CipherGPT: Secure Two-Party GPT Inference

Xiaoyang Hou Jian Liu™ Jingyu Li Yuhan Li
Zhejiang University Zhejiang University Zhejiang University Zhejiang University
xiaoyanghou@zju.edu.cn livjian2411 @zju.edu.cn jingyuli@zju.edu.cn yuhan2165@zju.edu.cn

Wen-jie Lu Cheng Hong Kui Ren
Ant Group Ant Group Zhejiang University

juhou.lwj@antgroup.com

Abstract—ChatGPT is recognized as a significant revolution in
the field of artificial intelligence, but it raises serious concerns re-
garding user privacy, as the data submitted by users may contain
sensitive information. Existing solutions for secure inference face
significant challenges in supporting GPT-like models due to the
enormous number of model parameters and complex activation
functions.

In this paper, we develop CipherGPT, the first framework
for secure two-party GPT inference, building upon a series of
innovative protocols. First, we propose a secure matrix multi-
plication that is customized for GPT inference, achieving upto
6.2x speedup and 4.1x bandwidth reduction over SOTA. We
also propose a novel protocol for securely computing GELU,
surpassing SOTA by 1.8x in runtime, 2.5x in communication
and 7.4x in precision. Furthermore, we come up with the first
protocol for secure top-k sampling.

We provide a full-fledged implementation and comprehensive
benchmark for CipherGPT. In particular, we measure the runtime
and communication for each individual operation, along with
their corresponding proportions. We believe this can serve as a
reference for future research in this area.

I. INTRODUCTION

ChatGPT, a large language model (LLM) built upon the
groundbreaking generative pre-trained transformer (GPT) ar-
chitecture [41], is regarded as a significant revolution in the
field of artificial intelligence. With a vast knowledge base and
impressive linguistic capabilities, ChatGPT excels in various
tasks, including question answering, article polishing, sug-
gestion offering, and engaging in conversations. It can also
serve as a virtual assistant, effectively enabling applications
like customer support, information retrieval, and language
translation.

OpenAl has made ChatGPT an online inference service and
has even provided a remote API for developers to utilize. Users
can conveniently enjoy the services by submitting prompts or
messages for GPT inference. However, this service paradigm
inevitably puts user privacy at risk, as the data submitted by
users may contain sensitive information. Such privacy concerns
may restrict the deployment of GPT in certain scenarios where
data confidentiality is critical.

Secure inference [22], [34], [311, [37], [44], [43], [29], [27],
[40], [30] is a two-party cryptographic protocol running the
inference stage in a way such that the server (S) learns nothing

™Jjan Liu is the corresponding author.

vince.hc @antgroup.com

kuiren@zju.edu.cn

about clients’ input and a client (C) learns nothing about
the model except the inference results. Roughly, it proceeds
by having S and C running the encrypted model over the
encrypted input through tailored cryptographic techniques such
as homomorphic encryption and secret sharing. A preprocess-
ing phase is usually introduced to prepare some expensive and
input-independent work so that the online phase can be done
efficiently.

Unfortunately, existing protocols for secure inference are
limited in their ability to support GPT. Generative LLMs such
as GPT-2, which consist of 12 transformers, entail a multi-
tude of high-dimensional matrix multiplications and complex
mathematical functions like GELU. In the case of generative
tasks, LLMs require repeated inferences to generate sentences
word by word and random selecting mechanism to ensure
creativity and diversity. On the other hand, Iron [27] operates
solely on transformer-based models for non-generating tasks
such as BERT. Bolt [40] and BumbleBee [30] optimize ma-
trix multiplication in communication while introducing more
computation complexity. The SOTA approach for computing
the activation function GELU [40], [30] uses high-degree
polynomials to approximate the curve, which is hard to achieve
both accuracy and efficiency. Prior works implement random
sampling with Garbled Circuit (GC) [58], which is extremely
heavy in computation and communication, or substitute it with
selecting the word with the highest score, thereby diminish-
ing the utility of the LLMs. Therefore, the advent of GPT
has indeed introduced new challenges to the field of secure
inference.

A. Our contributions

In this paper, we develop CipherGPT, the first' framework
for secure two-party GPT inference, building upon a series of
novel protocols.

VOLE-based matrix multiplication. GPT takes lengthy sen-
tences as input and autoregressively generates response words.
Specifically, after a response word is produced, that word is
added to the input sentence, and the new sentence becomes
the input to the model to produce the next response word.
Each response word generation requires a model inference,
which involves a matrix multiplication (MatrixMul for short)
at each layer. During the preprocessing phase, at each layer,

'We preprinted this work in Aug 2023. At that time, it was the first
framework for secure two-party GPT inference.

we combine the MatrixMuls for individual response words into
a single unbalanced MatrixMul, and process it using sVOLE.

Vector oblivious linear evaluation VOLE [8], [10], [57],
[9] is used to generate correlations like w = ux + v, where
a sender with input = learns a vector w of length n, and
a receiver learns (u,v), both of length n. Subfield VOLE
(sVOLE) [10] is a generalization of VOLE; ideally, sVOLE
accomplishes the same task as k instances of regular VOLE,
while maintaining a comparable cost to running a single VOLE
instance. sVOLE is more cost-effective when n > k, making
it particularly useful for computing unbalanced MatrixMuls.

Spline-based GELU. GPT uses GELU as its activation func-
tion, which can be represented as:

GELU(z) = 0.5z(1 + Tanh [\/Q/W(I + 0.044715933)]),

where Tanh(z) = 2Sigmoid(2x)—1 and Sigmoid(z) = 1.
To securely compute GELU, SIRNN [43] and Iron [27] employ
a lookup table (LUT) [18] to approximate e~* and another
lookup table to approximate the reciprocal. This multi-step
process further requires extension or truncation of bitwidths
at each step to balance precision and efficiency. The SOTA
approaches [40], [30] split GELU into several parts, then use
high-degree polynomials to approximate the curve in each part.
Finally [40], [30] uses comparison and multiplexer to find the
correct part and choose the corresponding output.

In contrast, we use only the linear function to approximate
the curve parts. To achieve this, we split the curve parts of
GELU into several intervals and use a linear function (y = ax+
d) to approximate the curve within each interval. This spline-
based approximation was initially proposed by Liu et al. [34],
in which garbled circuits [58] were used to find the interval x
belongs to and compute the corresponding linear function. We
significantly improve its performance by leveraging LUT [18]
to find the interval and computing the corresponding linear
function in a secret-shared manner.

Compared with LUT-based approaches [43], [27], we
use fewer LUTs and save a lot of cryptographic primitives.
SIRNN [43] and Iron [27] use LUT to find out the ini-
tial values and perform iterations to approximate non-linear
functions, while we use one LUT to find out the linear
function and perform multiplication-then-truncation to com-
pute the corresponding value. Compared with high-degree
polynomial based approaches [40], [30], [20] (SOTA), we save
lots of multiplication-then-truncation and comparisons. The
number of multiplication-then-truncations used in BOLT [40]
and BumbleBee is decided by the degree of high-degree
polynomials, and each split part needs one comparison and
one multiplexier. We always use one LUT independent of the
number of intervals and use one multiplication-then-truncation
to compute the linear function. Furthermore, our approach
exhibits superior precision, avoiding the error accumulation
inherent in multi-step approaches [27], [43] and error from
precision lost in high-degree polynomials approximation [40],
[30], [20].

Shuffling-based top-K selection. A straightforward way for
selecting the top-K elements from a secret-shared vector of
length n is to securely sort the vector, which is typically

achieved by securely executing a data-independent sorting
algorithm such as Bitonic sorting network [28].

Our first insight is to implement secure sorting based on
an idea from [3]: the input elements are securely shuffled
first; and then an input-protected comparison-based sorting
(e.g. quicksort with secure comparison) protocol is applied
to arrange the shuffled elements into a sorted order. Notice
that the comparison results obtained during the sorting process
reveal no information about the original elements as those
elements have been shuffled.

Our second insight is that, if quicksort is used, it is
unnecessary to sort the entire vector. Instead, we can lever-
age a modified version of the quicksort algorithm. Typically,
quicksort randomly selects an element from the vector as
pivot and compares it with other elements. Based on the
comparison results, the vector is partitioned into two parts:
elements smaller than the pivot and elements larger than the
pivot. The quicksort algorithm recursively operates on both
partitions. In our case, we only need to recursively process
the partitions that contain the top-K largest elements, which
reduces the number of comparisons from O(nlogn) to O(n).

Secure sampling We also tackle the problem of securely
sampling an element from a vector based on secret-shared
probabilities. Specifically, given a vector of K elements,
each of which is associate a secret-shared probability p;,
the probability for the j-th element to be chosen is p;. Our
protocol only requires (K — 1) secure comparisons and K
multiplexers. We mention that our case differs from securely
sampling discrete Gaussian noise for MPC Differential
Privacy [54]. Their intuition is to securely sample from a
known distribution, while ours is to securely sample an
element from a vector based on secret-shared probabilities.
To the best of our knowledge, our study represents the first
exploration of secure sampling.

We summarize our contributions as follows:

e A customized secure matrix multiplication for GPT,
achieving upto 6.2x speedup and 4.1x bandwidth
reduction over SOTA (Section III);

e A novel protocol for securely computing GELU, sur-
passing SOTA by 1.8x in runtime, 2.5X in commu-
nication and 7.4x in precision. (Section 1V);

e An innovative solution for top-K sampling: select-
ing the top-K probabilities and sampling one ele-
ment according to the selected probabilities (Sec-
tion V and VI);

e The first framework for secure two-party GPT infer-
ence (Section VII), and a comprehensive benchmark
that can serve as a reference for endeavors in this
research direction (Section VIII).

II. PRELIMINARIES

In this section, we present the necessary preliminaries for
understanding this paper. Table I provides a summary of the
frequently used notations in this paper.

TABLE I: A table of frequent notations.

Notation Description

C client

S server

n input vector length (for each layer)

L # bits left-shifted for initial inputs

l input bit-length after left-shifting

(@)’ (@)%, @) st.2 = @)L + (@)k_mod 21

O] Hadamard product (element-wise product)

® Kronecker product (outer product)

FMult ideal functionality for multiplication: z <— Mult(z, y)
z = x * y with no overflow

Fcvp ideal functionality for comparison b < CMP(z, y):
b=1if x > y; b = 0 otherwise

Fmux ideal functionality for multiplexer y <— MUX(z, b):
y=xifb=1y=0ifb=0

Frrunc ideal functionality for truncation y <— Trunc(z, s) :
y=1x> s with z,y € Zy

Frr ideal functionality for truncate-then-reduce y < TR(z, s) :
y=1x> s withx € Zy and y € Zgyi—s

FLut ideal functionality for lookup table T'[¢] +— LUT(T, 1)

Fshuffle ideal functionality for shuffling

a the split for y := GELU(z): y := 0 when z < —a;
y := GELU(z) when —a <z < o; y:=x when z > «

s 2% is the number of intervals within [—a;,]

(ai, d;) y = a;x + d; is the linear function that
approximates GELU(z) in each interval

g bit-length of a;

t # response words (# input matrices)

N polynomial modulus degree in FHE

M # attention heads

T temperature

A. Secure inference and threat model

Secure inference is a two-party cryptographic protocol that
facilitates model inference between a client C and a server
S. The protocol ensures that C only obtains knowledge about
the model architecture and the inference result, while keeping
all other details of S’s model hidden. Similarly, S only learns
the length of C’s input and inference output, while remaining
unaware of the exact words contained within. In the context of
GPT inference, C’s input is a prompt and S’s input is a well-
trained model which comprises multiple transformer decoders
together with a vec2word layer. More information about GPT
is provided in Section VII.

We assume that either C or S can be a semi-honest adver-
sary, which follows the protocol specifications but attempts to
gather as much information as possible during the protocol ex-
ecution. We assume the adversary is computationally bounded
and we use A to denote the computational security parameter.

B. Cryptographic primitives

Secret sharing. We use 2-out-of-2 additive secret sharing
schemes over different power-of-2 rings. For © € Zo, we

denote its shares by (z)' = ((x)é , <:v>lc) s.t.x = (w}é + <x)lc

mod 2!. For ease of presentation, we omit the [notation of
()" when it is not contextually relevant.

Oblivious transfer The ideal functionality Fot allows a
sender to send messages to a receiver without knowing the
receiver’s choice, and the receiver can only know one message
determined by the choice. We use (*')-OT to represent 1-out-
of-M OT, when M = 2 we use OT for brevity. Ferret [57]
provides silent OT protocol to produce a large number of
random 1-out-of-2 OT (rOT) in batch, where the messages
and choices are randomly sampled. |[rOT| can be consumed to
implement other protocols. We use the communication cost as
[rOT| =~ 0.6 bits [57].

Multiplication with non-uniform bit-widths The ideal func-
tionality Fyyr takes (z)¢ and (y)" as input and returns (z),
where 2z = x -y and | = g + h. A simple way to realize
this functionality is to first extend both inputs to [bits and
then use a standard protocol for secret-shared multiplication
with uniform bitwidths. SIRNN [43] provides a protocol that
outperforms this naive solution by 1.5x. The communication
complexity of this protocol is u(|rOT| + p/2 + 1/2) + gh,
where p = min(g, h).

Secure comparison. The ideal functionality Feyp takes (z)'
and (y)' as input and returns (b)", where b = 1 if 2 > y, oth-
erwise b = 0. CrypTFlow2 [44] provides an efficient protocol
for Fewp with a communication cost less than [- [rOT| + 141
bits and with log! rounds.

Secure multiplexer. The ideal functionality Fyyx takes (z)'
and (b)" as input and returns (y)', where y = z if b =1, and
y = 0 if b = 0. The secure multiplexer adopted in this paper
is provided by SIRNN [43], which requires 2(|rOT|+ 1 + 1)
bits of communication.

Secure truncation. The ideal functionality Fy,n. takes (x)l
and s as input and returns (y)l, where y = z > s. SIRNN [43]
provides a protocol for secure truncation with a communication
cost less than (I+3)-|rOT|+ 154 s+20 bits and with logl+3
rounds.

Truncate-then-reduce. The ideal functionality Frg takes (z)"
and s as input and returns <y>l75, where y = x > s. Notice
that the difference between Ftr and Fyyync 1s that Frg reduces
the output to a smaller ring over right-shift operations, whereas
Frrunc keeps the output in the original ring. SIRNN [43]
provides a protocol for Fyr with a communication cost less
than (s 4+ 1) - |[rOT| + 1 + 13s bits.

Lookup table. The ideal functionality Fyt takes (i) as input
and returns (7' [i]) where T is a table with M entries of [-bits.
This functionality can be achieved via a single call to (Af)-
OT [18], with a communication cost of ([rOT|+1) -log M +

M [bits.

Secret-shared shuffle. The ideal functionality Fsp.fre takes
(x)" and () as input and returns (7(x))’, where 7 is a permu-
tation function. Chase et al. [14] propose an efficient construc-
tion for this functionality using lightweight primitives such as
OTs and PRGs. Their approach involves using puncturable
PRFs to build a permute-and-share protocol, which allows two

parties to permute the input vector with the permutation chosen
by one party. This permute-and-share protocol is run twice,
with each party choosing the permutation once. To shuffle
n [-bit elements, the communication cost of this protocol is
proportional to ([rOT| 4+ 1) - nlogn + nllogn/logT and the
computational cost is (nTlogn/logT)(l/\) symmetric-key
operations, where 7' is between 16 and 256.

Subfield vector oblivious linear evaluation. VOLE is a two-
party functionality that takes a scalar x €), from a sender
and generates a VOLE correlation:

wW=uz+vV, (D

s.t. the receiver learns (u,v) €g)y [} and the sender learns
w € F). VOLE is typically constructed based on learning
parity with noise (LPN) and puncturable PRFs, making its
complexity almost independent of n.

Subfield VOLE (sVOLE) [10] is a generalization of VOLE
with u €g F), © € Fy, w,v €g Fy, and ¢ = p™. Notice
that sVOLE achieves the same task as running m instances of
normal VOLE, but with less cost.

VOLE and sVOLE were initially proposed to work over
finite fields. Baum et al. [6] propose a way to work over a
finite ring such as Zo:.

Homomorphic encryption. Fully homomorphic encryption
(FHE) is an encryption scheme that allows arbitrary operations
to be performed over encrypted data [21]. In practice, it is
usually used in a leveled fashion: the operations can only be
performed for a limited number of times, otherwise, the cipher-
texts cannot be decrypted. In most FHE cryptosystems [12],
[11], [19], [15], plaintexts are encoded as polynomials from
the quotient ring Z,[z]/(x™V + 1), where N is a power of 2,
and p is the plaintext modulus. The plaintext polynomials are
then encrypted into ciphertexts which contain two polynomials
in Z,[z]/(z™ + 1), where g is the ciphertext modulus that
determines the security level, as well as the times that addition
and multiplication operation can be performed.

Batch oblivious linear evaluation BOLE is a two-party
functionality that takes x € F} from a sender and y € Fy
from a receiver and generates a BOLE correlation:

Vi+W; =X kY ()

s.t. the receiver learns v €p F) and the sender learns
w €pr . Lu et al. [30] propose a BOLE protocol over 2!
ring, achieving computational security in semi-honest setting.
This approach [30] may introduce Least-Significant-Bit (LSB)
errors, which can be fixed by following truncations. We
interpret BOLE correlation as beaver triples and consume them
to implement multiplication with uniform bit-width.

III. SECURE MATRIX MULTIPLICATION

The MatrixMul operation takes two input matrices X €
Zy ™ and Y € Z’;}Xk from C and S respectively, and
outputs (Z) with Z = XY € Z;Xk. Most existing solutions
use homomorphic multiplications and additions to compute
the above formula in a privacy-preserving way. There are
two main-stream ways of using RLWE based homomorphic
encryption :

1) Encoding plaintexts into SIMD slots [44], [40];

2) Encoding plaintexts into polynomial coefficients [29],
[27], [31], [30].

The SIMD technique supports batching N elements into
a single RLWE ciphertext and performs element-wise multi-
plication and addition, but requires expensive homomorphic
rotations to sum-up. Bolt [40] proposes an improved packing
technique to fully utilize all SIMD slots and uses the baby-step
giant-step (BSGS) strategy to reduce the number of rotations.
SIMD slot works over a prime field while Bolt’s secret sharing
scheme is over Zo: ring, Bolt needs to perform a secure
conversion protocol each time.

Cheetah [29] encodes plaintexts into polynomial coeffi-
cients and computes matrix multiplication via dot product,
Cheetah eliminates the expensive SIMD rotations and achieves
compute over Zo ring directly. BumbleBee [30] notices the
sparsity of returned ciphertexts in [29], [27], [31] and proposes
a ciphertext compact technique to save communication.

Recall that GPT needs to auto-regressively generate re-
sponse words. Therefore, GPT inference requires running
MatrixMul for different Xs with the same Y. We aim to
reduce the amortized cost of MatrixMul by exploiting this
characteristic of GPT.

Let X = [x1,X2,---,Xy] (With x; € ZI; being each
column of X) and Y* = [y{,y%,---,y,] (with y; € Z&,
being each row of Y), then Z = > (x; ® y}). Suppose S and

i=1
C need to generate t response words, hence there are ¢ input
matrices:

X = [X1,1,X1,2, ce 7X1,m] y
Xo = [x2,1,X2.2, ", X2,m] ,
X; = [Xt,i;;{t,;v.' e ,Xt,m}-
Let X} = x1 4||X2,4|| - - - ||%¢; V ¢ € [1,m]. Then,
x; @y; = (X1 @ y)l|(x2; @) -+ [|(xes @ 7).
Then,

NIE!

(x; @yi) = Zal|Zo]| - - [|Zs.
i=1

Therefore, we could compute the ¢ times of MatrixMul alto-
gether via m outer products.

Given that Y is known beforehand, we could introduce
a preprocessing phase to have S and C generate m sVOLE
correlations:

W; :ui®y§+Vi, Vie [1,7’)7,].
where C holds u; € Z;'”) (which is a vector of length ¢ - n)
and V; € Z{™* and S holds y} € Z, and W; € 2™
In the online phase, for an input matrix X; =

[Xj,1,Xj2,"*+ ,Xjm], C sends

<Xj,’i>5 = X5 —u; [(]— 1)n+ 1, ,j n] Vi S [l,m]

to S, which then computes:

(x,i)s ®y; = (X —wi [(j—L)n+1,---,j-n) @y

Then, we have:

= (%) @y + Wi(j = Dkn+1,--- 5 k-n]
-V, [j-1Dkn+1,---,j-k-n].

Notice that S holds:
(Xji)s @y; + Wi [(G—Dkn+1,--,j-k-nl,
and C holds:
Vil(j—1kn+1,---,j-k-n;

that means S and C secret-share x;; ® y;, and consequently
m

they can locally compute the secret-shares of Z; = >" (x;, ®
i=1
v5). They can compute all Zs in this way.

sVOLE-based MatrixMul is proposed by Boyle et al. [8].
They use sVOLE to perform MatrixMul directly and the
performance is poor for n is often small (< 256) in secure
computation scenarios. We observe that MatrixMuls in GPT
inference use the same weight repeatedly and can be batched
to an unbalanced MatrixMul. To this end, we use one sVOLE
to implement ¢ MatrixMul, and the amortized cost surpasses
SOTA RLWE homomorphic encryption approaches in both
runtime and communication.

Table II compares the MatrixMul overhead among Chee-
tah [29], Iron [27], BumbleBee [30], Bolt [40] and CipherGPT.
Recall that the communication complexity of sVOLE is almost
independent of n. As a result, the number of public-key opera-
tions in our MatrixMul are also independent of n. Specifically,
we need to transfer % RLWE ciphertexts and run €2k
ciphertext-plaintext multiplications to perform reverse-VOLE,
both of which are independent of n. When we combine a
considerable number of matrices together, i.e., when n is large,
our savings become significant. Moreover, these costs need to
be divided by ¢ for the amortized costs.

In terms of computation, we save %” X ciphertext-plaintext
multiplications and need no heavy homomorphic automor-
phism or SIMD rotations. Suppose n = 256, m = 768,
k = 64, t = 256 and e = 144 (which are the real
parameters for GPT-2), we save 3 065 ciphertext-plaintext
multiplications, which takes more than 4s2. Although we need
to do extra (c - nmk) AESs to expand the seeds, with the
help of AES-NI this can be done in around 100ms. In terms
of communication, we transfer fewer RLWE ciphertexts with
smaller modulus, which saves around 10MB; whereas the
communication overhead introduced by OTs and plaintexts in
CipherGPT is only around 1.5MB. Compared with Bolt [40],
we need no conversion between prime field and 2 ring.

2This includes the time usage for noise flooding.

TABLE II: Amortized cost for ¢ times of MatrixMul. N is #
elements batched in a RLWE ciphertext; e is the dual-LPN
noise weight; ¢ is a small constant (N = 4 096, e = 144,
¢ = 2 in our benchmarks).

MatrixMul | Overhead

Cheetah transferring > Q"T 2k RLWE ciphertexts
[29] > %}“ ciphertext-plaintext multiplications
Iron transferring > L\”ﬁ;{”k RLWE ciphertexts
[27] > mmk ciphertext-plaintext multiplications

transferring W RLWE ciphertexts

BumbleBee | nmk ciphertext-plaintext multiplications

1301 ”Qf'li]v homomorphi i
N phic automorphism
transferring W RLWE ciphertexts
Bolt ”ka ciphertext-plaintext multiplications
[40] wa/ﬁ SIMD rotations

n(m + k) conversion from field to ring

transferring 22F RLWE ciphertexts

emk
t

transferring
Ours emk
tN

%g(nt/@ OTs and (c- nmk) AESs

+ nm masked plaintext

ciphertext-plaintext multiplications

IV. SECURE GELU

In this section, we begin by providing a high-level overview
of our GELU protocol, and then delve into its technical details.

A. Intuition

Figure 1 (left) depicts the original GELU. It begins at
zero for large negative values of x, and starts deviating from
zero when « is around —a. As z increases further, GELU(z)
decrease firstly then progressively approximates the linear
function y = x. Based on this observation, we divide the curve
into three large parts:

e y=0when z < —aq;
o y=GELU(x) when —a <z < a;
e y=ugz whenz > o.

The computation of the first and third parts is straight-
forward. For the second part, we use polynomial splines to
approximate the curve. As depicted in Figure 1 (middle), we
divide the second part into several small equal-length intervals
and use a linear function (y = ax+d) to approximate the curve
within each small interval. We refer to Section 5.3.2 in [34]
for a detailed procedure of finding the linear functions. It is
important to note that this approximation does not necessitate
any modifications to the training phase of the model.

We could use LUT to find the interval in which x resides
and compute the corresponding linear function in a secret-
shared manner. However, for [—a, a], we have to determine

Fig. 1: GELU transformation.

the sign of z first, and then lookup in the parts [—«, 0] and
[0, o] separately. To avoid this, we right-shift the entire curve
by « as shown in Figure 1 (right), after which the second part
becomes [0, 2a] allowing us to perform a single lookup.

B. Details

Algorithm 1 describes in detail how we securely compute
y := GELU(x).

Algorithm 1: Secure GELU: TlggLy

Input: S & C hold (z)', public value « for splitting,
lookup table 51ze 2°

Output: S & C get (y)' for y = GELU(z)
1 Let o := 2%
2 S & C (locally) compute (/)" := (z)" + o
3 Let B := 2a’
4 Let h:=logp
s S & C (locally) extract the lower h bits of (z')' and get

()"
6 S & Cinvoke (i)° + FTR((" oh—s)
7 S & C invoke ((a;)', (di)") <—F|_U Ty, (3)%)
(

8 S & C invoke (a;iz) < Fuue({(a:)', (')

9 S & C invoke (k)! F-rmnc(<)l, L)

10 S & C (locally) compute (z)' := (k) + (d;)"

1 S & Cinvoke (b)! « Fewr((z')", B) >b=1 if
2’ >fB; b=0 otherwise

12 S & Cinvoke (') « Fewp((z')',0) b b =1 if

2’ >0; b =0 otherwise
13 S & C invoke <u> — Famux((2)", () & (')
14 S & Cinvoke (v)' + FMUX((Yo (b >1)
15 S & C (locally) compute ()" := (u)’ + (v)*

Notice that the initial input to the model has been scaled up
by 2%. To maintain the desired alignment, we scale « up by a
factor of 2% (Line 1). Then, the split value becomes o/ := 2"a.

The right-shift of the curve needs to consider the scaling
factor as well. To ensure proper alignment, the input to GELU
should be adjusted as z’ := x + ', which can be achieved by
adding o’ to any share of x (Line 2).

Handling small intervals. Let 8 := 2a/, the second part now
becomes [0, 5]. We make the initial assumption that =’ falls
within this part; we will address the case where this assumption
does not hold later on. As 2’ € [0, 3], we only need to consider
the lower h := log 3 bits of z’. To this end, we have S and C
extract the lower A bits of (z/)" and get (z/)" (line 5), which

can be done locally without any communication. This local
extraction is based on [is a power of 2, otherwise, we use

local multiplication and Trunc to get (z/)".

Suppose [0, 5] has been divided into 2° small intervals.
Then, we could find the interval for (z’)h by examining its
upper s bits. To this end, we have S and C run the truncate-
then-reduce protocol on (z/)" (Line 6), resulting in (i)*, where
i € Zos represents the index of the small interval that x’
belongs to.

S holds a table 7', where each entry stores the coefficients
of the linear function corresponding to the respective small
interval. After obtaining i € Zss, S and C execute LUT to
get the i-th entry of T in a secret-shared form ({a;)", (d;)")
(Line 7). Then, they run secret-shared multiplication on {(a;)
and (2’ >l then truncate, resulting in (k) (Line 8-9). After
adding (d;)" to (k)', they obtain (z)', which is potentially the
result of GELU(z) (Line 10).

Handling large parts. Notice that the above process for
handling small intervals is valid only when z’ € [0,f]. To
this end, we use comparisons and multiplexers to output the
correct result when 2’ ¢ [0, 3.

S and C first securely compare x’ with 5 and get b
(Line 11), with b = 1 if 2’ > 3 and b = 0 otherwise. Then,
they securely compare z’ with 0 and get b (Line 12), with
b =1if 2’ > 0 and b’ = 0 otherwise. Notice that there are
only following three possibilities for the combination of b and
b’ (instead of four):

e b=1land?d =1,
b=0and b =1,
b=0and b = 0.

The second case with b @ & = 1 indicates that 2’ € [0, g],
whereas the other two cases with b & b’ = 0 indicate that
x’ ¢ [0, B]. Therefore, we could use bbb’ as the control signal
to implement the multiplexer for z. Spemﬁcally, S and C run
the multiplexer with input (z)' and (b)" @ (¥')" resulting in
<u)l (Line 13), with u = 2 if b@ b = 1, and u = 0 otherwise.

Next, S and C run another multiplexer with input ()" and
(b)" resulting in (v) (Line 14), with v = 2 if b = 1, and
v = 0 otherwise. This multiplexer determines if =’ > 3; if so,
returns v = #’. The final result of GELU(z) is ()" := (u)' +
(v)' (Line 15). Notice that there is no need for an additional
multiplexer to handle the case of 2’ < 0, because y = 0 when
' < 0.

Table III compares the number of cryptographic operations
among SIRNN [43], Iron [27], BumbleBee [30], Bolt [40]
and our solution for secure GELU. Our solution saves 2
Mult and 2 Trun compared with Bolt, but additionaly use
a LUT. We mention that LUT is a build-block of Trun.
Clearly, our solution is much more lightweight. Furthermore,
our solution is also better in precision: 1) the multi-step process
in SIRNN and Iron involves approximating exponentiation and
reciprocation separately, introducing precision errors at each
step; these errors accumulate throughout the process, resulting
in a large overall error, which is not the case in our single-
step approach; 2) the high-degree polynomials approximating
used in BumbleBee and Bolt lost accuracy in computing high-
degree power of x. Our experimental results (cf. Table IV)
validate this conjecture.

TABLE III: Comparison for GELU.

GELU Overhead
8 .
SIRNN [43] 6LUT (2° entries)
TMult, 6Trunc, SCMP, 2MUX
8 .
Tron [27] 6LUT (2° entries)

6Mult, 5Trunc, 5CMP, 2MUX
4Mult, 6Trunc, 3CMP, 3MUX
3Mult, 4Trunc, 2CMP, 2MUX
1ILUT (26 entries),

1Mult, 2Trunc, 2CMP, 2MUX

BumbleBee [30]
Bolt [40]

Ours

V. SECURE ToP-K SELECTION

In the vec2word layer, the GPT model generates a vector
containing probabilities for all possible words. From this
vector, the top-K largest probabilities need to be selected and
the final response word needs to be sampled based on the
selected probabilities. This section focuses on the process of
selecting the top-K values from a vector of length n. In the
subsequent section, we will discuss how we sample a value
from the K selected probabilities.

Algorithm 2 provides a detailed description of our TopK
protocol. At a high level, the input elements are securely
shuffled first (Line 1); and then a comparison-based selection
is employed to identify the top-K elements from the shuffled
list (Line 2).

We assume that elements in x are distinct values and can
be compared strictly. This can be achieved by appending an
index (1 to n) to each element and truncating after selection.
It is proposed in prior work and widely used in secure sorting
scenarios [4], [16].

The selection function in Algorithm 2 operates in a re-
cursive manner. Within each recursion, the last element of
the vector is selected as the pivot (Line 5); and the vector
is partitioned into two parts: elements smaller than the pivot,
denoted as Sy, and elements larger than or equal to the
pivot, denoted as Si (Line 6-15). To split the vector, all its
elements are compared with the pivot (Line 8). The comparison
results can be revealed (Line 9) without compromising the

Algorithm 2: Secure Top-K: Itk

Input: S & C hold (x) with x € ZJ,
Output: S & C get (y) with y € ZL being the K largest
values of x
1 S & C invoke (x’) < Fspyfrie({x))
2 y + select((x'), K)

3 Function select ((x'),K):

4 n:=|{x')|

5 (pivot) := (z7,)

o | (S0):= {1, (Sr) = {(pivot)}

7 for i :=1ton—1do

8 S & C invoke (b)" + Femp((}) , (pivot)) >
b=1 if 2; > pivot; b=0 otherwise

9 S & C reveal (b)' and get b

10 if b = 0 then

11 | (Sr) == (Sc)u {{zi)} > xj < pivot

12 else

13 | (Sr) < (Sr) U{(z})} > x; > pivot

14 end

15 end

16 K' «+ | (SRr) |
17 switch (K’ ? K) do

18 case (K' = K)

19 | return (Sg)

20 case (K' > K)

21 | return select((Sg),K)

2 case (K' < K)

23 | return select((Sr),K — K')U(Sgr)
24 end

25 end

26 End Function

privacy of the original elements. This is because the original
elements have been shuffled, so that the comparison results are
independent of the actual values.

If the size of Sk (denoted by K') is exactly K, it means
that all the elements in Sk are the top-K largest elements that
we want to select (Line 19). If K’ > K, the next recursion is
executed on Sy to further narrow down the selection (Line 21).
On the other hand, if K’ < K, the next recursion is performed
to select the top (K — K’) elements from Sy, which are then
combined with Sy to obtain the final set of top-K elements
(Line 21).

It is worth mentioning that only CMP (line 8) requires
interactions between S and C; the remaining steps of the
algorithm can be executed locally by each party without any
interaction. The selection function requires O(n) CMPs.

VI. SECURE SAMPLING

In this section, we provide a detailed explanation of our
secure sampling protocol. It takes as input K secret-shared
probabilities (p1,...,pK), where each probability has been
scaled to an integer x; by multiplying it by 2” and dropping
the fractional part. The output of the protocol is a secret-shared
index j:

K
Pr(j=i)=ua; / Zxk
k=1

We will explain how we map this index to a response word in
Section VII-E.

Algorithm 3: Secure Sampling: Ils,mple

Input: S & C hold (x), with x € Z being a vector of
probabilities scaled by 2 > S =2k
Output: S & C get (j), with 5 € [1, K] and
i

Pr(j=i)=uz;/ ;xj

1 S samples v & [0, ol — 1] with v € Zy

2 S & Cinit (sg) :==0

3fori:=1to K —1do

4 S & C (locally) compute (s;) := {x;) + (si—1)

5 S & Cinvoke (b;)' « Femp((v),(s;)) > b=1 if
v>38;; b=0 otherwise

6 end

7 S & Cinit (bo)" := 1 and (bx)" := 0

8 for i :=1 to K do

9 S & C (locally) compute ()" := (bi_1)" & (b:)" >
b, =1 only when s;—1 <v <s;

10 end

Fumux (i, (b))

M=

11 S & C compute (j) :=

K3

Il
N

Algorithm 3 provides a detailed description of the secure
sampling protocol. It is based on the observation that, for a
random p’ € [0, 1], the selected index j satisfies:

j—1 j
Yook <P <Y Dk
k=1 k=1

As (p1,- - ,px) have been scaled by 2%, p’ should should also
be scaled accordingly. To this end, we have S sample an integer
v from [0,2% — 1] (Line 1). S and C securely compare v with

each > xp, Vi € [1, K] (Line 2-6), resulting in a secret-shared

k=1
bit vector (b) that satisfies:
bl=1V1§Z<_jandb1=OV]SZSK

Our next step is to build another secret-shared bit vector (b’)
that satisfies:

b;=0Vi%jand b =1

This can be achieved by performing an XOR operation on
every pair of adjacent bits in (b) (Line 7-10). Then, the desired
K

index is: (j) := > Fumux(i, (/)" (Line 11).
i=1

We remark that it is acceptable for v to be solely sampled
by S, because the final output j remains unknown to S.

VII. THE CipherGPT FRAMEWORK

Figure 2 shows the architecture and workflow of GPT.
Roughly, it takes a sequence of words, encodes them into
a word embedding vector, and passes them through multi-
ple3 transformer decoders, which share the same architecture
but different weights, each decoder involves a masked self-
attention layer, a feed-forward neural network, and two layer

30ur benchmark model involves 12 transformer decoders.

normalization. The output from the last transformer decoder
is fed into a vec2word layer, which generates the predicted
response word.

Inputs
Word Embedding = Position Embedding
1 | ssesasssiismsses
Laverlion LayerNorm
| . Vit
o K |5 <
o z -
o S -
v A g -
=
= ;
] o]
S
o+ =,
S 3)
MatrixMul S -
2.
........................ = |
!) 3
12x " !
! O .
4 @ - Output Word
o .
Q .
o .
........... = P
-
[v]
[0}
Q.
-
©
E3
o
MatrixMul | < -
v
D

Fig. 2: The architecture and workflow of GPT.

Next, we explain in detail how we securely compute this
process.

A. Embedding

It first maps each input word to a numeric vector of length
m, known as word embedding vector, which is achieved by
locating the corresponding row in an embedding matrix. Next,
each word embedding is augmented by a position embedding
vector that is determined by the position of the word within the
input sequence. The position embedding vectors are predefined
and added element-wise to the word embedding vectors. We
accomplish word embedding and position embedding alto-
gether using additively homomorphic encryption (AHE):

1) S employs AHE to encrypt all rows of the embedding
matrix and transfers the resulting ciphertexts to C. In
practice, S represents the entire row w; € Zp; as the
polynomial coefficients of a plaintext then encrypt it
into an RLWE ciphertext E(w;).

2) C locates the corresponding ciphertexts based on
its input words, adds a random vector r; to each
ciphertext: E(wy+r1),- -, E(w, +r,); and returns
them to S.

3) S decrypts the ciphertexts to obtain w; +
ry,--+ , Wy + Iy; adds the position embedding vec-
tors: wi +1; + P, -, Wy + T + Pn.

4) Now, each embedding vector is secret-shared, with
(Xi)c = —r; and (X;)g = W; +1; + Pi.

We remark that step 1 only needs to be performed once and
can be utilized indefinitely, unless there are changes to the
embedding matrix.

B. Layer normalization

After input encoding, the n input words become a secret-
shared matrix (X) with X € Z3,*™. Then, layer normalization
(LayerNorm) needs to be performed for each of its rows
x € Zy. Specifically, each element z; in x is normalized
as follows:

z; —E[x]

T = gy Y + B,
where E [x] = L 3" 2; and Var[x] = -1 3 (z; — E[x])% v

T n
and [are learnable parameters, and € is a small value used to
avoid division by zero. To securely compute LayerNorm, we

have S and C run as follows:

1) Run Fyy: to compute each var; := (z; — E [x])%;
2) Run FyT to compute L

\/ Var[x]|+e g

3 Run Fpye to compute _ziZBl] .
) Mult P V/ Var([x]+e
4) Run Fyy to compute \;%}S‘L .
5) Run F1g to reduce the scale to L bits and truncate

the width to [bits.

>

In principle, S and C need to perform two secret-shared
multiplications, and then run secure truncation (for each multi-
plication) to keep the scale at L bits. However, to ensure both
accuracy and efficiency, we have S and C use BOLE-based
Fmuie for multiplication, and only run “truncate” (Fryync) once
after the LayerNorm computation.

C. Masked self-attention

Self-attention is a mechanism that enables the computation
of a sequence’s representation by relating different positions
within the sequence [51]. The first step in calculating self-
attention is to create three matrices: a query matrix Q, a key
matrix K and a value matrix V. This is accomplished by
multiplying the normalized embeddings X € Zy,*™ by three
matrices (W € Z;’}X’”, Wy € Zg?xm, and Wy € Zy;*™
that were trained during the training process:

(Q) = (X) (Wq);
(K) := (X) (Wk);
(V) = (X) (Wy).

As Wy, Wi and Wy are known beforehand, such
MatrixMuls can be computed by our sVOLE-based solution

described in Section III. After MatrixMul, S and C need to
run Frune to ensure that the scaling remains at L bits. For
the sake of simplicity, we omit mentioning truncations in the
remaining part of this section.

Multi-headed attention. Each of (Q), (K), (V) is then
partitioned into M segments, known as multi-head attention,
where M represents the number of attention heads*. Let

m' = 1}, we have:
(ar) ||+ |l {anr) = (Q). with each q; € Z57™;
(ki) || || (kar) = (K), with each k; € Z2™;

(V), with each v; € Z1X™ .

<
=
I

A score matrix is calculated by taking the product of a
query matrix and a key matrix:

(si) = (as) (k') Vi€ [M].
Each score in s; € Z3;*" determines how much focus to place
on other words when encoding the current word. In this case,
where neither q; nor k; is known beforehand, our sVOLE-
based MatrixMul cannot be applied. Instead, we employ the
AHE-based MatrixMul proposed in [27].

Self-attention masking. After the multi-headed attention, self-
attention masking is applied to zero-out the upper-triangle of
each s;. As a result, every word to the left has a much higher
attention score than words to the right, so the model in practice
only focuses on previous words. This step can be done locally
by S and C without any interaction.

Softmax. A softmax operation is applied to each row of each
(s;), ensuring that the scores are normalized within that row,
with all values being positive and summing up to 1.

To securely compute softmax, we leverage the approach
in [30] as follows:

1) Given a row x € ZJ, as input, we first normalize
L := x; — max(x), and get a vector of

each z;: z]
negative values.

2) We only considering the interval [—16,0]. Namely,
we use Fcmp to compare z; with —16 x 2L and use
Fmux to set the result of e”i to 0 if o} < —16 x 2L,

3) The computation of e® is based the approximation
eTi A (14 2&)2" and can be implement by Fpy
and I:Trunc-

Output. In the final step of self-attention, the softmaxed scores
are used to weight the values in the value matrix:

<Zi> = <S7,> <Vz> Vieg [M],

which is again accomplished by the AHE-based
MatrixMul [27]. Then, all zs are reassembled together:

(Z) = @)][] (Zn)-

4In GPT-2, M = 12 by default.

The output of self-attention is:
(X) = (X) +(2).

D. Feed forward

The output of self-attention is subjected to a LayerNorm
operation. The resulting normalized values are then fed into
a feed-forward neural network, which consists of two fully-
connected (FC) layers and one activation layer.

The first FC layer is computed as:

(X;) == (X) (W) +By,

where X € ZI*™, Wy € 22, By € Z" and X, €
Z”Xk Then, IlggLy (cf. Sectlon IV) is applied to each element
of X, resulting in X} .

The second FC layer is computed as:

(Xy) := (X]) (W3) +Bo,

where X! € Z3*, W, € Z5*™, By € Zy™ and Xy €
Z;lxm. Notice that W and W2 are known beforehand, hence
our sVOLE-based MatrixMul (cf. Section III) can be applied
to the two FC layers.

The output will once again undergo multiple decoders, with
each decoder employing different weights while preserving the
same structure.

E. Vec2word

After multiple transformer decoders that consist of self-
attention, layer normalization, and feed-forward, the resulting
output is then passed through a vec2word layer to generate the
predicted response word. The initial operation in vec2word
involves a MatrixMul to produce a one-hot encoding for all
possible words:

(y0) = (x) (W),
where W € Zka, yo € Z%, and x € ZI} is the last
row of X € ngm (due to an inference- tlme optimization
employed by GPT). This time, k represents the number of all
possible words, which is quite large (e.g., 50257 in GPT-2).
Our sVOLE-based MatrixMul is not suitable here, hence we
employ the AHE-based MatrixMul [27].

Top-K. To maintain a balance between diversity and accuracy,
the K largest values are selected from yg:

(y1) < Iropk ({yo)), with y; € ZL

This is accomplished by our proposed protocol described in
Section V.

Temperature. The temperature T determines the creativity
and diversity of the text generated by GPT: a higher temper-
ature (e.g., ' = 1.5) produces more diverse and creative text,
whereas a lower temperature (e.g., 7" = 0.5) produces more
focused and deterministic text. It is a hyperparameter held by

10

S and to be multiplied with each value in y;. This can be
easily achieved by AHE:

1) Csends S its AHE-encrypted shares E((y1,1)c), -,
E({(y1,K)c). In practice, we encrypt them altogether
by representing them as the polynomial coefficients
of an RLWE ciphertext.

2) S adds its shares to the ciphertexts: E((y1,1)c +
(W11)s): -+ E((y1.k)c + (1.k)s)-

3) S multiplies all ciphertexts by T E(T - y11),- -,
E(T . yLK)'

4) S adds a random number 7; to each ciphertext: E(T -
y1a+r), E(T-yi,x +7k).

5) S returns the resulting ciphertexts to C.

6) S decrypts the ciphertexts, and now the temperatured

values, represented by yo, are secret-shared:
<92»i>c =T Y1, + 74 and <927i>s = —r;, Vi € [K}

Random sampling. A softmax operation is applied to ys to
obtain a probability vector denoted by ys, and the response
word is then randomly sampled based on this probability
vector. Such random sampling ensures that the generated
output is both diverse and contextually relevant.

We employ the secure sampling protocol described in
Section VI to get an index:

<]> <~ HSampIe(YS)-

Given that the word vector is publicly known, if C learns the
index, it can retrieve the final response word from the word
vector. However, naively revealing j to C has a problem, as j is
index of the sampled element in a shuffled and Top-K selected
vector (in Algorithm 2 Line 1-2). Recall that the shuffling
process in Algorithm 2 roughly works as follows:

1) C generates a random permutation 7c; S and C
jointly apply 7mc to the input vector, obtaining the
corresponding secret-shares.

2) S generates a random permutation 7s; S and C

jointly apply 7s to the output of 7c, obtaining the
corresponding secret-shares.

The Top-K selection process is comparison-based and the in-
dexes of selected elements are revealed. We use ¢; to represent
that the ¢-th selected element corresponds to the ti-th element
in shuffled vector. A key observation is that the “ ¢ ” in Line 11
of Algonthm 3 is public. To thls end, We have S compute
i’ := mg ' (t;) and secret-share i’. Then, we replace Line 11 of
Algorithm 3 with:

K
)= Fuaux(@), 0)").

i=1
Now, revealing j to C will not disclose any information about
the input, because the value v is sampled by S in Algorithm 3
(Line 1) and 775 -1 is unknown to C. After obtaining j, C
computes j' := 7 ' (j) which is the correct index in the word
vector.

VIII. EVALUATION

In this section, we provide a full-fledged implementation
of CipherGPT and systematically evaluate its performance.

A. Implementation

We fully implemented CipherGPT in C++ and set the secu-
rity parameter as 128. We use the Microsoft SEAL homomor-
phic encryption library (version 4.0)° for AHE and use hexl®
to accelerate HE operation with AXV-512 instruction. Specif-
ically, we use the Brakerski-Fan-Vercauteren (BFV) [11], [19]
scheme, with N = 4 096 and the default parameters in SEAL
for 128-bit security. To ensure circuit privacy, we perform noise
flooding [45], [30] on the returned ciphertexts.

e For uniform bitwidth product, we use the open-
sourced (BOLE) code in BumbleBee’ [30].

e For non-uniform bitwidth product, we use the open-
sourced code in SIRNN® [43].

e For secure GELU, we implemented LUT, Mult, Trunc,
CMP and MUX by leveraging the corresponding open-
sourced code in SIRNN with replacing IKNP-OT [32]
with Ferret OT® [57] and replacing OT-based MUL
with FHE-based BOLE [30].

e For sVOLE-based MatrixMul, we implemented the
reverse-VOLE with AHE and incorporated the Half-
tree [26], [25] optimization to PPRF. We also incor-
porated the optimizations in [56], [6], and followed
all advice in [33] to protect against known attacks.

e For TopK, since the secret-shared shuffle in [14] is
not open-sourced, we implemented it by ourselves.

e Since Bolt'? [40] is still unavailable, we implemented
it based on SIRNN with Ferret OT and followed the
parameters given in their paper.

B. Optimizations for HE

We leverage two optimizations to save the communication
of transferring ciphertexts, which are proposed by prior work
and used by many FHE-based applications [35], [30].

1) Using the symmetric version of FHE. In the sym-
metric version, a freshly encrypted ciphertext con-
tains two ciphertext polynomials, one of which is
uniformly sampled and can be represented by a seed
instead. It enables saving half of the communication
when sending ciphertext without affecting security

and correctness.
2) Performing modulus switch before returned. The FHE
ciphertexts contains several (e.g., 2) polynomials in
Zg[z]/ (2N +1), which can be converted to a smaller
ring Z [z]/(z"Y + 1) where ¢’ < ¢ without affecting
the decryption result. This operation can be achieved

Shttps://github.com/Microsoft/SEAL
Shttps://github.com/intel/hex]
https://github.com/secretflow/spu
8https://github.com/mpc-msri/EzPC/tree/master/SIRNN
9https://github.com/emp-toolkit/emp- ot
10https://github.com/Clive2312/BOLT

11

by modulus reduction technique [13], which require
public parameter only so it can be performed by
the party without secret key. This optimization could

. lo
compress ciphertexts at a factor of —ed
log,/

C. Experimental setup

Following SIRNN [43] and Iron [27], we used a LAN
network setting, where the bandwidth is 3000 Mbps and RTT
is 0.8ms. All experiments were performed on AWS c5.9xlarge
instances with Intel Xeon 8000 series CPUs at 3.6GHz, and
they were conducted using a single thread. All results are the
average values of 5 runs and the variances are very small.

We benchmark the GPT-2 model proposed by Radford [42],
which consists of 117 million parameters, 12 transformer de-
coders, with an embedding size of 768. Following Cheetah [29]
and CrypTFlow2 [44], we left-shift the floating point numbers
for L = 12 bits and drop the fractional part. During the
inference, we use Frnc to make sure the largest value is
smaller than 2! — 1 with [= 37.

D. Evaluation results

Evaluation of GELU.

When evaluating our GELU protocol (i.e., Algorithm 1),
we set « = 3.25 and s = 6. Given that L = 12, the
actual part to be approximated is [—3.25 x 2'2,3.25 x 2!2],
and we use a 64-piece spline to approximate the curve within.
Specifically, we partition the part [—3.25 x 2'2,3.25 x 212]
into 25 equidistant intervals of length 416.

Table IV shows the comparison among Iron and Bumble-
Bee, Bolt and our solution for GELU. To compute GELU for
each 37-bit element in a 220-length vector, our protocol takes
30.56s and 764.96MB of bandwidth. Compared with Bolt, it
achieves a 1.8x speedup and a 2.5x reduction in communi-
cation. For fairness, we replace the OT-based multiplication
used in Bolt with more efficient BOLE to get Bolt+. Compared
with Bolt+, we still achieves a 1.7x speedup.

TABLE IV: Evaluation of GELU (we use a 64-piece spline to
approximate the curve within [—3.25 x 212,325 x 21%)).

GELU(72% Runtime | Comm. | Maximal | Average
(Z337) (s) (MB) | ULP Err. | ULP Err.
Iron
2] 694 12 225 9 1.93
Bolt
[40] 5561 | 196223 37 455
Bolt+
ol oy | 5222 | 59928 37 455
B““[]g(l)f]’Bee 7352 | 641.02 73 10.82
o 3056 | 764.96 5 1.06
urs 18x | | 25x] | 74x] | 43x]

We evaluate the precision of our approximation by testing
its ULP error, which is defined as the number of representable
numbers between the exact real result y and the approximated

result g [23]. Since we have scaled the floating-point numbers
into integers, the ULP error is exactly |y — ¢|. Following
SIRNN [43], we use exhaustive testing to evaluate the ULP
errors:

1) run the secure GELU protocols on all possible inte-
gers within [—5 x 2125 x 212],

2) compare the ULP error between each output and the
corresponding infinite precision real result,

3) report both the maximal ULP error and the average

ULP error.

The results (in Table IV) show that our solution introduces
much smaller ULP errors compared with Iron, Bolt and
BumbleBee. The multi-step process in Iron (flowing SIRNN)
involves approximating exponentiation and reciprocation sepa-
rately, introducing ULP errors at each step. These errors accu-
mulate throughout the process, resulting in a larger overall er-
ror compared to our single-step approach. Bolt and BumbleBee
limit the number of split parts and the degree of polynomials
to ensure efficiency. Compared with Bolt (3 parts and 4-degree
polynomials), we achieve 7.4 x accuracy in maximal ULP error
and 4.4x in average ULP error. BumbleBee splits GELU into
4 parts and uses polynomials up to 6 degree. The polynomials
used in BumbleBee are constrained to have overlaps around
split points, which limits the accuracy. Compared with Bolt (4
parts and 6-degree polynomials), we achieve 14.6x accuracy
in maximal ULP error and 10.2x in average ULP error.

Evaluation of MatrixMul. Recall that our sVOLE-based
MatrixMul is suitable for the case where the sizes of the two
matrices are unbalanced. Therefore, we measure the amortized
cost of performing Z§§9”68 X Z;g? X768 for ¢ iterations, where
the Z;gfxmg matrix remains constant across all iterations.
While the size of ¢ may not have an impact on other protocols,
it is significant for our approach as we can preprocess all ¢
iterations together. We acknowledge that this comparison may
be considered unfair, but it accurately reflects the setting for
GPT inference. Bolt [40] and BumbleBee [30] use SIMD rota-
tions and homomorphic automorphism operations respectively
to save communication but increase computation complexity.
Moreover, Bolt [40] uses a comparison and a multiplexer to
convert the output of SIMD-based MatrixMul from prime field
F, to 2! ring and we take the cost into account.

Figure 3 shows the comparison between homomorphic
encryption based approaches [27], [40], [30] and our protocol
(we did not differentiate between the preprocessing time and
online time in this figure). Considering that ChatGPT often
generates several hundred words in a single response, t = 256
would be a reasonable number of iterations. The amortized
runtime for our protocol is 1 462ms, 2.3 x speedup over Iron,
6.4x speedup over Bolt and 5.8 x speedup over BumbleBee;
the amortized communication for our protocol is 8.2MB,
3.7x reduction over Iron, 3.0x reduction over Bolt and 1.4 x
reduction over BumbleBee. When the number of response
words increases to 1 024, which is also quite common, our
protocol demonstrates even greater performance advantages.
Specifically, our protocol outperforms Iron by 2.5X in runtime
and 11.2x in communication, outperforms Bolt by 6.9x in
runtime and 8.9x in communication and outperforms Bum-
bleBee by 6.2x in runtime and 4.1x in communication.

12

i Ao Ao O YR YR YR "

\E’ ._ _‘_ _’_ _‘_ _’_ _’___ _’
8000 -

Q

1S

P sVOLE

g 60001 -4-- |ron

o A BumbleBee

D 4000 —— Bolt

N [. r—————— —————— —————— S —————— -

£

o

£ 2000

< T T T T T T T

24 25 26 27 28 29 210
Iterations

(a) Amortized Runtime vs. Iterations.

)
5120-
c sVOLE
.g 100 =-+=- |ron
8 A~ BumbleBee
c 80 —4— Bolt
=]
€ 60
€
S 40;

e ————— e —————— e ——— —e—————— —e—————— e —————— -
S) i, o i i, U N
E ’_ _’_ _‘_ _‘_ _’_ _‘_ _‘
—_
o 01 . , , . . .
e 24 25 26 27 28 29 210
< Iterations

(b) Amortized Communication vs. Iterations.

Fig. 3: Evaluation of MatrixMul (we compute 23576”68 X
Z;gf X768 for multiple iterations and measure the amortized
cost).

Evaluation of TopK. We benchmark our TopK protocol (cf.
Algorithm 2) for selecting 100 elements from a vector of
Z33%57. 1t takes 3 281ms and 136.1MB bandwidth. Compared
with the commonly used Bitonic sorting network [28], we
achieve 8.8x speedup in runtime and 14.8x reduction in
communication.

Evaluation of CipherGPT. We run CipherGPT to generate a
sentence that consists of 256 response words. Table V (refer to
Appendix A) lists the amortized runtime and communication
for individual operations and their corresponding proportions.
In terms of computation, MatrixMul, GELU, Trunc, Softmax
and LayerNorm occupy 34.39%, 21%, 18.85%, 15.1% and
10.07% of the runtime respectively. In terms of communi-
cation, GELU, Softmax, LayerNorm, MatrixMul and Trunc
occupy 45.78%, 22.06%, 10.76%, 10.49% and 10% of the
bandwidth respectively.

We also measured the accuracy loss introduced by
CipherGPT. We randomly selected 10 000 sentences from
the WikiText-103 dataset [36] and ran CipherGPT (with the
configurations shown in Table V) on them. We then compared
the outputs of CipherGPT with the outputs generated by
GPT-original (i.e., the original GPT model with floating-point
numbers and without any truncations or approximations). To
eliminate the interference of top-K sampling, we set K = 1 for
both CipherGPT and GPT-original to predict the most possible
word. The evaluation results show that 99.22% of the outputs

generated by CipherGPT are identical to the outputs produced
by GPT-original. Even for the outputs that are different (78
out of 10 000), each of these “wrong” outputs still falls within
the top-5 outputs produced by running GPT-original on the
corresponding sentence.

IX. DISCUSSION

Our benchmark (Table V) shows that CipherGPT requires
a latency of 20 minutes and a bandwidth of 15 GB to produce
a token. This level of cost is currently impractical, and it
can be anticipated that achieving practicality with existing
cryptographic tools will be challenging. However, ongoing
advancements in computing and network technologies, along
with the emergence of new application scenarios, hold the
potential to pave the way for practical implementations of
secure GPT inference in the future.

Our current implementation’s use of a single thread leaves
significant room for potential speedup by leveraging parallel
computing technologies, such as GPU or FPGA acceleration.
We could even explore the new computing architectures such
as in-memory computing [50] and in-storage computing [49].

The emergence of the 100 Gigabit Ethernet [1] under the
IEEE standard offers a substantial boost in bandwidth capacity.
Once deployed, this higher bandwidth will effectively address
bandwidth concerns associated with secure GPT inference.

ChatGPT is designed to generate responses in real-time,
providing quick and interactive conversations with users. How-
ever, secure GPT inference introduces a notable increase in
latency, posing challenges for its practical deployment in
scenarios where real-time responsiveness is essential. On the
other hand, there are still scenarios where real-time responsive-
ness may not be critical, and secure GPT inference can find
valuable applications. For instance, consider a situation where
an institution possesses a set of prompts that can effectively
evaluate the LLM performance, and a model owner seeks to
assess her model’s proficiency and receive a score from the
institution. Preserving the confidentiality of the institution’s
prompts is essential to prevent model owners from gaining an
unfair advantage by fine-tuning their models on these prompts.
Preserving the confidentiality of the model is another critical
concern, as the model is considered to be a valuable and
proprietary asset by its owner. To this end, we could use
secure GPT inference to preserve the confidentiality of both
the model and the prompts; and its long latency is tolerable in
this scenario.

X. RELATED WORK

Secure inference can be achieved via generic secure two-
party (2PC) computation [58], [24] or fully homomorphic
encryption (FHE) [21]. However, such solutions would ex-
hibit high communication and computational cost. Therefore,
it is necessary to develop customized protocols for secure
inference. Efforts in this field can be traced back to early
2010s [39], [7], [55], with many of the early works primarily
focusing on simpler machine learning algorithms such as
SVMs and linear regression.

CryptoNets [22] is recognized as the initial endeavor in
secure neural network inference. It relies solely on FHE, which

13

limits its applicability to neural networks with a small number
of layers. Additionally, it can only support linear operations
and low-degree polynomials. MiniONN [34] is the first work
that customizes 2PC protocols for secure neural network
inference. It proposes a spline-based approximation for non-
linear operations, which inspires our solution for secure GELU.

GAZELLE [31] reduces the cost of the linear layers by
mapping them to SIMD-based matrix-vector multiplication and
convolution routines. Cheetah [29] substitutes SIMD with co-
efficient packing to eliminate the expensive rotations. Iron [27]
further reduces the communication complexity of Cheetah.
In terms of activations, CrypTFlow2 [44] proposes efficient
protocols for secure comparison and division. SIRNN [43]
provides crypto-friendly approximations to math functions
such as exponential, sigmoid, tanh and reciprocal square root;
as well as the corresponding 2PC implementations.

Another research direction for improving the performance
of secure inference is to change the model structure to a
more crypto-friendly one. For example, DeepSecure [48],
XONN [46] and Quotient [2] are specifically designed for bi-
narized neural networks [17]. DeepSecure additionally prunes
the model to reduce the number of activations. Delphi [37]
provides a planner that leverages neural architecture search
to automatically generate neural network architecture con-
figurations that navigate the performance-accuracy trade-offs.
However, all such solutions require retraining the model, which
is less desirable to machine learning practitioners.

Some solutions [38], [53] leverage GPU parallelism to
accelerate the online phase, but they cannot do anything about
preprocessing as cryptographic operations dominate the pre-
processing phase in such protocols. The most efficient GPU-
based solution, i.e. GForce [38], requires 14-15 minutes in total
to perform one inference for VGG-16 (trained on CIFAR-10
and CIFAR-100).

The discussion so far focuses on two-party protocols, as
we believe secure inference naturally aligns with this setting.
However, several other works [47], [52], [5] have instead tar-
geted the three-party setting, where the model is secret-shared
between two non-colluding servers and the client interacts
with these servers to obtain the prediction. The three-party
protocols are generally more efficient than two-party ones, but
the assumption of non-colluding servers is often considered to
be unrealistic in practice.

XI. CONCLUSION

In response to the privacy concerns raised by ChatGPT,
we develop CipherGPT, the first framework for secure GPT
inference. It encompasses a series of innovative protocols,
including a secure matrix multiplication that is customized
for GPT inference, a novel protocol for securely computing
GELU, and the first protocol for top-K sampling. We provide
a comprehensive benchmark for CipherGPT, which can serve
as a reference for future research in this area.

REFERENCES

[1] IEEE P802.3ba. https://www.ieee802.org/3/ba/.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, and Adria
Gascon. Quotient: Two-party secure neural network training and
prediction. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS °19, page 1231-1247,
New York, NY, USA, 2019. Association for Computing Machinery.

Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan
Rosemarin, and Hikaru Tsuchida. Secure graph analysis at scale. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS 21, page 610-629, New York, NY,
USA, 2021. Association for Computing Machinery.

Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan
Rosemarin, and Hikaru Tsuchida. Secure graph analysis at scale. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 610-629, 2021.

Assi Barak, Daniel Escudero, Anders P. K. Dalskov, and Marcel Keller.
Secure evaluation of quantized neural networks. JACR Cryptol. ePrint
Arch., page 131, 2019.

Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter
Scholl. MozZ,y arella: Efficient vector-ole and zero-knowledge proofs
over Zqp . In Advances in Cryptology — CRYPTO 2022: 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Barbara,
CA, USA, August 15-18, 2022, Proceedings, Part 1V, page 329-358,
Berlin, Heidelberg, 2022. Springer-Verlag.

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser.
Machine learning classification over encrypted data. In 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015. The Internet Society,
2015.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Com-
pressing vector ole. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 18,
page 896-912, New York, NY, USA, 2018. Association for Computing
Machinery.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Pe-
ter Rindal, and Peter Scholl. Efficient two-round OT extension and silent
non-interactive secure computation. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pages 291—
308. ACM, 2019.

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
and Peter Scholl. Efficient pseudorandom correlation generators:
Silent OT extension and more. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part III, volume 11694 of Lecture
Notes in Computer Science, pages 489-518. Springer, 2019.

Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical gapsvp. JACR Cryptol. ePrint Arch., page 78,
2012.

Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic en-
cryption from ring-lwe and security for key dependent messages. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 505-524. Springer, 2011.

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) lwe. SIAM Journal on computing,
43(2):831-871, 2014.

Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared
shuffle. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology — ASIACRYPT 2020, pages 342-372, Cham, 2020. Springer
International Publishing.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song.
Homomorphic encryption for arithmetic of approximate numbers. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I, volume 10624 of
Lecture Notes in Computer Science, pages 409-437. Springer, 2017.

Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Naoto Kiribuchi,

14

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

and Benny Pinkas. An efficient secure three-party sorting protocol with
an honest majority. Cryptology ePrint Archive, Paper 2019/695, 2019.
https://eprint.iacr.org/2019/695.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee,
Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 3123-3131, 2015.

Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas
Schneider, Shaza Zeitouni, and Michael Zohner. Pushing the communi-
cation barrier in secure computation using lookup tables. In 24th Annual
Network and Distributed System Security Symposium, NDSS 2017, San
Diego, California, USA, February 26 - March 1, 2017. The Internet
Society, 2017.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. JACR Cryptol. ePrint Arch., page 144, 2012.

Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and
Wei Xu. Nfgen: Automatic non-linear function evaluation code gen-
erator for general-purpose mpc platforms. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22, page 995-1008, New York, NY, USA, 2022. Association for
Computing Machinery.

Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford, CA, USA, 2009. AAI3382729.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 201-210. JMLR.org,
2016.

David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23(1):5-48, mar 1991.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play Any
Mental Game, or a Completeness Theorem for Protocols with Honest
Majority, page 307-328. Association for Computing Machinery, New
York, NY, USA, 2019.

Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure
multiparty computation from fixed-key block ciphers. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 825-841, 2020.

Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang
Zhang, and Zheli Liu. Half-tree: Halving the cost of tree expansion
in cot and dpf. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology — EUROCRYPT 2023, pages 330-362, Cham, 2023.
Springer Nature Switzerland.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and
Tianwei Zhang. Iron: Private inference on transformers. In NeurlPS,
2022.

Yan Huang, David Evans, and Jonathan Katz. Private set intersection:
Are garbled circuits better than custom protocols? In [/9th Annual
Network and Distributed System Security Symposium, NDSS 2012, San
Diego, California, USA, February 5-8, 2012. The Internet Society, 2012.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Chee-
tah: Lean and fast secure Two-Party deep neural network inference. In
31st USENIX Security Symposium (USENIX Security 22), pages 809—
826, Boston, MA, August 2022. USENIX Association.

Wen jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Kui Ren,
Cheng Hong, Tao Wei, and WenGuang Chen. Bumblebee: Secure two-
party inference framework for large transformers. Cryptology ePrint
Archive, Paper 2023/1678, 2023. https://eprint.iacr.org/2023/1678.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A low latency framework for secure neural network in-
ference. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1651-1669, Baltimore, MD, August 2018. USENIX Association.

Vladimir Kolesnikov and Ranjit Kumaresan. Improved ot extension
for transferring short secrets. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology — CRYPTO 2013, pages 54-70, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. The hardness of lpn
over any integer ring and field for pcg applications. Cryptology ePrint
Archive, Paper 2022/712, 2022. https://eprint.iacr.org/2022/712.

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network
predictions via minionn transformations. In Bhavani Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 619-631. ACM, 2017.

Jian Liu, Jingyu Li, Di Wu, and Kui Ren. Pirana: Faster multi-query pir
via constant-weight codes. Cryptology ePrint Archive, Paper 2022/1401,
2022. https://eprint.iacr.org/2022/1401.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.
Pointer sentinel mixture models. ArXiv, abs/1609.07843, 2016.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting
Zheng, and Raluca Ada Popa. Delphi: A cryptographic inference service
for neural networks. In Srdjan Capkun and Franziska Roesner, editors,
29th USENIX Security Symposium, USENIX Security 2020, August 12-
14, 2020, pages 2505-2522. USENIX Association, 2020.

Lucien K. L. Ng and Sherman S. M. Chow. GForce: GPU-Friendly
oblivious and rapid neural network inference. In 30th USENIX Se-
curity Symposium (USENIX Security 21), pages 2147-2164. USENIX
Association, August 2021.

Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds
of millions of records. In 2013 IEEE Symposium on Security and
Privacy, pages 334-348, 2013.

Qi Pang, Jinhao Zhu, Helen Mollering, Wenting Zheng, and Thomas
Schneider. Bolt: Privacy-preserving, accurate and efficient inference
for transformers. Cryptology ePrint Archive, Paper 2023/1893, 2023.
https://eprint.iacr.org/2023/1893.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.
Improving language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAl blog, 1(8):9, 2019.

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya
Gupta, Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. Sirnn:
A math library for secure RNN inference. In 42nd IEEE Symposium on
Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021, pages 1003-1020. IEEE, 2021.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chan-
dran, Divya Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow2:
Practical 2-party secure inference. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’20, page 325-342, New York, NY, USA, 2020. Association for
Computing Machinery.

Deevashwer Rathee, Thomas Schneider, and K. K. Shukla. Im-
proved multiplication triple generation over rings via rlwe-based ahe.
In Cryptology and Network Security: 18th International Conference,
CANS 2019, Fuzhou, China, October 25-27, 2019, Proceedings, page
347-359, Berlin, Heidelberg, 2019. Springer-Verlag.

M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin
Lauter, and Farinaz Koushanfar. Xonn: Xnor-based oblivious deep
neural network inference. In Proceedings of the 28th USENIX Con-
ference on Security Symposium, SEC’19, page 1501-1518, USA, 2019.
USENIX Association.

15

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A
hybrid secure computation framework for machine learning applica-
tions. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim,
Javier Lopez, and Taesoo Kim, editors, Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, AsiaCCS
2018, Incheon, Republic of Korea, June 04-08, 2018, pages 707-721.
ACM, 2018.

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar.
Deepsecure: Scalable provably-secure deep learning. In Proceedings of
the 55th Annual Design Automation Conference, DAC ’18, New York,
NY, USA, 2018. Association for Computing Machinery.

Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing In-

Storage computing system for emerging High-Performance drive. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), pages

379-394, Renton, WA, July 2019. USENIX Association.

Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and
Evangelos Eleftheriou. Memory devices and applications for in-memory
computing. Nature nanotechnology, 15(7):529-544, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, £ ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party
secure computation for neural network training. Proc. Priv. Enhancing
Technol., 2019(3):26-49, 2019.

Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. Piranha: A
GPU platform for secure computation. In Kevin R. B. Butler and Kurt
Thomas, editors, 31st USENIX Security Symposium, USENIX Security
2022, Boston, MA, USA, August 10-12, 2022, pages 827-844. USENIX
Association, 2022.

Chengkun Wei, Ruijing Yu, Yuan Fan, Wenzhi Chen, and Tianhao
Wang. Securely sampling discrete gaussian noise for multi-party dif-
ferential privacy. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’23, page 2262-2276,
New York, NY, USA, 2023. Association for Computing Machinery.

David J. Wu, Tony Feng, Michael Naehrig, and Kristin E. Lauter.
Privately evaluating decision trees and random forests. Proc. Priv.
Enhancing Technol., 2016(4):335-355, 2016.

Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quick-
silver: Efficient and affordable zero-knowledge proofs for circuits and
polynomials over any field. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, CCS °21, page
2986-3001, New York, NY, USA, 2021. Association for Computing
Machinery.

Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang.
Ferret: Fast extension for correlated OT with small communication.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, CCS ’'20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020,
pages 1607-1626. ACM, 2020.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986),
pages 162—167, 1986.

APPENDIX

TABLE V: A comprehensive benchmark for CipherGPT in generating a single response word; these are amortized results for

the generation of 256 response words; the input is a vector of 256 words.

Layer ‘ Operation ‘ Output«<Input ‘ Method ‘ Times ‘ Runtime (ms) ‘ Runtime % | Comm. (MB) ‘ Comm. %
Embedding | Embedding 23077 728, L =12 §VII-A 1 46 < 0.01% 2.20 < 0.01%
LayerNorm | LayerNorm ZZ3EXTO8 72T [=12 §VII-B 12 4756 x 12 4.83% 65 x 12 5.17%

MatrixMul | (Z23877%% « 23397708 » 770977%) x 3, L =24 | §III 12 4358 x 12 4.43% 21.79 x 12 1.73%
Trunc (23587708 « 7238°T%%) x 3, L =12 [43] 12 3117 x 12 3.17% 24.75 x 12 1.97%
Multi-head (Z38%0% x 12 « ZZ8*T%) x 3, L =12 plain 12 (<1)x12 ~ 0% 0 0%
MatrixMul | (22387250 « 220070 x 2537%%%) x 12, L=24 | [30] 12 7614 x 12 7.74% 29.77 x 12 2.37%
Trunc (238256 72397256) x 12, L = 12 [43] 12 3262 x 12 3.31% 30.61 x 12 2.43%
Self-attention | Masking (23387258 7239°%56) x 12, L = 12 plain 12 (<1)x12 ~ 0% 0 0%
Softmax (ZEE7256 7236%2%6) 5 12, L = 12, (by row) | §VII-C 12 14865 x 12 15.10% 277.59 x 12 22.06%
MatrixMul | (Z259%%4 «— 735387256 x 7200754 x 12, L=24 | [30] 12 7570 x 12 7.69% 10.62 x 12 0.84%
Trunc (Z38*0% « 723070y x 12, L =12 [43] 12 2910 x 12 2.96% 13.03 x 12 1.04%
Reassemble 223978 (22604 x 12), L =12 plain 12 (<1)x12 ~ 0% 0 0%
MatrixMul Z30XTO8 (7200708 ZISSXTOS [=24 §III 12 1463 x 12 1.49% 8.20 x 12 0.65%
Trunc L2397 - 7T L =12 [43] 12 2910 x 12 2.96 % 13.03 x 12 1.04%
Matrix Add Z238XTO8 o 730 XTO8 L g BT L =12 plain 12 (<1)x12 ~ 0% 0 0%
LayerNorm | LayerNorm Z239XTO8 g ZEXT68 L =12 §VII-B 12 4756 x 12 4.83% 65 x 12 5.17%
MatrixMul Z23G<BT2 (g 20XTO8 o TOBX0T2 L = 94 §III 12 5997 x 12 6.09% 28.5 x 12 2.27%
Trunc 7239302 g2 [= 12 [43] 12 3204 x 12 3.26% 30.61 x 12 2.43%
Feedforward GELU 223533072 ZQ??“‘J.”,‘ L=12 §IV 12 20657 x 12 20.99% 575.91 x 12 45.78%
MatrixMul Z230XTO8 (7 200X30T2 o IR L =24 §III 12 5841 x 12 5.94% 32.42 x 12 2.58%
Trunc L2397 - 7T L =12 [43] 12 2910 x 12 2.96% 13.03 x 12 1.04%
Matrix Add Z2REXTO8 (g 2EXTO8 4 g 26XT68 [=12 plain 12 (<1)x12 ~ 0% 0 0%
LayerNorm | LayerNorm Z235XT08 g ZEXT68 L =12 §VII-B 1 4756 0.40% 65 0.43%
MatrixMul Z9PT — TG x 250 [=24 [30] 1 12000 1.02% 5.5 0.04%
Trunc TP 7597, L = 12 [43] 1 2834 0.24% 8.67 0.06%
Shuffle L3 — 7597, L =12 [14] 1 4004 0.34% 513 0.34%
TopK 730« 7597, L =12 §v 1 1277 0.11% 84.8 0.56%
Vec2Word | Temperature 70— 73N, L =24 §VII-E 1 6 < 0.01% 0.084 < 0.01%
Trunc 730« 7MW, L =12 [43] 1 18 < 0.01% 0.14 < 0.01%
Softmax 730+ 730, L =12 VII-C 1 1705 0.14% 0.71 < 0.01%
Sampling Loar + Z3W, L =12 §VI 1 7.843 < 0.01% 0.11 < 0.01%
Total 1180 933 15 096.82

16

