
Evaluating KpqC Algorithm Submissions:
Balanced and Clean Benchmarking Approach

Hyeokdong Kwon1[0000−0002−9173−512X],
Minjoo Sim1[0000−0001−5242−214X],

Gyeongju Song1[0000−0002−4337−1843],
Minwoo Lee2[0000−0002−2356−3055], and
Hwajeong Seo2[0000−0003−0069−9061]

1Department of Information Computer Engineering,
Hansung University, Seoul (02876), South Korea,

2Department of Convergence Security,
Hansung University, Seoul (02876), South Korea,

{korlethean, minjoos9797, thdrudwn98, minunejip, hwajeong84}@gmail.com

Abstract. In 2022, a Korean domestic Post Quantum Cryptography
contest called KpqC held, and the standard for Post Quantum Cryptog-
raphy is set to be selected in 2024. In Round 1 of this competition, 16
algorithms have advanced and are competing. Algorithms submitted to
KpqC introduce their performance, but direct performance comparison is
difficult because all algorithms were measured in different environments.
In this paper, we present the benchmark results of all KpqC algorithms
in a single environment. To benchmark the algorithms, we removed the
external library dependency of each algorithm. By removing dependen-
cies, performance deviations due to external libraries can be eliminated,
and source codes that can conveniently operate the KpqC algorithm can
be provided to users who have difficulty setting up the environment.

Keywords: Benchmark · Cryptography Implementation · KpqC · Post
Quantum Cryptography · Standardization.

1 Introduction

Quantum computers, first proposed by physicist Richard Feynman in 1981 [1],
gradually began to materialize with the introduction of quantum algorithms by
Professor David Deutsch in 1985 [2]. Quantum computers can execute quantum
algorithms, which pose a significant threat to modern cryptosystems. One exam-
ple is Grover’s algorithm, an algorithm designed to locate specific data among n
unsorted data entries [3]. A classical computer would require a brute force search
of at most O(2n) attempts. However, Grover’s algorithm reduces the search time
to a maximum of O(2n/2). This effectively halves the security of symmetric key
algorithms and hash functions. Another powerful quantum algorithm is the Shor
algorithm, which efficiently performs prime factorization [4]. The Shor algorithm
can break public key algorithms such as RSA and ECC in polynomial time. While



2 Kwon et al.

symmetric key algorithms can temporarily mitigate the threat posed by quantum
computers by doubling the key length, public key algorithms lack such defenses.
To address this issue, NIST initiated a Post Quantum Cryptography competition
to foster the development, standardization, and distribution of Post Quantum
Cryptography [5]. Similarly, a Post Quantum Cryptography contest was held in
Korea, marking the beginning of the process to select a Korean standard. In this
paper, we eliminate the dependencies of the algorithms submitted to the KpqC
competition and present benchmark results in a standardized environment.

1.1 Contributions

– Benchmark results in common development environments. All al-
gorithms in KpqC Round 1 come with detailed white papers that include
performance measurements. The provided benchmarks, prepared by the de-
velopment teams, are highly reliable. However, a challenge arises from the
fact that the benchmark environments in the white papers differ. There-
fore, conducting the benchmark in an environment with sufficient resources
can provide advantageous results. To address this, we conducted a collective
benchmark of all algorithms in a standardized environment, enabling a fair
performance comparison among the algorithms.

– Enhancing accessibility by eliminating working dependencies.Many
of the KpqC candidate algorithms rely on external libraries for their imple-
mentation. These dependencies offer significant benefits by providing pre-
existing modules for algorithm implementation, eliminating the need for sep-
arate implementation. However, from the perspective of downloading and us-
ing the source code, the absence of these dependencies can create complexity
and hinder code operation. This issue is particularly challenging for novice
users who may struggle with setting up the development environment. To
address this, our focus was on removing the dependencies associated with
the algorithms. This approach offers two key advantages.

Firstly, it enables immediate use of the source code without the need to set
up the environment. By distributing the source code in a runnable state,
even users unfamiliar with environment setup can easily operate the code.
This greatly enhances the accessibility of the source code and attracts a
broader user base.

Secondly, it ensures a fair benchmarking process. While most libraries used
are likely to be the same, discrepancies can still arise due to differences in
library versions during environment setup. By eliminating external library
dependencies and replacing the necessary modules with identical source code,
we can provide more accurate and equitable benchmark results.

The rest of the paper is structured as follows. Section 2 provides an overview
of the Post Quantum Cryptography contest and the specific details of KpqC.
Additionally, we introduce the PQClean project, which served as the inspiration
for the research discussed in this paper. In Section 3, we detail the methodology



Evaluating KpqC Algorithm Submissions 3

employed to benchmark the KpqC algorithms and present the obtained bench-
mark results. Finally, Section 4 concludes the paper by summarizing the key
findings and discussing potential directions for future research.

2 Related Works

2.1 NIST Standardization of Post Quantum Cryptography

The significance of Post Quantum Cryptography (PQC) has emerged as a means
to ensure secure communication in the age of quantum computers. The United
States National Institute of Standards and Technology (NIST) initiated the PQC
Standardization Contest in 2016. In 2022, standard algorithms were selected, and
Round 4 was conducted to determine additional standards [6]. Following the
standard selection process, CRYSTALS-Kyber [7] was chosen as the Key En-
capsulation Mechanism (KEM). In the Digital Signature category, the selected
algorithms include CRYSTALS-Dilithium [8], Falcon [9], and SPHINCS+[10].
Round 4 is currently underway to select additional standards for the KEM cate-
gory, with BIKE [11], Classic McEliece [12], and HQC [13] competing. Although
SIKE [14] advanced to Round 4, it subsequently withdrew from the contest due
to the discovery of a security vulnerability [15].

2.2 KpqC: Korea’s Post Quantum Cryptography Standardization

KpqC, the domestic contest for standardizing Post Quantum Cryptography in
Korea, took place at the end of 2021 [16]. The timeline of the KpqC competition
is presented in Table 1. The results of Round 1 were announced at the end of
2022, with 16 algorithms passing the evaluation. Subsequently, the Round 2 re-
sults will be announced in December 2023, and the final standard will be selected
in September 2024. KpqC has defined four evaluation criteria for assessing the
algorithms.

The first criterion is safety. Algorithms must demonstrate their security and
provide proof of their safety. It is crucial for these algorithms to ensure security
not only on quantum computers but also on classical computers.

The second criterion is efficiency. The computational resources required to
execute the algorithm should be reasonable, and the computation time should
not be excessively long. Some algorithms may have a probability of decryption
or verification failure due to their structure, but this failure probability should
not hinder their practical use.

The third criterion is usability. The implemented algorithm should be capa-
ble of operating in various environments, ensuring its usability across different
systems.

The final criterion is originality. The proposed algorithm should possess a
creative and innovative structure, showcasing novel approaches in the field of
Post Quantum Cryptography.

In Kpqc Round 1, a total of 7 algorithms were chosen in the Key Encapsula-
tion Mechanism (KEM) category, and 9 algorithms were selected in the Digital



4 Kwon et al.

Table 1: Timeline of KpqC competetion.

Phase Date

Announcement of holding KpqC 2021. 11.

Deadline for submitting candidate algorithms 2022. 10.

Announcement of Round 1 Results 2022. 12.

Scheduled date for announcement of Round 2 results 2023. 9.

Scheduled date of announcement of standard selection 2024. 09.

Signature category. The specific algorithms that passed the evaluation can be
found in Table 2. Notably, among the selected algorithms, the Lattice-based
algorithms demonstrate strong performance. This observation aligns with the
NIST PQC standard, where three out of the four selected standards are also
Lattice-based algorithms.

Table 2: KpqC Round 1 candidate algorithms.

Scheme PKE/KEM Digital Signature

Code-based

IPCC [17]

Enhanced pqsigRM [18]
Layered-ROLLO [19]

PALOMA [20]

REDOG [21]

Lattice-based

GCKSign [22]

NTRU+ [23] HAETAE [24]

SMAUG [25] NCC-Sign [26]

TiGER [27] Peregrine [28]

SOLMAE [29]

Multivariate Quadratic-based - MQ-Sign [30]

Hash-based - FIBS [31]

Zero knowledge-based - AIMer [32]

2.3 PQClean

A significant number of NIST’s Post Quantum Cryptography algorithms rely on
external libraries. Utilizing pre-existing implementations rather than building
modules from scratch is more efficient in cryptographic algorithm implementa-
tion, resulting in the creation of dependencies on external libraries. While depen-
dencies are convenient during development, they can pose inconvenience when
using the implemented source code as the development environment must be set



Evaluating KpqC Algorithm Submissions 5

up accordingly. To address this issue, PQClean, a library introduced in [33], fo-
cuses on removing these dependencies to enable easy operation of Post Quantum
Cryptography (PQC).

PQClean not only aims to make source code operation more convenient by
eliminating library dependencies but also places emphasis on improving the over-
all quality of the source code. To achieve this, PQClean conducted approximately
30 implementation checklists. These checklists included verifying adherence to
the C standard, ensuring consistency in compilation rules, minimizing Makefiles,
and confirming the consistency of integer data. As a result, PQClean not only
facilitates the convenient operation of source code by removing library depen-
dencies but also provides clean source code for higher quality implementation.

Another advantage of PQClean is its ease of portability to other platforms
or frameworks, as it does not form dependencies. For instance, pqm4 is a library
that collectively executes NIST PQC on ARM Cortex-M4 and provides bench-
mark results [34]. This showcases the versatility and compatibility of PQClean
in various computing environments.

3 KPQClean: Clean Benchmark on KpqC

Building upon the inspiration of PQClean, we undertook the KPQClean project
for the KpqC competition. The initial phase involved working with a total of 16
candidate algorithms from KpqC Round 1. To present the results, we focused on
removing external dependencies for each algorithm and conducting benchmark-
ing.

The project proceeded in a systematic manner, starting with the removal of
libraries and subsequently addressing the Makefile rules and benchmarking. Dur-
ing the library removal process, we carefully examined the dependencies present
in each code. Most KpqC algorithms rely on OpenSSL [35] and utilize OpenSSL’s
AES for random number generation. To eliminate these dependencies, the code
sections that made external library calls were removed. Consequently, the exter-
nally implemented algorithms can no longer be used in their original form. To
ensure the operation of these algorithms, we directly integrated the source code
that implements the algorithms. For instance, the AES algorithm requires the
utilization of CTR-DRBG. We ported the AES code used by PQClean, making
necessary modifications to the internal structure to ensure seamless functional-
ity. This approach enables the development of code that operates independently
by eliminating external library dependencies.

The next step involved writing a unified Makefile. Most KpqC candidate al-
gorithms offer convenient compilation using gcc by providing compilation rules
in the Makefile. However, variations in compilation rules across different algo-
rithms can lead to discrepancies in performance measurements. To address this,
we made efforts to create a standardized Makefile with consistent rules, thereby
ensuring fair and comparable benchmarking results.

Lastly, the benchmarking process was conducted. A dedicated source code
for benchmarking was prepared, compiled, and executed. The benchmarking



6 Kwon et al.

environment resembled the specifications outlined in Table 3. The two devices use
a Ryzen processor and an Intel processor, respectively, and the rest of the device
specifications are almost identical. To obtain the measurements, each algorithm
underwent 10,000 iterations, and the median number of clock cycles required
for operation was calculated for each round. We applied -O2 as an optimization
level option. However, most of the KpqC algorithms performed performance
measurements on -O3. Therefore, -O3 performance was additionally measured
to reflect the developer’s intention.

Table 4 presents the benchmark results for the Key Encapsulation Mechanism
(KEM) algorithms. Among the KEM candidates, SMAUG performed the best in
the Keygen operation, NTRU+ excelled in Encapsulation, and PALOMA show-
cased the best performance in Decapsulation. However, it is worth noting that
IPCC-1’s Encapsulation measurement exhibited excessively slow performance,
leading to the exclusion of its measurement as an error value. As a result, it was
temporarily excluded from the benchmark.

One KEM algorithm REDOG, was temporarily excluded from the bench-
marking process. REDOG presented a unique case as it was implemented in
pure Python while all algorithm analyses were based on the C language. Con-
sequently, REDOG was excluded from the benchmarking process as it deviated
from the performance standards used for other algorithms.

Table 3: Benchmark environment.

Environment 1 Environment 2

CPU Ryzen 7 4800H Intel i5-8259U

GPU RTX 3060 Coffee Lake GT3e

RAM 16GB 16GB

OS Ubuntu 22.04 Ubuntu 22.04

Compiler gcc 11.3.0 gcc 11.3.0

Optimization level -O2, -O3 -O2, -O3

Editor Visual Studio Code Visual Studio Code

Table 5 presents the benchmark results for the Digital Signature candidate
algorithms. The performance measurements were conducted in the same bench-
marking environment as the Key Encapsulation Mechanism (KEM) algorithms.

In the Digital Signature category, AIMer demonstrated excellent performance
in the Keygen operation, while Peregrine showcased exceptional performance in
Sign and Verification. However, accurate measurements for FIBS could not be
obtained due to incomplete calculations, rendering its measurement inconclusive.

In common, the operation on the Intel processor tends to be somewhat faster
than the operation on the Ryzen processor. This is because the Intel processor
used in the experiment had better performance than the Ryzen processor. Also,
for many algorithms, the performance difference between the -O2 and -O3 op-



Evaluating KpqC Algorithm Submissions 7

Table 4: Benchmark result of KpqC KEM Round 1 Candidates. (Unit: clock
cycles(algorithm speed), Strikethrough: Lack of consistency in benchmarks, A:
AVX applied.)

Environment 1 -O2 Environment 2 -O2

Algorithm Keygen Encapsulation Decapsulation Keygen Encapsulation Decapsulation

IPCC-1 14,362,627 164,892,550 2,484,981 13,792,887 159,126,951 1,196,157

IPCC-3 14,170,647 898,710 2,619,570 13,754,219 870,059 1,235,991

IPCC-4 14,209,594 1,075,059 2,904,524 13,754,687 1,050,451 1,318,173

NTRU+-576A 208,742 111,998 128,093 186,944 105,686 120,194

NTRU+-768A 279,386 148,480 181,250 246,616 139,310 166,938

NTRU+-864A 304,819 179,858 224,953 270,494 160,789 200,702

NTRU+-1152A 444,744 223,619 278,690 698,490 202,678 257,114

PALOMA-128 125,800,419 510,922 35,496 118,204,341 499,914 39,724

PALOMA-192 125,360,779 514,228 34,220 118,310,371 499,302 38,846

PALOMA-256 125,294,065 510,284 34,713 118,366,206 503,814 43,174

SMAUG-128 171,477 154,483 178,205 158,149 164,598 196,470

SMAUG-192 250,096 229,999 277,298 244,736 225,490 272,132

SMAUG-256 479,138 385,178 438,364 435,790 411,917 465,572

TiGER-128 273,470 466,755 628,778 163,856 209,168 311,924

TiGER-192 288,550 518,491 674,192 171,578 214,126 312,702

TiGER-256 536,152 1,088,747 1,477,318 444,558 433,462 673,105

Environment 1 -O3 Environment 2 -O3

IPCC-1 13,940,097 160,111,204 16,360,164 12,643,392 145,233,220 1,159,273

IPCC-3 13,996,024 926,492 2,512,836 12,795,377 874,663 1,206,585

IPCC-4 13,989,832 1,106,031 2,714,531 13,078,917 1,037,485 1,310,503

NTRU+-576A 202,652 110,026 121,742 177,748 102,296 111,820

NTRU+-768A 270,512 146,566 174,435 239,546 137,135 161,970

NTRU+-864A 297,192 168,113 204,537 260,672 153,481 186,386

NTRU+-1152A 435,305 222,459 266,626 568,556 201,226 246,050

PALOMA-128 122,325,408 498,365 34,307 108,402,198 459,846 40,838

PALOMA-192 122,290,738 503,266 34,278 108,206,652 460,374 40,688

PALOMA-256 122,321,957 497,959 34,249 108,216,713 459,880 40,886

SMAUG-128 72,790 57,246 50,460 63,020 49,324 39,196

SMAUG-192 105,966 82,940 80,475 92,658 69,739 67,691

SMAUG-256 158,021 139,925 135,749 135,202 122,766 115,096

TiGER-128 65,482 48,749 51,214 62,490 45,398 53,248

TiGER-192 69,426 63,510 57,739 66,512 60,238 58,572

TiGER-256 81,316 87,551 93,090 78,772 82,776 89,902

Layered ROLLO I-128A 285,940 83,346 788,104 203,181 66,529 558,503

Layered ROLLO I-192A 320,958 136,503 518,491 227,813 102,758 671,605

Layered ROLLO I-256A 687,721 201,913 1,014,203 375,056 136,052 1,245,346

tions is not noticeable. This is because each algorithm is well optimized and no
further optimization is performed at the compiler level. Some algorithms per-
form better with the -O3 option. In this case, it can be said that the algorithms
have a point where optimization is possible.



8 Kwon et al.

Table 5: Benchmark result of KpqC Digital Signature Round 1 Candi-
dates. (Unit: clock cycles(algorithm speed), o: original(NCCSign) c: conser-
param(NCCSign), Strikethrough: Lack of consistency in benchmarks, A: AVX
applied.)

Environment 1 -O2 Environment 2 -O2

Algorithm Keygen Sign Verification Keygen Sign Verification

AIMer-I 145,058 3,912,361 3,669,834 145,566 3,691,256 3,713,173

AIMer-III 296,496 8,001,274 7,550,063 274,358 7,771,108 7,366,672

AIMer-V 710,442 18,068,276 17,415,022 790,456 18,394,069 17,662,359

GCKSign-II 179,771 601,707 176,987 171,176 640,093 167,116

GCKSign-III 186,673 649,049 183,367 173,252 698,964 168,824

GCKSign-V 252,822 917,415 277,733 248,629 945,815 273,631

HAETAE-II 798,312 4,605,461 147,494 700,875 4,173,002 142,584

HAETAE-III 1,533,941 11,474,155 257,926 1,352,577 10,615,663 250,534

HAETAE-V 846,713 3,902,298 305,428 752,413 3,418,728 311,986

MQSign-72/46 94,788,559 516,954 1,461,281 87,038,447 509,630 1,377,392

MQSign-112/72 488,913,828 1,493,703 5,211,909 448,271,119 1,472,032 4,808,216

MQSign-148/96 1,488,480,956 3,162,943 12,036,827 1,326,638,494 3,128,536 11,091,036

NCCSign-IAo 2,650,542 10,404,301 5,232,079 2,296,351 15,914,954 4,519,308

NCCSign-IIIAo 4,477,513 17,657,839 8,867,243 4,009,717 16,015,734 7,996,462

NCCSign-VA
o 7,240,343 64,377,767 14,358,074 6,561,582 26,019,063 13,005,536

NCCSign-IAc 1,869,079 23,762,252 3,681,057 1,704,190 27,083,021 3,344,228

NCCSign-IIIAc 3,655,334 39,587,190 7,241,808 3,271,119 65,455,745 6,533,931

NCCSign-VA
c 6,263,739 179,281,596 12,418,902 5,723,169 39,565,842 6,533,931

Peregrine-512 12,401,256 329,933 37,294 12,073,005 295,128 33,114

Peregrine-1024 39,405,505 709,848 80,243 38,493,479 640,132 71,246

Enhanced pqsigRM-612 6,013,112,315 7,210,560 2,223,401 4,961,556,899 7,505,040 2,125,125

Enhanced pqsigRM-613 58,238,108,879 1,864,512 1,053,034 74,021,054,015 2,113,913 1,126,131

SOLMAE-512A 23,848,774 378,392 43,935 22,494,902 351,311 64,526

SOLMAE-1024A 55,350,546 760,380 141,375 52,388,360 706,028 152,984

Environment 1 -O3 Environment 2 -O3

AIMer-I 145,986 3,878,272 3,672,923 133,130 3,960,345 3,747,101

AIMer-III 296,032 8,087,462 7,678,098 272,484 8,440,184 7,968,982

AIMer-V 713,922 17,983,857 17,361,691 643,253 17,998,305 17,373,174

GCKSign-II 164,836 537,675 159,674 175,993 597,712 172,893

GCKSign-III 166,199 581,189 161,646 183,987 698,941 179,608

GCKSign-V 231,797 895,549 279,009 238,884 928,251 262,868

HAETAE-II 688,083 3,429,265 131,805 672,901 3,334,242 126,972

HAETAE-III 1,329,157 8,734,670 228,578 1,291,292 8,261,232 227,780

HAETAE-V 723,318 2,790,612 272,542 719,708 2,627,334 270,600

MQSign-72/46 39,040,917 311,112 512,227 38,474,591 298,952 533,676

MQSign-112/72 115,942,827 669,465 1,143,296 117,049,542 650,928 1,120,124

MQSign-148/96 235,289,035 1,186,622 1,943,667 236,124,011 1,165,706 1,897,664

NCCSign-IAo 2,619,295 10,301,902 5,171,686 2,317,555 13,776,448 4,568,006

NCCSign-IIIAo 4,379,261 86,475,941 8,685,877 3,981,551 83,521,123 7,935,382

NCCSign-VA
o 7,178,921 42,637,366 14,245,148 6,333,006 25,183,392 12,555,623

NCCSign-IAc 1,843,356 50,520,712 3,636,803 1,666,543 16,352,341 3,248,162

NCCSign-IIIAc 3,618,997 21,416,384 7,170,903 3,141,974 34,454,252 6,234,249

NCCSign-VA
c 6,149,059 151,973,282 12,196,791 5,613,303 167,158,023 11,155,020

Peregrine-512 11,953,307 253,402 25,462 11,783,005 260,328 26,262

Peregrine-1024 38,366,232 535,920 53,621 38,493,479 551,168 55,654

Enhanced pqsigRM-612 6,139,551,981 4,610,319 2,278,806 4,702,612,115 4,732,706 2,064,731

Enhanced pqsigRM-613 54,994,439,928 714,647 225,577 71,111,088,778 923,513 417,658

SOLMAE-512A 23,053,028 349,566 40,513 22,627,042 332,848 64,838

SOLMAE-1024A 53,966,332 698,581 135,256 53,245,753 668,103 149,168



Evaluating KpqC Algorithm Submissions 9

4 Conclusion

This paper presents a benchmarking effort conducted on the candidate algo-
rithms of KpqC Round 1. To facilitate the benchmarking process, the KPQ-
Clean library was developed and is currently available on GitHub1. The primary
objective of the KPQClean library is to remove dependencies in the KpqC candi-
date algorithms and provide benchmark results in a standardized environment.
However, there are a few limitations that need to be addressed.

Firstly, there are algorithms that have not yet been measured or evaluated.
While this issue exists, the goal is to address these gaps and provide benchmark
results for all the algorithms. Efforts are ongoing to resolve these outstanding
matters.

The second limitation involves the removal of remaining dependencies. Cur-
rently, KPQClean focuses on eliminating external library dependencies, but there
are other dependencies such as dynamic allocation that still need to be addressed.
The aim is to eliminate all dependencies to ensure a fully self-contained library.

Lastly, it is important to rectify any anomalies or unusual values in the mea-
surement results to ensure that they align with normal benchmarking standards.
While most algorithms exhibit consistent trends in their measurements, some al-
gorithms may demonstrate anomalies that result in extremely slow performance.
These issues will be addressed to provide accurate and reliable benchmark re-
sults. This is likely due to limitations of the benchmark method. To measure the
performance of the algorithm, many iterations were performed and the median
value of the values was used. During this process, the equipment may perform
other calculations, and performance may deteriorate due to heat generation.
Therefore, we devise a more sophisticated benchmark method.

The KPQClean project is an ongoing endeavor closely aligned with the KpqC
Competition. The project aims to present benchmark results in a unified envi-
ronment while also providing a more convenient PQC library. This endeavor
seeks to generate increased interest among researchers and students in the field
of KpqC, offering a comfortable and conducive environment for further study
and exploration.

References

1. R. P. Feynman, “Simulating physics with computers,” in Feynman and computa-
tion, pp. 133–153, CRC Press, 2018.

2. D. Deutsch, “Quantum theory, the church–turing principle and the universal quan-
tum computer,” Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, vol. 400, no. 1818, pp. 97–117, 1985.

3. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp. 212–219, 1996.

4. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

1 https://github.com/kpqc-cryptocraft/KPQClean



10 Kwon et al.

5. K.-B. Jang and H.-J. Seo, “Quantum computer and standardization trend of nist
post-quantum cryptography,” in Proceedings of the Korea Information Processing
Society Conference, pp. 129–132, Korea Information Processing Society, 2019.

6. NIST, “Round 4 submissions - post-quantum cryptography: Csrc,” 2022.
7. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,

P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber algorithm specifications and
supporting documentation,” NIST PQC Round, vol. 2, no. 4, pp. 1–43, 2019.

8. V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, D. Stehlé,
and S. Bai, “Crystals-dilithium,” Algorithm Specifications and Supporting Docu-
mentation, 2020.

9. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon,” Post-Quantum Cryp-
tography Project of NIST, 2020.

10. D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe,
“The sphincs+ signature framework,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp. 2129–2146, 2019.

11. N. Aragon, P. S. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Ga-
borit, S. Gueron, T. Guneysu, C. A. Melchor, et al., “Bike: bit flipping key encap-
sulation,” 2017.

12. M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram,
I. von Maurich, R. Misoczki, R. Niederhagen, et al., “Classic mceliece,” National
Institute of Standards and Technology, Tech. Rep, 2020.

13. C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, E. Persichetti, and G. Zémor, “Hqc: hamming quasi-cyclic,” NIST
Post-Quantum Standardization, 3rd Round, 2021.

14. R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali, D. Jao,
B. Koziel, B. LaMacchia, P. Longa, et al., “Supersingular isogeny key encapsula-
tion,” Submission to the NIST Post-Quantum Standardization project, vol. 152,
pp. 154–155, 2017.

15. W. Castryck and T. Decru, “An efficient key recovery attack on sidh.” Cryptology
ePrint Archive, Paper 2022/975, 2022. https://eprint.iacr.org/2022/975.

16. K. team, “Kpqc competition round 1.” https://kpqc.or.kr/competition.html, 2023.
Accessed: 2023-04-07.

17. J. Ryu, Y. Kim, S. Yoon, J.-S. Kang, and Y. Yeom, “Ipcc-improved perfect code
cryptosystems,”

18. J. Cho, J.-S. No, Y. Lee, Z. Koo, and Y.-S. Kim, “Enhanced pqsigrm: Code-based
digital signature scheme with short signature and fast verification for post-quantum
cryptography,” Cryptology ePrint Archive, 2022.

19. C. Kim, Y.-S. Kim, and J.-S. No, “Layered rollo-i: Faster rank-metric code-based
kem using ideal lrpc codes,” Cryptology ePrint Archive, 2022.

20. D.-C. Kim, C.-Y. Jeon, Y. Kim, and M. Kim, “Paloma: Binary separable goppa-
based kem1,”

21. J.-L. Kim, J. Hong, T. S. C. Lau, Y. Lim, C. H. Tan, T. F. Prabowo, and B.-S.
Won, “Redog and its performance analysis,” Cryptology ePrint Archive, 2022.

22. J. Woo, K. Lee, and J. H. Park, “Gcksign: Simple and efficient signatures from
generalized compact knapsacks,” Cryptology ePrint Archive, 2022.

23. J. Kim and J. H. Park, “Ntru+: Compact construction of ntru using simple en-
coding method,” Cryptology ePrint Archive, 2022.

24. J. H. Cheon, H. Choe, J. Devevey, T. Güneysu, D. Hong, M. Krausz, G. Land,
J. Shin, D. Stehlé, and M. Yi, “Haetae: Hyperball bimodal module rejection sig-
nature scheme,”



Evaluating KpqC Algorithm Submissions 11

25. J. H. Cheon, H. Choe, D. Hong, J. Hong, H. Seong, J. Shin, and M. Yi, “Smaug:
the key exchange algorithm based on module-lwe and module-lwr,”

26. K.-A. Shim, J. Kim, and Y. An, “Ncc-sign: A new lattice-based signature scheme
using non-cyclotomic polynomials,”

27. S. Park, C.-G. Jung, A. Park, J. Choi, and H. Kang, “Tiger: Tiny bandwidth key
encapsulation mechanism for easy migration based on rlwe (r),” Cryptology ePrint
Archive, 2022.

28. E.-Y. Seo, Y.-S. Kim, J.-W. Lee, and J.-S. No, “Peregrine: Toward fastest falcon
based on gpv framework,” Cryptology ePrint Archive, 2022.

29. K. Kim, M. Tibouchi, A. Wallet, T. Espitau, A. Takahashi, Y. Yu, and S. Guilley,
“Solmae algorithm specifications,” 2022.

30. K.-A. Shim, J. Kim, and Y. An, “Mq-sign: A new post-quantum signature scheme
based on multivariate quadratic equations: Shorter and faster,” 2022.

31. S. Kim, Y. Lee, and K. Yoon, “Fibs: Fast isogeny based digital signature,”
32. S. Kim, J. Ha, M. Son, B. Lee, D. Moon, J. Lee, S. Lee, J. Kwon, J. Cho, H. Yoon,

et al., “The aimer signature scheme,”
33. M. J. Kannwischer, P. Schwabe, D. Stebila, and T. Wiggers, “Improving software

quality in cryptography standardization projects,” in 2022 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS&PW), pp. 19–30, IEEE, 2022.

34. M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4: Testing
and benchmarking nist pqc on arm cortex-m4,” 2019.

35. J. Viega, M. Messier, and P. Chandra, Network security with openSSL: cryptogra-
phy for secure communications. ” O’Reilly Media, Inc.”, 2002.


