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Abstract. One of the main security challenges white-box cryptography
needs to address is side-channel security. To this end, designers aim to
eliminate the dependence between variables and sensitive data. Classical
countermeasures to do so are masking schemes. Nevertheless, most mask-
ing schemes are not designed to thwart the other main security threat
: fault attacks. Thus, we aimed to build a masking scheme that could
combine resistance to both of these types of attacks.
In this paper, we present our new generic fault resistant masking scheme
using BCH error-correcting codes, as well as the design choices behind
it.

1 Introduction

Over the course of the last twenty years, devices like smartphones or IoT have
taken a growing part in the daily life of billions of persons. More and more
applications have been designed to bring a great diversity of functionalities to
users, nevertheless this development has come with a counterpart : it makes
those devices a valuable target to attackers. This is why many open devices
applications need to implement cryptography.

Thus, a new field of cryptography has emerged, named white-box cryptogra-
phy, in opposition to black-box cryptography where the attacker has only access
to inputs and outputs of the implementation, and grey-box cryptography, where
the attacker can moreover exploit flaws of the implementation. In white-box
cryptography, the attacker has a total access over the execution platform of the
algorithm and its implementation. Therefore, this model matches the best with
the realistic case, where the attacker can even be the owner of the device.

The side-channel attacks are one of the major types of attacks, inherited from
the grey-box cryptography model, that a white-box cryptography designer needs
to thwart. Those types of attacks rely on flaws of the implementation, that are
correlations between sensitive data in the algorithm, for instance keys, and phys-
ical data leakage during an execution of the implementation. Those data leakage
can be of different types, like execution time, electromagnetic emanations, or
power consumption of the device executing the implementation [Cad05].



Thereby, side-channel countermeasures aim to eliminate any relation between
sensitive data and those physical data leakages [PR13]. For example, in the
timing attack case, conditionals statements depending on the sensitive data must
be avoided. However, the most commonly performed type of side-channel attacks
is the power-monitoring attack. Among the variety of countermeasures to this
type of attacks, masking is the most developed topic, that relies on the following
basis :

In a field K, a variable X is split into nin sub-variables X0, ..., Xnin−1, named
shares, such that X = X0 ⊕ ... ⊕ Xnin−1, and each tuple of at most (nin − 1)
variables Xi is independent from X, i.e.

∀i ∈ {0, ..., nin − 1}, ∀v ∈ K, ∀(v0, .., vi−1, vi+1, .., vnin−1) ∈ K
nin−1,

P ((X0, .., Xi−1, Xi+1, .., Xnin−1) = (v0, .., vi−1, vi+1, .., vnin−1)|X = v) =

P ((X0, .., Xi−1, Xi+1, .., Xnin−1) = (v0, .., vi−1, vi+1, .., vnin−1))

To that end, the values of the variables X0, . . . , Xnin−2 are chosen uniformly
at random, and the value of Xnin−1 is computed so that X = X0⊕ . . .⊕Xnin−1.
Therefore, if a value Z is correlated to a sensitive value X, then, as each share
Zi separately is independent from Z, they are independent from the sensitive
value X. As stated in [BBP+16], the tuple (Zi)0≤i≤nin−1 still depends on X, but
because of the noise, the complexity of extracting information is exponential in
the number of shares nin.

Each set of nin sub-variables Xi such that X = X0 ⊕ . . .⊕Xnin−1 is named
an nin-sharing of X. Masking schemes describe how, for a given function f with
n inputs and m outputs, the sharings of the outputs are built as functions of the
input shares.

Indeed, for f a function with n inputs X0, . . . , Xn−1 and one output Y, a
(nin, nout)-masking scheme F of the function f such that (Y0, . . . , Ynout−1) =
F (X0, . . . , Xnin−1) verify that :

Y0 = F0(X0,0, . . . , X0,nin−1, . . . , Xn−1,0, . . . , Xn−1,nin−1)

Y1 = F1(X0,0, . . . , X0,nin−1, . . . , Xn−1,0, . . . , Xn−1,nin−1)

...

Ynout−2 = Fnout−2(X0,0, . . . , X0,nin−1, . . . , Xn−1,0, . . . , Xn−1,nin−1)

Ynout−1 = Fnout−1(X0,0, . . . , X0,nin−1, . . . , Xn−1,0, . . . , Xn−1,nin−1)

,

with Xi =
∑nin−1

j=0 Xi,j ∀i ∈ {0, . . . , n− 1} and Y =
∑nout−1

j=0 Yj .
However, most classic masking schemes do not offer resistance against fault

attacks ([ISW03],[BDF+17],[BBP+16]). Fault attacks consists of disrupting the
correct functioning of the cryptographical primitive to observe faulty behaviour
of variables depending on sensitive data ([GT04], [Ott05]). The leaked informa-
tion can then be processed with statistic or analytic methods, thereby disclosing
all or part of sensitive data involved in the computation. This is why we aimed



to develop a new masking scheme that would resist to those attacks, hence pro-
tecting against side-channel and fault attacks.

Outline of the paper : In Section 2, we introduce the notations that will be used
in the rest of the paper, then the masking schemes and error correcting code
properties that will be used thereafter. We justify our design choices in Section
3 and describe the masking scheme in Section 4. Finally, in Section 5, we present
the performances of our scheme applied to an AES bitsliced implementation.

2 Preliminaries

In this paper we will use the following notations :

– For a random variable X , we note P (X) its probability distribution and H
its entropy (H(X) = −

∑

x P (X = x) log2(P (X = x)))
– For random variables X and Y ,

• We note H(X |Y ) =
∑

x

∑

y P (X = x, Y = y) log P (X=x,Y=y)
P (Y=y) the condi-

tional entropy of X given Y.
• I(X ;Y ) = H(X) − H(X |Y ) is the mutual information between X and
Y.

– We consider K a field with char(K) = 2.
– For an array A ∈ K

n, we note HW (A) the Hamming weight of A, i.e. the
number of non-zero elements of A.

2.1 Masking Schemes

Many properties have been introduced in the state-of-the-art to quantify the
security of circuits. In 1999, Chari et al. introduced in their paper [CJRR99] the
noisy leakage model which aims to be the more realistic leakage model, where
the adversary can obtain leaked values that are sampled thanks to a Gaussian
distribution centered on the real value of the sensitive variables. This model was
extended later by Rivain and Prouff in [PR13] to general noise distributions. The
noisy leakage model allows to simulate leakage in a rather precise manner, but is
not very easy to use in practice. That is why, in [ISW03], Ishai et al. introduced
the d-probing security model.

Property 1 (d-probing security). A circuit is d-probing secure if and only if every
set of d intermediate variables is independent of any sensitive variable x. For
every set of d probes (q0, . . . , qd−1), we have

I (q0 ∪ . . . ∪ qd−1;x) = 0

This property is much easier to prove than security in the noisy leakage model,
but was thought to be not sufficiently accurate to describe the leakage. However,
in 2014, Duc et al. proved in [DDF14] that security in the d-probing model
implies security in the noisy leakage model.

Different implementation properties have been proven to be sufficient condi-
tions for probing security when joined.



Correctness The first property that all masking schemes must follow is cor-
rectness ([Bil15]). This property doesn’t bring security by itself, but is needed for
obvious reasons of keeping the functionality of the function to mask f . Indeed,
for a masking F of a function f such that Y = f(X1, . . . , Xn), we need to have

nout−1
⊕

i=0

Fi

(

(X0,j)0≤j≤nin−1 , ..., (Xn−1,j)0≤j≤nin−1

)

=

f

(

nin−1
⊕

j=0

X0,j , ...,
nin−1
⊕

j=0

Xn−1,j

)

Non-Completeness

Property 2 (Non-Completeness, [NRR06], [Bil15]). A masking scheme F verifies
non-completeness if every component function Fi is independent of at least one
share of each of the input variables.

Intuitively, non-completeness is necessary supposing that a probe on combi-
national block (i.e. an operation) implies the leakage of all inputs to the com-
binational block ([RBN+15]). Thus, for a combinational block scheme that does
not satisfy non-complete-ness, a probe would imply the leakage of all shares by
at least one input variable.

Uniformity

Property 3 (Uniform Masking, [Bil15]). A masking scheme F of a function f :
K

n → K with n inputs Xj and one output Y is said to be uniform if and only if

∀ (x0, . . . , xn−1) ∈ K
n, ∀ (y0, . . . , ynout−1) ∈ K

nout ,

P
(

(Yj)0≤j≤nout−1 = (yj)0≤j≤nout−1

∣

∣

∣
(Xj)0≤j≤n−1 = (xj)0≤j≤n−1

)

=
{

1
|K|nout−1 if f (x0, . . . , xn−1) =

⊕nout−1
j=0 yj

0 otherwise

In other words, uniformity implies that for each n-tuple of input values
(x0, . . . , xn−1), all nout-sharings (Y0, . . . , Ynout−1) computed by F with a nin-
sharing of (x0, . . . , xn−1) as input are equiprobable.

Non-Completeness and Uniformity imply 1-probing security In [NRR06],
Nikova et al. prove that security of implementations against first-order attacks
relies on correctness, non-completeness and uniformity.

Lemma 1 ([NRR06]). Non-completeness and uniformity implies 1-glitch prob-
ing extended security.



State of the art of masking schemes As our purpose was to develop an AND
masking scheme itself composed of boolean operations, we tested the properties
introduced above on ISW ([ISW03]) and the three different boolean multiplica-
tion gadgets presented in [GJRS18] :

– The BDF+ algorithm of [BDF+17]
– The BBP+ algorithm of [BBP+16]
– The BCPZ algorithm of [BCPZ16]

The results are presented below.

ISW BDF+ BBP+ BCPZ

Number of shares d 2 4 8 2 4 8 2 4 8 2 4 8

Uniformity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1st-Order Non-Completeness ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

2nd-Order Non-Completeness ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Probing Security Order 1 3 7 1 3 7 1 1 3 1 3 7

Table 1: Properties of ISW, BDF+, BBP+ and BCPZ gadgets

2.2 BCH error correcting codes

For our masking scheme described in section 4, we aimed to use an error cor-
recting code with an easy management of codewords parities, hence the choice
of cyclic codes. In particular, we choose BCH codes as it can be decoded in
constant time via the Peterson-Gorenstein-Zierler algorithm ([Pet60]).

Definition 1 (Cyclic codes [ABO09]). Let n ∈ N
⋆. A linear code C of length

n is said to be a cyclic code if all cyclic permutations of codewords belong to
the code as well, i.e., for example

(c0, c1, ..., cn−1) ∈ C =⇒ (cn−1, c0, c1, ..., cn−2) ∈ C

Property 4. For a cyclic code C of length n over a finite field Fq,

– we can identify each (c0, c1, ..., cn−1) ∈ F
n
q to c0 + c1X + c2X

2 + ... +
cn−1X

n−1 ∈ Fq[X ]/(Xn − 1) and reciprocally.
– there exists a polynomial g(X) ∈ Fq[X ] such that for each (c0, c1, ..., cn−1) ∈

C, g(X)|c0 + c1X + c2X
2 + ...+ cn−1X

n−1.

BCH error correcting codes are based on the following mathematical notions
and properties. Thereafter, we will assume q to be a prime power.

Definition 2. Let n ∈ N
⋆ such that n ∧ q = 1, m the multiplicative order of q

modulo n. Let s ∈ {0, ..., n−1}. We note C(s) the q-cyclotomic class of s modulo
n



C(s) = {s, s ∗ q, ..., s ∗ qms−1},

with ms the smallest non-zero integer such that s = s ∗ qms (mod n).

Definition 3. Let n ∈ N
⋆ such that n ∧ q = 1, m the multiplicative order of q

modulo n and α an element of Fqm of multiplicative order n. Let s ∈ {0, ..., n−1}.
We note

Mαs(X) =
∏

i∈C(s)

(X − αi) =
ms−1
∏

i=0

(X − αsqi ).

Property 5. Mαs ∈ Fq[X ].

Property 6. Mαs is irreducible over Fq.

Subsequently, we can define BCH (Bose Chaudhuri Hocquenghem) error cor-
recting codes as follows :

Definition 4 (BCH Code, [BRC60b],[BRC60a]). Let n ∈ N
⋆, m the mul-

tiplicative order of q modulo n, α an element of Fqm of multiplicative order n
and b, δ ∈ N such that δ ≥ 3. A cyclic code of length n over Fq is said to be a
BCH code of minimum Hamming distance at least δ if its generator polynomial
g verifies

g(X) = lcm(Mαb(X),Mαb+1(X), ...,Mαb+δ−2(X))

Property 7 (Correction Capacity). Let C be an error correcting code of minimum
Hamming distance d. We define the correction capacity t of the code to be ⌊d−1

2 ⌋.
The correction capacity of a BCH code of minimum Hamming distance at least
δ verifies t ≥ ⌊d−1

2 ⌋.

3 Design Rationale

3.1 Masking Scheme Design Constraints

We aim that our scheme verify the three implementation properties listed in
Lemma 1 to ensure first order probing security. We want to build a scheme to
compute a ∧ b, with a, b ∈ F2, while supposing that all input and output shares
are codewords. We also want to introduce randomness with random polynomials
Ri of respective parities ri.

To achieve this, we want to build variables si ∈ F2 as parities of the output
shares Si of our scheme. Therefore, they would depend on products between
parities ai, bi of input shares, products airj or ribj between parities of input
shares and parities of random polynomials, and products rirj between parities
of random polynomials. Finally, by the correctness property, the sum of these
variables si would be equal to a ∧ b.



Non-Completeness implies a condition on the number of shares First of
all, to be able to perform one instance of the scheme after another, the number of
output shares needs to be equal to the number of shares of each input. Therefore,
to comply with non-completeness, the number of input shares of both a and b
cannot be equal to 2. Indeed, in this case, we suppose that

– a is represented by two codewords shares A0 and A1 of respective parities
a0 and a1 such that a0 ⊕ a1 = a.

– b is represented by two codewords shares B0 and B1 of respective parities b0
and b1 such that b0 ⊕ b1 = b.

– There are two output codewords shares S0 and S1 of respective parities s0
and s1 depending on parities a0, a1, b0 and b1, such that s0 ⊕ s1 = a ∧ b.

As s0⊕s1 = a∧b = a0b0⊕a0b1⊕a1b0⊕a1b1, there are four different products
aibj to distribute among two variables si, so at least two in each variable si. But
the sum of any two of these products does not verify non-completeness. Hence,
the number nin of shares of each input and of the output of the scheme needs
to be at least 3.

Randomness Requirement and its impact on the BCH code choice To
keep a reasonable randomness requirement of our scheme, we imposed ourselves
that the number of random variables associated to each input would be stricly
less than the number of shares of each input. For instance, the number of ran-
dom polynomials parities ri multiplied to the parities ai is strictly less than the
number of Bi shares, and reciprocally.

We note nr the number of random polynomials involved in the scheme. We
suppose the number of random polynomials associated to each input to be equal,
i.e. there are as many random parities rj that are to be multiplied to input shares
parities ai than random parities ri to be multiplied to input shares parities bj .
Hence, nr is even.

As the number nin of input shares Ai is equal to the number of input shares
Bi, and we just supposed that the number of random polynomials associated to
each input is equal to nr

2 , it implies that nr

2 < nin.
Hence, if we suppose nin = 3 we can have either nr

2 = 1 or 2. It implies that
there are at most either (3 + 1)2 or (3 + 2)2 products of variables potentially
involved in the computation of si variables. The number of these products is an
upper bound of the length of the BCH code used in the scheme, as codewords
serving as masks will be applied to the array gathering them (see section 4). In
the same manner, n2

in is a lower bound of the length code as it corresponds to
the number of products aibj , imperatively involved in the computations of si
variables for correctness reasons.

In subsection 3.2, we will detail why a BCH code of correction capacity at
least 2 is needed. Moreover, as we consider ai and bj the parities of codewords,
the generator polynomial needs to be of odd parity so that variables ai and
bj could take either values in F2. For nin = 3 and thus a code length n with
9 ≤ n ≤ 25, the maximum potential dimension of the code is 212. Furthermore,



we knew that subsequently we would need codewords to act as masks to be
applied to a matrix of cross-products, in order to compute output parities si.
As all cross-products involved of form airj or ribj appear in an even number of
variables si, those codewords would need to have a certain number of exponents
in common. To that end, we considered a search space of such cardinality to
be too small to ensure that we would find nin codewords suitable to the si
computation formulas we would determine thereafter.

If the number of shares nin is 4, the code length n verifies 16 ≤ n ≤ 49. Re-
taining the code properties listed above, we selected between the potential code
length values the one that would maximize the dimension of the corresponding
BCH code. In this case, the maximum dimension value possible is 229, when
n = 45.

That is why we picked the number of shares nin = 4 and the number
of random polynomials associated to each input nr

2 = 3. Indeed, if nr

2 ≤ 2,
(nin + nr

2 )2 < n = 45, hence a contradiction to the fact that (nin + nr

2 )2 is
an upper bound of the value of n. Subsequently, the BCH code used in the
scheme has length n = 45, dimension 229 and generator polynomial g(X) =
lcm(Mα(X),Mα2(X),Mα3(X),Mα4(X)) = (X12 + X3 + 1) ∗ (X4 + X + 1) =
X16 +X13 +X12 +X7 +X3 +X + 1.

Ensuring Uniformity and Correctness As we chose the number of shares to
be nin = 4 and the number of random polynomials associated to each input nr

2 =
3, there are at most 49 different products of parities involved in the computation
of the parity values si of the output share Si :

– 16 products of form aibj that need to be present in an odd number of si
computations.

– 12 products of form airj , 12 products of form ribj and 9 products of form
rirj that need to be present in an even number of si computations.

We noticed that for uniformity reasons, it is compulsory that each si includes
at least one single parity (ai, bi or ri). Indeed, as variables ai, bi and ri are
independent and equiprobable, all products of two of those variables have (34 ,

1
4 )

as probability vector. Hence, sums of those products cannot be equiprobable.
That is why we add single ai, bi or ri to the potential operands of variables si.

We first randomly split the 16 products of form aibj between s0, s1, s2 and s3
so that they still comply with non-completeness. At this point, each si variable
is not equiprobable, so we first started to add three single variables to pairs of si
to ensure global equiprobability, and equiprobability conditionned by the value
of a ∧ b necessary for the uniformity property.

We then added products of form airj ,ribj or rirj one after another to pairs of
si variables, so that, when conditionned by either value of a∧ b, the probability

of each possible value of (s0, s1, s2, s3) tends to
(

1
2

)3
until reaching it, while

retaining non-completeness. We obtained the following formulas :

– s0 = r1b1⊕r2b1⊕r0⊕a1r3⊕a2r5⊕a2b2⊕a3r3⊕a3b2⊕r1b0⊕a3b1⊕r1r5⊕r2r5



– s1 = r1b1⊕ r0⊕a2b1⊕a0b2⊕a2r5⊕a0b1⊕a0r3⊕a3b0⊕ r2b2⊕a0b0⊕ r2r5⊕
a2 ⊕ r1r5 ⊕ r0r3

– s2 = a3b3⊕a1r5⊕r5⊕a3r3⊕r2b2⊕a1b2⊕r1b0⊕r2r5⊕r2b0⊕a2⊕r0r3⊕a2r4
– s3 = a2b3⊕ r2b1⊕a1r5⊕a1b1⊕ r5⊕a1r3⊕a0r3⊕a1b0⊕a0b3⊕ r2r5⊕ r2b0⊕

a1b3 ⊕ a2b0 ⊕ a2r4

3.2 Input Shares Correction Design

The aim of the correcting design is to be able to correct the AND inputs, i.e.
correct faults committed at the end of the preceding operations or just before
the beginning of the current AND. That is why we suppose all input and output
shares of our scheme to be codewords.

To minimize the number of corrections needed, we compute and correct sub-
sums of input shares instead of correcting each share. For non-completeness
compliance, it is not possible to add all shares Ai of A (or all shares Bi of B) in
a same sub-sum.

Furthermore, we aimed to use the smallest possible number of sub-sums while
computing them so that, even if they are sums of shares of both A and B, it
is feasible in case of a fault to determine if it was committed on A or B. To
that end, we choose the following sub-sums V0, V1 and V2 and correct them into
respective codewords noted V ′

0 , V
′
1 and V ′

2 :

– V0 = A0 ⊕A1 ⊕ B0 ⊕B1

– V1 = A2 ⊕A3 ⊕ B2 ⊕B3

– V2 = A2 ⊕A3 ⊕ B0 ⊕B1

Thus, V0 and V1 cover all possible input shares faults spots, while, in case of
a fault detected by one of those two subsums, V2 allows to determine whether
the fault has been committed on a share of A or a share of B, as detailed below.

– A′
0 = A0 ⊕ V0

– A′
1 = A1 ⊕ V ′

1

– A′
2 = A2 ⊕ V2

– A′
3 = A3 ⊕ V ′

2

– B′
0 = B0 ⊕ V1

– B′
1 = B1 ⊕ V ′

0

– B′
2 = B2 ⊕ V2

– B′
3 = B3 ⊕ V ′

2

We can first notice that introducing a one bit fault on share A0 yields the
same impact as introducing a fault A1, as for introducing a fault on A2 or A3,
on B0 or B1, or on B2 or B3. Hence, to simplify, we will only consider faults in
A0, A3, B0 or B3 below.

Table 2 represents the correctness of parities of variables Vi depending on
fault location, i.e. if a fault on one input share (A0, A3, B0 or B3) implies a fault
on the parity of the sub-sums V0, V1 or V2. Table 3 represents the correctness
of parities of input shares after the XOR of variables Vi and V ′

i , i.e. if , after
the xor of sub-sums Vi and their corrections V ′

i , each modified input share A′
i

or B′
i carries the same parity as would do the corresponding input share in a

non-faulted environment.



Fault
Location

Vi

V0 V1 V2

A0 ✗ ✓ ✓

A3 ✓ ✗ ✗

B0 ✗ ✓ ✗

B3 ✓ ✗ ✓

Table 2: Correctness of parity of variables Vi depending on input share single
fault location

Fault
Location

Modified Input
Share

A′
0 A′

1 A′
2 A′

3 B′
0 B′

1 B′
2 B′

3

A0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A3 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓

B0 ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

B3 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗

Table 3: Correctness of parities of input shares A′
i and B′

i after the XOR of
variables Vi and V ′

i in a single fault location case

Hence, it can be noticed that the overall parities of A0 ⊕ A1 ⊕A2 ⊕ A3 and
B0 ⊕B1 ⊕B2 ⊕B3 are exact after correction. We can see that they also remain
exact after introducing a fault in two different input shares, regardless of the bit
indexes of these two faults.

Fault
Locations

Vi

V0 V1 V2

A0 A2 ✗ ✗ ✗

A0 B0 ✓ ✓ ✗

A0 B2 ✗ ✗ ✓

A2 B0 ✗ ✗ ✓

A2 B2 ✓ ✓ ✗

B0 B2 ✗ ✗ ✗

Table 4: Correctness of parity of variables Vi depending on two input share fault
locations



Fault
Locations

Modified Input
Share

A′
0 A′

1 A′
2 A′

3 B′
0 B′

1 B′
2 B′

3

A0 A2 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓

A0 B0 ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓

A0 B2 ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

A2 B0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗

A2 B2 ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

B0 B2 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗

Table 5: Correctness of parities of input shares Ai and Bi after the XOR of
variables Vi and V ′

i in a two faults locations case

Thus, it can be noticed that using only two variables Vi would not be enough
for the correction of parities of input shares. That is why the minimum number
of subsums needed to cover all spots while complying with non-completeness is
three. Furthermore, in the two faults scenario, each subsum will at most carry
two bit faults. In this case, the subsum, despite being faulted, represents the
correct parity, as parities are computed modulo 2. We nevertheless imposed
that the used BCH code would have a correction capacity of 2, to avoid that a
correction operation of two faults for a BCH code of correction capacity strictly
less than two could modify the subsum in question and its then-correct parity.

Finally, at this point, not all A0, A1, A2, A3, B0, B1, B2 and B3 are necessarily
codewords anymore (in the case where a fault has been detected). Nevertheless,
they have the correct parity, which is the only requirement for the following step.

4 Our Masking Scheme

As explained in section 3.1, we choose to use the BCH code length n = 45. We
then considered m = 12 the multiplicative order of 2 modulo n and α be a
45th primitive root of unity. Thus, we subsequently use the BCH code of gen-
erator polynomial g(X) = lcm(Mα(X),Mα2(X),Mα3(X),Mα4(X))=Mα(X) ∗
Mα3(X) = (X12+X3+1)∗ (X4+X+1) = X16+X13+X12+X7+X3+X+1.

We represent a, b ∈ F2 by codewordsA,B ∈ F
45
2 such thatHW (A) mod 2 = a

and HW (B) mod 2 = b. We suppose each of those two input codewords to be
split between four shares, i.e. A = A0⊕A1⊕A2⊕A3 and B = B0⊕B1⊕B2⊕B3,
with the Ai and Bi being codewords as well.

We first perform correction on the input shares to prevent any faults intro-
duced in the end of preceding operations or just before the start of the current
one. To avoid the correction of the eight shares, we compute three intermediate
sub-sums V0, V1 and V2 and correct them into respective codewords V ′

0 , V
′
1 and

V ′
2 :

– V0 = A0 ⊕A1 ⊕ B0 ⊕B1



– V1 = A2 ⊕A3 ⊕ B2 ⊕B3

– V2 = A2 ⊕A3 ⊕ B0 ⊕B1

Thus, thanks to these variables Vi and their corresponding corrected code-
words V ′

i , we can correct the parities of shares A0, A1, A2, A3, B0, B1, B2 and B3

as follows :

– A0 = A0 ⊕ V0

– A1 = A1 ⊕ V ′
1

– A2 = A2 ⊕ V2

– A3 = A3 ⊕ V ′
2

– B0 = B0 ⊕ V1

– B1 = B1 ⊕ V ′
0

– B2 = B2 ⊕ V2

– B3 = B3 ⊕ V ′
2

We consider nr = 6 random polynomials R0, R1, R2, R3, R4, R5 ∈ F
45
2 . Then,

noting for each of those polynomials Xi that xi = HW (Xi) mod 2, we compute
the following array :

mCP =













r2b3 a3b3 r1b1 a2b3 r2b1 a3r4 r0 a1r5 a1b1
a0r4 a2b1 r0b2 a0b2 r5 r1r3 a1r3 a1r4 a2r5
a2b2 a3r3 a0b1 a0r3 a3b0 r0b1 a1b0 r0r5 r2r3
r1r4 a3b2 r2b2 a1b2 a0b0 r1b0 r0b0 a3b1 a0b3
a0r5 r2r5 r2b0 a2 r1r5 a1b3 r0r3 a2b0 a2r4













The positioning of the products in the array enables to compute the out-
put shares parities si (section 3.1) by applying to mCP the following masks
maskS0,maskS1, maskS2,maskS3 ∈ F

45
2 that are also codewords. Indeed, each

parity si verifies si =
44
∑

j=0

(mCP [j] & maskSi[j]).

Hence, they could be corrected a few times among all the masked AND
occurrences of an implementation.

maskS0 =













0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0
0 1 0 0 1 0 0 0 0













⇐⇒

ms0(X) = X42 +X40 +X38 +X29

+X27 +X26 +X25 +X16

+X12 +X10 +X7 +X4,

with ms0 = 0 mod g(X)

maskS1 =













0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1
0 0 1 1 1 0 0 0 0
0 0 1 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0













⇐⇒

ms1(X) = X42 +X38 +X34 +X32

+X27 +X24 +X23 +X22

+X15 +X13 +X7 +X5

+X4 +X2,

with ms1 = 0 mod g(X)



maskS2 =













0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0
0 1 1 1 0 0 1 0 1













⇐⇒

ms2(X) = X43 +X37 +X31 +X25

+X15 +X14 +X12 +X7

+X6 +X5 +X2 + 1,

with ms2 = 0 mod g(X)

maskS3 =













0 0 0 1 1 0 0 1 1
0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 1 0 0 1 0 1 1













⇐⇒

ms3(X) = X41 +X40 +X37 +X36

+X31 +X29 +X23 +X20

+X9 +X7 +X6 +X3

+X + 1,

with ms3 = 0 mod g(X)

For 0 ≤ i ≤ 3, we compute the variables xi,0, xi,1, xi,2, xi,3 ∈ F2 depending
on variables ai, bi and ri such that respectively

– s0, s1, s2, x0,0, x0,1, x0,2 and x0,3

– s1, s0, s3, x1,0, x1,1, x1,2 and x1,3

– s2, s0, s3, x2,0, x2,1, x2,2 and x2,3

– s3, s1, s2, x3,0, x3,1, x3,2 and x3,3

are sets of independant and equiprobable variables.

Then, we randomly chose four codewords C0,0, C1,0, C2,0, C3,0 ∈ F
45
2 of odd

parity, and twenty-four of even parity (C0,j , C1,j , C2,j , C3,j ∈ F
45
2 for 1 ≤ j ≤ 6).

Hence, we compute output shares S0, S1, S2, S3 ∈ F
45
2 such that

– S0 = s0∗C0,0+s1∗C0,1+s2∗C0,2+x0,0∗C0,3+x0,1∗C0,4+x0,2∗C0,5+x0,3∗C0,6

– S1 = s1∗C1,0+s0∗C1,1+s3∗C1,2+x1,0∗C1,3+x1,1∗C1,4+x1,2∗C1,5+x1,3∗C1,6

– S2 = s2∗C2,0+s0∗C2,1+s3∗C2,2+x2,0∗C2,3+x2,1∗C2,4+x2,2∗C2,5+x2,3∗C2,6

– S3 = s3∗C3,0+s1∗C3,1+s2∗C3,2+x3,0∗C3,3+x3,1∗C3,4+x3,2∗C3,5+x3,3∗C3,6

In this manner, each output share Si can equiprobably take 27 different
values. With the codewords Ci,j we chose, we obtained

S0 = (s0, s1 ⊕ x0,0, s2, s0 ⊕ x0,1, s0 ⊕ x0,0, x0,2 ⊕ x0,0, x0,2, s1, s1 ⊕ s2 ⊕ x0,2

⊕ x0,1, s2, x0,2, s1 ⊕ x0,1, s2, s1, s1 ⊕ s2 ⊕ x0,3 ⊕ x0,1, s2, s1, s1 ⊕ s2

⊕ x0,2, s2, x0,3, x0,3 ⊕ x0,1, x0,2, s1, s2, s0 ⊕ x0,1, s0, s1, s2 ⊕ x0,1,

x0,2, s0, x0,3 ⊕ x0,1, s0 ⊕ x0,0, x0,3 ⊕ x0,1, s0, x0,2, x0,2 ⊕ x0,0, x0,2 ⊕ x0,1,

x0,3 ⊕ x0,0, s0 ⊕ x0,0, x0,3, s0 ⊕ x0,0, s0, x0,3, x0,3 ⊕ x0,0, x0,3 ⊕ x0,0)



S1 = (s0, s1, s3 ⊕ x1,0, s0, s1, s1, s0, x1,3 ⊕ x1,1, s3 ⊕ x1,0, s3 ⊕ x1,1, x1,3, x1,3

⊕ x1,0, s3, x1,3 ⊕ x1,1, s3 ⊕ x1,1, s3 ⊕ s0 ⊕ x1,1 ⊕ x1,1, s0 ⊕ x1,0, s3⊕

x1,1 ⊕ x1,3, s3, x1,3, x1,3 ⊕ x1,0, s0, s1 ⊕ x1,1, s3 ⊕ x1,1 ⊕ x1,0, s0, s0,

s1 ⊕ x1,1, s3 ⊕ s0 ⊕ x1,1, s0, s1, x1,1, s1 ⊕ x1,1, s1, x1,1, s1 ⊕ x1,0, x1,1,

x1,1 ⊕ x1,1, s1, s1 ⊕ x1,0, x1,1, x1,3 ⊕ x1,0, x1,1 ⊕ x1,0, x1,1, x1,3, x1,3)

S2 = (s3, x2,0 ⊕ x2,2, s3, x2,3 ⊕ x2,1, x2,0 ⊕ x2,1, x2,0 ⊕ x2,2, s2, s2 ⊕ x2,2, s2

⊕ x2,2, x2,3, s0, s3 ⊕ x2,1, s3 ⊕ s0 ⊕ x2,3, s0 ⊕ x2,1 ⊕ x2,2, s3, s2, s0⊕

x2,1 ⊕ x2,2, x2,3 ⊕ x2,2, s2, s2, s2 ⊕ x2,1, x2,3 ⊕ x2,1, s3, s0, x2,3, s2, s2,

s3 ⊕ x2,1, s2, s2, s0, s3 ⊕ s0 ⊕ x2,0 ⊕ x2,2, s0 ⊕ x2,1, s3, s3 ⊕ x2,2, s0⊕

x2,3 ⊕ x2,0 ⊕ x2,1 ⊕ x2,2, s0, x2,0, x2,0, x2,3, x2,0, x2,3, x2,3, x2,0, x2,0)

S3 = (x3,2, s2, s1, x3,2, x3,2, s2, x3,2 ⊕ x3,1, s2, s2 ⊕ s1, x3,2 ⊕ x3,1, x3,2 ⊕ x3,1

⊕ x3,0, s1, s3 ⊕ x3,0, s2 ⊕ x3,0, x3,3, s3, s2 ⊕ s1 ⊕ x3,0, s2 ⊕ x3,3, x3,3

⊕ x3,1, s3, s1 ⊕ x3,3, s3 ⊕ x3,1, s3, s1 ⊕ x3,0, s3, s3, x3,3, x3,3 ⊕ x3,1, s3

⊕ x3,1, x3,3, x3,3 ⊕ x3,0, s2 ⊕ x3,0, x3,3 ⊕ x3,0, s3 ⊕ x3,1, s2 ⊕ s1 ⊕ x3,1,

s2 ⊕ x3,0, x3,2 ⊕ x3,0, s3, s1, s3, s1 ⊕ x3,2, s1, x3,2 ⊕ x3,1, x3,2, x3,3)

5 Application to a global implemention

To be able to apply the masking scheme presented above on a bitsliced imple-
mentation of any cryptographic primitive, another boolean operation needs to
be addressed : the NOT operation. As a matter of fact, the XOR operation is
linear, hence the input shares of a XOR can be just XORed to one another
to compute output shares, and the OR operation is a combination of an AND
operation and three NOT operations.

5.1 Implementation of NOT operation

As we consider input and output shares of the AND operation to be codewords,
this needs to still be the case for the NOT operation for compatibility reasons.

Hence, the NOT operations takes as input shares codewords A0, A1, A2 and
A3 and returns codewords B0, B1, B2 and B3 such that HW (A0) +HW (A1) +
HW (A2)+HW (A3) mod 2 = HW (B0) +HW (B1) +HW (B2)+HW (B3) + 1
mod 2.

The idea of the implementation is to add random codewords to the three first
input shares A0, A1 and A2, then add to the fourth (A3) a codeword of parity
opposite to the parity of the sum of the three first random codewords.

To that end, we choose three random messages m0,m1 and m2 and use them
such that :

– B0 = A0 ⊕ (m0(X) ∗ g(X))



– B1 = A1 ⊕ (m1(X) ∗ g(X))
– B2 = A2 ⊕ (m2(X) ∗ g(X))
– B3 = A3 ⊕ ((m0(X) +m1(X) +m2(X)) ∗ g(X)⊕ g(X))

Thereby A0⊕A1⊕A2 ⊕A3⊕B0⊕B1⊕B2⊕B3 = g(X) and g(X) has been
chosen to have odd parity. Thus HW (B0 ⊕B1 ⊕B2 ⊕B3) mod 2 = HW (A0 ⊕
A1 ⊕A2 ⊕A3) + 1 mod 2.

5.2 Tests

We tested this masking scheme on a AES implementation with a randomly-
chosen fixed key using the TBoxes of [CEJv03] bitsliced with the Usuba tool
([Mer20]). This implementation is composed of 37586 AND gates, 2293 NOT
gates and 66751 XOR gates.

We tested with a processor Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz
three different versions of this implementation :

– The raw bitsliced implementation where the TBoxes are bitsliced and ShiftRows
and MixColumn are implemented with boolean operations AND, OR, NOT
and XOR as well.

– The bitsliced implementation where the AND operation is masked by the
ISW masking scheme ([ISW03]), the NOT operation is performed by flipping
one bit share and the XOR operation is implemented by XORing shares.

– The bitsliced implementation where the AND operation is masked by the
masking scheme presented in this paper, the NOT operation is performed
as described in subsection 5.1 and the XOR operation is implemented by
XORing polynomial shares.

We obtained the following values:

Raw Bitsliced
Implementation

Implementation
Masked With ISW

[ISW03]

Implementation Masked
With Our Scheme

Time for
1000 executions

0.29 s 1103.12 s 2123.46 s

Binary Size 2.3 MB 3.6 MB 3.8 MB

6 Conclusion

In this paper, we present the AND masking scheme we built in order to com-
bine the natural goal of masking schemes, that is to say side-channel resistance,
and the resistance to fault attacks. To do so, we used error correcting code-
words shares and designed our scheme to be compliant with uniformity, non-
completeness and correctness properties.

The decreasing performances are due to the fact that each bit is represented
by 4 ∗ 45 bits. To mitigate the loss, we consider the possibility of adapting the



scheme to different number of shares, and to do so to use BCH codes of non-
maximal cardinality, or to use error correcting codes other than BCH codes, in
particular with power of 2 lengths to ease implementation.

For further work, different leads are open. First, the uniformity, non-completeness
and correctness properties ensure first-order probing security, so we would need
to determine the exact probing security order of the scheme. Furthermore, we
would like to investigate the balance between the performances gain and the
correction loss for an implementation where not all masked AND include the
correction design.
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BCPZ16. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 23–39. Springer, Heidelberg, Au-
gust 2016.

BDF+17. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
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