Analysis of Parallel Implementation of Pilsung
Block Cipher On Graphics Processing Unit

1[0000—0002—-9583—5427]

Siwoo Eum ,
Hyunjun Kim! [0000-0001-6757—6109]

Minho Song2[0009_0007_6277_0069], and
Hwajeong 8602 [0000—0003—0069—9061]

'Department of Information Computer Engineering,
Hansung University, Seoul (02876), South Korea,
2Department of Convergence Security,

Hansung University, Seoul (02876), South Korea,
{shuraatum, khj930704, smino0906, hwajeong84}@gmail.com

Abstract. This paper focuses on the GPU implementation of the Pil-
sung block cipher used in the Red Star 3.0 operating system developed
in North Korea. The Pilsung block cipher is designed based on AES.
One notable feature of the Pilsung block cipher is that the table calcu-
lations required for encryption take longer than the encryption process
itself. This paper emphasizes the parallel implementation of the Pilsung
block cipher by leveraging the parallel processing capabilities of GPUs
and evaluates the performance of the Pilsung block cipher. Techniques
for optimization are proposed, including the use of Pinned memory to
reduce data transfer time and work distribution between the CPU and
GPU. Pinned memory helps optimize data transfer, and work distribu-
tion between the CPU and GPU needs to be considered for efficient par-
allel processing. Performance measurements were performed using the
Nvidia GTX 3060 laptop for evaluation, comparing the results of ap-
plying Pinned memory usage and work distribution optimization. As a
result, optimizing memory transfer costs was found to have a greater im-
pact on performance improvement. When both techniques were applied
together, approximately a 1.44 times performance improvement was ob-
served.

Keywords: Pilsung - GPU - Pinned Memory - Parallel implementation
- Block cipher

1 Introduction

Pilsung block cipher [1] is a special type of block cipher used in the Red Star
3.0 operating system, developed in North Korea. It is built upon the Advanced
Encryption Standard(AES) [2] and provides effective security features. However,
a notable characteristic of Pilsung block cipher is that the computation of tables
required for encryption takes longer than the encryption process itself.

2 Kwon et al.

This paper focuses on the implementation of Pilsung block cipher on Graphics
Processing Units (GPUs). GPUs are processors specialized in handling massive
parallel computations, offering high-performance parallel processing capabilities.
Consequently, leveraging GPUs allows for efficient encryption of large datasets
within shorter time frames. This paper focuses on leveraging GPU parallelism
to carry out the parallel implementation of the Pilsung block cipher.

The paper is structured as follows: In Chapter 2, an explanation of the Pil-
sung block cipher and GPUs. Chapter 3 introduces the techniques used for op-
timizing the implementation on GPUs. Chapter 4 evaluates the performance of
the implemented techniques. Finally, Chapter 5 presents the conclusions of the

paper.

2 Background

2.1 Pilsung Block cihper [1]

Pilsung block cipher is an algorithm based on the SPN(Substitution-Permutation
Network) structure, which is derived from the AES block cipher. SPN is one of
the structures used in symmetric key cryptography, where the input block un-
dergoes substitution and permutation stages to carry out the encryption process.

The block length of Pilsung is 128 bits, and the key length is 256 bits. As it
is based on the AES block cipher, it shares the same round functions (SubByte,
ShiftRows, MixColumns, AddRoundKey) as AES. However, there are differences
between Pilsung and AES in the SubByte and ShiftRows functions, as well as
in the key expansion algorithm.

The Pilsung cipher introduces some differences in the SubByte, ShiftRows,
and key schedule compared to the AES round functions.

Key Schedule The key schedule in Pilsung also deviates from AES. While AES
employs a specific key schedule algorithm, Pilsung utilizes the SHA-1 hash
function for key expansion. The input key is hashed using SHA-1, resulting in
a 160-bit hash value. This hash value is then used in the Pilsung key schedule
algorithm to generate the round keys for encryption and decryption.

SubByte A substitution operation is performed using Sbox tables. While AES
utilizes a single table for the operation, Pilsung employs a different Sbox
table for each round, resulting in a total of 160 tables (16 bytes * 10 rounds).
These tables are generated by applying an arbitrary bit permutation, using
the round keys through the Rao-Sandelius shuffle, to the original Sbox table.
The substituted values obtained from these generated tables undergo a final
step involving bitwise XOR with 3.

ShiftRows A distinct permutation operation is carried out for each round.
Similar to the Sbox generation, a random byte permutation is created by
utilizing the round keys and applied to the operation. This ensures different
permutations for each round in Pilsung.

Analysis of Pilsung on GPU 3

HEEEEEEEEEE 16 bytes

l Level |
2 x 8 bytes

l Level 2
4 x 4 bytes

l Level 3
8 x 2 bytes

l Level 4
16 x 1 bytes

Fig. 1: Rao—Sandelius shuffle in Pilsung block cipher.

Rao-Sandelius Shuffle [3—5] To generate permutations, Pilsung utilizes the
Rao —Sandelius shuffle. This shuffle first randomly divides an array into two
equal halves and recursively shuffles each half. For shuffling 16 bytes, four stages
of shuffling are required. Algorithm 1 provides a high-level description of this
permutation implemented in Pilsung. Figure 1 illustrates a visualization of the
algorithm. The randomness for the four levels of shuffling, used to generate the
permutation at round i, is obtained from the corresponding round key, RKi. The
randomness for the first and second level shuffles is taken from the front portion
of the round key, while the randomness for the third and fourth level shuffles is
taken from the rear portion of the round key.

These modifications in SubByte, ShiftRows, and the key schedule contribute to
the unique characteristics and security properties of the Pilsung cipher, differ-
entiating it from the standard AES round functions.

2.2 Graphics Processing Units

The use of GPUs has become an integral and widespread component in mod-
ern computing systems. These GPUs are highly parallel processors with signif-
icant arithmetic and memory bandwidth capabilities that far surpass those of
CPUs [6-8]. For our study, we utilized an Nvidia RTX 3060 Laptop GPU, which
boasts an impressive 3,840 cores and operates at a clock rate of 1,702MHz. It
is important to note that clock rates may vary depending on the specific GPU
manufacturer. The GPU we used is designed with the Ampere architecture,
which has a Compute Capability (CC) of 8.3. CC refers to the device’s ability
to perform computations.

To leverage the parallel processing power of the GPU, we employed the Com-
pute Unified Device Architecture (CUDA), a GPGPU (General-Purpose Com-
puting on Graphics Processing Units) technology. CUDA allows programmers
to write parallel processing code using the C language. Developed and main-

4 Kwon et al.

tained by Nvidia, CUDA requires an Nvidia GPU and the corresponding stream
processing driver. The CUDA GPU architecture comprises functional kernels,
threads, blocks, grids, and warps (bundles of 32 threads) that run on the GPU.
Multiple warps execute concurrently on a Streaming Multi-processor (SM), en-
abling efficient parallel computation [8,9].

3 Implementation technique

GPU computing leverages multiple cores to perform computations on large
amounts of data simultaneously, enabling efficient processing of large datasets.
Therefore, in GPU-based implementations, the transfer of data from the host
(CPU) to the device (GPU) is an important consideration that needs to be opti-
mized. Additionally, it is not always the best approach to perform all encryption
operations solely on the GPU, as the optimal performance of parallel implemen-
tations requires a balanced division of tasks between the CPU and GPU.

In this section, we will discuss the techniques applied to achieve parallel
implementation of the Pilsung block cipher on the GPU. First, we will explain
methods to reduce data transfer time. Then, we will explore the distribution of
tasks between the CPU and GPU.

3.1 Using Pinned Memory

The performance of GPU implementation is influenced by various factors, and
one of them is the data transfer between the Host (CPU) and the Device (GPU).
In GPU implementation, data is copied from the Host to the Device before
executing GPU kernel functions, and the resulting computation is copied back
from the Device to the Host. Although it may seem like a simple copying process,
it can significantly impact performance. For example, let’s assume a block size
of 16 bytes (128 bits). If we consider a configuration with 1024 x128 blocks and
256 threads, the total amount of data that needs to be copied would be 512MB
(16x1024x128%256).

By default, when allocating memory using the Malloc() function in the Host,
it is considered Pageable memory. Pageable memory cannot be directly copied
to GPU memory. To copy Pageable memory to GPU memory, the GPU driver
needs to allocate Pinned memory. The data is first copied from Pageable memory
to Pinned memory and then from Pinned memory to GPU memory.

In Figure 2To skip the step of copying data from Pageable memory to Pinned
memory, it is possible to allocate Pinned memory directly in the Host when
allocating memory. This can be achieved using CUDA’s supported functions such
as cudaMallocHost() or cudaHostAlloc(). By utilizing these functions, Pinned
memory can be directly allocated in the Host, bypassing the copying process
from Pageable memory to Pinned memory [10].

By employing Pinned memory allocation, the data transfer between the Host
and the Device can be optimized, leading to improved performance in GPU
implementations.

Analysis of Pilsung on GPU 5

Device Device
DRAM DRAM
Host Host |
Pageable l Pinned - Pinned
Pageable Data Transfer Pinned Data Transfer

Fig. 2: Processes of Pageable and Pinned Data Transfer.

3.2 Work Distribution

In Pilsung, the SubByte function uses different Sboxes for each round, so an
operation to expand the tables is performed before the round function operates.
Similarly, in the ShiftRows function, random permutations (utilizing Pbox) spe-
cific to each round are applied, rather than fixed permutations.

The expansion operations of the Sbox and Pbox tables are based on the
round keys generated through key expansion, and the expanded tables are uti-
lized for encryption. Since different tables are used for each round and each
byte in the Sbox, the expansion requires 160 repetitions, resulting in significant
computational cost.

In Figure 3 represents an overview of the Pilsung block cipher process. A
straightforward approach in implementing encryption using GPUs is to perform
all encryption steps in all threads. This includes key scheduling and table expan-
sion processes. Round keys are generated through key scheduling, and Sboxes
and Pboxes used for encryption are generated through table expansion. If all
threads follow the same process, they will produce the same values when the
master key is the same. Performing the same computations in all threads to ob-
tain the same value ultimately becomes inefficient, and it leads to the utilization
of more memory to store the computation results.

To optimize the implementation, this paper suggests conducting key expan-
sion on the host and table expansion on the device (GPU). As the table expan-
sion involves the same operation repeated for the number of rounds, it can be
parallelized. By dividing the GPU threads for parallel computations, instead of
expanding the tables through 160 repetitions when implemented on the host, it
can be achieved with only 16 repetitions using 10 threads.

In addition to the performance improvement achieved through parallel com-
puting, there is an additional performance benefit of reducing the size of data
that needs to be copied from the Host to the Device. When the table expansion

6 Kwon et al.

CipherText

Sbox, Pbox
Table

PlainText Encryption

Master Key Table
Key Schedule RoundKey Expaasion

Values common to all threads

Fig. 3: Overview of the Pilsung block cipher

is performed on the Host, the cost of copying increases due to the expanded
table. However, if the expansion is carried out on the Device, the table is defined
and expanded internally on the Device, resulting in a reduced data size that
needs to be copied from the Host to the Device. After the work distribution, the
approximate process is as shown in Figure 4.

Input . Output
CipherText pEb EEEEELH .

Host(CPU) Device(GPU)

CipherText

. . . Sbox, Pbox
PlainText Encryption Table
Master Key Table

RoundKey &tk EEELEE RoundKey

Key Schedule

Expansion

Fig. 4: After the work distribution, the approximate process of the Pilsung block
cipher

4 Evaluation

For performance evaluation, the implementation and benchmarking were con-
ducted on a Nvidia GTX 3060 Laptop. The implementation was done using

Analysis of Pilsung on GPU 7

Visual Studio with Cuda 11.8 runtime version. The project was built in Release
mode to measure the performance during execution. The number of blocks was
fixed at 65536 (1024x64), and the measurement was performed by varying the
number of threads. The performance measurement scope includes the time (in
milliseconds) from the key expansion function, which includes memory copying
(excluding encryption value copying), to the encryption function. The size of the
plaintext data is determined by the Grid size multiplied by the Thread size and
the block length (16 bytes). Hence, when the number of threads is 32, the size
of the plaintext data is 32MB (1024x64x32x16).

To assess the computational throughput during kernel execution, we utilized
the Nsight Compute tool provided by NVIDIA [11]. Nsight Compute is a GPU
kernel profiling tool that allows for the analysis and optimization of CUDA-based
applications. Developers can analyze GPU kernel execution time, memory access
patterns, warp behavior, and more. The measurement results are presented in
the following Table 2.

The performance measurement is conducted by dividing it into four imple-
mentations based on Using the Pinned memory and optimization of table ex-
pansion. The first implementation does not apply any optimization, the second
implementation applies work distribution, the third implementation uses Pinned
memory, and the last implementation applies all methods. The measurement re-
sults are presented in the following Table 1.

Table 1: Performance result(BlockSize: 1024*64, Pinned: Using Pinned mermory,
Opti: Optimized Table Expansion, unit: ms)

Threads
Type
32 64 128 256 512 1024
None 15.9106 | 25.4039 | 42.3677 | 75.9655 | 145.1255 | 288.7281
Opti 13.6967 | 20.9236 | 35.2862 | 68.9094 | 138.1196 | 280.5977
Pinned 13.4598 | 20.6596 | 33.0835 | 59.8967 | 113.6430 | 224.7214
Opti&Pinned | 11.3909 | 15.6775 | 26.9073 | 52.7457 | 104.4272 | 219.8976

Table 2: Performance results in terms of computational throughput (unit: %)

Threads
Type
32 64 128 256 512 1024
None 87.82 92.28 96.42 94.96 96.35 92.40

Opti&Pinned 26.09 48.74 84.75 94.44 91.54 76.16

8 Kwon et al.

In Table 1, The results of None and Opti demonstrate performance improve-
ment through work distribution. Looking at 256 Thread as a reference in Ta-
ble 2, we can observe an approximate 1.1x performance improvement with the
application of task distribution. This confirms that performing table expansion
operations on the GPU rather than the CPU can yield performance enhance-
ments.

Next, we can observe performance improvement through the use of Pinned
memory by examining the results of None and Pinned. Similarly, considering 256
Thread as a reference, we can see an approximate 1.26x performance improve-
ment with the utilization of Pinned memory. This confirms that storing data
directly in Pinned memory instead of Pageable memory can yield performance
enhancements when using the GPU.

Ultimately, when comparing the two results, optimizing the memory transfer
cost has shown greater performance improvement compared to task distribution.
This indicates that in parallel implementations using the GPU, memory transfers
have a significant impact on performance. Consequently, when both techniques
are applied, we observed an approximate 1.44x performance improvement.

5 Conclusion

In this paper, we conducted an optimized implementation of the Pilsung block
cipher on the GPU by utilizing the usage of Pinned memory and work distribu-
tion. We observed significant performance improvement simply by using Pinned
memory, which allowed us to understand the impact of data copying on perfor-
mance in GPU implementations. There are additional research and techniques
available to reduce data copying costs, beyond the usage of Pinned memory.
We believe that comparing the performance by applying various techniques and
methodologies would yield valuable research results. Furthermore, since these
techniques are not limited to the Pilsung block cipher, they can be applied to
various block cipher GPU implementations.

References
1. “A brief look at north korean cryptography.” https://www.kryptoslogic.com/
blog/2018/07/a-brief-look-at-north-korean-cryptography/. July 2018.

2. J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

3. C. R. Rao, “Generation of random permutations of given number of elements using
random sampling numbers,” Sankhya: The Indian Journal of Statistics, Series A,
pp- 305-307, 1961.

4. M. Sandelius, “A simple randomization procedure,” Journal of the Royal Statistical
Society: Series B (Methodological), vol. 24, no. 2, pp. 472-481, 1962.

5. C. Chuengsatiansup, E. Ronen, G. G. Rose, and Y. Yarom, “Row, row, row your
boat: How to not find weak keys in pilsung,” The Computer Journal, p. bxac092,
2022.

6. J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, 2008.

10.

11.

Analysis of Pilsung on GPU 9

H. Choi and S. C. Seo, “Fast implementation of sha-3 in gpu environment,” IEEFE
Access, vol. 9, pp. 144574-144586, 2021.

K. Iwai, N. Nishikawa, and T. Kurokawa, “Acceleration of aes encryption on cuda
gpu,” International Journal of Networking and Computing, vol. 2, no. 1, pp. 131-
145, 2012.

“CUDA C Programming Guide V6.0.” https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html. Accessed: 2022-05-11.

D. Negrut, R. Serban, A. Li, and A. Seidl, “Unified memory in cuda 6.0. a brief
overview of related data access and transfer issues,” SBEL, Madison, WI, USA,
Tech. Rep. TR-2014-09, 2014.

“Nsight Compute - nvida documentation center.” https://docs.nvidia.com/
nsight-compute/NsightCompute/index.html. Accessed: 2022-08-24.

