares and incurs a bandwidth usage similar to receiving
and sending ACK messages in our scheme.

For dual threshold with ℓ = 2t and ∆ = 0, the dealer in
our VSS scheme incurs less than 50% bandwidth usage com-
pared to the VE-based scheme. Again, this was expected, as

12

64 128 256
0

2

4

6

Number of nodes

B
an

dw
id

th
(M

B
yt

es
)

Complaint-based

Ours

(a) Low-threshold

64 128 256
0

20

40

60

Number of nodes

VE-based

Ours, ∆ = 0

Ours, ∆ ̸= 0

(b) Dual-threshold, ℓ = 2t
Figure 4: Dealer’s bandwidth usage in sharing phase

64 128 256

20

40

60

Number of nodes

B
an

dw
id

th
(K

B
yt

es
)

Complaint-based

Ours

(a) Low-threshold, ℓ = t

64 128 256

100

200

Number of nodes

VE-based

Ours, ∆ = 0

Ours, ∆ ̸= 0

(b) Dual-threshold, ℓ = 2t
Figure 5: Receivers bandwidth usage in sharing phase

64 128 256

0.2

0.4

0.6

0.8

1

Number of nodes

L
at

en
cy

(s
ec

on
ds

)

Complaint-based

Ours

(a) Low-threshold

64 128 256

5

10

Number of nodes

VE-based

Ours, ∆ = 0

Ours, ∆ ̸= 0

(b) Dual-threshold
Figure 6: End-to-end latency of sharing phase

our dealer only broadcasts 1/3 verifiable encryptions. For
∆ ̸= 0, i.e., when the dealer waits to receive additional ACK
messages, our dealer’s bandwidth usage is much smaller and
is only slightly higher than our low-threshold scheme. For
example, with 256 nodes, our low-threshold AVSS dealer
incurs 7.12 Megabytes of bandwidth usage, compared to
7.75 Megabytes for our dual-threshold AVSS dealer with
∆ = 150 milliseconds. This is because, in the latter case,
the dealer receives all most ACK messages by waiting for 150
milliseconds and broadcasts very few verifiable encryptions.

We report the latency results in Figure 6. Note that
our low-threshold AVSS scheme has comparable latency to
the complaint-based scheme despite having one additional
round trip delay. This is because, in our implementation,
the dealing time of the complaint-based scheme is slightly
higher than our dealing time (see §8.1). This also implies
that our additional round-trip delay is not a bottleneck.

The VE-based scheme has much higher latency, i.e.,
5×-11× higher than our low-threshold VSS scheme. Inter-
estingly, this is much higher than expected, given the VE-
based scheme’s dealing and verification time. Upon further
investigation, we note that the additional latency is due to the
propagation latency of their large VSS transcripts. This also
explains why our dual-threshold VSS scheme with ∆ = 0
has approximately 2× better latency, and our scheme with
∆ ̸= 0 improves has 3-7× better end-to-end latency. This
also concludes that both computation time and bandwidth
usage are bottlenecks for AVSS schemes.

8.3. Additional Comparisons

Class-group based VSS [48]. Very recently, [48] improved
the efficiency of [42] for high-entropy secrets using a non-
standard class-group assumption. Here, we will estimate

how it compares to our scheme based on their C++ im-
plementation. The VSS transcript size of [48] is 219(n +
1) + 48n bytes (assuming we commit to evaluation points
instead of coefficients), which is approximately 3× higher
than the transcript size of our low-threshold AVSS scheme.
Regarding dealing and verification time, [48] reports 2.7×
improvement over [42]. Since our dealing time is 17× better
than [42], we anticipate that our dealing time is 6× better
than that of [48]. Similarly, we expect our verification time
to be 2-3× better. We achieve these improvements while
relying on the standard discrete logarithm assumption.
Bivariate polynomial based AVSS. We do not implement
the bivariate polynomial-based AVSS schemes [6], [4] as
they are very inefficient, even if we rely on a trusted setup.
For example, in the state-of-the-art bivariate polynomial-
based AVSS Bingo [4], the dealer performs O(n2 log n)
field operations to evaluate the bivariate polynomials using
FFT and n 2n-wide multi-exponentiations to compute the
polynomial commitments. Based on [2] for BLS21-381, we
estimate that the dealing time for 256 nodes will be more
than 1400 milliseconds (21× higher than ours) in an AWS
EC2 m6g.8xlarge instance (more powerful machine than
ours). Also, each non-dealer node must perform t+n KZG
polynomial commitment verifications [49], which would
take more than 170 milliseconds (23× higher than ours).

9. Discussion

Interactive vs. non-interactive protocols. In existing VE-
based VSS [42], [48], [24] the dealer sends a single message
over the broadcast channel, whereas, our VSS schemes re-
quire interaction between the dealer and the other nodes (but
not among the nodes). Thus, our protocols are slightly more
complex to implement. Yet, we believe that the substantial
performance improvements offered by our protocols out-
weigh the added complexity. Designing a more efficient non-
interactive VSS scheme remains a fascinating open question.

Applications and limitations with polynomials of an
arbitrary degree. Although our AVSS scheme shares se-
crets using a degree-2t polynomial, applications such as
asynchronous DKG, asynchronous proactive secret sharing,
etc., are not limited to using degree-2t polynomials. These
applications can instead share secrets using polynomials
of arbitrary degree by using the degree-switching trick
from [33]. This technique requires nodes to collectively

13

share O(n) random secrets to obtain a secret share of a
single uniformly random polynomial, which is sufficient for
these applications. However, the degree-switching trick is
inefficient for applications like MPC, where nodes need to
generate secret shares of one random secret per secret shared
by an honest node. Addressing this issue by designing a
batched AVSS scheme using our approach is an interesting
future research direction.

Adding public-verifiablity to existing schemes. One ap-
proach to achieve public verifiability in the complaint-based
and the bivariate-based VSS schemes is to use additional
rounds of (multi-)signatures. Concretely, once the VSS fin-
ishes, nodes send signatures to each other. Each node then
waits to receive n− t valid signatures, validates them, and
adds them as part of its transcript. However, applying this
technique to an existing scheme will inherit the drawbacks
of that scheme, such as non-termination or worse efficiency.
Our scheme is a simpler and more efficient way to achieve
public verifiability.

10. Conclusion

We have presented a simple approach to design efficient
verifiable secret sharing protocols for various settings, i.e.,
under synchrony, asynchrony, and asynchrony with dual-
threshold. Unlike existing schemes, our VSS protocols do
not rely on complaints and require only a single broadcast.
Our protocols output efficient publicly verifiable transcripts
and support dual-threshold in asynchrony. Our asynchronous
VSS protocols ensure termination, fixing a shortcoming in
many existing schemes. Our protocols have comparable per-
formance to state-of-the-art counterparts without those prop-
erties and provide significant performance improvements
over schemes with similar properties.

Future research directions. Several recent VSS schemes
support batching [65], [43], [12], [4], and adaptive secu-
rity [4]. Moreover, Chen-Lindell formalized VSS schemes
with dishonest majority [26] and described various dishonest
majority VSS schemes. Extending our VSS schemes to
support these properties while maintaining its simplicity and
performance is a fascinating research direction.

Acknowledgments

This work is funded in part by a VMware early career
faculty grant, a Chainlink Labs Ph.D. fellowship, and the
National Science Foundation award #2240976.

References

[1] (2020) blstrs. [Online]. Available: https://docs.rs/blstrs/latest/blstrs/

[2] (2023) zkalc is a cryptographic calculator! [Online]. Available:
https://github.com/mmaker/zkalc

[3] I. Abraham, D. Dolev, and G. Stern, “Revisiting asynchronous fault
tolerant computation with optimal resilience,” in Proceedings of the
39th Symposium on Principles of Distributed Computing, 2020.

[4] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, and G. Stern,
“Bingo: Adaptively secure packed asynchronous verifiable secret
sharing and asynchronous distributed key generation,” in Annual
International Cryptology Conference. Springer, 2023.

[5] N. Alhaddad, M. Varia, and Z. Yang, “Haven++: Batched and packed
dual-threshold asynchronous complete secret sharing with applica-
tions,” Cryptology ePrint Archive, 2024.

[6] N. Alhaddad, M. Varia, and H. Zhang, “High-threshold avss with
optimal communication complexity,” in International Conference on
Financial Cryptography and Data Security. Springer, 2021.

[7] O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen, “Practical Large-
Scale Proof-Of-Stake Asynchronous Total-Order Broadcast,” in 5th
Conference on Advances in Financial Technologies (AFT), 2023.

[8] S. Atapoor, K. Baghery, D. Cozzo, and R. Pedersen, “Vss from dis-
tributed zk proofs and applications,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2023, pp. 405–440.

[9] R. Bacho, J. Loss, G. Stern, and B. Wagner, “Harts: High-threshold,
adaptively secure, and robust threshold schnorr signatures,” in Ad-
vances in Cryptology–ASIACRYPT, 2024.

[10] M. Backes, A. Datta, and A. Kate, “Asynchronous computational vss
with reduced communication complexity,” in Cryptographers’ Track
at the RSA Conference. Springer, 2013, pp. 259–276.

[11] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness the-
orems for non-cryptographic fault-tolerant distributed computation,”
in ACM Symposium on Theory of Computing, 1988.

[12] F. Benhamouda, S. Halevi, H. Krawczyk, A. Miao, and T. Rabin,
“Threshold cryptography as a service (in the multiserver and yoso
models),” in ACM SIGSAC Conference on Computer and Communi-
cations Security, 2022.

[13] D. J. Bernstein, J. Doumen, T. Lange, and J.-J. Oosterwijk, “Faster
batch forgery identification,” in International Conference on Cryptol-
ogy in India, 2012.

[14] A. Bhat, N. Shrestha, Z. Luo, A. Kate, and K. Nayak, “Randpiper–
reconfiguration-friendly random beacons with quadratic communica-
tion,” in ACM CCS, 2021.

[15] G. R. Blakley, “Safeguarding cryptographic keys,” in 1979 Interna-
tional Workshop on Managing Requirements Knowledge (MARK).
IEEE, 1979, pp. 313–318.

[16] G. Bracha, “Asynchronous byzantine agreement protocols,” Informa-
tion and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[17] L. T. Brandao, L. T. Brandao, M. Davidson, and A. Vassilev, “Nist
roadmap toward criteria for threshold schemes for cryptographic
primitives,” 2020.

[18] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asyn-
chronous verifiable secret sharing and proactive cryptosystems,” in
ACM Conference on Computer and Communications Security, 2002.

[19] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constan-
tipole: practical asynchronous byzantine agreement using cryptogra-
phy,” in ACM PODC, 2000.

[20] J. Camenisch and V. Shoup, “Practical verifiable encryption and de-
cryption of discrete logarithms,” in Annual International Cryptology
Conference. Springer, 2003, pp. 126–144.

[21] R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement
with optimal resilience,” in Proceedings of the twenty-fifth annual
ACM symposium on Theory of computing, 1993, pp. 42–51.

[22] I. Cascudo and B. David, “Scrape: Scalable randomness attested by
public entities,” in International Conference on Applied Cryptography
and Network Security. Springer, 2017, pp. 537–556.

[23] ——, “Albatross: publicly attestable batched randomness based on
secret sharing,” in International Conference on the Theory and Ap-
plication of Cryptology and Information Security, 2020.

14

https://docs.rs/blstrs/latest/blstrs/
https://github.com/mmaker/zkalc

[24] ——, “Publicly verifiable secret sharing over class groups and appli-
cations to dkg and yoso,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, 2024.

[25] P. Chaidos and A. Kiayias, “Mithril: Stake-based threshold multisig-
natures,” Cryptology ePrint Archive, 2021.

[26] Y.-H. Chen and Y. Lindell, “Feldman’s verifiable secret sharing for a
dishonest majority,” Cryptology ePrint Archive, 2024.

[27] K. Choi, A. Manoj, and J. Bonneau, “Sok: Distributed randomness
beacons,” in IEEE Symposium on Security and Privacy (SP), 2023.

[28] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable
secret sharing and achieving simultaneity in the presence of faults,”
in Annual Symposium on Foundations of Computer Science, 1985.

[29] A. Choudhury, “Optimally-resilient unconditionally-secure asyn-
chronous multi-party computation revisited,” Cryptology ePrint
Archive, 2020.

[30] I. Damgård, “On σ-protocols,” Lecture Notes, University of Aarhus,
Department for Computer Science, p. 84, 2002.

[31] I. Damgård and J. B. Nielsen, “Scalable and unconditionally secure
multiparty computation,” in Annual International Cryptology Confer-
ence. Springer, 2007, pp. 572–590.

[32] S. Das, V. Krishnan, I. M. Isaac, and L. Ren, “Spurt: Scalable
distributed randomness beacon with transparent setup,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022.

[33] S. Das, Z. Xiang, L. Kokoris-Kogias, and L. Ren, “Practical asyn-
chronous high-threshold distributed key generation and distributed
polynomial sampling,” in 32st USENIX Security Symposium, 2023.

[34] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination
and its applications,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021.

[35] S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias, and
L. Ren, “Practical asynchronous distributed key generation,” in IEEE
Symposium on Security and Privacy (SP), 2022.

[36] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer
Science (sfcs 1987). IEEE, 1987, pp. 427–438.

[37] P.-A. Fouque and J. Stern, “One round threshold discrete-log key
generation without private channels,” in International Workshop on
Public Key Cryptography. Springer, 2001, pp. 300–316.

[38] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure dis-
tributed key generation for discrete-log based cryptosystems,” Journal
of Cryptology, vol. 20, no. 1, pp. 51–83, 2007.

[39] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Al-
gorand: Scaling byzantine agreements for cryptocurrencies,” in 26th
symposium on operating systems principles, 2017.

[40] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complex-
ity of interactive proof-systems,” in Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, ser. STOC, 1985.

[41] V. Goyal, Y. Song, and C. Zhu, “Guaranteed output delivery comes
free in honest majority mpc,” in Annual International Cryptology
Conference. Springer, 2020, pp. 618–646.

[42] J. Groth, “Non-interactive distributed key generation and key reshar-
ing.” IACR Cryptol. ePrint Arch., vol. 2021, p. 339, 2021.

[43] J. Groth and V. Shoup, “Design and analysis of a distributed ecdsa
signing service,” Cryptology ePrint Archive, 2022.

[44] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and
A. Tomescu, “Aggregatable distributed key generation,” in Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 2021, pp. 147–176.

[45] M. Hirt, J. B. Nielsen, and B. Przydatek, “Asynchronous multi-
party computation with quadratic communication,” in International
Colloquium on Automata, Languages, and Programming, 2008.

[46] ISTA-SPiDerS, “Apss,” https://github.com/ISTA-SPiDerS/apss, 2022.

[47] A. Kate and I. Goldberg, “Distributed key generation for the internet,”
in 2009 29th IEEE International Conference on Distributed Comput-
ing Systems. IEEE, 2009, pp. 119–128.

[48] A. Kate, E. V. Mangipudi, P. Mukherjee, H. Saleem, and S. A. K.
Thyagarajan, “Non-interactive vss using class groups and application
to dkg,” in ACM CCS, 2024.

[49] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commit-
ments to polynomials and their applications,” in International con-
ference on the theory and application of cryptology and information
security. Springer, 2010, pp. 177–194.

[50] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous
distributed key generation for computationally-secure randomness,
consensus, and threshold signatures,” in ACM CCS, 2020.

[51] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., p. 382–401, 1982.

[52] A. Momose and L. Ren, “Optimal communication complexity of
authenticated byzantine agreement,” in 35th International Symposium
on Distributed Computing, 2021.

[53] K. Nayak, L. Ren, E. Shi, N. H. Vaidya, and Z. Xiang, “Improved
extension protocols for byzantine broadcast and agreement,” in 34th
International Symposium on Distributed Computing, DISC, 2020.

[54] A. Patra, A. Choudhary, and C. P. Rangan, “Efficient statistical
asynchronous verifiable secret sharing with optimal resilience,” in
International Conference on Information Theoretic Security, 2009.

[55] A. Patra, A. Choudhury, and C. P. Rangan, “Efficient asynchronous
verifiable secret sharing and multiparty computation,” Journal of
Cryptology, 2015.

[56] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Annual international cryptology conference.
Springer, 1991, pp. 129–140.

[57] ——, “A threshold cryptosystem without a trusted party,” in Workshop
on the Theory and Application of of Cryptographic Techniques.
Springer, 1991, pp. 522–526.

[58] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” Journal of the society for industrial and applied mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[59] C.-P. Schnorr, “Efficient identification and signatures for smart cards,”
in Advances in Cryptology—CRYPTO’89. Springer, 1990.

[60] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in Annual International
Cryptology Conference. Springer, 1999, pp. 148–164.

[61] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[62] V. Shoup and N. P. Smart, “Lightweight asynchronous verifiable
secret sharing with optimal resilience,” Journal of Cryptology, 2024.

[63] R. Vassantlal, E. Alchieri, B. Ferreira, and A. Bessani, “Cobra:
Dynamic proactive secret sharing for confidential bft services,” in
2022 IEEE symposium on security and privacy (SP). IEEE, 2022,
pp. 1335–1353.

[64] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in ACM
Symposium on Principles of Distributed Computing, 2019.

[65] T. Yurek, L. Luo, J. Fairoze, A. Kate, and A. Miller, “hbacss: How
to robustly share many secrets,” in Proceedings of the 29th Annual
Network and Distributed System Security Symposium, 2022.

[66] H. Zhang, S. Duan, C. Liu, B. Zhao, X. Meng, S. Liu, Y. Yu,
F. Zhang, and L. Zhu, “Practical asynchronous distributed key gener-
ation: Improved efficiency, weaker assumption, and standard model,”
in IEEE/IFIP DSN, 2023.

[67] J. Zhang, T. Xie, T. Hoang, E. Shi, and Y. Zhang, “Polynomial
commitment with a {One-to-Many} prover and applications,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022.

15

https://github.com/ISTA-SPiDerS/apss

Appendix A.
Additional Preliminaries

A.1. Broadcast Channel

Our synchronous VSS and AVSS protocols make black
box use of a Byzantine broadcast and Byzantine reliable
broadcast protocol, respectively. For completeness, we in-
clude the definitions of Byzantine (reliable) broadcast below.

Definition 5 (Byzantine Broadcast). A Byzantine broadcast
is a protocol for a set of nodes {1, . . . , n} including a desig-
nated broadcaster who holds an initial input, is a Byzantine
broadcast protocol if the following properties hold
• Agreement. If an honest node outputs a message M and

another honest node outputs M ′, then M = M ′.
• Validity. If the sender is honest and has input M , all

honest nodes output M .
• Termination. Every honest node outputs a message.

Definition 6 (Byzantine Reliable Broadcast). A protocol for
a set of nodes {1, . . . , n} including a designated broadcaster
who holds an initial input, is a Byzantine reliable broadcast
protocol if the following properties hold
• Agreement and Validity. Same as Byzantine broadcast.
• Totality. If an honest node outputs a message, then every

honest node eventually outputs a message.

The optimal fault-tolerant synchronous Byzantine broad-
cast [53], [52] achieves O(n|M |+κn2) communication cost
for a message M assuming powers-of-tau [49] and q-SDH,
and O(n|M |+κn2 log n) communication cost assuming col-
lision resistant hash function. The optimal fault-tolerant
asynchronous Byzantine reliable broadcast [34] achieves a
communication cost of O(n|M |+κn2) for a message M
assuming collision-resistant hash functions.

A.2. Pedersen’s polynomial commitment

Construction. In Figure 7 we describe a polynomial com-
mitment scheme that combines ideas from the classic Ped-
ersen’s polynomial commitment and SCRAPE’s low-degree
test [22]. The resulting scheme has a linear-sized commit-
ment and constant-sized opening proof. The commitment
includes n values of the polynomials in the exponent, and
the low degree is verified by multiplying these values in
the exponent with a random word from the dual code and
checking that the result is 1G, i.e., the identity element of G.
The scheme is information-theoretically hiding and evalua-
tion binding assuming hardness of discrete logarithm [56].
Remark. An alternative approach would have been to com-
mit to d+1 coefficients of the polynomials in the exponent.
This would have made the commitment shorter and would
have eliminated the need for low-degree verification. On the
other hand, the opening phase would have become more
costly: verifying each opened value would have required
O(d) exponentiations instead of one.

PC.Setup(1λ): Output pp = (G,F, g, h), for a prime order
group G with scalar field F, and uniformly random and
independent generators g, h ∈ G.

PC.Commit(p(·), n): Let p(·) be a degree d-polynomial.
Sample a random polynomial r(·) of degree d. Output
(v,w) = (v, r(·)) where

v :=
[
gp(1)hr(1), gp(2)hr(2), . . . , gp(n)hr(n)

]
PC.Open(w = r(·), p(·), i): Output (u, π) = (p(i), r(i)).

PC.DegCheck(v, d): Sample a random degree n − d − 2
polynomial z(·) in F. Output 1 if∏

i∈[n]

v[i]z(i)·λi = 1G (2)

for λi =
∏

j∈[n],j ̸=i 1/(i− j); otherwise output 0.

PC.Verify(v, i, u, π): Output 1 if v[i] = guhπ; otherwise
output 0.

Figure 7: Pedersen’s polynomial commitment scheme combined
with SCRAPE’s low degree test.

PC.BatchOpen(w, p(·), I = {i1, . . . , ik}): Output (s,π) where

s := [p(i1), . . . , p(ik)]; and π := [r(i1), . . . , r(ik)] (3)

PC.BatchVerify(v, I = {i1, . . . , ik}, s,π): Let k := |I|. Assert
k = |v|= |π|. Sample a random vector [γ1, . . . , γk] ∈ Fk.
Let s :=

∑
j∈[k] γjsj and π :=

∑
j∈[k] γjπj . Output 1, if the

following holds, otherwise output 0.∏
j∈[k]

v[ij]
γj = gshπ (4)

Figure 8: Batched interfaces for the polynomial commitment.

A.3. Batched interface for polynomial commitment

As we briefly describe in §3.2, in our VSS schemes, the
dealer reveals shares for a set I ⊆ [n] of nodes for every-
one to verify. Thus, we introduce the following additional
interface for batched opening and verification.

• PC.BatchOpen(w, p(·), I = {i1, . . . , ik}) → (u,π). On
input the set of indices I , the polynomial p(·) and witness
w, output u = [p(i1), . . . , p(ik)] along with batch opening
proof π = [πi1 , . . . , πin].

• PC.BatchVerify(v, I = {i1, . . . , ik},u,π) → 0/1. On
input the commitment v to a polynomial p(·), outputs
1 if u[j] = p(ij) for all ij ∈ I , and output 0 otherwise.

We describe the concrete instantiations of the batched
interfaces in Figure 8. Here we use a random linear com-
bination to verify all the openings using a single multi-
exponentiations of width k instead of 2k exponentiations.

16

Appendix B.
Verifiable Encryptions of Discrete Logarithm

B.1. Verifiable Encryption Scheme of [42]

The VE scheme of Groth [42] works with Feldman
commitment where a message s ∈ F is committed as gs

for some generator g ∈ G. We can not use it to design a
VSS protocol as the Feldman commitment scheme is not
hiding for messages with small entropy; an adversary can
exhaustively search the message space to derive a matching
commitment. Nevertheless, we will use Groth’s VE to design
a VE that works with the Pedersen commitment scheme.
Next, we will briefly describe the relations P in Groth’s
VE proves and discuss how our modifications require P to
prove a similar relation.

Let v := gs be the commitment to the secret s. P
computes, among other things, the ElGamal encryption of
v, i.e., cv := (cv,0, cv,1) = (ga, v · pka). Here pk = gsk is
the public key of the recipient with secret key sk. P then
computes the NIZK proof in two parts: Proof of correct
sharing and Proof of correct chunking.
Proof of correct sharing. In the first part, for the tuple
(v, cv, pk), P proves, using a Σ-protocol, that cv is an
ElGamal encryption of v for the public key pk.
Proof of correct chunking. In the second part, P proves
that the ciphertext is decryptable. Let cv be a vector of
ElGamal ciphertexts where each ciphertext encrypts a small
number of bits (called chunks) of s. Let (pk, cv, cv) be the
entire ciphertext (of commitment and each chunk of s), then
P proves that s := Dec(sk, cv, cv). We refer the reader
to [42, §6.5]) for more details.

B.2. VE for Pedersen commitments

Our new VE for Pedersen commitment maintains the
two-part structure of Groth’s VE. Looking ahead, we pro-
vide support for the Pedersen commitment scheme only by
changing the protocol for proof of correct sharing. More-
over, our modification adds only two group elements and
a single field element to the Groth’s VE proof. We discuss
our changes next.
Proof of correct sharing. Let gshr be the Pedersen commit-
ment to s. Let v := gs and u := hr, hence the commitment
to s is v·u. In our scheme, the ciphertext also contains the El-
Gamal encryption of u, i.e. cu := (cu,0, cu,1) = (gb, upkb),
along with cv := (cv,0, cv,1) = (ga, vpka). Now, P and V
locally computes cvu, where,

cvu := (cv,0 · cu,0, cv,1 · cu,1) = (ga+b, vu · pka+b)

P in our VE then uses the protocol for proof of correct
sharing of Groth’s VE (with standard modifications [30])
for the tuple (v ·u, cvu, pk) to prove that cuv is an ElGamal
encryption of v · u for public key pk.
Proof of correct chunking. Since the ciphertext of our VE
remains unchanged (with the exception of one additional
ElGamal encryption), a tempting approach is to directly use

the protocol for proof of correct chunking of Groth’s VE
protocol as the second part of our VE scheme. Intuitively,
proof of correct chunking protocol of Groth’s VE guarantees
that a node with secret sk will be able to decrypt s as
Dec(sk, cv, cv). Although it is true, there is one subtle issue.

Eventually, to reconstruct the secret, we require each
node to reveal its share along with a opening proof. For
Pedersen commitment gshr, the natural opening proof is r.
This implies that to fully support Pedersen commitments, we
need to add additional information cu to the ciphertext and
the NIZK proof such that (s, r)← Dec(sk, cu, cv, cv, cu).

The obvious approach is to repeat the protocol to prove
the decryptability of cv for cu, as well. However, this would
increase the computation cost of dealing and verifying the
transcript and the transcript size by a factor of 2. Next, we
describe our approach that addresses this issue without in-
creasing the ciphertext size, thus avoiding the 2× overhead.

Our key observation is that the opening proof of a
Pedersen commitment gshr need not be r. Instead, it can be
(u = hr, πu) where πu proves that u is correctly computed.
Thus, in our VE, we let R recover (u, πu), where R uses
πu to convince others regarding the correctness of u.

Computing u is trivial as it is the ElGamal decryption
of cu using the secret key sk. We define πu as the tuple
(pkb, πpk) where πpk is a discrete logarithm equality (DLEq)
proof for the tuple (g, pk, cu,0, pk

b). More precisely, πpk

convinces any verifier that logg pk = logcu,0
pkb.

Each node upon receiving πu = (pkb, πpk), checks the
correctness of the DLEq relation using πpk and cu,0. Upon
successful validation, the node computes hr = cu,1/pk

b.
Finally, the node checks the correctness of s by checking
whether gshr = vu.

Appendix C.
Secrecy Proofs

Recall from Definition 1, to prove Secrecy, we need to
prove that the view of A in the sharing phase of our VSS
scheme is simulatable given only the corrupt shares.
Secrecy of Synchronous VSS. Let SVSS be the simulator
for our synchronous VSS scheme. We summarize SVSS in
Figure 9, and prove the following theorem.

Lemma 1 (Synchronous VSS Secrecy). A’s view in its
interaction with SVSS is identically distributed to its view
in the real protocol.

Proof. Let h = gα for some non-zero α ∈ F. For any fixed
commitment v, consider the probability of outputting v and
s(i) for each i ∈ C in a real protocol. For a fixed polynomial
s(·), there exists a unique polynomial r(·) that outputs v as
the commitment. Since the dealer in the honest protocol
samples r(·) uniformly at random, in the real protocol
Pr[v, {s(i)}i∈C]real = 1/|F|t+1.

Now consider the probability of the same event in the
simulated view. For a fixed ŝ(·), a unique degree t poly-

17

Inputs. n, t ∈ N with t < n/2, C ⊆ [n] with |C|≤ t, {s(i)}i∈C .
1) Let H = [n] \ C.
2) Sample signing and public key (skj , pkj) for each j ∈ H.

Send the public keys {pkj}j∈H to A.
3) Sample uniformly random generators g, h← G.
4) Sample a polynomial ŝ(·) of degree t such that ŝ(i) = s(i)

for each i ∈ C. Additionally, sample a uniform random
polynomial r̂(·) of degree t.

5) Compute the commitment v = [v1, v2 . . . , vn] where vi =
gŝ(i)hr(i) for each i ∈ [n].

6) Simulate the dealer by sending v = [v1, v2, . . . , vn] as the
polynomial commitment. Participate in the rest of the protocol
on behalf of the honest parties.

Figure 9: Synchronous VSS simulator SVSS

Inputs. n, t ∈ N with t < n/3, C ⊆ [n] with |C|≤ t, {s(i)}i∈C .
1) Let H = [n] \ C.
2) Sample signing and public key (skj , pkj) for each j ∈ H.

Send the public keys {pkj}j∈H to A.
3) Sample uniformly random generators g, h← G.
4) Sample a polynomial ŝ(·) of degree 2t such that ŝ(i) = s(i)

for each i ∈ C. Additionally, sample a uniform random
polynomial r̂(·) of degree 2t.

5) Compute the commitment v = [v1, v2 . . . , vn] where vi =
gŝ(i)hr(i) for each i ∈ [n].

6) Simulate the dealer by sending v = [v1, v2, . . . , vn] as the
polynomial commitment. Participate in the rest of the protocol
on behalf of the honest parties.

Figure 10: Asynchronous VSS simulator SAVSS

nomial r̂(·) exists that results in v as the commitment. In
particular, the unique r̂(·) is:

r̂(x) = r(x) +
s(x)− ŝ(x)

α
(5)

Since SVSS samples r̂(·) uniformly at random,

Pr[v, {ŝ(i)}i∈C]sim = Pr

[
r̂(x) = r(x) +

s(x)− ŝ(x)

α

]
sim

= 1/|F|t+1 (6)

Equation (6) implies that the polynomial commitment and
shares seen by A are identically distributed in real and simu-
lated views. Since SVSS simulates the rest of the protocol as
per protocol specification, the distribution of the remaining
messages seen by A is also identical in both the real and
simulated world.

Secrecy of Asynchronous VSS. Let SAVSS be the simulator
for our AVSS scheme. We summarize SAVSS in Figure 10,
and prove the following.

Lemma 2 (Asynchronous VSS Secrecy). A’s view in its
interaction with SAVSS is identically distributed to its view
in the real protocol.

Proof. Follows using a similar argument as the proof of
Lemma 1.

Inputs. n, t ∈ N with t < n/3, C,HC ⊆ [n] with |C|≤ t and
|C ∪ HC |≤ ℓ, {s(i)}i∈C∪HC .
1) Let H = [n] \ C.
2) Sample signing and public key (skj , pkj) for each j ∈ H.

Send the public keys {pkj}j∈H of all nodes to A. Addition-
ally, send skj for each j ∈ HC to A.

3) Sample uniformly random generators g, h← G.
4) Sample a polynomial ŝ(·) of degree 2t such that ŝ(i) = s(i)

for each i ∈ C∪HC . Additionally, sample a uniform random
polynomial r̂(·) of degree 2t.

5) Compute the commitment v = [v1, v2 . . . , vn] where vi =
gŝ(i)hr(i) for each i ∈ [n].

6) Simulate the dealer by sending v = [v1, v2, . . . , vn] as the
polynomial commitment. Simulate the dual-threshold VSS
protocol on behalf of honest nodes up until receiving 2t+ 1
signed acknowledgments.

7) Let HE be the set of nodes whose shares SDtVSS will
verifiably encrypt. For each node j ∈ HE , use ŝ(j) and r̂(j)
as inputs to the VE scheme.

Figure 11: Dual-threshold AVSS simulator SDtVSS

Secrecy of the dual-threshold AVSS. Let SDtVSS be the
simulator for our dual-threshold AVSS scheme. We summa-
rize SDtVSS in Figure 11, and prove the following.

Lemma 3 (Dual-threshold AVSS). A’s view in its interac-
tion with SDtVSS is computationally indistinguishable from
its view in the real protocol.

Proof. We will prove this using a sequence of hybrids using
the verifiable encryption scheme from Appendix B.
Hybrid 0. This corresponds to the real-world execution.
Hybrid 1. Same as Hybrid 0, except we will change the
NIZK proof of correct sharing of the VE scheme with a
simulated proof. Hybrid 1 is indistinguishable from Hybrid
0 due to the zero-knowledge property of the NIZK scheme.
Hybrid 2 to Hybrid k + 1. Without loss of generality let
HE = 1, 2, . . . , k. Hybrid i+1 for any i ∈ [1, k] is the same
as Hybrid i, except it swaps out VE of s(i) and with VE of
ŝ(i). For each i ∈ [1, k], Hybrid i + 1 is indistinguishable
from Hybrid i due to the CPA security of the VE scheme.
Hybrid k + 2 to Hybrid 2k + 1. Hybrid k + i+ 1 for any
i ∈ [1, k] is the same as Hybrid k + i, except it swaps out
the encryption of r(i) and with encryption of r̂(i). For each
i ∈ [1, k], Hybrid k+ i+1 is indistinguishable from Hybrid
k + i due to the CPA security of the ElGamal encryption
scheme
Hybrid 2k+ 2. Same as Hybrid 2k+ 1, except change the
Pedersen commitment {gs(i)hr(i)}i∈[n] to {gŝ(i)hr̂(i)}i∈[n].
Using a similar argument as Proof of Lemma 1, Hybrid
2k + 2 is identically distributed to Hybrid 2k + 1.
Hybrid 2k + 3. Same as Hybrid 2k + 2, except we will
change the simulated NIZK proof of correct sharing of
the VE scheme with a real NIZK proof. Hybrid 2k + 3
is indistinguishable from Hybrid 2k + 2 due to the zero-
knowledge property of the NIZK scheme. Moreover, Hybrid
2k + 3 is the simulated transcript.

18

	Introduction
	Related Work
	Definitions and Overview
	Definition of Verifiable Secret Sharing
	Overview of Our Approach

	Preliminaries
	Threshold Secret Sharing
	Polynomial Commitment Scheme

	Synchronous VSS
	Design
	Analysis

	Asynchronous VSS
	Design
	Analysis

	Dual-threshold AVSS
	Verifiable Encryption of Committed Messages
	Dual-threshold AVSS Design
	Optimization for Common Case Execution
	Analysis

	Implementation and Evaluation
	Computation Costs Measurement
	Geo-Distributed End-to-End Evaluation
	Additional Comparisons

	Discussion
	Conclusion
	References
	Appendix A: Additional Preliminaries
	Broadcast Channel
	Pedersen's polynomial commitment
	Batched interface for polynomial commitment

	Appendix B: Verifiable Encryptions of Discrete Logarithm
	Verifiable Encryption Scheme of groth2021non
	VE for Pedersen commitments

	Appendix C: Secrecy Proofs

