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Abstract. In oblivious finite automata evaluation, one party holds a
private automaton, and the other party holds a private string of char-
acters. The objective is to let the parties know whether the string is
accepted by the automaton or not, while keeping their inputs secret.
The applications include DNA searching, pattern matching, and more.
Most of the previous works are based on asymmetric cryptographic prim-
itives, such as homomorphic encryption and oblivious transfer. These
primitives are significantly slower than symmetric ones. Moreover, some
protocols also require several rounds of interaction. As our main con-
tribution, we propose an oblivious finite automata evaluation protocol
via conditional disclosure of secrets (CDS), using one (potentially mali-
cious) outsourcing server. This results in a constant-round protocol, and
no heavy asymmetric-key primitives are needed. Our protocol is based
on a building block called “an oblivious CDS scheme for deterministic
finite automata” which we also propose in this paper. In addition, we
propose a standard CDS scheme for deterministic finite automata as an
independent interest.

Keywords: Finite automata · Conditional disclosure of secrets · Multi-
client verifiable computation · Secure multi-party computation.

1 Introduction

In a problem of oblivious finite automata evaluation, one party holds a private
automaton, and the other party holds a private string of characters. The objec-
tive is to let the parties know whether the string is accepted by the automaton
or not, while keeping their inputs secret.

The applications include DNA matching, string searching, password format
validation, spam email detection, log files audition, and more. As stated in [42],
DNA technology can help us predict a probability that a patient will develop a
specific disease, and predict the result of the therapy. However, revealing personal
DNA sequence to public can be harmful. An undesired parental relationship can
be discovered, or an employee may be rejected to work with a company due to a
probability to develop some diseases. Thus, DNA matching should be performed
in an oblivious way. This is also applied to other sensitive information such as
passwords, email contents, and log files.
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As an example, a patient may want to know if there is any anomaly in his
or her DNA sequence. Since the DNA sequence can be considered as private
information, the patient should not reveal his or her DNA in clear. On the other
hand, a doctor has the anomaly pattern modeled with regular language. The
pattern can be considered as a valuable research insight, and should also be kept
secret. To let one or both of the parties know whether the DNA sequence matches
the pattern, oblivious finite automata evaluation is perfectly suitable here. As
another example, an email message and a malware pattern can be considered as
sensitive information. To obliviously check whether the email contains a malware
or not, the oblivious finite automata evaluation can also be used in the same way.

However, almost all of the previous works are constructed based on public
key cryptographic primitives, such as homomorphic encryption and oblivious
transfer (OT). These asymmetric-key operations (e.g. exponentiation) are some
orders of magnitude slower than the symmetric-key operations. In addition, some
of the previous works require several rounds of interaction.

On the other hand, generic secure multi-party computation protocol can also
be used, but their performance can be worse compared to specifically designed
methods. Executing string matching algorithm with Yao’s garbled circuit proto-
col [44, 32] can be inefficient due to the number of comparisons involved in the
dynamic programming technique. Using information-theoretic protocol is also
possible [21, 11], but the process will be interactive, and the round complexity
will depend on the size of the circuit, which can be large in this case.

A verifiable oblivious finite automata evaluation protocol in an outsourced
setting is also an open problem stated in [45].

1.1 Our Contributions

In this paper, we propose an oblivious finite automata evaluation protocol via
conditional disclosure of secrets (CDS). This results in a constant-round protocol,
and no heavy asymmetric-key primitives are needed. We claim three contribu-
tions of our work as follows.

Oblivious CDS for DFA. We present the first CDS scheme for the class of
deterministic finite automata (DFA). DFA allows to compute satisfiability for
regular languages, and therefore is suitable for the aforementioned applications
(e.g., DNA matching). Previous work on CDS were proposed for some other
classes; for example, equality, inner product predicate [15], and set intersection
[7]. To the best of our knowledge, we are the first to consider CDS for DFA.

As a short introduction to (standard) CDS scheme for DFA, the scheme
involves two senders and a receiver. One sender has a DFA, the other sender
has an input string, and the receiver knows both the DFA and the input string.
The two senders also have a common secret and a common randomness which
are not known to the receiver. Each sender can send only one message to the
receiver without any communication with the other sender. The goal of the CDS
scheme for DFA is to let the receiver know the secret if and only if the automaton
accepts the input string.
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In this paper, we propose an oblivious CDS scheme for DFA. The main
difference between the oblivious CDS and the standard CDS is the information
leaked to the receiver. In the standard CDS, the receiver knows the automaton
and the string, and knows whether the automaton accepts the string or not,
while the receiver in the oblivious CDS will not know. Thus, oblivious CDS is
more suitable for privacy-preserving applications.

Oblivious DFA Evaluation Protocol via CDS. We propose an oblivious
DFA evaluation protocol using the oblivious CDS scheme for DFA as a build-
ing block. The advantage of our protocol is that it is constant-round and non-
interactive. Using CDS as the underlying scheme can be seen as a trade-off
between adding one (potentially malicious) outsourcing server and using asym-
metric cryptographic primitives.

Standard CDS for DFA. As an independent interest, we also propose a stan-
dard CDS scheme for DFA. To the best of our knowledge, converting CDS for
other computation classes to CDS for DFA is not straightforward; ours is the
first explicit construction for such CDS for DFA.

1.2 Our Approaches

One of our goals is to achieve a constant-round protocol for oblivious finite
automata evaluation. Previous protocols [14, 38, 45] that perform in constant
rounds for a similar task all use the idea of garbled circuits and require asymmetric-
key primitives such as homomorphic encryption or oblivious transfer. Intuitively,
these asymmetric-key primitives play an essential role in hiding private inputs
from one party to the other party in the two-party settings.

Our approach to mitigate the need for asymmetric-key primitives is to uti-
lize an additional (potentially malicious) outsourcing server. We observe that
oblivious CDS [7] fits wells in this context as it allows an outsourcing server
to compute a function obliviously without knowing the inputs or the result.
Moreover, known oblivious CDS schemes do not require costly asymmetric-key
operations. However, all the previous CDS constructions do not support the
class of finite automata (even for standard CDS schemes). To this end, we hence
propose the first oblivious CDS for DFA.

We adapt the garbled circuit techniques from Frikken [14] to construct our
oblivious CDS for DFA. The construction includes a pseudorandom function
(PRF). We then use our oblivious CDS as a building block for our oblivious DFA
evaluation protocol, based on the multi-client verifiable computation framework
of Bhadauria and Hazay [7]. Note that the CDS schemes in [7] consider predicates
of equality and set intersection, which are different from DFA.

For the standard CDS, we extend the techniques in the ABE context from
[2] that convert DFA into span programs, and adapt to the CDS context. Our
construction of standard CDS is information theoretic. (Our oblivious CDS may
imply a standard CDS, but that construction will require a PRF.)
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1.3 Related Works

While previous studies on oblivious evaluation for DFA were somewhat peaking
about 10 years ago or more [8, 14, 38] (with recent improvements such as [45]
being somewhat less major), there are some renewed interests very recently (in
2019 – 2021) in secure computation regarding DFA (and a related class, namely,
NC1), in the context of ABE in top conference papers such as [1, 2, 22, 23, 29].
These reflect theoretical and practical interests towards secure DFA computa-
tions. We hope that our work offers practical improvements for oblivious DFA
evaluation as our protocol is the first explicit constant-round protocol that does
not require expensive public-key operations.

In this subsection, we briefly describe related works as follows.

Oblivious Finite Automata Evaluation. The problem of oblivious DFA eval-
uation was first studied by Troncoso-Pastoriza et al. [42]. Their protocol is based
on additive secret sharing, homomorphic encryption, and oblivious transfer. At
the start of each round (corresponding to each character in the input string),
both parties hold shares of the current state of the automaton. Homomorphic
encryption and oblivious transfer are then applied in order to compute the shares
of the next state. It is obvious that the number of communication rounds is linear
in the length of the input string. The protocol also requires O(|x||Q|) modular
exponentiations (where |x| is the length of the input string and |Q| is the total
number of states of the DFA), which can be a performance drawback.

The second work proposed by Frikken [14] tried to reduce the number of
rounds by using the idea of Yao’s garbled circuit [44]. They also reduce the
number of modular exponentiations to O(|x|). It is shown in [14] that their
protocol is 2 to 3 orders of magnitude faster than [42]. However, the protocol is
still based on oblivious transfer.

The first protocol that is secure against malicious adversaries is proposed by
Gennaro et al. [18]. It is based on public-key encryption and zero knowledge proof
of knowledge. The protocol requires several rounds of interactions. Another work
that discussed the security in malicious setting is the work of Mohassel et al. [38].
Using similar idea from [14], they proposed an oblivious evaluation protocol for
DFA with alphabets {0, 1}. The protocol is based on OT extension [26] against
malicious adversaries.

Laud and Willemson [28] modeled the transition function as a polynomial,
and then evaluate it privately using arithmetic black box (ABB) model. This
ABB model can be realized by either secret sharing, homomorphic encryption,
or other primitives. If information theoretic primitive such as secret sharing
is used, the protocol is also information theoretic. However, performing secure
multiplication on secret shares requires several rounds of interactions.

More previous works include the work of Di Crescenzo et al. [13] which is
based on conditional transfer protocol, and the work of Zhao et al. [45] which
considers a setting with additively shared input string.

Oblivious Finite Automata Evaluation with Outsourcing Servers. The
protocol proposed by Blanton and Aliasgari [8] generalizes the work of [42] to the
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Table 1. Comparison between oblivious DFA evaluation protocols

Protocol Primitives Use Asym. Parties Round Comm. Cost Security

Troncoso et al. [42] SS, HE, OT Y 2 O(|x|) O(|x|(|Q|+ |Σ|)) SH
Frikken [14] OT, PRF Y 2 O(1) O(|x||Q||Σ|) SH
Gennaro et al. [18] HE, ZK Y 2 O(|x|) O(|x||Q||Σ|) M
Mohassel et al. [38] OT, PRG Y 2 O(1) O(|x||Q||Σ|) M
Laud&Willemson [28] ABB Y/N 2+ O(|Q||Σ|) O(|x||Q||Σ|) SH/M
Crescenzo et al. [13] PRF Y 2 O(|x||Q||Σ|) O(|x||Q||Σ|) SH
Zhao et al. [45] HE, PRG Y 2 O(1) O(|x||Q||Σ|) SH
Blanton&Aliasgari [8] SS, OT Y 4+ O(|x|) O(|x||Q||Σ|) SH
Wei&Reiter [43] HE Y 3 O(|x|) O(|x||Q||Σ|) SH, M⋆

Ours (Section 4) PRF N 3 O(1) O(|x||Q||Σ|) SH, M†

Asym: Asymmetric-key Primitives SS: Secret Sharing HE: Homomorphic Encryption
OT: Oblivious Transfer PRF: Pseudorandom Function PRG: Pseudorandom Generator
ZK: Zero-Knowledge Proof ABB: Arithmetic Black Box (can be implemented from SS or HE)
SH: Semi-honest M: Malicious Y/N and SH/M: Depend on the building block
⋆Client can be semi-honest, server can be malicious
†String and automaton holders can be semi-honest, outsourcing server can be malicious

outsourced setting. To keep all the inputs private, their work uses a secret sharing
technique to outsource the automaton and the input string to two computing
servers. These servers are assumed to be semi-honest. Oblivious transfer is used
as a building block. In the case that we want to outsource the inputs to more
than two servers, threshold homomorphic encryption must be applied.

Another work in outsourced setting is proposed by Wei and Reiter [43]. In
their protocol, a client with a DFA wants to execute it on encrypted string stored
on a cloud server. They model the transition function as a polynomial, and then
evaluate it privately using homomorphic encryption. The decryption key from
the string owner is shared between the client and the cloud server.

We note that almost all of the previous works (including both with and
without outsourcing servers) are based on asymmetric cryptographic primitives.
Some also require several round of communication and interaction. Comparison
between the oblivious evaluation protocols is presented in Table 1.

CDS. Conditional disclosure of secrets (CDS) was firstly proposed in [19] as a
building block for symmetrically private information retrieval system (SPIR).
Their CDS supports the condition equivalent to monotone access structure of a
secret sharing scheme. CDS is also used to construct priced oblivious transfer
(i.e., SPIR with cost for each item) in [3]. In addition, CDS is used to reduce share
size of secret sharing schemes [6, 35, 33, 4, 5]. Some works tried to relate CDS to
attribute-based encryption (ABE) [15]. Recently, the work of [7] proposed new
variants of CDS, including private CDS and oblivious CDS. The CDS schemes
of [7] are for equality and set intersection classes. The main application of these
variants is a multi-client verifiable computation protocol. We list some CDS
schemes in the literature in Table 2 (note that this list is not exhaustive). To
the best of our knowledge, there is no known CDS for DFA until our work.

Multi-client Verifiable Computation. Gennaro et al. [17] was the first to
propose the definition of verifiable computation protocol. Their construction,
based on Yao’s garbled circuit, is only for two parties, a client and an outsourc-
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Table 2. Comparison between CDS schemes

CDS Scheme Type Functionalities Security

Gertner et al. [19] Standard Monotone access structure Info. theoretic
Gay et al. [15] Standard Equality, Inner product, Index predicate, Prefix, Disjointness Info. theoretic
Liu et al. [34] Standard Index predicate Info. theoretic
Bhadauria&Hazay [7] Oblivious Equality Info. theoretic
Bhadauria&Hazay [7] Private Equality, Inequality, Set intersection cardinality Computational
Ours (Section 3) Oblivious DFA Computational
Ours (Section 5) Standard DFA Info. theoretic

ing server. The definition was then generalized to multi-client setting by Choi
et al. in [9]. Using non-interactive key exchange (NIKE) protocol, their proto-
col is secure against malicious server, and semi-honest clients. Gordon et al.
[24] later strengthened the security guarantee to malicious clients setting, using
homomorphic encryption and attribute-based encryption as building blocks. It
can be seen that the existing verifiable computation protocols at that time are
quite complex. Recently, Bhadauria and Hazay [7] proposed two-client verifiable
computation protocol based on various types of CDS. Some of the advantages
provided by CDS are simplicity of the verification, and no need for asymmetric-
key primitives.

1.4 Organization

After reviewing preliminaries in Section 2, we propose an oblivious CDS scheme
for DFA in Section 3. An oblivious DFA evaluation protocol via CDS is presented
in Section 4. As an independent interest, we propose a standard CDS scheme for
DFA in Section 5. Finally, Section 6 concludes the paper. Proofs are provided in
Appendix C.

2 Preliminaries

In this section, we review related background knowledge, including finite au-
tomata, conditional disclosure of secrets, and multi-clients verifiable computa-
tion. Definitions of PRF, coin-tossing protocol, and monotone span program are
standard, and are provided in Appendix A. Matrices are denoted with bold cap-
itals. We denote {1, . . . , n} and {a, a+ 1, . . . , b} with [n] and [a, b], respectively.
The symbol ≈ denotes standard indistinguishability between two distributions,
which can be information theoretic or computational depending on the case.

2.1 Finite Automata

In this paper, we consider deterministic finite automata (DFA), which is a special
case of nondeterministic finite automata (NFA).

A deterministic finite automaton is defined by a 5-tuple M = (Q,Σ,∆, q0,
F ) where Q is a finite set of states, Σ is a finite set of all possible alphabets,
∆ : Q × Σ → Q is a transition function which outputs the next state from the
current state and the given alphabet, q0 ∈ Q is an initial state, and F ⊆ Q is
a set of accepting states. (In case of a nondeterministic finite automaton, the
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transition function is generalized to ∆ : Q×Σ → 2Q.) In this work, we assume
that states are numbered from 1 to |Q| where q0 = 1, and Σ can be numbered
from 0 to |Σ| − 1. In Section 5, we also assume that there is only one accepting
state, F = {|Q|}. Any DFA can be transformed to satisfy these conditions.3

A string of alphabets x = x0x1 · · ·xn−1 ∈ Σn is accepted by the automaton
M if there is a sequence of states q0q1 · · · qn such that qi = ∆(qi−1, xi−1) for all
i ∈ [n], and qn ∈ F . We say M(x) = 1 if M accepts x, and M(x) = 0 otherwise.

2.2 Conditional Disclosure of Secrets

In our paper, we only focus on 3-party CDS, where Alice and Bob are senders,
and Claire is a receiver. Alice has an input a from the domain A, a secret s
from {0, 1}κ, and a randomness r from the domain R. Bob has an input b from
the domain B, the same secret s, and the same randomness r. For the standard
CDS, Claire only knows the inputs a and b. Everyone agrees on a function
f : A × B → {0, 1}. Each of Alice and Bob can send only one message to
Claire without any communication to each other. The goal of the scheme is to
let Claire learn the secret s if f(a, b) = 1, and let Claire learn nothing otherwise.
The definition of CDS is as follows.

Definition 1 (CDS). Let f : A × B → {0, 1} be a condition, s ∈ {0, 1}κ be a
secret, and r ∈ R be a randomness chosen randomly with uniform distribution.
Let EncA and EncB be PPT encoding algorithms, and Dec be a deterministic
decoding algorithm. The correctness and secrecy properties must hold as follows.

Correctness: For all inputs (a, b) ∈ A×B where f(a, b) = 1,

Pr[Dec(a, b,EncA(a, s, r),EncB(b, s, r)) ̸= s] ≤ negl(κ).

Secrecy: There exists a polynomial time algorithm Sim such that for every in-
put (a, b) ∈ A × B where f(a, b) = 0 and a secret s ∈ {0, 1}κ, the following
distributions are indistinguishable.

{Sim(a, b)}a∈A,b∈B ≈ {EncA(a, s, r),EncB(b, s, r)}a∈A,b∈B .

One useful variant of CDS called as oblivious CDS is proposed in [7]. In
this setting, Claire does not know a and b. Informally explained, Claire learns a
value at the end of the scheme, but Claire will not know whether the condition
is satisfied, or whether the decoded value is equal to the secret. The definition of
the oblivious CDS from [7] is as follows. For the definition of secrecy of oblivious
CDS, we use indistinguishability based definition, which is equivalent to the
real-ideal definition in [7].

Definition 2 (Oblivious CDS). Let f : A × B → {0, 1} be a condition,
s ∈ {0, 1}κ be a secret, and r ∈ R be a randomness chosen randomly with
uniform distribution. Let EncA and EncB be PPT encoding algorithms, and Dec
be a deterministic decoding algorithm. The properties must hold as follows.

3 This can be done by adding one special character marking the end of the string.
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Fig. 1. Standard CDS and oblivious CDS

Correctness: For all inputs (a, b) ∈ A×B where f(a, b) = 1,

Pr[Dec(EncA(a, s, r),EncB(b, s, r)) ̸= s] ≤ negl(κ).

Indistinguishability: There exists a polynomial time algorithm Sim such that for
every input (a, b) ∈ A × B and a secret s ∈ {0, 1}κ, the following distributions
are indistinguishable.

{Sim(1|a|, 1|b|,Dec(EncA(a, s,r),EncB(b, s, r)))}a∈A,b∈B

≈ {EncA(a, s, r),EncB(b, s, r)}a∈A,b∈B .

The diagram of the standard and oblivious CDS is shown in Figure 1.

2.3 Multi-client Verifiable Computation

Similar to [7, 9], we consider a multi-client verifiable computation (MVC) setting
where a set of clients outsources the computation to an untrusted computing
server. We focus on a non-interactive setting where clients do not interact with
each other after the setup phase. In our work, we consider a setting with semi-
honest clients and a malicious server (assume no collusion). The clients should
follow the protocol perfectly, while the outsourcing server may try to change the
computation result. The definition of MVC from [7, 9] is as follows.

Definition 3 (MVC). Consider a setting where each client has an input αi,
and the goal is to compute f(α1, . . . , αm). The MVC protocol consists of four
algorithms.

– δ ← Setup : Generate a common random string δ for all clients.
– (α̃i, τi)← Input(αi, δ, 1

λ) : For each client, using αi, δ, and security parame-
ter 1λ as inputs, this algorithm outputs an encoded input α̃i and the decoding
secret τi kept private by the client.

– (β1, . . . , βm)← Compute(f, α̃1, . . . , α̃m) : Using the function description and
the encoded inputs, the computing server executes this algorithm to generate
encoded outputs βi.

– y ∪ {⊥} ← Verify(βi, τi) : For each client, using βi and τi as inputs, this
algorithm generates an output y (which supposes to be f(α1, . . . , αm)), or
outputs a symbol ⊥ in case that the server attempted to cheat.

We are interested in the protocol that is sound and private.
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PrivClientγA,i(1
λ) : PrivServerγA(1

λ) :

(α0
1, . . . , α

0
m), (α1

1, . . . , α
1
m)← A0(1

λ) (α0
1, . . . , α

0
m), (α1

1, . . . , α
1
m)← A0(1

λ)
where α0

i = α1
i δ ← Setup

and f(α0
1, . . . , α

0
m) = f(α1

1, . . . , α
1
m) (α̃j , τj)← Input(αγ

j , δ, 1
λ) for all j ∈ [m]

δ ← Setup γ′ ← A1(α̃1, . . . , α̃m)

(α̃j , τj)← Input(αγ
j , δ, 1

λ) for all j ∈ [m] return γ′

(β1, . . . , βm)← Compute(f, α̃1, . . . , α̃m)
γ′ ← A1(βi, τi)
return γ′

Fig. 2. Privacy for multi-client verifiable computation

Soundness: For all inputs (α1, . . . , αm) and a malicious server A, let δ ← Setup,
(α̃i, τi) ← Input(αi, δ, 1

λ), (β1, . . . , βm) ← A(f, α̃1, . . . , α̃m), and y ∪ {⊥} ←
Verify(βi, τi) for all i ∈ [m]. It must hold that

Pr[y ̸= f(α1, . . . , αm)] ≤ negl(λ).

Privacy against the clients: We consider a setting with adversarial i-th client.
From the security game in Figure 2, the MVC is private against the client if

|Pr[PrivClient0A,i(1
λ) = 1]− Pr[PrivClient1A,i(1

λ) = 1]| ≤ negl(λ).

Privacy against the server: We consider a setting with adversarial server. From
the security game in Figure 2, the MVC is private against the server if

|Pr[PrivServer0A(1λ) = 1]− Pr[PrivServer1A(1
λ) = 1]| ≤ negl(λ).

3 Oblivious CDS for DFA

In this section, we propose an oblivious CDS scheme for DFA, which is used as
a building block to construct an oblivious DFA evaluation protocol in the next
section.

In the setting of an oblivious CDS scheme for DFA, Alice has a private DFA
M , Bob has a private input string x, and both have a common secret s and a
common randomness r. On the other hand, Claire does not have any inputs. The
condition is defined as f(M,x) = 1 if M accepts x, and f(M,x) = 0 otherwise.
At the end of the scheme, Claire should learn the secret if and only if M accepts
x. Our construction is based on the idea of garbled transition matrix from [14].
The proposed scheme is shown in Figure 3.

As an overview, the scheme can be divided into two parts. In the first part,
Alice generates a garbled version of the DFA M , and Bob generates keys corre-
sponding to the input string x. Claire, who receives the garbled transition matrix
and keys, can recover an intermediate result embedded inside the garbled ma-
trix. This recovered intermediate result depends on the condition of M and x.
We use state permutation functions to hide the automaton structure, and use
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Oblivious CDS scheme for DFA

Input:

– Alice has a DFA M = (Q,Σ,∆, q0, F ), a secret s, and a randomness r.
– Bob has an input string x = x0x1 · · ·xn−1, a secret s, and a randomness r.
– Claire has no input.

Algorithm:

1. For each t ∈ [0, n− 1], Alice randomly generates a state permutation function
πt : Q → Q and a character permutation function ϕt : Σ → Σ from the
randomness r.

2. For each t ∈ [0, n−1], Alice extracts a garbled state key kstate
t,πt(q)

for each q ∈ Q,

and a garbled character key kchar
t,ϕt(σ) for each σ ∈ Σ from the randomness r.

3. For each t ∈ [0, n− 2], q ∈ Q, and σ ∈ Σ, Alice randomly generates a garbled
transition matrix element

gt,πt(q),ϕt(σ) = H(kstate
t,πt(q), k

char
t,ϕt(σ))⊕ (kstate

t+1,πt+1(∆(q,σ))||πt+1(∆(q, σ))).

For each q ∈ Q, and σ ∈ Σ, Alice generates a garbled transition matrix
element of the last step. If ∆(q, σ) ∈ F , then

gn−1,πn−1(q),ϕn−1(σ) = H(kstate
n−1,πn−1(q), k

char
n−1,ϕn−1(σ))⊕ (w||mw + s)

where w and m are generated from the randomness r. If ∆(q, σ) /∈ F , then

gn−1,πn−1(q),ϕn−1(σ) = H(kstate
n−1,πn−1(q), k

char
n−1,ϕn−1(σ))⊕ (c||d)

where (c, d) is a random point not on the line P (χ) = mχ + s. This point
(c, d) is not known to Bob.

4. Alice sends the garbled transition matrix {gt,πt(q),ϕt(σ)}t,q,σ and the garbled
state key of the first state kstate

0,π0(q0)
together with π0(q0) to Claire.

5. For each t ∈ [0, n− 1], Bob generates the character permutation function ϕt :
Σ → Σ, and extracts the garbled character key kchar

t,ϕt(xt)
from the randomness

r in the same way as Alice.
6. Bob randomly chooses a point (z,mz+s) where z ̸= w is totally random, and

m is generated from the randomness r. Note that Alice does not know this
point, and this point is different from Alice’s point.

7. Bob sends (ϕt(xt), k
char
t,ϕt(xt)

) for each t ∈ [0, n− 1], and (z,mz + s) to Claire.
8. For each t ∈ [0, n − 1], Claire, with current permuted state πt(q), permuted

character ϕt(xt), garbled state key kstate
t,πt(q)

, and garbled character key kchar
t,ϕt(xt)

,
computes the next permuted state and state key

(kstate
t+1,πt+1(∆(q,xt))||πt+1(∆(q, xt))) = gt,πt(q),ϕt(xt) ⊕H(kstate

t,πt(q), k
char
t,ϕt(xt)),

and in the last round discovers

(i||j) = gn−1,πn−1(q),ϕn−1(xn−1) ⊕H(kstate
n−1,πn−1(q), k

char
n−1,ϕn−1(xn−1)).

9. Claire interpolates the points (i, j) from the garbled matrix and (z,mz + s)
from Bob to find the y-intercept. Claire outputs this value as s′.

Fig. 3. Oblivious CDS scheme for DFA
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character permutation functions to hide the input string. The suitable state and
character permutations can be as simple as πt(i) = ((i + ut) mod |Q|) + 1 and
ϕt(i) = (i + vt) mod |Σ| where ut and vt are random shift values. Since Claire
can only decode the value corresponding to the state at each step, and cannot
know whether the final state is an accepting state or not, Claire does not know
anything from the intermediate result of the garbled matrix.

In the second part, Claire decodes the secret from the intermediate result. The
intermediate result that Claire can recover will be a point on a 2D plane. Before
sending messages to Claire, Alice and Bob agree on the same linear equation
P (χ) = mχ + s where m is generated from the common randomness. If the
automaton accepts the input string, Claire will recover a random point on this
line. If not, Claire will recover a random point not on this line. Bob also sends
the other random point on this line to Claire. Finally, Claire uses two points
from the garbled matrix and from Bob to decode the secret via interpolation.

The scheme is secure in the sense that Claire cannot learn anything about
the inputs and the result. See the following theorem.

Theorem 1. Assume that H is a secure PRF. The oblivious CDS for DFA in
Figure 3 satisfies correctness and indistinguishability as per definition 2.

4 Oblivious DFA Evaluation via CDS

In this section, we present an oblivious DFA evaluation protocol via CDS. The
protocol shown in Figure 4 is based on the multi-client verifiable computation
framework from [7]. In short, we execute two oblivious CDS schemes for DFA
M and M , where M is the complement DFA of M . Since exactly one condition
must be satisfied, Claire can recover the secret for that condition (but Claire
will not know which one). Security then follows from the underlying oblivious
CDS. The protocol is secure against semi-honest Alice and Bob, and malicious
Claire. Here, Claire can be considered as an untrusted outsourcing server.

There is a reason why we have to execute two oblivious CDS schemes for
DFA M and M . If Alice and Bob execute only one oblivious CDS scheme for
the DFA M , Claire may output a random value, and then Alice and Bob may
conclude that the DFA does not accept the input string. When the oblivious
CDS schemes for both M and M are executed, it is difficult for Claire to change
the result, since either s1 = s′1 or s2 = s′2 must be satisfied, but not both. The
protocol in Figure 4 satisfies the following theorem.

Theorem 2. Assume that H in Figure 3 is a secure PRF. The oblivious DFA
evaluation protocol in Figure 4 is a sound and private MVC as per definition 3.

Application. It is not difficult to see how this protocol can be used for DNA
matching and other applications. In this case, Alice holds a pattern modeled
with a DFA4, and Bob holds a DNA sequence. Firstly, they generate common

4 The method in [41] can be used to transform a pattern p to a finite automaton
LEVd(p) accepts the language Ld(p) contains all strings with Levenshtein distance at
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Oblivious DFA evaluation protocol via CDS

Input:

– Alice has a DFA M = (Q,Σ,∆, q0, F ).
– Bob has an input string x = x0x1 · · ·xn−1.
– Claire has no input.

Algorithm:

1. δ = (s1, s2, r1, r2) ← Setup : Alice and Bob get common secrets (s1, s2) and
common randomness (r1, r2) from a coin-tossing protocol or a public source
of randomness. These values are not known to Claire.

2. (α̃i, τi) ← Input(αi, δ, 1
λ) : Alice and Bob execute the oblivious CDS scheme

(Figure 3) for the DFA M and the input string x using the secret s1 and the
randomness r1. They also execute the oblivious CDS scheme (Figure 3) for the
DFA M = (Q,Σ,∆, q0, Q−F ) and the input string x using the secret s2 and
the randomness r2. Here, α̃1 and α̃2 are CDS messages, and τ1 = τ2 = (s1, s2).

3. (β1, β2) ← Compute(f, α̃1, α̃2) : Claire computes the output values s′1 and s′2
from both CDS schemes. Here, β1 = β2 = (s′1, s

′
2).

4. y ∪ {⊥} ← Verify(βi, τi) : If s1 = s′1, both Alice and Bob output “M(x) = 1”.
If s2 = s′2, both of them output “M(x) = 0”. Otherwise, output ⊥.

Fig. 4. Oblivious DFA evaluation protocol via CDS

secrets and randomness. Next, Alice generates the garbled transition matrices
of the DFA and its complement, while Bob transforms the DNA sequence into
garbled character keys, according to the oblivious CDS scheme for DFA. After
the oblivious CDS schemes for DFA are executed, Alice and Bob conclude their
result based on Claire’s outputs.

4.1 Complexity Analysis

We now briefly analyze round complexity, communication complexity, and com-
putational complexity of our protocol in Figure 4. See Table 1 for more details.

Round Complexity. In Figure 4, two CDS can be executed in parallel. Each
of Alice and Bob then send one message to Claire, and Claire sends the results
back. The total number of rounds is 2, which is a constant. Our protocol can
also be considered as non-interactive.

Communication Complexity. The largest part of the communication is the
garbled transition matrices. Thus, the communication complexity isO(|x||Q||Σ|).

Computational Complexity. We trade-off a usage of asymmetric-key oper-
ations with one outsourcing server. Hence, the protocol can be more efficient

most d from p. It is shown in [42] that a finite automaton for a language Σ∗Ld(p)Σ
∗

will not have too many states.
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Table 3. Numbers of operations for oblivious DFA evaluation protocols

Automaton Holder String Holder Outsourcing Server
Protocol Asym. Comp. Sym. Comp. Asym. Comp. Sym. Comp. Asym. Comp. Sym. Comp.

Troncoso et al. [42] O(|x||Q||Σ|) O(|x||Σ|+ |Q|) O(|x||Q|) O(|x|) - -
Frikken [14] O(|x|) O(|x||Q||Σ|) O(|x|) O(|x|) - -
Gennaro et al. [18] O(|Q|(|x|+ |Σ|)) - O(|x||Q|) - - -
Mohassel et al. [38] O(|x|) O(|x|(|Q|+ |Σ|)) O(|x|) O(|x|) - -
Laud&Willemson [28] - O(|x||Q||Σ|) - O(|x|) - -
Crescenzo et al. [13] O(|x||Q||Σ|) O(|Q|) O(|x||Q||Σ|) - - -
Zhao et al. [45] O(|x|) O(|x||Q|) O(|x|) O(|x|) - -
Blanton&Aliasgari [8] - - - - O(|x|) O(|x||Q||Σ|)
Wei&Reitor [43] O(|x||Q||Σ|) - O(|x||Σ|(|Q|+ |Σ|)) - - -
Ours - O(|x||Q||Σ|) - - - O(|x|)
- : Negligible compare to other operations

Table 4. Numbers of operations for protocols with outsourcing servers

Protocol Automaton Holder Outsourcing Server

Blanton&Aliasgari [8] - 1-out-of-|Σ|-OT ×2
1-out-of-|Q||Σ|-OT ×2|x|

1-out-of-|Q|-OT ×2
Ours PRF ×2|x||Q||Σ| PRF ×2|x|

compared to the previous works with heavy usage of homomorphic encryption
and oblivious transfer (OT).

We briefly compare numbers of operations of the oblivious DFA evaluation
protocols in Table 3. Some of the works have at least O(|x||Q||Σ|) asymmet-
ric computation, and some have a bit lower asymmetric computation as at
least O(|x|). Ours requires zero asymmetric computation. Although [28] also re-
quires zero asymmetric computation (depend on the building block), it requires
O(|Q||Σ|) rounds (see Table 1), while ours has constant rounds.

We compare protocols with outsourcing servers in Table 4. Blanton et al. [8]
uses 2|x| applications of 1-out-of-|Q||Σ|-OT, while our protocol uses 2|x||Q||Σ|
applications of PRF. Since OT typically uses public-key operations such as mod-
ular exponentiations (e.g., [10, 16]), while PRF can be based on symmetric ones
such as block ciphers or keyed one-way hash functions (e.g., [12, 20]) which are
several orders of magnitude more efficient than public-key operations [39], this
suggests that ours should be fundamentally faster than [8]. In more details, ac-
cording to the state-of-the-art schemes for fast 1-out-of-n OT in [10, 16, 36, 37],
runningm applications of 1-out-of-n OT requires O(m) modular exponentiations
and O(nm) overall time. This suggests that [8] requires O(|x|) asymmetric-key
operations and O(|x||Q||Σ|) symmetric operations. On the other hand, ours uses
2|x||Q||Σ| applications of PRF.

We note also that even looking at less-dominant computation part in OT
(besides its public-key operations), running one OT application itself typically
already requires more than one applications of PRF. Theoretically justified by
[25], OT is an expensive operation compared to the evaluation of a PRF or a
PRG. The OT protocol in [39] also uses a PRF as a building block. This also
confirms that ours protocol should be fundamentally faster than [8].
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5 CDS for DFA

As an independent interest, we propose a standard CDS for DFA in this section.
In the setting of a standard CDS scheme for DFA, Alice has a DFA M , a secret
s, and a randomness r, while Bob has an input string x, the same secret s, and
the same randomness r. Claire knows both M and x, but does not know s or r.
Claire can learn s if and only if M(x) = 1, and learn nothing else if M(x) = 0.
As an overview of our construction, we transform the automaton and the input
string into monotone span programs using a method from [2], and then construct
a CDS scheme for those span programs. The transformations are applied to both
automaton and input string in order to polynomially bound the size of the span
program. Note that the standard CDS for DFA in this section does not require
a PRF.5 Complexity analysis of our standard CDS for DFA is in Appendix B.

5.1 Transform an Input String to a MSP

The following transformation from an input string to a MSP is from [2]. We
extend it in order to support any size of alphabets. An input string x is trans-
formed to a MSP (Lx, ρx), and a DFA M is transformed to a set of attributes
SM . A universe of attributes for DFA is denoted as

UM = {(σ, i, j) : i, j ∈ [Qmax], σ ∈ Σ} ∪ {“Size = i” : i ∈ [Qmax]} ∪ {“Dummy”}

where Qmax is a maximum number of states that all parties agree on. Each
attribute can be represented by an integer using the following mapping.

“Dummy” 7→ 0, (σ, i, j) 7→ 2|Σ|((i+ j)2 + j) + 2σ, “Size = i” 7→ 2i+ 1

A DFA M = (Q,Σ,∆, q0, F ) is transformed into a set of attributes

SM = {“Dummy”} ∪ {(σ, i, j) ∈ Σ ×Q2 : j = ∆(σ, i)} ∪ {“Size = |Q|”}.

To transform an input string x = x0x1 . . . xn−1 with length |x| = n to a MSP,
we define the following matrices as in [2].

– In denotes n× n identity matrix.
– gn and 0n denote column vectors (1, . . . , 1)⊤ and (0, . . . , 0)⊤ of size n.
– 0m×n denotes a zero matrix of size m× n.

– Vn = In ⊗ gn =


gn 0n · · · 0n

0n gn · · · 0n

...
...

. . .
...

0n 0n · · · gn

 of size n2 × n.

– Wn = −gn ⊗ In = [−In|| . . . || − In]
⊤ of size n2 × n.

– For each σ ∈ Σ, define [Vn||Wn]
(σ) associated with σ as shown in Table 5

(left). Each row is corresponding to (σ, i, j) for all i, j ∈ [n].

5 In practice, PRF can be used to reduce the size of the common randomness.
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Table 5. Submatrix [Vn||Wn]
(σ) associated with σ (refer to Table 4 in [2]) and a MSP

(Lx, ρx) from an input string x (refer to Table 5 in [2])

“Dummy” 7→ 1 −10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0
(σ, 1, 1) 7→

... gn 0n · · · 0n −In x0 ⇔ 0n2 [Vn||Wn]
(x0) 0n2×n · · · 0n2×n 0n2×n

(σ, 1, n) 7→
(σ, 2, 1) 7→

... 0n gn · · · 0n −In x1 ⇔ 0n2 0n2×n [Vn||Wn]
(x1) · · · 0n2×n 0n2×n

(σ, 2, n) 7→
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
(σ, n, 1) 7→

... 0n 0n · · · gn −In xn−1 ⇔ 0n2 0n2×n 0n2×n 0n2×n · · · [Vn||Wn]
(xn−1)

(σ, n, n) 7→
“Size = 1” 7→ 0

...
... 0n×n 0n×n 0n×n . . . 0n×n In

“Size = n” 7→ 0

The MSP matrix Lx with labeling function ρx is shown in Table 5 (right).
We refer to the following theorem proved in [2].

Theorem 3. Using the method above, let (Lx, ρx) be a MSP constructed from
an input string x, and SM be a set of attributes constructed from a DFA M . We
have (Lx, ρx) accepts SM if and only if M(x) = 1 and |Q| ≤ n.

5.2 Transform a DFA to a MSP

Similar to the previous subsection, we also transform a DFA to a MSP. We
refer to the transformation from a DFA to a MSP from [2] with an extension
to support any size of alphabets. A universe of attributes for input strings is
denoted as

Ux = {(i, σ) : i ∈ [0, nmax], σ ∈ Σ} ∪ {“Length = i” : i ∈ [nmax]} ∪ {“Dummy”}

where nmax is a maximum length of input string that all parties agree on. Each
attribute can be represented by an integer using the following mapping.

“Dummy” 7→ 0, (i, σ) 7→ (|Σ|+ 1)i+ σ + 1, “Length = i” 7→ (|Σ|+ 1)(i+ 1)

An input string x = x0x1 . . . xn−1 is transformed into a set of attributes

Sx = {“Dummy”} ∪ {(i, xi) : i ∈ [0, n− 1]} ∪ {“Length = n”}.

To transform a DFA M = (Q,Σ,∆, q0, F ) to a MSP matrix, we define a

submatrix Y(σ) for each σ ∈ Σ with size |Q| × |Q| in the same way as [2]. The

cell of Y(σ) at position (i, j) is −1 if j = ∆(i, σ), and is 0 otherwise. The MSP
matrix LM with a labeling function ρM is shown in Table 6. We refer to the
following theorem proved in [2].

Theorem 4. Using the method above, let (LM , ρM ) be a MSP constructed from
a DFA M , and Sx be a set of attributes constructed from an input string x. We
have (LM , ρM ) accepts Sx if and only if M(x) = 1 and n ≤ |Q|.
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Table 6. A MSP (LM , ρM ) from a DFA M (refer to Table 2 in [2])

“Dummy” 7→ 1 −10 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 . . . 0

“x0 = 0” 7→ 0|Q| I|Q| Y(0) 0|Q|×|Q| · · · 0|Q|×|Q| 0|Q|×|Q|

“x0 = 1” 7→ 0|Q| I|Q| Y(1) 0|Q|×|Q| · · · 0|Q|×|Q| 0|Q|×|Q|

...
...

...
...

...
. . .

...
...

“x0 = |Σ| − 1” 7→ 0|Q| I|Q| Y(|Σ|−1) 0|Q|×|Q| · · · 0|Q|×|Q| 0|Q|×|Q|

“x1 = 0” 7→ 0|Q| 0|Q|×|Q| I|Q| Y(0) · · · 0|Q|×|Q| 0|Q|×|Q|

...
...

...
...

...
. . .

...
...

“x|Q|−1 = |Σ| − 1” 7→ 0|Q| 0|Q|×|Q| 0|Q|×|Q| 0|Q|×|Q| · · · I|Q| Y(|Σ|−1)

“Length = 1” 7→ 0 0 . . . 0 0 . . . 01
“Length = 2” 7→ 0 0 . . . 0 0 . . . 01

...
...

. . .

“Length = |Q|” 7→ 0 0 . . . 0 0 . . . 01

5.3 CDS for MSP

A CDS scheme for MSP is proposed in Figure 5. In this setting, Alice has a
MSP (L, ρ), a secret s, and a randomness r. Bob has a set of attributes S, the
same secret s, and the same randomness r. Claire has only (L, ρ) and S. The
idea is that Alice performs a dot product between the MSP and a secret vector,
masks the results with random values, and then sends to Claire. At the same
time, Bob sends the random values corresponding to the set of attributes. If the
set of attributes satisfies the MSP, masked random values can be cancelled out,
and the secret can be recovered. The method can be considered as a linear secret
sharing based on MSP.

From the scheme, Claire will only learn the values from rows corresponding
to the set of attributes. Correctness and security then follow from linear secret
sharing of MSP. We have the following theorem.

Theorem 5. The CDS scheme for MSP proposed in Figure 5 is correct and se-
cure. That is when (L, ρ) accepts S, we have Pr[Dec((L, ρ), S,EncA((L, ρ), s, r),
EncB(S, s, r)) = s] = 1. And when (L, ρ) does not accept S, there exists a simu-
lator Sim such that {Sim((L, ρ), S)} ≈ {EncA((L, ρ), s, r),EncB(S, s, r)}.

5.4 CDS for DFA

We are now ready to use the building blocks from previous subsections to con-
struct a CDS scheme for DFA. The scheme is shown in Figure 6. Alice and Bob
first transform a DFA and an input string into MSPs and sets of attributes.
After that, they execute two CDS schemes for MSP in parallel. If the automaton
accepts the input string, Claire will learn the secret of the CDS scheme. Cor-
rectness and security follow from the schemes in previous subsections. We have
the following theorem.
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CDS scheme for MSP

Input:

– Alice has a MSP (L ∈ Zℓ×m
p , ρ), a secret s, and a randomness r.

– Bob has a set of attributes S = {u1, . . . , un}, a secret s, and a randomness r.
– Claire has the MSP (L, ρ), and the set of attributes S.

Algorithm:

1. Alice randomly generates an m-element vector v = (v1, . . . , vm) such that the
first element is v1 = s.

2. For each i ∈ [ℓ], let Li (the i-th row of L) be the j-th row that is associated
with the attribute u. Alice calculates wi = Li · v+ ru,j where ru,j is extracted
from the randomness r. Alice then sends {wi}i∈[ℓ] to Claire.

3. For each u ∈ S, Bob extracts {ru,j}j∈[ℓmax] from the randomness r in the
same way as Alice, where ℓmax is the maximum number of rows that can be
associated to an attribute. Bob then sends {ru,j}u∈S,j∈[ℓmax] to Claire.

4. For each Li that can map to an attribute in S, Claire computes (Li · v)
from wi − ru,j . If (L, ρ) accepts S, then there exists a vector ω such that
ω · LS = (1, 0, . . . , 0). Claire can calculate s from ω · (LS · v).

Fig. 5. CDS scheme for MSP

Theorem 6. The CDS scheme for DFA proposed in Figure 6 is correct and se-
cure. That is when a DFA M accepts an input string x, it holds that Pr[Dec(M,x,
EncA(M, s, r),EncB(x, s, r)) = s] = 1. And when M does not accept x, there ex-
ists a simulator Sim such that {Sim(M,x)} ≈ {EncA(M, s, r),EncB(x, s, r)}.

6 Concluding Remarks

In this paper, we propose an oblivious CDS scheme for DFA. Then we use it
as a building block to construct an oblivious DFA evaluation protocol. We also
propose a standard CDS scheme for DFA as an independent interest.

Some of the previous works considered oblivious CDS schemes for NFA, in-
cluding [28, 40]. We believe that our work could be extended for those situations.
For the works considered NFA, although there exists an algorithm to convert a
NFA into a DFA, the number of states in the result DFA can be exponentially
large. Thus, these schemes can have an advantage in this case.

At this point, we do not know how to construct an oblivious (or even a
standard) CDS scheme for NFA without using asymmetric-key operations. Using
the method in Section 3 can leak the structure of the NFA to Claire. This is
because at each step, Claire will have more than one state keys, and may know
which states have transitions to the same state. Extending the method from [2]
to the NFA setting is also not trivial. We left this problem as future work.

In addition, it is interesting to extend our protocol to a setting with malicious
Alice and Bob. It is also interesting to try constructing oblivious evaluation
protocols for pushdown automata and Turing machine. The difficulty is how to
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CDS scheme for DFA

Input:

– Alice has a DFA M = (Q,Σ,∆, q0, F ), a secret s, and randomness (r1, r2).
– Bob has an input string x = x0x1 . . . xn−1, a secret s, and randomness (r1, r2).
– Claire has the finite automaton M , and the input string x.

Algorithm:

1. Alice generates (LM , ρM ) and SM from M .
2. Bob generates (Lx, ρx) and Sx from x.
3. Alice and Bob execute two CDS schemes with inputs ((LM , ρM ), Sx, s, r1) and

inputs ((Lx, ρx), SM , s, r2) at the same time.
4. If M accepts x, then Claire can recover the secret s.

Fig. 6. CDS scheme for DFA

keep track of the memory obliviously. Moreover, we would like to try constructing
oblivious protocols via CDS for Moore machine and Mealy machine as well.
Although, we can embed the output information into the garbled transition
matrix in the same way as [14], the output from this revised protocol will not
be verifiable and not be secure against malicious Claire anymore.
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A Definitions

A.1 Pseudorandom Function

We refer to the definition of pseudorandom function (PRF) in [20].

Definition 4. Let λ be the security parameter, and S1, S2, and S3 be collections
of sets indexed by λ. A pseudorandom function H : S1 × S2 → S3 is a function
such that for all probabilistic polynomial time algorithm Λ, the following proba-
bility is negligible in λ.

| Pr[s← S1;Λ(H(s, ·)) = 1]− Pr[a random map g from S2 to S3;Λ(g(·)) = 1] |

A.2 Coin-Tossing Protocol

In a setting of 2-party coin-tossing protocol, Alice and Bob want to generate a
common random bit. From the work of Lindell [30, 31], there exists a constant-
round protocol for coin-tossing of polynomially many coins, assuming the ex-
istence of one-way functions. Both Alice and Bob input 1λ, and get the same
random bit string r of size poly(λ).

A.3 Monotone Span Program

A monotone span program (MSP) over Zp is defined by (L, ρ) where L ∈ Zℓ×m
p

is a matrix, and ρ : [ℓ] → Z is a labeling function that maps the i-th row to an
attribute ρ(i).

Consider a set of attributes S = {u1, . . . , un} ⊆ Z. We construct a set of row
indexes IS = {i ∈ [ℓ] : ρ(i) ∈ S}. Let LS be a submatrix of L restricted to set
of rows indexed by IS . A monotone span program (L, ρ) accepts S if and only if
(1, 0, . . . , 0) is in the row span of LS .

MSP is proved to be equivalent to perfectly secure linear secret sharing [27].

B Complexity of Our Proposed Standard CDS for DFA

Refer to the scheme in Figure 6, Alice and Bob will generate MSP matri-
ces and sets of attributes from the input automaton and the input string,
respectively. From the scheme in Figure 5, the communication complexity of
the scheme depends on the number of rows of the MSP matrix and the size
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of the set of attributes. In Subsection 5.1, the communication complexity is
O(|x|3 + nmax|Q||Σ|), and in Subsection 5.2, the communication complexity is
O(|Σ||Q|2+Qmax|x|). Thus, the total communication complexity is equal to the
summation of the two subsections.

Note that it is difficult to compare this complexity to oblivious CDS in Sec-
tions 3 and 4, since the definitions and security settings are different.

C Proofs

C.1 Proof of Theorem 1

Proof. (Sketch) For correctness, Claire can recover the state key of the next
(permuted) state one by one, using the current (permuted) state key and the
corresponding (permuted) character key. If the last state is an accepting state,
Claire will recover the point (w,mw+s) from the garbled matrix. Together with
the point (z,mz + s) from Bob, Claire can recover s′ = s. On the other hand, if
the last state is not an accepting state, Claire will recover a random point (c, d)
from the garbled matrix. The y-intercept of the interpolated line will not be s.

For indistinguishability, Claire will learn only the state keys corresponding to
the state sequence induced by the given character keys and the garbled transition
matrix, and this sequence of states will look random. Other keys are masked by
random values, and will not be recovered by Claire if H is a secure PRF. In
the second part, Claire will not know whether the last state is accepting or not.
All Claire sees are two random points. Thus, Claire does not know whether the
output value s′ is equal to the secret s.

More formally, we can construct a simulator Sim1 according to Definition 2 as
follows. The inputs for Sim1 are the number of states of the DFA |Q|, the length
of the input string n, and the decoded value s′. Firstly, Sim1 randomly picks
a DFA M ′ with |Q| states and a string x′ with length n. Then Sim1 generates
state permutation functions, character permutation functions, garbled state keys,
garbled character keys, and garbled transition matrix elements in the same way
as shown in Figure 3. Assume that the point discovered in the accepting case is
p1, the point discovered in the rejecting case is p2, and the point from Bob is
p3. Sim1 randomly chooses a random line P ′(χ) with y-intercept at s′. In case
that M ′ accepts x′, Sim1 randomly chooses p1 and p3 on P ′(χ), and randomly
chooses p2 not on P ′(χ). On the other hand, if M ′ does not accept x′, Sim1

randomly chooses p2 and p3 on P ′(χ), and randomly chooses p1 not on P ′(χ). It
can be seen that the simulated messages give the output s′. From the security of
the PRF, the garbled transition matrices from Sim1 and from the real execution
must be indistinguishable. ⊓⊔

C.2 Proof of Theorem 2

Proof. (Sketch) Soundness of the protocol in Figure 4 is based on the correctness
of oblivious CDS scheme for DFA in Theorem 1. Since the DFA M cannot accept
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and reject x at the same time, we have s1 = s′1 or s2 = s′2, but not both. Thus,
only one output value is same as the secret, and the result of oblivious DFA
evaluation then follows.

In the case that Claire is malicious, assume that the secrets s1 and s2 are λ
bits, where λ is the security parameter. If Claire tries to change the result by
choosing s′1 or s′2 to match s1 or s2, the success probability will be 1/2λ, which
is negligible.

Privacy against the server is achieved from the underlying oblivious CDS. For
privacy against the clients, we consider the information that Alice and Bob may
know from the returned values. In case that Claire returns the secret s, Alice
and Bob do not learn anything new, since they already agree on the same linear
equation P (χ) = mχ+ s. In case that Claire returns a random value, Alice can
learn the point that Bob chose, and Bob can learn a line that Alice’s random
point is on. From the property of the underlying oblivious CDS, and assume
that we use prime field operations, the points that they learn are uniformly
distributed on the line P (χ) and on the plane, respectively. In any case, knowing
these points does not affect the privacy of the protocol, since these points are not
related to the input automaton or the input string. Thus, there is no advantage
for both clients in the security game in Figure 2. ⊓⊔

C.3 Proof of Theorem 3

Proof. For the “if” direction, assume that M(x) = 1 and |Q| ≤ n. Since M
accepts x, there exists a sequence of states q0q1 · · · qn such that q1 = 1, qn = |Q|,
and qi = ∆(qi−1, xi−1) for all i ∈ [n].

After choosing rows in (Lx, ρx) with attributes from SM , the remaining sub-
matrix Lx,M contains rows equivalent to all possible transitions corresponding
to each character in x. To show that rows of Lx,M span (1, 0, . . . , 0), we consider
the rows corresponding to the transitions from qi−1 to qi for each xi−1. That
is, there exists a row with label (xi−1, qi−1, qi) between the ((i − 1)2 + 2)-th to
(i2 + 2)-th rows of Lx, which also appears in Lx,M . Adding these rows together
with rows corresponding to attributes “Dummy” and “Size = |Q|”, all 1 and −1
will be cancelled out except the first 1 in the top left corner. Thus, we show that
rows of Lx,M span (1, 0, . . . , 0) as desired.

For the “only if” direction, assume that M(x) = 0 and |Q| ≤ n. Since M
does not accept x, there does not exist a sequence of states q0q1 · · · qn such that
q1 = 1, qi = ∆(qi−1, xi−1) for all i ∈ [n], and qn = |Q|. Since qn ̸= |Q|, the
positions of −1 from the row corresponding to qn and 1 from the row with
attribute “Size = |Q|” are not matched. Thus, (1, 0, . . . , 0) is not in the span.

In the other case where |Q| > n, Lx,M will not include the row with “Size =
|Q|” attribute. It is impossible to cancel out the last −1 from the row corre-
sponding to qn. Thus, (1, 0, . . . , 0) is not in the span. ⊓⊔
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C.4 Proof of Theorem 4

Proof. After choosing rows in (LM , ρM ) with attributes from Sx, the remaining
submatrix LM,x contains rows equivalent to all possible transitions correspond-
ing to each character in x. This is the same as the submatrix Lx,M constructed
in Theorem 3. Thus, the same proof is applied. ⊓⊔

C.5 Proof of Theorem 5

Proof. For correctness, when (L, ρ) accepts S, there exists a vector ω such that
LS ·ω = (1, 0, . . . , 0). Claire can calculate (LS ·v) ·ω = (LS ·ω) ·v = (1, 0, . . . , 0) ·
(s, v2, . . . , vm) = s.

For secrecy, Sim2 does as follows. After receiving (L, ρ) and S, it randomly
generates a vector v′ = (v′1, . . . , v

′
m). Similar to Figure 5, it calculates w′

i =
Li · v′ + r′u,j for each i ∈ [ℓ] using randomly generated r′u,j . The simulator then
outputs {w′

i}i∈[ℓ] and {r′u,j}u∈S,j∈[ℓmax].
Since (L, ρ) does not accept S, the value w′

i that Claire recovered are not
enough to solve the equations for v′1, and Claire will not learn the secret s. This
is similar to the perfect security of linear secret sharing. Thus, it is impossible to
distinguish between an output from Sim2 and output messages from Alice and
Bob. ⊓⊔

C.6 Proof of Theorem 6

Proof. The scheme first transforms the DFA and the input string into MSPs and
attributes. Then, we can execute CDS schemes for MSP. Thus, the correctness
of the scheme in Figure 6 follows from Theorems 3, 4, and 5.

For secrecy, Sim3 does as follows. After receiving M and x, it transforms
the DFA and the input string into MSPs. After that, it calls a simulator Sim2

in the proof of Theorem 5 as a sub-function with inputs ((LM , ρM ), Sx) and
((Lx, ρx), SM ). Sim3 then outputs the simulated values from Sim2. Secrecy of
the scheme then follows from Theorem 5. ⊓⊔


