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Abstract. Masking is a prominent strategy to protect cryptographic implementations
against side-channel analysis. Its popularity arises from the exponential security gains
that can be achieved for (approximately) quadratic resource utilization. Many variants
of the countermeasure tailored for different optimization goals have been proposed.
The common denominator among all of them is the implicit demand for robust and
high entropy randomness. Simply assuming that uniformly distributed random bits
are available, without taking the cost of their generation into account, leads to a
poor understanding of the efficiency vs. security tradeoff of masked implementations.
This is especially relevant in case of hardware masking schemes which are known to
consume large amounts of random bits per cycle due to parallelism. Currently, there
seems to be no consensus on how to most efficiently derive many pseudo-random
bits per clock cycle from an initial seed and with properties suitable for masked
hardware implementations. In this work, we evaluate a number of building blocks
for this purpose and find that hardware-oriented stream ciphers like Trivium and its
reduced-security variant Bivium B outperform most competitors when implemented
in an unrolled fashion. Unrolled implementations of these primitives enable the
flexible generation of many bits per cycle, which is crucial for satisfying the large
randomness demands of state-of-the-art masking schemes. According to our analysis,
only Linear Feedback Shift Registers (LFSRs), when also unrolled, are capable of
producing long non-repetitive sequences of random-looking bits at a higher rate per
cycle for the same or lower cost as Trivium and Bivium B. Yet, these instances do not
provide black-box security as they generate only linear outputs. We experimentally
demonstrate that using multiple output bits from an LFSR in the same masked
implementation can violate probing security and even lead to harmful randomness
cancellations. Circumventing these problems, and enabling an independent analysis
of randomness generation and masking, requires the use of cryptographically stronger
primitives like stream ciphers. As a result of our studies, we provide an evidence-
based estimate for the cost of securely generating n fresh random bits per cycle.
Depending on the desired level of black-box security and operating frequency, this
cost can be as low as 20n to 30n ASIC gate equivalents (GE) or 3n to 4n FPGA
look-up tables (LUTs), where n is the number of random bits required. Our results
demonstrate that the cost per bit is (sometimes significantly) lower than estimated in
previous works, incentivizing parallelism whenever exploitable. This provides further
motivation to potentially move low randomness usage from a primary to a secondary
design goal in hardware masking research.
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1 Introduction

Side-channel analysis is known to be a significant threat to implementations of cryptographic
algorithms and protocols that must operate under adversarial exposure. If untrusted
individuals gain physical access to a cryptographic device, measurable quantities such
as power consumption or electromagnetic emanations during the processing of secret
material can be monitored to extract sensitive information. This type of attack was first
demonstrated by Kocher et al. in 1999 [KJJ99] and has since inspired a great deal of research
on the theory and practice of implementation security. Masking (also known as secret
sharing) is a well-known countermeasure to protect cryptographic implementations from
side-channel analysis adversaries. It was first proposed by Chari et al. in 1999 [CJRR99],
and is nowadays widely considered to be the most potent protection mechanism against
passive physical adversaries. Its core principle is based on splitting each potentially
sensitive intermediate variable into a discrete number of shares, in such a way that
only the combination of all shares reveals information about the secrets. Using this
technique, adversaries can be forced (implicitly or explicitly) to collect information on all
individual shares before combining them to reconstruct the sensitive intermediates. Yet,
learning information about the secrets from partial information on their shares is a hard
problem. To be precise, if the leakage of the individual shares is sufficiently noisy and
independent, masking is capable of providing exponential security in the number of shares
against adversaries trying to extract sensitive information from side-channel observations –
see [PR13, DDF14, DFS15] for respective formalizations. The implementation overheads
of masking are typically estimated to be quadratic in the number of shares due to the
known complexity of masked multiplications [ISW03].

Yet, and especially when masking is applied to hardware implementations of crypto-
graphic algorithms, the independence assumption is often invalidated by physical defaults
such as glitches [MPG05], transitions [CGP+12] and couplings [CBG+17]. It has taken
the research community several years to develop generalizable strategies to avoid these
issues at the conceptual level. The first solid approaches toward preventing glitches from
recombining shares in hardware masking schemes came in the form of threshold implemen-
tations [NRR06, NRS08]. A few years later, other masking schemes with a lower number of
shares to achieve a given protection order (compared to threshold implementations) were
proposed [RBN+15, GMK16, GMK17, GM17]. These schemes also targeted higher-order
security for the first time, after it was found that higher-order threshold implementations
suffered from conceptual flaws [BGN+14a, Rep15, RBN+15]. Simultaneously, independent
researchers started investigating the requirements needed to securely compose masked
building blocks into arbitrary cipher implementations, resulting in the security notion of
Strong Non-Interference (SNI) [BBD+16]. Following these advances, the robust probing
model was introduced to allow formal analysis of composability and robustness against
physical defaults jointly [FGP+18]. Subsequently, it was shown at CHES 2019 that many
previously proposed hardware masking schemes suffer from composability flaws under the
robust probing model at higher orders, giving substantial evidence that a formal analysis
is beneficial to properly generalize schemes to arbitrary orders [MMSS19]. Finally, in
2020, a new composability notion called Probe Isolating Non-Interference (PINI) was
introduced to allow trivial composition of masked implementations of linear and non-linear
functions [CS20, CGLS21]. Based on this notion, new masked gadgets have been intro-
duced [CGLS21, KM22b, KM22a] along with tools that allow formal verification of their
properties [KSM20, CGLS21] and automated generation of full masked hardware circuits
based on PINI gadgets [KMMS22].
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1.1 Motivation
Clearly, the past few years have advanced our collective understanding of how to best
capture physical defaults such as transitions, couplings, and glitches through proven design
principles. This, in turn, enables fast and efficient masked hardware implementations
that can leverage parallelism to simultaneously operate on the individual shares of a
secret intermediate without sacrificing security against physical adversaries. In order
to achieve this symbiosis between performance and security, hardware masking schemes
often consume a notoriously large number of random bits per cycle. Indeed, in the past
several years, a strong trend is observable in the community towards constructing masked
hardware implementations entirely from circuit gadgets that are provably robust probing
secure and composable (e.g., [CS21, KSM22, MCS22, KMMS22]). This is done in order
to automatically derive guarantees that the resulting full hardware implementations are
provably secure themselves. The gadgets used for this purpose typically consume a certain
amount of fresh random bits per clock cycle to satisfy the required properties, e.g., d(d−1)/2
bits for one 2-input AND gate with d shares in domain-oriented masking [GMK16] or
HPC2 [CGLS21]. Naturally, full ciphers composed of many such gadgets also need many
bits of fresh randomness per cycle, especially if those implementations leverage parallelism,
are optimized for low latency and if higher-order protection is required. Hence, it is not
uncommon for parallel masked hardware implementations of full block ciphers to require
hundreds or even thousands of independent, uniformly distributed, and unpredictable
random bits per cycle. Recent works presented at CHES 2022 [KMMS22] and CCS
2022 [KM22b] list exemplary cost and performance figures for masked round-based cipher
implementations that demand multiple thousands of freshly random bits in each cycle. Even
for serialized implementations or single S-boxes it is not uncommon to see requirements in
the range of hundreds of bits per cycle. Despite this huge demand, most works on the topic
have considered the efficient generation and distribution of these bits to be beyond their
scope. In fact, the majority of publications in the masking literature simply assumes the
existence of robust and high-entropy randomness sources. We argue that the lack of focus
on this topic can have negative consequences, since concurrent randomness generation is a
crucial part of masked implementations, especially in hardware. Failing to include this
component in the evaluation of masking schemes clearly leads to a poor understanding of
the efficiency vs. security tradeoff of secure implementations.

1.2 Research Question
Our work aspires to answer the question whether such huge demands for randomness
can be satisfied in hardware and at what cost, as this aspect has been neglected in most
previous publications. While reducing randomness requirements is an often researched
topic (initiated in [BBP+16], with many follow-up works), studies of the actual cost of
randomness for masking are surprisingly missing in the literature. For example, the
authors of the recent [KM22a] consider quite different approaches in order to provide
meaningful comparisons between masking schemes including randomness generation, such
as an individual 32/64-bit LFSR for each bit of randomness required per cycle or a Keccak-
based PRNG, which both turn out to be rather expensive. Hence, it is our goal to find
more efficient solutions while also clarifying the relevant security properties that must be
satisfied in the masking context.

Once a reliable estimate of the cost of producing a certain number of random bits
per cycle is established, it becomes much easier to decide on crucial trade-offs in masked
hardware implementations. Additionally, it will help to answer the question whether
schemes that minimize randomness requirements are more worthwhile, or whether it is
better to optimize other parameters such as latency or area at the cost of higher randomness
usage.
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1.3 TRNG vs. PRNG
Whenever randomness is required in a design, at least some initial entropy must come
from a true randomness/noise source, usually extracted by a True Random Number
Generator (TRNG). Yet, as we will confirm in the paper, TRNGs tend to be either fairly
slow or resource-hungry, making the cost of generating each truly random bit significant.
Thus, it is a common strategy to use Pseudo Random Number Generators (PRNGs), which
are generally considered to be much more efficient than TRNGs, to stretch the initial
seed (obtained once at power-up) into many pseudo-random bits whenever needed during
runtime.

1.4 Requirements for Masking Randomness
Many different PRNG constructions have been proposed in the literature for a variety
of applications. Of course, depending on the concrete use case, different properties are
required from the random numbers. Cryptographically strong PRNGs, as required in many
cryptographic protocols for generating keys, nonces or salts, should produce outputs that
are indistinguishable from genuine randomness for computationally bounded adversaries.
However, the requirements are not always that strong. In the concrete case of masking,
adversaries typically cannot directly obtain the output of the PRNG. In fact, there is no
output that depends on the generated random bits at all, since these values are only used
for internal randomization of intermediate computations, and the final results of the masked
operations are unmasked internally before being released to outside observers. Hence,
adversaries can only obtain a noisy version of the generated random bits from their side-
channel observations (especially noisy in hardware if generated in parallel to the masked
cipher implementation), leaving the possibility to perform direct state recovery attacks on
the PRNG quite theoretical (see [JD06, BMV07, CMM14, MCB+22]). As a result, many
previous works have opted for random number generators without cryptographic strength
for mask generation, such as Linear Feedback Shift Registers (LFSRs).

LFSRs are arguably the most simple primitive for generating long non-repetitive
sequences of random-looking, uniformly distributed bits from an initial seed. However, as
mentioned above, LFSRs cannot provide black-box security, and their linear output can be
distinguished from true randomness using statistical test suites such as the one proposed by
the National Institute of Standards and Technology (NIST) [BRS+10]. This raises doubts
regarding their suitability to fill the two main requirements for (pseudo-)random numbers
in masking contexts, namely 1) uniformity and 2) unpredictability [GSF13]. Without
uniformity, most masking schemes cannot keep their security promises. Even a small
bias in the sampling of random masks can lead to a reduction of the protection order,
despite noise and independence assumptions being fulfilled. Low Entropy Masking Schemes
(LEMS) initially attempted to relax such requirements on the quality of random numbers
in order to reduce costs while still maintaining the security order. However, these schemes
had to make additional assumptions which have been demonstrated to not always hold
in practice [GSP13, YE13]. The need for unpredictability of random numbers is even
more obvious in masking contexts. If an adversary can predict the random bits and has
knowledge of the data being processed (known-plaintext scenario), she can compute all
intermediate values that are actually processed inside the cryptographic implementation
and perform attacks in the same trivial way as on unprotected circuits. Since all future
outputs (at least until the next re-seeding) can be calculated once the internal state of a
deterministic PRNG is discovered, state recovery attacks are commonly the most relevant
threat to the unpredictability requirement. With respect to LFSRs, once an adversary
has obtained a sufficient number of consecutive output bits, state recovery is trivial. More
precisely, if the feedback polynomial is known – with m being the LFSR’s degree – an
attacker only needs to observe m consecutive output bits to know its internal state and
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predict all further outputs. When the feedback polynomial is unknown, the attacker
typically requires 2m consecutive output bits [PP10]. However, as mentioned before, the
attacker model in the context of masking does not allow direct access to the generated
random bits, making the application of such attacks difficult for sufficiently noisy leakages.

1.5 Masking Randomness in Previous Works
In the state-of-the-art hardware masking literature, researchers have used various techniques
to generate the random bits required for their experimental analyses. An AES-128 in
counter (CTR) mode has been used in [BGN+14b] to provide 44 random bits per clock
cycle. Assuming that a round-based AES-128 implementation requires at least 12 500
gate equivalents (GE) of area (the smallest value listed in the comparison of [UHM+20])
and produces 128 output bits every 10 clock cycles, the area cost of generating one
random bit per cycle can be estimated to be at least 977 GE. Other works like [CRB+16]
instantiated reduced-round variants of the low-latency cipher PRINCE [BCG+12] in Output
FeedBack (OFB) mode to rapidly generate a high number of random bits per clock cycle.
It is not stated how many of the PRINCE rounds were removed, but calculating based on a
full PRINCE as unrolled implementation which requires approximately 8 000 GE [BCG+12]
of area and generates 64 output bits per cycle, the cost of generating one random bit per
cycle is about 125 GE. For a round-reduced variant, this cost might be halved at the expense
of a reduced security level. In [SBHM20], a sponge-based PRNG [BDPA10] using a variant
of Keccak [BDPA13] is used to generate 976 random bits every clock cycle. The design
details provided are insufficient to estimate the cost per bit of the concrete construction
used. However, a round-based Keccak-f[200] permutation requires about 5 000 GE of area
and runs for 18 clock cycles [KY10]. Using the construction proposed in [BDPA10], either
64 or 96 bits are obtained per call to Keccak-f[200], resulting in a minimum cost of 938 GE
to produce one random bit per cycle. As mentioned earlier, there are also a number
of works that use LFSRs to generate random values for masking. For instance, 31-bit
LFSRs are employed in [MMW18, Moo19, SM21, KMMS22, KSM22] in such a way that
each required random bit is generated by a dedicated LFSR that is randomly seeded on
power-up. Following the same principle, the authors of [KM22a] have considered such a
31-bit LFSR, a 64-bit LFSR, and different variants of Keccak-Sponge-based PRNGs, and
have reported the overhead of a hardware masking scheme including the area required for
the necessary PRNGs. The cost of generating one random bit per cycle is estimated as
286 GE and 565 GE for the 31-bit and 64-bit LFSRs respectively [KM22a]. Further, it has
been explored in [PYR+16] whether evolutionary computation can be beneficial in the
design and optimization of lightweight PRNGs for masking applications. The authors have
proposed multiple PRNG variants that have passed all tests of the NIST statistical test
suite [BRS+10]. The most efficient one, based on Cartesian genetic programming, is said
to have a throughput-area ratio of 68.14 Mbps/GE based on the NanGate 45 nm library.
While this is significantly more efficient than all other approaches mentioned above, it is
entirely unclear whether this primitive provides sufficient resistance against modeling or
state-recovery attacks. Indeed, the variants proposed by the authors which are claimed to
be prediction resistant are significantly more expensive. Finally, one work on multiplicative
masking of the AES has applied an unrolled Trivium instance to generate multiple random
bits per cycle for masking [MRB18]. The use of Trivium is only mentioned at the end of
the work’s Appendix, without any further reasoning or cost analysis. Yet, the concrete
properties of this approach are investigated in detail in Section 3.

1.6 Our Contributions
In this work, we focus on the problem of efficiently and securely generating randomness
in hardware with properties suitable for use in masked implementations. As a first step,
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we briefly investigate the efficiency of state-of-the-art on-chip TRNGs, focusing mainly
on a high-throughput, low-area TRNG proposed at CHES 2018 [YRG+18]. While this
design appears to offer promising performance compared to its competitors, we discard
the possibility of using only TRNGs for the entire randomness generation due to their sub-
optimal cost-performance trade-off, which stays orders of magnitude behind that of PRNGs.
In consequence, we conclude that PRNGs are indeed preferable in the considered setting,
especially when trying to satisfy the needs of randomness-hungry masked parallel hardware
implementations, as we focus on in this work. Accordingly, we then analyze a number of
efficient cryptographic building blocks based on their throughput-area ratio with potential
for constructing secure PRNGs tailored to efficient mask generation. The considered
building blocks are selected in part based on prior reports comparing the 32 primitives
that survived to Round 2 of NIST’s Lightweight Cryptography (LWC) standardization
process [oSN17] and the 8 stream ciphers in Profile 2 (hardware) that reached the final
phase of eSTREAM, the ECRYPT stream cipher project [oEiCE04]. In particular, we
have included in our comparisons:

• The lightweight primitive Subterranean 2.0 [DMMR20], which offers by far the best
throughput-area ratio among NIST LWC Round 2 candidates according to [AZ21].

• The cross-platform permutation Gimli [BKL+17], which is among the highest through-
put primitives of NIST LWC Round 2 candidates according to [AZ21].

• The ultra low-latency block cipher SPEEDY [LMMR21], whose variant SPEEDY-5-192
is claimed to provide the best throughput-area ratio among low-latency ciphers.

• The stream ciphers Trivium [Can06, CP08] (and its variants Bivium B [Rad06] and
Kreyvium [CCF+16]), Grain v1 (both 80- and 128-bit variant) [HJM07, HJMM06]
and MICKEY 2.0 (both 80- and 128-bit variant) [BD08] which are the three primitives
most frequently listed as best performers in throughput-area ratio among the eS-
TREAM competition’s Phase-3 candidates, according to a number of different compar-
ative efforts [GB08, GLB+06, BKSQ07, GSB07, Rog07, HCK+08, KSPS13, LLL20].

Where possible, we also consider reduced-security variants of these primitives, motivated
by the assumption that full cryptographic strength may not be required in our target
setting, i.e., randomness used in masking. For Gimli and SPEEDY this means that we
consider reduced-round versions. For Trivium, we consider its reduced-security variant
Bivium B [Rad06], which has been introduced to study the cryptanalytic properties of
Trivium. For Grain v1, both the 80- and 128-bit variant, we consider reduced versions
where the NLFSR part is removed and only the filtered LFSR part remains, in order to
include a representative of that class of primitives in the comparison. To the best of our
knowledge, such reduced versions have not received any independent cryptanalysis and are
likely insecure, considering that fast correlation attacks targeting the filtered LFSR part
have been used to successfully break all complete Grain v1 versions [TIM+18]. Finally,
despite the fact that LFSRs are lacking any black-box security due to the linear dependency
between their produced output bits (and are thus generally considered a poor choice for
random number generation in cryptographic contexts), we include them in our comparison
and discuss the security implications of employing such primitives for mask generation
experimentally. Hence, we believe that our comparison covers the entire spectrum from
candidates that are trivially insecure in the black-box setting but most efficient, to those
which are cryptographically strong but less efficient, in order to identify the most promising
primitives.

As part of our investigations, we observe that in order to maximize the throughput-area
ratio, different implementation styles are best suited for different designs. For permutations
and block ciphers, round-unrolled pipelined implementations usually lead to good results,
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while for stream ciphers and LFSR-based primitives unrolling multiple update/feedback
functions to generate several output bits in a single cycle using a single hardware module
seems most promising (see [GB08, GLB+06, GSB07, Rog07, HCK+08, MS11, LLL20] and
explanations in Section 3). Since the degree or level of unrolling can be chosen arbitrarily
for stream ciphers, these primitives offer a high flexibility to hardware designers. However,
the effectiveness of unrolling a stream cipher implementation to actually maximize its
throughput-area ratio depends heavily on the concrete cipher design. Thanks to the
fact that Trivium’s update/feedback function is independent of the last 64 output bits
produced, leading to high efficiency for even large unrolling levels, our throughput-area
ratio comparison leaves no doubt that Trivium is the most efficient cryptographically
strong primitive among our selected candidates, outperforming the other black-box-secure
designs by an impressive margin.

Only LFSRs, when also unrolled to produce multiple bits simultaneously, are able to
outperform Trivium, Bivium B and Kreyvium. Hence, we take a closer look at unrolled
LFSRs from a security perspective in the relevant application setting. In this respect it
is noteworthy that, to the best of our knowledge, no previous work has claimed that the
use of unrolled LFSRs to generate randomness for masking is secure or advisable. The
authors of [KM22a] for example discussed the need to use an independent LFSR for each
random bit required per cycle in a masked circuit, and all related previous works have
apparently followed the same strategy. However, according to our comparison, this is not a
cost-effective solution as it proves more costly than multiple of the cryptographically strong
candidates we analyze (i.e., there is little incentive to ever consider those in practice).
Therefore, we focus on the security properties of unrolled LFSRs in two case studies, and
find that without great care, this strategy can lead to problems when used in masked
implementations, and may cancel the entire side-channel security. In fact, the demonstrated
problems extend, although in limited form, to the single-LFSR-per-bit scenario which has
more commonly been considered in the past (potentially causing multivariate instead of
univariate leakage though). Besides, we also put forward weaknesses in the original masking
PRNG design of the OpenTitan project. Multiple independent 32-bit filtered LFSRs were
originally instantiated to be used for generating the randomness needed for the masked
AES core. We describe in detail how state recovery of such a PRNG is possible with low
data complexity by enumerating all possible states of the LFSRs separately which allows
to generate all previous and future masks. The OpenTitan design team has acknowledged
and confirmed the vulnerability and is determined to switch to a Bivium/Trivium-based
alternative to increase the security at very low overhead (≈ 1.8% for the total masked
AES core) in the near future.

We insist that it is not our goal to suggest that (unrolled) LFSRs can never be used
securely for mask generation. We are confident that this can be achieved (as long as state
guessing and correlation attacks [Can11b] are not a concern due to insufficient size) when
ensuring that each random bit is used only in positions where it cannot cause problems.
Yet, our case studies provide evidence that when using such linear primitives which lack
black-box security guarantees, the randomness generation and the masking scheme must
be analyzed jointly. Moving to primitives that offer black-box security, such as Trivium,
solves this issue and allows the independent analysis of the masked implementation and
the randomness generator, which is significantly more convenient from the designer’s and
evaluator’s perspective. In other words, we claim that (unrolled) LFSRs are not sufficient
for masking in general and therefore warn against their use, not that they cannot be
used in specific and carefully crafted case studies. Yet, in view of the limited overheads
shown by unrolled stream ciphers like Trivium (for high security levels) and Bivium B (for
medium security levels), we recommend them as a good default option for the efficient
generation of randomness for masked hardware implementations. We detail how to use
these primitives, discuss their security against side-channel attacks, and finally estimate the
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resulting cost of generating n random bits per cycle. For Trivium, the asymptotic cost per
random bit updated per clock cycle is about 30 GE on ASIC or 4 LUTs on FPGA. Using
Bivium B, the cost can even be reduced to 20 GE or 3 LUTs per random bit. These results
show that randomness generation is significantly cheaper than estimated in most previous
works, which incentivizes highly parallel (low latency) masked hardware implementations
and might motivate researchers to focus on alternative optimization goals than reducing
randomness usage in masking schemes. We believe that our conclusions are of positive
nature for the physical security community, as implementations using many random bits
per cycle are also known to provide superior security levels against more sophisticated
adversaries (e.g., so-called horizontal attacks [BCPZ16]) compared to low-randomness
approaches.

2 Background
In this section, we introduce primitives that are commonly considered to generate ran-
domness for masked implementations. We start with a quick look at TRNGs, then move
to LFSRs and PRNGs (including stream ciphers), before discussing the design details of
Trivium and Bivium. We conclude by describing how stream cipher implementations can
be unrolled.

2.1 True Random Number Generators (TRNGs)
Whenever randomness is needed in a digital design, at least some initial entropy has
to come from an analog noise source, as deterministic digital computation methods
are unable to generate true randomness. Thus, TRNGs exploit noise sources based on
physical phenomena with unpredictable behavior. An optimal source of entropy would
be radioactive decay, since the timing of events at the atomic level is impossible to
predict, even with unbounded memory and computational resources. Yet, it is clearly not
realistic to sample radioactive decay in integrated circuits to generate random numbers for
cryptographic applications. Instead, noise sources inherent to modern integrated circuits
are commonly leveraged. These include clock jitter, metastability, thermal noise in resistors,
oscillatory metastability, write collisions in dual-port random access memories and random
initialization of bi-stable circuits [FD02, FL14]. A large number of TRNG designs based
on these physical phenomena is discussed and compared in [PMB+16, YRG+18]. The raw
random numbers extracted from entropy sources are typically subject to statistical defects
and need to be tested and post-processed before being used in applications. Obtaining
independent random values with high entropy is therefore a laborious process that comes
at a significant cost (e.g., in latency or area).

2.2 Linear-Feedback Shift Registers (LFSRs)
LFSRs are structures that hold an array of bits shifted one position per step in a certain
direction. The bit that gets shifted out of the array is typically the output, and the
new bit shifted into the array is determined by a feedback function computing a linear
combination of a number of state bits. LFSRs consist of clocked storage elements like
flip-flops, and the feedback function is typically described by a polynomial. The number
of storage elements is the degree of the LFSR. The maximum period, or sequence length,
of an LFSR of degree m is 2m − 1. LFSRs with maximum period exist for any degree
m. Since the LFSR output is determined by a linear combination of the initial state bits
only, state recovery attacks are trivial once a sufficient number of consecutive output bits
are observed (2m if the feedback polynomial is unknown; m otherwise [PP10]). Due to
this lack of black box security, LFSRs are rarely used as standalone PRNG primitives
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in cryptographic applications but more commonly as useful ingredients (e.g., for stream
ciphers – see next). Yet, they are named frequently for the generation of randomness to
be consumed by masked implementations.

2.3 Pseudo-Random Number Generators (PRNGs)
Due to the high cost of generating true random values in integrated circuits, it is common
practice to use PRNGs to stretch short sequences of true random bits (called seeds)
into long sequences of pseudo-random bits. PRNGs are deterministic polynomial time
algorithms constructed from an iterated function [BM82]. They generally use a pair of
functions f and g, where f : {0, 1}n → {0, 1}n iteratively updates an n-bit state si = f i(s0),
and g : {0, 1}n → {0, 1}m generates the output bitstream g(s0)∥g(s1)∥ . . . . The initial
state s0 is derived from the seed, which can be obtained from a TRNG at device power-up.
Therefore, all the entropy in the output descends from the initial random seed, and is
further limited by the state size of a PRNG. Cryptographically strong PRNGs, required
for key or nonce generation in many cryptographic protocols – when properly seeded –
should produce output indistinguishable from genuine randomness for all computationally
bounded adversaries.

PRNGs are natural candidates to generate randomness for masked implementations
since they generally have good security properties in presence of leakage due to the
continuous update of their secret state [YSPY10]. Furthermore their initialization, that
may lead to stronger side-channel attack vectors if it had to be synchronized with another
communication party [SPY+10], is not needed in this context and can be replaced entirely
by a truly random seed of sufficient length generated on-chip. As most cryptographic
primitives, they can be obtained generically from well-investigated building blocks like
(tweakable) block ciphers (as in the previous reference) or permutations [BDPA10] – both
possibly coming with similar guarantees in terms leakage-resistance [BBC+20]. They
can also be obtained from dedicated constructions, usually introduced as stream ciphers.
Such dedicated constructions generally correspond to a slightly more aggressive security
(margins) vs. efficiency tradeoff compared to generic constructions. The latter appears
appealing for our purposes since expensive randomness generation makes the application
of higher-order masking prohibitive and, as already mentioned, the adversarial scenario of
this generation is different from the stream cipher one (i.e., the adversary sees only the
leakage of the PRNG). Concretely, we will primarily investigate Trivium [oEiCE04, Can06]
and its Bivium B variant [Rad06] that we detail next. We will also report performance
figures for Subterranean 2.0 [DMMR20], Gimli [BKL+17] and SPEEDY [LMMR21]. The
former two are high-throughput candidates from the NIST lightweight cryptography
standardization process [oSN17], while the latter is a performance-driven block cipher
with few rounds. For completeness, we also include the stream ciphers Grain v1 [HJM07]
and MICKEY 2.0 [BD08], as well as Kreyvium which is a variant of Trivium with 128-bit
security [CCF+16] in our comparisons.1

2.4 Trivium & Bivium
Trivium is a stream cipher submitted by De Cannière and Preneel to the eSTREAM
competition, a multi-year effort to collect compact stream ciphers suitable for widespread
adoption [oEiCE04, Can06]. It was selected to be part of the final portfolio [CP08] and
has later been standardized as part of the lightweight stream cipher standard ISO/IEC
29192-3. Trivium is based on a combination of three Non-Linear Feedback Shift Registers
(NLFSRs) of degree 93, 84 and 111 (288 bits in total) – see Figure 1 for an illustration.
It has two input parameters, an 80-bit key and an 80-bit initialization vector (IV). As

1 We do not provide the details of these additional algorithms due to place constraints.



10 Randomness Generation for Secure Hardware Masking

Figure 1: Schematic of the Trivium stream cipher consisting of 3 NLFSRs.

is common in cryptographic applications, the IV is public, but should take a new value
for each encryption session. During the initialization phase, the IV is loaded into the
80 leftmost positions of the upper register, while the key is loaded into the 80 leftmost
positions of the middle register. All other bits are set to zero, with the exception of the
three rightmost bits of the bottom register, which are set to one. The cipher is then clocked
for 1152 steps without producing any keystream, which corresponds to 4 rotations of the
state (4 · 288 = 1152), that randomizes the content of the registers. After the initialization
phase (also called warm-up) is completed, the online phase begins and the keystream
is generated. According to the performance comparisons of phase-3 candidates of the
eSTREAM competition presented in [GB08, GLB+06, BKSQ07, GSB07, Rog07, HCK+08],
unrolled Trivium offers by far the best throughput-area ratio for hardware implementations.

In an attempt to better understand the security of Trivium, Raddum introduced two
reduced variants, called Bivium A and Bivium B [Rad06]. Both of them consist of only
two of Trivium’s NLFSRs, namely the 93-bit and the 84-bit ones. Bivium B is depicted
in Figure 2. In Bivium A, the keystream is generated as the sum of 2 state bits, both
from the same register. In Bivium B, the keystream is generated as the sum of 4 state
bits, 2 from each NLFSR. While no key recovery attack on Trivium with a complexity
below 280 is known, there have been effective attacks on both Bivium variants. In 2006,
Haddum presented an attack to break Bivium A in about a day [Rad06] by building and
solving a system of equations using the output keystream with the initial state bits as the
unknowns. He estimated the same attack to require about 256 seconds (about 231 years)
on Bivium B. Later in 2007, Maximov and Biryukov presented an attack on Bivium B
with complexity c · 237, where the constant c denotes the time required to solve a system
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Figure 2: Schematic of Bivium B, a reduced security variant of the stream cipher Trivium
consisting of 2 NLFSRs.

of equations (estimated to be c ≈ 214) [MB07]. In 2011, it was reported in [HL11] that by
guessing 35 variables, Bivium B can be solved in 232.81 seconds (about 7.9 years) by MFCS,
an algorithm for solving Boolean polynomial equations. In 2019, a key-recovery attack on
Bivium B based on Boolean equation solving has been reported [SSD19]. The concrete
complexity of the attack is unclear due to ambiguous claims in the paper, but the authors
state that about 4 terabytes of memory and a parallel search over 239 threads is required to
recover the initial state and the key. We conclude that Bivium A is trivially insecure and
that Bivium B can be broken in practical time complexity on large computation clusters.
In the rest of the paper we denote Bivium B as Bivium and use it as an aggressive design
that may be secure in the leakage-only setting, to gauge the performance gains that such
an optimization offers.

2.5 Unrolling Stream Ciphers
While the terminology of unrolling a stream cipher may not be widely established (although
it has been used in previous works [BMA+18]), the general concept is well known for many
years. Sometimes it has only been described using different terms. Stream ciphers like
Trivium and Grain have been developed with this implementation trick in mind in the early
2000s already. Similar to the iterated round functions of a block cipher or permutation, the
(normally consecutively executed) state update (and output) functions of a stream cipher
can be unrolled, which means multiple instances are realized in hardware without any
memory elements in between so that the combinatorial logic of multiple steps is evaluated
in a single cycle. See Figure 3(a) for an exemplary illustration of unrolling an update
function. Here, each instance of the update function is producing 1 output bit or word
per cycle (different from the block cipher analogy). While this is obviously a convenient
instrument to adjust the tradeoff between latency (in cycles) and critical path (in seconds),
there is another big advantage in the case of stream ciphers. Much unlike typical round
functions of block ciphers and permutations, the state update functions of stream ciphers
(typically) produce only 1 bit/word per cycle and are often chosen to be sparse. Sparsity
of the function means that it receives only a few selected bits/words as inputs instead of
the entire state. Thus, when choosing the function in a clever way, namely that the next



12 Randomness Generation for Secure Hardware Masking

update function does not receive the current feedback bit as input, it becomes possible
to unroll a certain number of consecutive state updates (i.e., compute them in parallel in
one cycle) without directly increasing the logic depth or critical path of the circuit. See
Figure 3(b) for an example of a 2-bit unrolled Bivium implementation where the gate
depth is not changed compared to the regular design in Figure 2. It turns out stream
ciphers like Trivium and Grain [HJM07, HJMM06] indeed employ well-chosen functions
to allow fast implementations generating multiple output bits and performing multiple
updates per clock cycle. Trivium’s update function ensures that any state bit which has
just been modified is not used for at least the 64 following update steps [CP08]. For Grain
v1 with 80-bit key, modified state bits are not used in the next 16 updates [HJM07] while
for the 128-bit key variant that number is even increased to 32 [HJMM06]. Consequently,
the critical path is only increased in steps of 64, 16 and 32 bits of unrolling, respectively.
The area, however, is increased for each additional copy of the function. Yet, as only
the combinatorial logic needs to be replicated and as the area of stream ciphers like
Trivium and Grain is highly dominated by the state register(s), unrolling these primitives
corresponds to a net gain in throughput-area ratio up to a certain level. Furthermore, even
beyond that level, the bits/cycle metric continues to grow much faster than the critical
path of the implementation.

We acknowledge that our definition of unrolling has been mostly been referred to as
parallelization in previous works on stream cipher implementations [GB08, GSB07, Rog07,
LLL20]. We have decided to avoid this term in our work, as it conflicts with the description
of multiple unrolled stream ciphers in parallel, which is a concept we need later in Section 5.
Less commonly, unrolled stream cipher circuits have also been referred to as higher-radix
implementations (e.g., radix-64 for 64-bit unrolled Trivium) [GLB+06, HCK+08]. An FSE
2019 work on the energy efficiency of stream ciphers has used the term unrolling in the
same way that we do, and additionally also explored large unrolling factors in order to
optimize the implementation properties of stream ciphers for certain settings [BMA+18] .

3 Cost Efficiency Comparison
In the following we explore the suitability of multiple building blocks to be used as random-
ness generators for masked hardware implementations from the performance viewpoint.

3.1 Throughput-Area Ratio
Comparing primitives for cost-efficient randomness generation begs the question which
performance metric is the most relevant to evaluate. Since we aim to satisfy the random-
ness demands of even large, parallel, higher-order masked hardware implementations of
cryptographic algorithms, we argue that the throughput-area ratio (TPA) is one of the most
meaningful metrics to look at. While a small default area and a low power consumption
(as well as combined metrics of them with the throughput) can also be of high importance,
we believe that TPA is the most universally relevant quantity to answer common questions
in the envisioned application setting. Assuming a masked implementation requires up
to 1000 fresh random bits per cycle (not unusual for gadget-based parallel higher-order
implementations, c.f. [KMMS22]) at 100 MHz in 65 nm ASIC technology, the TPA is
arguably the most suitable metric to find the cheapest solution for generating the required
amount of randomness per cycle at the desired clock frequency. For concrete settings, the
throughput-area ratio measured in (bits/cycle)/GE is probably ideal for decision making.
Yet, it is not best suited for general comparisons of multiple candidates due to its strong de-
pendency on the chosen frequency and implementation technology. Indeed, to obtain both
fair and optimized results in the (bits/cycle)/GE metric for any given candidate, a separate
implementation needs to be constructed to best leverage the available critical path budget
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(a) 1-bit/1-word (left), 2-bit/2-word (middle) or 3-bit/3-word unrolled update functions.

(b) 2-bit unrolled Bivium, producing keystream at twice the rate as regular Bivium.

Figure 3: Unrolling a stream cipher like Trivium/Bivium is achieved by implementing
multiple consecutive update functions in the same hardware circuit, each producing one
output bit/word per cycle. If one update function’s inputs are independent of the feedback
bits of multiple previous update functions, consecutive steps can be unrolled without
increasing the circuit depth (e.g., up to 64 steps for Bivium/Trivium/Kreyvium).

at each considered frequency and for each considered implementation technology. When
measuring the throughput-area ratio in (bits/s)/GE instead, the critical path delay is part
of the formula and it becomes easier to compare multiple candidates without limiting the
analysis to one predefined setting. In fact, the (bits/s)/GE value can be seen as an upper
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bound on the TPA in the sense that the optimal value is obtained for a concrete circuit
under the assumption that the operating frequency of the device is determined by this
implementation, instead of the implementation being tailored to one predefined frequency.
As not every candidate will fit into each setting perfectly, flexibility of an implementation
is another important factor. In the following we use the throughput-area ratio measured in
(bits/s)/GE to compare the selected candidates for concurrent randomness generation. We
aim to avoid remaining technology biases by evaluating the metric in multiple standard
cell libraries for the PRNG building blocks.

3.2 High-Throughput Low-Area TRNG

Since an efficient TRNG implementation is always needed when randomness has to be
generated inside an integrated circuit, the first important question to answer is whether
this primitive can potentially be used for all randomness generation, which would save
the cost of implementing a PRNG in addition. To answer this question, we have selected
a suitable representative from the TRNG literature and evaluate its efficiency in the
following. At CHES 2018, Yang et al. proposed a high-throughput, low-area TRNG
suitable for both ASIC and FPGA implementations [YRG+18]. The design is called
ES-TRNG, where ES stands for Edge Sampling. The chosen noise source is timing jitter,
and the design relies on two techniques that the authors call variable-precision phase
encoding and repetitive sampling to increase throughput and reduce area. We implemented
this design using a 65 nm low-power CMOS standard cell library and obtained the results
listed in Table 1. The throughput is estimated in part based on timing jitter measurements
on a test chip manufactured under the same 65 nm technology and in part based on a
prototype FPGA implementation whose output has been evaluated positively by statistical
test suites. For a 100 MHz system clock the resulting throughput when synthesized in
(and parametrized for) 65 nm ASIC technology is 2.2 Mbit/s and thus higher than the
1.15 Mbit/s given in [YRG+18]. This is expected when moving from FPGA to ASIC
implementation. In fact, higher performances are likely still possible on ASIC platforms.
Our concrete implementation is able to produce 7.4 kbit/s of high-entropy random numbers
for each gate equivalent (GE) of area (i.e., a TPA of 7.4 (kbit/s)/GE). Please note that a
recent improvement of the original ES-TRNG design has been published in [LBS22] under
the name Tight-ES-TRNG. The authors performed low-cost optimizations to ensure that
the signal edges populate a larger portion of the full distribution of phase jitter to increase
the achievable entropy level. In that work, the throughput is increased to 5.6 Mbit/s. Even
higher throughput may potentially be achieved with alternative TRNG designs according
to the comparisons presented in [PMB+16, YRG+18], at the cost of a significantly larger
area and less freedom in the implementation. In particular, the only TRNG design listed
which provides a larger throughput-area ratio compared to the ES-TRNG is a Self-Timed
Ring (STR) based TRNG [CFAF13, CFFA13], with an approximately 6 times better
efficiency [PMB+16, YRG+18]. However, this design occupies a 20 to 30 times larger area
(high default cost) and requires both manual placement and manual routing. Even when
considering such a design, the throughput-area ratio would still fall in the range of tens,
maybe hundreds, of kbit/s/GE for a 65 nm ASIC implementation, without yet considering
the cost of monitoring the entropy source or continuous internal testing. We demonstrate
in the rest of this section that it is possible to implement cryptographically strong PRNGs
with a much higher throughput-area ratio than that, providing strong support for the
idea that randomness-hungry masked implementations are better served by PRNGs than
TRNGs.
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Table 1: ES-TRNG in a 65 nm low-power CMOS technology @ 100 MHz system clock.

Min. Area Min. Latency Throughput @ 100 MHz

ES-TRNG 297 GE 0.135803 ns 2.2 Mbit/s

3.3 Permutations vs. Block Ciphers vs. Stream Ciphers
Having concluded negatively on the suitability of TRNG instances to generate random
values for (parallel, higher-order) hardware masking, we now compare a number of po-
tentially cost-efficient cryptographic building blocks based on their throughput-area ratio
to be used in PRNG constructions. We rely on prior efficiency comparisons to pre-select
such primitives. In more detail, the authors of [AZ21] compared the Round 2 candidates
of the NIST lightweight cryptography standardization process [oSN17] based on their
ASIC implementation figures. Several different metrics are evaluated, including through-
put and throughput-area ratio. The lightweight primitive Subterranean 2.0, introduced
in [DMMR20], offers by far the best throughput-area ratio, while the cross-platform per-
mutation Gimli, proposed in [BKL+17], offers one of the best throughput figures. Both of
these primitives are included in our further investigation. According to the comparison
of low-latency ciphers given in [LMMR21], the 5-round version of the ultra low-latency
cipher SPEEDY, called SPEEDY-5-192 requires a smaller area per output bit and can be
clocked at a higher frequency than any other low-latency primitive when implemented
fully-unrolled in hardware. Finally, the comparison of all 8 stream ciphers in the hard-
ware profile of the eSTREAM competition that reached the third phase are compared
for their cost and efficiency in [GB08]. The stream cipher Trivium [Can06, CP08] offers
by far the best throughput-area ratio among all its competitors, hence, we include it
in our preliminary investigation as well. Other related works reached similar conclu-
sions [GLB+06, BKSQ07, GSB07, Rog07, HCK+08, LLL20]

3.3.1 Full-Security Versions

To summarize, in our initial comparison we have selected two of the most cost-efficient
building blocks from the NIST lightweight cryptography competition, the supposedly most
cost-efficient low-latency cipher and the supposedly most cost-efficient hardware stream
cipher from the eSTREAM competition. The corresponding synthesis results are given
in Table 2 for 4 different ASIC standard cell libraries, 2 commercial ones and 2 open-source
ones. The synthesis tool used is Synopsys Design Compiler Version O-2018.06-SP4. Our
Subterranean 2.0, Gimli and SPEEDY hardware implementation results are based on
publicly available source code that can be found here:

• Subterranean 2.0: https://github.com/pmassolino/hw-subterranean

• Gimli: https://gimli.cr.yp.to/impl.html

• SPEEDY: https://github.com/Chair-for-Security-Engineering/SPEEDY

The complete set of individual delay, area, power consumption and throughput figures, in
addition to combined metrics such as energy consumption per bit and power-area-time
product, are listed for each candidate in Appendix A. It is important to note that we
compare the raw primitives in this initial comparison and do not consider any framework
that is needed to turn them into usable PRNGs (typically required for the block-oriented
primitives, but not for stream ciphers). For the block ciphers and permutations, two
different versions are considered: (i) a fully-unrolled single-cycle implementation from
combinatorial logic only and (ii) a fully-unrolled round-pipelined implementation (✓). For
Gimli and SPEEDY, 24 and 5 cipher rounds are unrolled respectively. Both versions (i)

https://github.com/pmassolino/hw-subterranean
https://gimli.cr.yp.to/impl.html
https://github.com/Chair-for-Security-Engineering/SPEEDY
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and (ii) produce one block of output per clock cycle. Yet, the pipelined versions obviously
require a number of cycles equal to the number of rounds before the first usable output is
produced. We also acknowledge that efficiently initializing such large pipelines, for example
24 · 384 = 9216 bits in case of Gimli, while keeping the initial seed small, might become
difficult. For Trivium the situation is different, as common stream ciphers are not based
on iterative round functions. Instead, they are typically constructed from state update
functions that produce a single output bit or word per step while updating the state register.
As discussed in Section 2, these update functions can be unrolled in a similar manner as
the round functions of a block cipher or permutation, with the additional advantage that
state update functions can be sparse and chosen in such a way that a certain degree of
unrolling leads to no increase of the gate depth or critical path. In fact, the structure
of Trivium allows it to be implemented in a way that neither the depth nor the delay of
the hardware circuit are increased for 64 bits of unrolling or below, making Trivium_X64
the most cost efficient primitive in Table 2. Trivium_X48 and Trivium_X64 outperform
Trivium_X32, Trivium_72 and any larger (> 72) or lower (< 32) unrolling level. We
evaluated Trivium for many degrees of unrolling (arbitrary degrees are possible, see also
Section 5), but none of them offered a better throughput-area ratio than Trivium_X64 in
(bits/s)/GE. Of course, when integrated into a larger chip design where other components
demand a lower operating frequency, larger unrolling factors are still more attractive in
order to fully exhaust the critical path budget and generate as many bits per cycle as
possible. Since the degree of unrolling can be chosen arbitrarily, the number of output
bits produced per cycle is adjustable with single-bit granularity, which also provides a
conveniently high flexibility compared to permutations and block ciphers.

Subterranean 2.0 is a hybrid primitive that is hard to put in a category. It uses
elements from permutation-based cryptography and resembles a sponge-like construction
that behaves like a stream cipher when squeezed, producing 32-bit words per step. Its
round/update function can be unrolled to provide even more bits per cycle, but unlike
Trivium, unrolling will not improve its TPA in (bits/s)/GE. Instead, the standard variant
producing 32 bits per cycle is the most cost-efficient one in this metric and makes it the
second most cost-efficient primitive in two of the four considered standard cell libraries
in Table 2. Yet, its throughput-area ratio is 4 times lower compared to Trivium_X64,
mostly because it occupies a larger area while only producing half the number of bits
per cycle (c.f. Table 7). Its power consumption, however, is up to 30 % lower than
unrolled Trivium’s (c.f. Table 8). Round-pipelined Gimli performs similarly well and places
second in the other two cell libraries. Yet, it comes at a much higher default cost (≈
70-90 kGE compared to Trivium_X64’s 4-5 kGE). Round-pipelined SPEEDY is roughly
half as cost-efficient as Gimli and Subterranean 2.0 here.

Note that the throughput-area ratio of Trivium_X64 is 77.51 (Mbit/s)/GE in Nan-
Gate 45 nm library, more than 13% larger than the 68.14 (Mbit/s)/GE achieved by the
PRNG based on evolutionary programming presented in [PYR+16] using the same library.
We believe it is a strong result that Trivium, a stream cipher with proven cryptographic
strength that has been analyzed for almost 20 years, leads to more cost-efficient implemen-
tations in hardware than dedicated PRNGs for mask generation that only achieve sufficient
statistical properties to pass common test suites without cryptographic guarantees.

3.3.2 Reduced-Security Versions

Yet, as explained in detail in Section 1, full 80-bit or 128-bit security may not always
be needed for PRNGs in masking contexts, as adversaries may at most obtain a noisy
version of the PRNG’s output through side-channel observations. Performing cryptanalytic
attacks or solving complex systems of equations based on partially erroneous data is known
to be a hard problem. The security of modern lattice-based post-quantum cryptography
for instance depends on the hardness of computational problems such as Learning With
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Table 2: Comparison of the throughput-area ratio of unrolled building blocks, including
the stream cipher Trivium, the lightweight primitive Subterranean 2.0, the cross-platform
permutation Gimli and the ultra low-latency cipher SPEEDY. Values are obtained when
optimizing for maximum frequency (constrained clock period).

Throughput/Area [(Mbit/s)/GE]
Commercial Foundry NanGate OCL

Primitive pip. bits/cycle 90 nm LP 65 nm LP 45 nm 15 nm

Subterranean2 32 14.272 17.848 15.610 156.644
Subterranean2_X2 64 9.430 11.418 10.461 92.776
Subterranean2_X4 128 5.422 6.786 6.987 60.899
Subterranean2_X8 256 2.910 3.309 3.859 32.578

Gimli (24 rounds)
384 1.254 1.540 1.739 16.351

✓ 384 13.518 15.875 16.561 162.556

SPEEDY-5-192
192 1.354 1.637 2.159 18.442

✓ 192 7.446 10.146 8.857 75.990

Trivium 1 2.356 4.072 2.189 22.232
Trivium_X32 32 51.292 46.261 46.827 412.244
Trivium_X48 48 48.623 63.186 57.639 607.553
Trivium_X64 64 58.899 73.785 77.514 752.875
Trivium_X72 72 42.484 59.694 61.534 530.410

Errors (LWE), which requires solving a system of noisy linear equations. Hence, lower
security levels in the black-box model can lead to much higher security levels against
adversaries with access to noisy data only [DFH+16]. For this reason our concrete setting
might tolerate lower security levels if the cost-efficiency can be improved significantly. In
this context, the advantage of block ciphers and permutations over stream ciphers is that
the number of rounds can be adapted in order to flexibly adjust the security-vs-performance
tradeoff. In fact, it is possible for most modern block ciphers and permutations to remove
multiple rounds and still maintain a security level beyond enumeration power. For stream
ciphers, no such well-understood mechanism exists (shortening the initialization phase
reduces security but brings no gains in hardware performance during keystream generation).
Luckily, in case of Trivium, the reduced security variant Bivium has been introduced as a
study object for cryptanalytic reasoning. Hence, we also compare Bivium to round-reduced
versions of the previously analyzed building blocks Gimli and SPEEDY in Table 3. The
smallest round-reduced versions (8-round Gimli and 2-round SPEEDY) chosen here can
both be practically broken in the black-box setting (distinguishers with complexities below
240 exist), but attacks are still expected to require a computational effort that becomes
prohibitive when only partial information on inputs and outputs is available. Bivium_X64
clearly outperforms the reduced security primitives in TPA. Here, round-pipelined 8-
round Gimli performs best among the remaining primitives, with approximately half the
throughput-area ratio compared to Bivium_X64, while also consuming a 9 times larger
area and 10 times more power on average (c.f. Table 7 and Table 8). Reduced-round
SPEEDY achieves less than a quarter of the cost efficiency of Bivium_X64. The results in
Table 2 and Table 3 show that Trivium and Bivium are the best performing candidates in
TPA for full and reduced security.

3.4 Other Stream Ciphers
The observation that stream ciphers can outperform block-based encryption algorithms
in throughput-area ratio is not new. Stream ciphers are known to require a smaller area
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Table 3: Comparison of the throughput-area ratio of the reduced-security versions of the
primitives from Table 2. Values are obtained when optimizing for maximum frequency
(constrained clock period).

Throughput/Area [(Mbit/s)/GE]
Commercial Foundry NanGate OCL

Primitive pip. bits/cycle 90 nm LP 65 nm LP 45 nm 15 nm

Gimli (8 rounds)
384 8.619 10.544 12.839 108.180

✓ 384 42.754 44.256 49.251 480.270

Gimli (16 rounds)
384 2.484 2.996 4.273 36.684

✓ 384 20.603 25.763 23.827 243.939

SPEEDY-2-192
192 10.429 12.539 15.224 134.877

✓ 192 19.734 25.811 24.427 242.620

SPEEDY-3-192
192 4.155 4.918 6.359 55.208

✓ 192 12.513 16.790 15.249 134.630

SPEEDY-4-192
192 2.183 2.751 3.425 29.738

✓ 192 9.297 12.971 11.013 96.851

Bivium 1 3.624 5.364 3.544 34.050
Bivium_X32 32 70.893 77.847 71.559 690.677
Bivium_X48 48 75.572 96.861 107.462 969.275
Bivium_X64 64 89.620 107.543 109.730 1212.312
Bivium_X72 72 66.909 90.785 81.547 809.863

footprint in hardware (on average) compared to block ciphers with similar security levels
and have therefore been of primary interest for resource-constrained devices such as smart
cards, sensor networks or Radio-Frequency Identification (RFID) tags [BKSQ07]. Since
Trivium delivered very promising results in the preliminary analysis, we now investigate
whether other stream ciphers can provide similarly impressive performance for randomness
generation.

The eSTREAM competition was held from 2004 to 2008 with the goal to identify
and collect secure and compact stream cipher proposals suitable for widespread adoption;
separately for a hardware and software profile [oEiCE04]. During this time, researchers
have compared many of the proposed stream ciphers to each other and also to older
standards such as A5/1 [BGW98], RC4 [Sch96] or E0 [E02], resulting in a number of
publications containing performance rankings of multiple candidates [GB08, GLB+06,
BKSQ07, GSB07, Rog07, HCK+08]. They all have in common that Trivium is identified
as the number one candidate with respect to throughput-area ratio, although among
different sets of primitives, most oftenly followed by Grain v1 (either the 80- or 128-bit key
variant). Also for the maximum throughput, Trivium places first in all works that have
implemented its 64-bit unrolled variant [GB08, GLB+06, GSB07, Rog07, HCK+08]. The
top rank for minimum area is mostly split between Trivium, Grain v1 [HJM07, HJMM06],
MICKEY 2.0 [BD08] when considering only eSTREAM candidates - with the insecure
A5/1 algorithm (broken in practical time since the year 2000 [BD00]) being consistently
smaller. Two further comparisons have been published several years after the eSTREAM
competition ended, namely [KSPS13] in 2013 and [LLL20] in 2020, which also include more
recent stream cipher proposals. While the work by Kitsos et al. favors MICKEY 2.0 over
Trivium or Grain v1 for maximizing the throughput-area ratio, this is mostly due to the fact
that only the basic non-unrolled versions of the latter have been implemented [KSPS13].
This is also criticized by Li et al. [LLL20], who provide implementation figures including
unrolled Trivium and Grain v1 and report an advantage of Trivium over MICKEY 2.0
in TPA by more than an order of magnitude. In total, all listed publications collectively
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include the following set of stream ciphers (or variants of them) implemented in hardware:
A5/1 [BGW98], RC4 [Sch96], E0 [E02], SNOW3G [SNO], Phelix [WSLM05], Lex [Bir08],
Achterbahn [GGK05], MOSQUITO [DK05], SFINKS [BLM+05], VEST [OGL05], ZK-
Crypt [GGV05], Trivium [CP08], Grain v1 [HJM07, HJMM06], MICKEY 2.0 [BD08],
DECIM [BBC+08], Edon80 [GMK08], F-FCSR [ABL08], Moustique [DK08], Pomaranch [JHK08],
Salsa20 [Ber08], ZUC [ZUC], Plantlet [MAM16] and Lizard [HKM17]. Among all these
primitives, the candidates consistently performing best in maximum throughput, minimum
area and maximum throughput-area ratio (without being broken in practical time complex-
ity yet) are Trivium, Grain v1 (80- and 128-bit variant) and MICKEY 2.0 (80- and 128-bit
variant). These are, not surprisingly, also the three candidates that have been selected for
the hardware portfolio of the eSTREAM competition. Hence, we decided to select these
three primitives for a closer look at stream cipher performances for mask generation. While,
to the best of our knowledge, no cryptanalytic attacks against full Trivium or full MICKEY
2.0 exist, key recovery attacks against both Grain v1 variants (80- and 128-bit key) with
complexities below exhaustive key search are known [TIM+18, BCM23]. However, the
complexities remain significant enough to not disregard these primitives for our purposes,
as the performance of the attacks is still prohibitive for most computationally bounded
adversaries even in the noise-free setting (approximately 275 and 2112 respectively). Since
we take a look at 80- and 128-bit variants of both Grain and MICKEY, we also consider a
128-bit secure version of Trivium for this exercise, which is called Kreyvium and has been
first proposed at FSE 2016 for efficient homomorphic encryption [CCF+16]. Unlike the
128-bit versions of Grain and MICKEY, Kreyvium is not a real re-design of its successor
based on larger parameters, but mostly relies on keeping original Trivium intact and
extending it by two additional registers holding the 128-bit key and 128-bit IV, which are
never updated beyond a rotation of the bits. This change, while promising for the purposes
intended by the authors, is not exactly optimal to improve the throughput-area ratio.

The full comparison is shown in Table 4; individual delay, area, power consumption
and throughput figures in addition to combined metrics (energy consumption per bit,
power-area-time product) can be found in Appendix A. As already pointed out in previous
stream cipher comparisons, the optimal level of unrolling to maximize the throughput-area
ratio differs between the candidates. For Grain v1 with 80-bit key and 128-bit key it is 16
and 32 respectively, for Trivium and Kreyvium it is 64 (because the core design is identical)
and for MICKEY 2.0 with 80-bit key and 128-bit key it is actually 1. The MICKEY design
is not based on the principle that recently updated state bits are not used in the next X
update steps. Hence, unrolling this stream cipher will not lead to any improved results in
the (bits/s)/GE metric (doubling the output bits per cycle will also increase both delay
and area of the combinational logic approximately by factor 2, resulting in a lower TPA
overall). To still have a common denominator between all designs for comparison purposes,
we made sure to evaluate a 32-bit unrolled version of each of them. While the small size
and power consumption of Grain v1 is attractive (c.f., Table 7; similar to Bivium), its
update function has a larger gate depth than Trivium’s and the number of consecutive
update functions based on independent bits is too small to reach the throughput-area of
Trivium. In fact, Subterranean 2.0 and round-pipelined Gimli achieve better TPA than
both Grain v1 variants (c.f., Table 2). MICKEY 2.0 is only competitive when no unrolling
is considered, making it a poor choice for our purposes. Additionally, it has received the
least amount of cryptanalysis among the three eSTREAM candidates considered here and
it has been pointed out that its data-dependent irregular clocking may lead to simple,
timing-based side-channel attacks [GBC+08], which is undesirable in our setting. Finally,
we extrapolated the critical path values given in Appendix A Table 6 to estimate how many
bits per cycle can at most be generated by each of the stream ciphers (i.e., the maximum
level of unrolling) in 65 nm ASIC technology at 100MHz operating frequency. The results
show that Bivium, Trivium and Kreyvium may generate over 3000 bits per cycle, while
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the Grain v1 variants achieve 400 (for the 80-bit key) and 1000 bits (for the 128-bit key)
respectively. Both MICKEY 2.0 versions may generate at most 50 bits per cycle. Again,
we conclude that Trivium and its variants are the most promising cryptographic algorithms
for maximizing the throughput-area ratio and thus great candidates for cost efficient and
secure randomness generation in hardware.

Table 4: Comparison of the throughput-area ratio of unrolled stream ciphers. Values are
obtained when optimizing for maximum frequency (constrained clock period).

Throughput/Area [(Mbit/s)/GE]
Commercial Foundry NanGate OCL

Primitive key length bits/cycle 90 nm LP 65 nm LP 45 nm 15 nm

GrainV1_80

80

1 1.464 2.020 1.580 14.825
GrainV1_80_X8 8 6.391 7.849 7.287 69.252
GrainV1_80_X16* 16 8.274 10.861 9.031 86.915
GrainV1_80_X32 32 5.817 7.023 7.158 61.417

GrainV1_128

128

1 1.086 1.484 1.093 9.841
GrainV1_128_X16 16 8.522 11.465 9.751 91.195
GrainV1_128_X32* 32 12.410 18.556 13.996 130.803
GrainV1_128_X48 48 8.907 11.978 11.195 94.795

MICKEY2_80*

80

1 1.224 1.807 1.391 11.291
MICKEY2_80_X2 2 0.967 1.440 1.108 9.191
MICKEY2_80_X4 4 0.621 0.835 0.763 6.627
MICKEY2_80_X32 32 0.056 0.077 0.068 0.642

MICKEY2_128*

128

1 0.778 0.967 0.885 6.247
MICKEY2_128_X2 2 0.575 0.817 0.652 5.602
MICKEY2_128_X4 4 0.360 0.496 0.443 3.603
MICKEY2_128_X32 32 0.033 0.046 0.039 0.359

Trivium

80

1 2.356 4.072 2.189 22.232
Trivium_X32 32 51.292 46.261 46.827 412.244
Trivium_X48 48 48.623 63.186 57.639 607.553
Trivium_X64* 64 58.899 73.785 77.514 752.875
Trivium_X72 72 42.484 59.694 61.534 530.410

Kreyvium

128

1 0.982 1.240 1.027 9.218
Kreyvium_X32 32 21.554 27.449 23.696 233.767
Kreyvium_X48 48 29.554 36.597 33.600 325.753
Kreyvium_X64* 64 37.142 45.264 37.719 388.195
Kreyvium_X72 72 27.773 38.244 32.134 291.893

* Optimal level of unrolling to maximize Throughput/Area ratio.

3.5 LFSRs
There exists one well-known primitive for generating long sequences of random-looking
bits that has not been discussed yet and which is preferable over Trivium and Bivium from
a pure performance standpoint, namely an unrolled LFSR. Indeed, the update function
of an LFSR can be unrolled in the same manner as for stream ciphers like Trivium or
Grain. Additionally, sparse feedback polynomials which guarantee maximum period are
known for (almost) arbitrary register sizes. Of course, a sufficiently large state is required
(e.g., > 64 bits) in order to (i) guarantee a long enough non-repetitive output sequence
and (ii) keep adversaries from simply guessing all state bits to perform trivial correlation
attacks. A negative example where this requirement has been neglected is presented in
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Section 4. However, even when respecting the minimum size of 64 bits, an unrolled LFSR
can easily be 3-4 times more cost-efficient than Bivium, which is demonstrated for different
levels of unrolling in Table 5. The obvious caveat is that LFSRs provide no black-box
security whatsoever, as all output bits depend linearly on the initial state. As mentioned
in Section 2, this allows trivial state recovery attacks when sufficiently many consecutive
output bits are observed. Another problem may occur when multiple bits with linear
dependencies between each other are used as pseudo-randomness in the same masked
implementation. Hence, a closer look at the severity of such risks is needed, which we also
study in Section 4.

Table 5: Throughput-area ratio of an exemplary 64-bit LFSR for different degrees of
unrolling, as well as the filtered LFSR parts of the Grain v1 stream cipher. Values are
obtained when optimizing for maximum frequency (constrained clock period).

Throughput/Area [(Mbit/s)/GE]
Commercial Foundry NanGate OCL

Primitive bits/cycle 90 nm LP 65 nm LP 45 nm 15 nm

LFSR64 1 10.805 12.984 11.741 106.251
LFSR64_X32 32 230.191 265.875 218.516 2384.159
LFSR64_X64 64 222.286 298.575 308.312 3058.591
LFSR64_X96 96 294.813 399.138 387.573 3310.856
LFSR64_X128 128 287.444 373.509 332.251 2821.053

F-LFSR-GrainV1_80 1 4.996 7.047 5.059 47.904
F-LFSR-GrainV1_80_X16 16 38.322 48.469 45.928 430.478
F-LFSR-GrainV1_80_X32 32 31.691 42.772 38.885 332.250

F-LFSR-GrainV1_128 1 2.889 4.113 3.094 25.884
F-LFSR-GrainV1_128_X16 16 26.068 34.051 32.218 299.115
F-LFSR-GrainV1_128_X32 32 38.047 52.866 48.116 477.243

3.6 Filtered LFSRs

The move from LFSRs to cryptographically strong designs is admittedly gradual and
different tweaks can be used in order to add non-linearity to stream ciphers that are based
on shift registers. As just described, Trivium uses NLFSRs, but other approaches have
been considered in the literature, including filtering one or several LFSRs with a non-linear
Boolean function [Can11c, Can11a] or using irregularly clocked generators [Fon11a, Fon11b].
Grain v1 [HJM07, HJMM06] is an example where both an LFSR with a non-linear filter
function and an NLFSR are combined (and where the filtered LFSR part eventually became
the weak point [TIM+18]). Such approaches have been intensively analyzed, culminating
with the eSTREAM competition [oEiCE04]. Yet, when cryptographic strength is not the
goal, but only the fully linear characteristic of LFSR output needs to be eliminated, then
placing a non-linear filter function between the LFSR and the output can be sufficient. In
order to include such a representative in the comparison we exemplarily consider only the
filtered LFSR part of the Grain v1 variants, denoted by F-LFSR-GrainV1 in Table 5. Such
designs are most likely trivially insecure (see [TIM+18]), but still unable to outperform
Trivium/Bivium in throughput-area ratio. Of course, even more lightweight designs
following the same approach can be derived, but, to the best of our knowledge, none of
them have been studied in sufficient detail to warrant their inclusion in this comparison or
to be recommended as secure and efficient solutions for masking randomness generation.
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4 Security Analysis: Unrolled LFSRs
In this section, we tackle the question of the (in)security of using LFSRs as the source of
masking randomness. At first sight, although LFSRs do not have as strong properties as
other cryptographic primitives (i.e., their state can be retrieved by observing the stream
it generates), this might not be an issue since masking schemes usually only require that
their randomness is uniformly distributed and unpredictable. Since the adversary does
not have access to the output of the LFSR, but only a noisy version of it, state recovery
might not be easy, and we will optimistically assume that the unpredictability holds true.
Regarding the uniformity, a properly seeded LFSR has uniform output bits, but they are
not independent. Are these dependencies an issue in practice? We answer this question
positively with two simple examples where the masking security is broken due to the linear
dependencies in the LFSR output stream, both in theory and in real-world experiments.
Finally, we conclude the section by describing a real-world vulnerability caused by the use
of LFSRs of insufficient size inside a PRNG used for masking randomness generation.

Let r0, r1, . . . be the output stream from an k-bit LFSR. Then, using the LFSR
Fibonacci representation, there exists coefficients ai ∈ F2 such that ri+k =

⊕k−1
j=0 ajri+j .

Therefore, for any initial seed (r0, . . . rk−1), the random variables (ri, . . . , ri+k) satisfy the
linear relationship

⊕k
j=0 ajri+j = 0 (taking ak = 1). Since the LFSR output bits are linear

functions of the seed bits, the linear relationship generalizes: for any set of k + 1 indices
i0, . . . , ik, there exists a ∈ Fk

2 such that
⊕k

j=0 ajrij = 0 for any seed and a ̸= (0, . . . , 0).
When a set of rij

satisfies his property, we call the values it contains linearly dependent.
As a simple example of issue caused by linearly dependent random bits in masking,

let us consider the masked computation of s =
⊕m

i=1 xiyi with the well-known ISW
multiplication [ISW03] and the sharewise XOR gadget. Let (x0

i , x1
i ) and (y0

i , y1
i ) be

sharings representing xi and yi respectively, and let (z0
i , z1

i ) be the output sharing of the
ISW multiplication that computes xiyi. Then, z0

i = x0
i y0

i ⊕
(
x0

i y1
i ⊕ ri

)
and the first share

of s is s0 =
⊕m

i=1 x0
i y0

i ⊕
(
x0

i y1
i ⊕ ri

)
. If r1, . . . , rm are linearly dependent, the randomness

cancels out and we get s0 =
⊕m

i=1 x0
i (y0

i ⊕ y1
i ) =

⊕m
i=1 x0

i yi. This value depends on the
non-masked values yi, which should not happen in a first-order masked circuit.

Let us now show how this problem happens in concrete cases. Both case studies are
based on a circuit masked at the first order using the HPC2 masking scheme [CGLS21]
(i.e., we have HPC2 AND gadgets and sharewise XORs), and we ensure that the circuits
are secure against glitches and transitions [CS21] when provided with fresh randomness.

The first case-study is a low-latency implementation of Ascon [DEMS20] (the recent
winner of NIST’s Lightweight Cryptography standardization process [oSN17]) showing that
the above problem can appear in real-world circuits and not only in artificial examples.
Next, the second case study shows how glitches and transitions interact with the LFSR,
providing further insights on how (not) to use an LFSR for generating masking randomness.

4.1 Case Study 1
We implemented a first-order masked Ascon permutation with a round-based architecture
and with minimal latency (2 clock cycles per round, due to the latency of the HPC2
AND gadgets). The permutation operates on a 320-bit state and it is composed of the
layers shown in Figure 4: the substitution layer consists in 64 5-bit S-boxes and the linear
diffusion layer operates on 64-bit words. In the implementation, the non-linear part of
the S-box (which is the Keccak S-box) is the only sequential logic, and the other layers
(S-box output, Ascon diffusion layer, and S-box input) are all linear and implemented with
combinational logic. The non-linear S-box layer is implemented as a two-stage pipeline that
is fed with the randomness (ri)0≤i<320. It outputs the shared state bits (si)0≤i<320 (which
are simply forwarded from its input) and the results of the AND gates denoted (ai)0≤i<320.
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Figure 4: Top-level representation of the Ascon permutation.

The other layers combined together form a purely combinational XOR network producing
(s′

i)0≤i<320, the shared inputs of the non-linear layer of the next round.
The structure of the s′

i terms is fairly similar to our simple example from the beginning
of this section. Indeed, for some set Ii, we have

s′
i =

⊕
j∈Ii

sj ⊕
⊕
j∈Ii

sj+2sj+1,

and therefore, its first share is (note that s0
j+1 ⊕ s1

j+1 = (s0
j+1 ⊕ 1) ⊕ s1

j+1 = sj+1)

s′0
i =

⊕
j∈Ii

s0
j ⊕

⊕
j∈Ii

s0
j+2s0

j+1 ⊕ (s0
j+2s1

j+1 + rj).

Since all the XOR operations in this computation belong to a single combinational
circuit, the exact order in which they are evaluated in a practical implementation cannot
be easily controlled by the circuit designer. This lack of control can be caused by design
tools (which may exploit associativity of the XOR gate to optimize the circuit), or due
to the presence of glitches (i.e., values that appear only ephemerally due to propagation
delays, but still produce leakage). In particular glitch leakage is often worked around
with worst-case leakage models that assume than any possible glitch occurs [FGP+18].
Following that assumption, we will assume that for some subset of indices I ′

i ⊂ Ii, the
value

l =
⊕
j∈I′

i

s0
j+2s0

j+1 ⊕ (s0
j+2s1

j+1 + rj)

leaks. Let us now consider the randomness generation, and assume that the bits r0, . . . , r319
are the outputs of an LFSR unrolled 320 times. Then, if there is a linear dependency in
the LFSR output such that

⊕
j∈I′

i
rj = 0, then the above leakage becomes

l =
⊕
j∈I′

i

s0
j+2sj+1,

which depends on (sj+1)j∈I′
i
, causing first-order leakage.

Concretely, we analyzed the maximum-length LFSRs proposed in [Alf96]. By symboli-
cally simulating the execution of our Ascon implementation when using these LFSRs as
PRNG, we identified that 13 designs (out of 166 possible ones) had linear dependency
issues in the randomness that led to possible first-order leakage, as explained above. For
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Figure 5: Case study 1: fixed-vs-fixed t-test results for the first-order masked Ascon
experiment (10M traces) using the unrolled 63-bit LFSR as source of fresh randomness.

0 1 2 3
Time [µs]

Po
we

r

(a) Sample trace

0 1 2 3
Time [µs]

0

1

2

3

4

t-s
ta

tis
tic

s

(b) first order t-test

0 1 2 3
Time [µs]

0

20

40

60

t-s
ta

tis
tic

s

(c) second order t-test

Figure 6: Case study 1: fixed-vs-fixed t-test results for the first-order masked Ascon
experiment (10M traces) using unrolled Trivium as source of fresh randomness.

example, for the 63-bit LFSR (feedback polynomial x63 + x62 + 1 [Alf96]), 39 indices i had
this issue, with, e.g., I32 = {2, 27, 30, 31, 32, 45, 46, 155, 156} and I ′

32 = {30, 32, 156}.

We conclude our analysis by performing an experimental verification of the discovered
issue on a SAKURA-G board using a Spartan-6 FPGA as target. To do so, we performed
a power analysis by collecting measurements at 500MS/s using a Picoscope 5224D digital
oscilloscope and by measuring the voltage drop across a 1 Ohm shunt resistor, with a
vertical resolution of 12bits. The FPGA was fed with an external clock of 2.5MHz
synchronized with the clock of the oscilloscope to ensure a proper temporal alignment of
the traces. With this configuration, we performed a fixed-vs-fixed statistical t-test using
10M traces to evaluate the statistical security order achieved by our securely first-order
masked Ascon implementation. Figure 5 shows that first-order leakage is present and
confidently detectable with less than 10M traces. In order to verify that the source of this
leakage is indeed the use of the unrolled 63-bit LFSR for fresh mask generation we have
repeated the same experiment with an unrolled Trivium instead. The result is depicted
in Figure 6, showing a clear absence of first-order leakage (only the expected second-order
leakage is present and has a lower amplitude). It confirms that using multiple bits from
the same LFSR as random values for a masked implementation can lead to a security
degradation in realistic settings.

4.2 Case Study 2
As a second example, we consider the case of a network of AND and XOR operations. More
precisely, we suppose that the underlying circuit receives two n-bit operands x1, . . . , xn

and y1, . . . , yn and generates the output as z =
n⊕

i=1
xiyi. Considering an n-bit LFSR, we

have seen in the first case study what happens when unrolling more than n rounds. In
this case study, we demonstrate that even unrolling less than that can cause issues, due
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to transitions. More precisely, the observation is that such an n-bit LFSR should not be
unrolled more than n/2 rounds.2 Otherwise, the security of the circuit under the robust
probing model [FGP+18] cannot be guaranteed. This can be justified by the fact that
transition-extended probes allow the attacker to observe two consecutive values stored in
a register. Without considering transitions, it should be possible to securely use an n-bit
LFSR with n unrolled rounds (again considering 1 execution cycle). In order to show this,
we set two examples with n = 4 and n = 5 (identified as ANDXOR4 and ANDXOR5), while
using an unrolled 8-bit LFSR generating 4 (resp., 5) random bits per clock cycle (next
referred to as LFSR8_X4 and LFSR8_X5).

Verification Tool. To examine the security of these circuits, we conducted two distinct
experiments. We first synthesized the circuits for an ASIC platform by Synopsys Design
Compiler with NanGate 45 nm digital library and used PROLEAD [MM22] to examine their
first-order probing security under the glitch- and transition-extended probing model. As a
side note, PROLEAD is a simulation-based leakage assessment software tool developed for
evaluation of masked hardware designs following the robust probing security model. We
analyzed both circuits by PROLEAD using 100M simulations and allowed first-order probes
to be placed on every location of the circuit (including the LFSR) and extended based
on glitches as well as transitions. We set PROLEAD to seed the LFSR with a randomly
generated 8-bit value for every simulation, and performed a fixed-vs-random statistical test
with fixed input x1, . . . , xn and y1, . . . , yn being all zero. While the tool did not report any
leakage for n = 4, it revealed a single probe placed on an output share (e.g., z0) able to see
significantly different distributions for n = 5 using less than 1M simulations. Note that we
have similarly examined smaller circuits with n < 4 which led to the same result as with
n = 4. Note also that transition-extended probes play an important role here. Without
covering transitional leakages, PROLEAD did not report any first-order leaking probes up to
n = 8.

FPGA-Based Experiments. As in the previous section, we also have carried out
FPGA-based experimental analysis on both aforementioned circuits. To this end, we
made use of a SAKURA-G board with Spartan-6 FPGAs, and measured dynamic power
consumption of the underlying circuit being operated at a low clock frequency of 3 MHz.
The power traces have been collected by a digital oscilloscope at a sampling rate of 500 MS/s;
corresponding sample power traces can be seen in Figure 7(a) and Figure 8(a). We followed
the procedure suggested in [SM15] for collecting the traces suitable for a fixed-vs-random
t-test. Similar to the simulation-based analysis explained above, the LFSR was randomly
seeded before every measurement. We further made sure that the circuit is enabled once
the input is given and the corresponding clock cycles are covered by the collected power
traces. For each circuit, we collected 100M traces and performed a first- and second-order
t-test, whose results are depicted in Figure 7(b), 7(c) and Figure 8(b), 8(c), respectively.
The experimental results are in line with the simulation-based analyzes employing PROLEAD,
i.e., detectable first-order leakage is seen for n = 5 while it is not the case for n = 4.

We would like to highlight that these experiments cannot be seen as a proof that
unrolling an n-bit LFSRs for more than n/2 steps will always cause leakage. However, we
presented an example (for small n) where this is indeed the case and consider the rule of
thumb plausible based on the joint occurrence of glitches and transitions in practice.

More generally, we conclude from our two case studies that even in simple settings
(i.e., analyzing one clock cycle), LFSRs as PRNGs can cause serious security issues. While
it might be possible to work around these issues with thorough analysis, exhaustive
verification of combined circuits becomes quickly prohibitive and some countermeasures

2 If we unroll less than n/2, we do not expect to see problem arising when considering only one execution
cycle, however there might still be issues when executing the implementation over multiple cycles.
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to prevent issues from occurring (e.g., not unrolling too much, paying close attention to
synthesis details) will add undesirable overheads. We therefore conclude that a simpler
solution will be often desirable, such as the use of a proper cryptographically-secure PRNG.

4.3 Case Study 3

As a final case study we highlight a vulnerability discovered in a real-world design. The
identified problem is caused by the use of a cryptographically weak, filtered LFSR-based,
PRNG for masking randomness generation, once again showing that such design choices
can easily lead to issues in practice. While the previous two case studies have discussed
violations of masking security stemming from the linear dependency between LFSR output
bits that either directly, or with the aid of glitches and transitions in hardware, led to
side-channel leakage, this last case study highlights an example where the chosen shift
registers are too small to prevent guessing attacks. In particular, the PRNG initially used
to supply the masked AES core inside the OpenTitan chip design, contained multiple
independent filtered 32-bit LFSRs. To attack this design, one may simply enumerate all
possible states of each LFSR separately to find the correct seed, as there is no diffusion
between the registers, which in turn allows an adversary to generate all previous and future
masks.

Attack description. The independent 32-bit LFSRs in the PRNG design are expected
to leak side channel information, for example through the power consumption, about their
initial state (the seed) over the full duration of a leakage trace in a highly multivariate
manner. The adversary may simply enumerate all 232 potential initial states of one of
the LFSRs and predict the n following states that are produced when clocking it. If the
guessed initial state is correct, all consecutive state updates are predicted correctly and a
horizontal template or correlation attack on the leakage of the n successive state updates
that occur over the period captured by the trace will then typically be sufficient to identify
the correct seed (leading to the maximum likelihood or correlation). The same procedure
can be repeated for each of the independent LFSRs independently using the same leakage
trace(s) until the entire PRNG state is recovered. If the PRNG is not (or rarely) reseeded,
the initial seed only has to be extracted once. If the seed is fresh for every execution,
one seed per trace needs to be extracted. Once all seeds are known, the implementation
is essentially unprotected and a standard side-channel analysis attack on the processed
intermediates, such as Differential Power Analysis (DPA), is likely to succeed unless the
noise level is prohibitively high.

Disclosure and fix. After disclosing the issue to the designers, the OpenTitan team has
acknowledged and confirmed the described problems and is actively working on integrating
a fixed solution. To the best of our knowledge, the plan is to switch to a Bivium- or
Trivium-based PRNG with an unrolling factor of 160 (i.e., producing 160 bits per cycle)
for the masking randomness generation. According to the designers, the overhead of
moving to a Bivium-based solution, including a partial state reseeding interface, associated
tracking logic, and lockup detection as well as protection, comes at the cost of additional
≈ 2.22 kGE, which corresponds to ≈ 1.8 % overhead for the full masked AES. This solution
even outperforms the alternative of simply stretching each of the 32-bit LFSRs to 64-bit
ones and otherwise keeping the original design, while it additionally provides much stronger
diffusion over the entire state and hence significantly improved security characteristics.
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5 Unrolled Trivium/Bivium for Masking Randomness
We finally provide guidelines for the secure use of Trivium and Bivium as PRNGs for
masking randomness generation and analyze the efficiency and security of the resulting
circuits.

5.1 Initialization
Trivium (resp., Bivium) normally expect two input parameters, a key and an Initialization
Vector (IV). One simple and efficient option to turn them into PRNGs is to use a randomly
chosen fixed 80-bit IV for the device lifetime and at every device power-up obtain 80 true
random bits from a TRNG as a seed to supply via the key input. If multiple instances
in parallel are required (to generate many bits without increasing the critical path too
much), each of them needs a different 80-bit IV, but can be fed with the same seed.
Before randomness is produced, at least the initial phase of 1152 (resp., 708) steps needs
to be executed. Note that the amount of cycles for this initialization depends on the
level of unrolling. Using Trivium_X64 this phase requires only ⌈1152/64⌉ = 18 cycles.
Using Trivium_X256 for example only ⌈1152/256⌉ = 5 cycles are needed. These numbers
of initialization cycles are in the same range as required for the pipelined block-based
primitives discussed in Section 3 (i.e., 5 for full SPEEDY, 24 for full Gimli). Alternatively,
in order to skip the initialization phase altogether, the state of each Trivium (resp.,
Bivium) instance can be completely filled with 288 bits (resp., 177 bits) of TRNG output.
In this case, the respective instance’s output can be used immediately in the masked
implementation without any further delay. Yet, due to the limited efficiency of TRNGs,
this approach is often less convenient, especially when multiple Trivium (resp., Bivium)
instances in parallel are needed.

5.2 Cost and Performance Analysis
Since the unrolling factor may be chosen arbitrarily in both Trivium and Bivium hardware
implementations, it is crucial to investigate how the relevant cost and performance metrics
scale when increasing the number of bits produced per cycle. Figure 9 illustrates the
relationship between the area cost per output bit produced, which predictably decreases
with larger levels of unrolling (blue curves), and the critical path delays defining the
maximum possible operating frequency of the resulting circuits, which expectedly increase
when more bits per cycle are generated (red curves). These results exclude the cost
of the register stage that is needed before the generated bits can be used in a masked
implementation in order to avoid timing dependencies between generated output bits.
The curves are based on synthesis results using a commercial 65nm CMOS ASIC library
and have been obtained without placing any timing constraints, i.e., the critical path
delays are larger than reported in Appendix A and considered in Section 3, while the area
figures are smaller (this choice has been made to reduce the tool runtime for the large
unrolling factors). Critical path delays are given in nanoseconds and area is measured in
gate equivalents (circuit area divided by 2-input NAND area). The x-axis covers the range
from 20 = 1 to 213 = 8192 bits per cycle. Please note that there are two separate y-axes,
where the left y-axis (red) is in linear scale and the right y-axis (blue) is in logarithmic
scale. We have chosen this kind of data representation here to highlight that there is a
sweet spot (i.e., an effective zone) between 26 = 64 and 210 = 1024 that combines a high
maximum operating frequency (> 100 MHz) with a low average area cost per bit (< 60 GE
for Trivium, < 40 GE for Bivium). The concrete values for 28 = 256 output bits per cycle,
which is the center of the effective area, are 35.48 GE per bit at a maximum 419 MHz for
Trivium, and 22.9 GE per bit at a maximum 436 MHz for Bivium. The asymptotic values
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Figure 7: Case study 2: fixed-vs-random t-test results for the ANDXOR4 experiment (100M
traces) with LFSR8_X4 as source of fresh randomness.
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Figure 8: Case study 2: fixed-vs-random t-test results for the ANDXOR5 experiment (100M
traces) with LFSR8_X5 as source of fresh randomness.
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Figure 9: Area cost per bit and respective critical path delays for different degrees of
unrolling (i.e., number of output bits produced per cycle).
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Figure 10: Number of LUTs per bit instantiated on a Spartan-6 FPGA for different degrees
of unrolling (i.e., number of output bits produced per cycle).

for the area per bit decrease even below 31 GE for Trivium and 20 GE for Bivium, but
beyond a certain point the critical path delay becomes prohibitive.

In Figure 10 we have repeated the same analysis on an FPGA. Since our experimental
results are obtained on Spartan-6 FPGAs we have chosen the same device model for the
cost and performance analysis here. In contrast to the ASIC results presented above,
the area cost is now measured by the number of six-input look-up tables (LUTs) that
are instantiated by the synthesis and implementation tool (ISE Design Suite 14.7) per
output bit per cycle. Again, these results exclude the cost of the registers that the finally
generated bits need to pass through before being be used in a masked implementation.
In general, the FPGA results are similar to the ASIC analysis. The sweet spot is again
between 26 = 64 and 210 = 1024. The concrete values for 28 = 256 output bits per cycle
are 4.82 LUTs per bit at a maximum 140 MHz for Trivium, and 3.65 GE per bit at a
maximum 139 MHz for Bivium.

In summary, the cost and performance of unrolled Trivium and Bivium hardware
implementations reach their optimal trade-off when a few hundreds, but less than thousands
of bits per cycle are required by a masked implementation. In consequence, when more
than a thousand bits per cycle are required by a masked implementation and if the unrolled
PRNG becomes part of the critical path of the entire design, one may consider instantiating
multiple PRNG instances in parallel while reducing the degree of unrolling.

5.3 Security against SCA Attacks
In this subsection we discuss the security of the pseudo-random phase of Bivium and
Trivium against Side-Channel Analysis (SCA) attacks. Our analysis relies mostly on the
state-of-the-art investigations reported by Kumar et al. at CHES 2022 [KDB+22]. To
the best of our knowledge, this is the only successful SCA on the pseudo-random phase
of Trivium, and no follow-up of this work has been published yet. More precisely, the
authors successfully performed a simulated SCA on a software implementation of Trivium
embedded on a 32-bit microcontroller. To this end, they assumed that each register over
which the state is encoded leaked its Hamming weight. This leakage model has nice
algebraic properties that allows one to instantiate a so-called Algebraic SCA [RSV09], by
solving equations whose variables are the state bits, and whose constraints are given not
only by the output stream bits, but also by the Hamming weights of the state registers.
Concretely, Kumar et al. instantiated this approach using the Z3 Satisfiability Modulo
Theory (SMT) solver.3

3 The authors used an SMT solver rather than a SAT solver, in order to deal with potential noise into
the SCA measurements, that could prevent from a fully accurate guessing of the Hamming weights.
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In a nutshell, knowing the Hamming weights of each register at each state update
enables the adversary to straightforwardly guess some information about the input/output
bits of these registers, provided that their size is less than the size of the three NLFSRs in
Trivium. As an example, consider one particular register whose bit-size is small enough to
not store the bits s0, s92 or s177 — those are the only bits that may not be just shifted
from one clock cycle to another. If the adversary observes a sequence (h, h + 1) (resp.,
(h + 1, h)) of Hamming weights for some value h, this means that the bit leaving the
register is 0 (resp., 1) while the bit entering the register is 1 (resp., 0). Likewise, if the
adversary observes a sequence of two equal Hamming weights, this means that the register
input and output bits are equal. Overall, this leaks exactly 3

2 bits per clock-cycle, and per
such register — assuming pseudo-randomness of the input/output bits. Then, letting the
state bit shift over a few updates is sufficient to easily recover the whole state. We could
even extend Kumar et al.’s attack with the Hamming weight leakage model up to 128-bit
registers. There, the bit-size becomes larger than the size of each NLFSR, but the last 31
bits of the third NLFSR need to be stored in a third register, whose bits are just shifted
from one update to another.

However, for attacks with larger registers, and in particular for a whole state fitting into
one single 288-bit register, the picture becomes different. Hereupon, we did not succeed
in extending Kumar et al.’s attack, with 288, 300 or 3000 state updates, within 2 days
of computation, even with this noise-free idealized leakage model. Likewise, the results
are the same when turning to attacks on a 288-bit register assuming a Hamming distance
leakage model. These results were already reported by Kumar et al. [KDB+22, Sec. 5.2.2].
Hereupon, although the authors succeed in recovering the state during the initialization
phase using a few hundreds of rounds and a few hundreds of seconds, and assuming to know
in advance a dozen of key bits, they could not succeed any attack on the pseudo-random
phase within 2 days, unless potentially combined with an enumeration of 140 bits, which
is more than the complexity of directly enumerating the 80-bit secret key of Trivium.

To summarize, when assuming a Hamming weight or a Hamming distance leakage
model, operating on the whole Trivium state in parallel, as it is done for hardware
implementations, seems to be the key ingredient to make side-channel attacks on Trivium
prohibitive. Moreover, thanks to their open-source code, we replicated Kumar et al.’s
experiment with the Hamming distance leakage model to verify whether considering reduced
variants of Trivium, i.e., Bivium A and Bivium B could result in different outcomes, but we
were not able to report any success for those variants within 2 days as well. Hence, unless
a leakage model is observed in practice which proves to be significantly more informative
than noise-free HW/HD on the whole state, attacks on hardware Trivium and Bivium have
to be considered hard in our setting. Thus, given the current knowledge, state recovery
through SCA attacks is not a primary concern for hardware implementations of stream
ciphers with state sizes like Trivium’s, meaning that the unpredictability requirement for
masking randomness is expected to be fulfilled.

On the effect of unrolling. Based on these evaluations, we predict that unrolling a
hardware implementation can only be beneficial for the SCA security, as the sequential
nature of the leakage should be much less exploitable. To ground this claim, let us consider
side-channel analysis against an LFSR. Without considering unrolling, we have been able
to successfully apply Kumar et al.’s approach to 64-bit LFSRs within a few seconds and
a few rounds, thanks to the sequential nature of the leakages. However, at the extreme
case where the adversary is not able to exploit the sequential nature of the Hamming
weight/distance leakages due to unrolling — i.e. the adversary assumes that the leakages
are independent, whereas they are not — the problem can be seen as an instance of the
so-called hidden multiplier problem, introduced by Belaïd et al. [BCF+15]. There only
exists two known attacks against this problem. The first one leverages the parity of the
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least significant bit of the Hamming weight of the leakage, and is therefore highly sensitive
to the presence of noise [BFG14]. The second one leverages the most significant bit of the
Hamming weight of the leakages, but the attack uses an instance of the LWE problem,
for which there is no polynomially efficient algorithm [BCF+15]. Overall this contrasts
with attacks against non-unrolled LFSRs, which should be straightforward to break using
Kumar et al.’s approach if the noise level is not prohibitive. The same observation also
applies to (≤ 128-bit) LFSRs with non-linear filter functions when the state is only updated
by one or a few bits per cycle. Hence, such tweaked designs are similarly insecure as
regular LFSRs in the low-noise setting because the state can be recovered through SCA
observations.

6 Conclusions
Modern hardware masking schemes based on robust probing secure and composable gadgets
are known to consume a large number of random bits per clock cycle, especially in parallel
implementations and at higher orders. The required random numbers need to be uniformly
distributed and unpredictable to adversaries. However, the secure and efficient generation
of these bits has not yet received the attention it deserves from the research community.
In this work, we improve upon this state of the art and provide contributions in multiple
different directions. First of all, we clarify the relevant security properties that must be
satisfied in the context of concurrent randomness generation for hardware masking. Then,
after arguing that True Random Number Generators (TRNGs) are not cost-efficient when
large quantities of bits are needed per cycle, we compare multiple potential candidates for
building cost efficient Pseudo-Random Number Generators (PRNGs) instead, to stretch
an initial seed obtained once at power-up (analysis of re-seeding is left to future works)
into many pseudo-random bits during runtime. Our comparison includes block ciphers,
permutations, stream ciphers and (filtered) LFSRs. We arrive at the conclusion that the
stream cipher Trivium and its reduced security variant Bivium B (for more aggressive
optimizations) are impressively well-suited for our targeted application scenario when
considering their unrolled implementation. Unrolled Trivium is basically a ready-to-
use, trivial-to-instantiate, cheap, flexible, cryptographically strong and high-performance
PRNG for hardware applications that already survived almost 20 years of cryptanalysis
and heuristically inherits some of the properties of leakage-resilient stream ciphers. Hence,
we highly recommend its adaptation for concurrent masking randomness generation and
provide guidelines for its usage together with parametrizable source code. The only
alternatives with even better performance according to our analysis are unrolled LFSRs,
which offer no cryptographic strength. For that reason we also studied in detail what
the security implications might be when using such a simple linear primitive for mask
generation instead of a cryptographically strong PRNG and present three case studies
where security degradation occurs in practice. To the best of our knowledge, such concrete
results have not been presented in the masking literature so far. In this respect, is always
easy to argue that the need for cryptographic strength is obvious for PRNGs in masking
contexts. Yet, both the related side-channel literature (see Section 1.5) and concrete
real-world examples (see the case study on OpenTitan in Section 4.3) are showing that
the opposite assumption is more prevalent: LFSR-based approaches are more the current
norm than the exception. Hence, we believe our work is an important cautionary study
that still culminates in a positive result, as the secure options we recommend are also more
efficient than many of the less secure ones used in previous works (e.g., a separate LFSR
for each bit of randomness). Besides, and while it may indeed be possible to instantiate
certain LFSRs together with specific masked implementations securely, it at least requires a
thorough analysis of the randomness generator and the masked circuit jointly. By contrast,
when instantiating a cryptographically strong PRNG like Trivium, the (SCA) security of
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randomness generation and masked implementation can be assessed separately, which is a
desirable approach.

Concretely, we demonstrate that securely generating n bits of randomness per cycle
using our proposed approaches has an asymptotic cost of approximately 30n GE (ASIC)
or 4n LUTs (FPGA) for Trivium (80-bit security), and approximately 20n GE (ASIC) and
3n LUTs (FPGA) for Bivium. These values are at least one order of magnitude better
than what has been used as an estimate for the cost of producing random bits as recently
as CHES 2022. For completeness, we also evaluated our solutions using NIST’s 800-22 test
suite for random and pseudo-random number generators for cryptographic applications.
Unsurprisingly, the random values generated by Trivium and Bivium passed all statistical
tests, while the unrolled 64-bit LFSR failed all linear complexity tests. This, along with
the intrinsic leakage resilience of unrolled Trivium/Bivium, provides strong incentives for
their practical use. We believe that our results can help to decide on crucial optimization
trade-offs and may even guide research directions, such as moving low randomness to a
secondary design goal for hardware masking in the future.

We provide source code related to this work, including the unrolled stream cipher
implementations, in the following GitHub repository:

https://github.com/uclcrypto/randomness_for_hardware_masking
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A Extended performance comparison

Table 6: Comparison of the critical path delay of relevant building blocks when synthesized
for maximum operating frequency.

Critical Path [ns]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 0.181586 0.135803 0.208436 0.021313

LFSR64 0.198822 0.155045 0.169445 0.014804
LFSR64_X32 0.195796 0.157433 0.197540 0.017748
LFSR64_X64 0.318669 0.224628 0.249999 0.022856
LFSR64_X96 0.311533 0.219201 0.242679 0.022425
LFSR64_X128 0.346743 0.265965 0.329463 0.028568

F-LFSR-GrainV1_80 0.330864 0.236224 0.301292 0.025280
F-LFSR-GrainV1_80_X16 0.379382 0.279218 0.302846 0.029794
F-LFSR-GrainV1_80_X32 0.579904 0.456821 0.499251 0.049750
F-LFSR-GrainV1_128 0.354693 0.248964 0.309799 0.030301
F-LFSR-GrainV1_128_X16 0.354076 0.254165 0.316051 0.030632
F-LFSR-GrainV1_128_X32 0.403878 0.244791 0.337708 0.029548

Bivium 0.217899 0.134968 0.194500 0.016976
Bivium_X32 0.195342 0.165267 0.218067 0.019418
Bivium_X48 0.242034 0.168228 0.192918 0.019445
Bivium_X64 0.236545 0.174493 0.223668 0.018651
Bivium_X72 0.378802 0.276818 0.328879 0.028219
Trivium 0.217623 0.118064 0.194513 0.016977
Trivium_X32 0.186734 0.180408 0.205709 0.020549
Trivium_X48 0.249180 0.166565 0.222982 0.018831
Trivium_X64 0.243608 0.173686 0.205199 0.018959
Trivium_X72 0.380121 0.274877 0.281385 0.028132
Kreyvium 0.279769 0.205444 0.234201 0.021628
Kreyvium_X32 0.291147 0.207658 0.241899 0.020947
Kreyvium_X48 0.280961 0.208351 0.237580 0.021515
Kreyvium_X64 0.272732 0.209060 0.266117 0.022508
Kreyvium_X72 0.396187 0.282755 0.332073 0.033164

GrainV1_80 0.552327 0.351267 0.431476 0.040580
GrainV1_80_X8 0.518995 0.406393 0.495407 0.044568
GrainV1_80_X16 0.559680 0.407079 0.565964 0.050532
GrainV1_80_X32 0.967295 0.788402 0.885287 0.089198
GrainV1_128 0.475218 0.322891 0.419144 0.039935
GrainV1_128_X16 0.503052 0.359735 0.472844 0.043818
GrainV1_128_X32 0.485202 0.341568 0.452880 0.044034
GrainV1_128_X48 0.769497 0.549393 0.705566 0.071954

MICKEY2_80 0.356980 0.234147 0.318378 0.033913
MICKEY2_80_X2 0.565007 0.385819 0.561346 0.057637
MICKEY2_80_X4 0.994678 0.747549 0.967886 0.096524
MICKEY2_80_X32 9.098467 6.634537 9.621321 0.897338
MICKEY2_128 0.357516 0.267185 0.319032 0.039074
MICKEY2_128_X2 0.630560 0.451635 0.605333 0.060051
MICKEY2_128_X4 1.159020 0.845300 1.085925 0.114799
MICKEY2_128_X32 10.208649 7.354148 10.711792 1.041437

Gimli-8 1.619769 1.175962 1.527335 0.148707
✓ 0.339260 0.287740 0.316472 0.029309

Gimli-16 2.894982 2.071035 2.758774 0.274899
✓ 0.356307 0.264966 0.337362 0.029584

Gimli-24 4.385863 3.127366 4.383278 0.421443
✓ 0.360362 0.266396 0.324092 0.029630

Subterranean2 0.405738 0.287102 0.406284 0.034361
Subterranean2_X2 0.722609 0.531270 0.719394 0.069042
Subterranean2_X4 1.366440 0.995288 1.351147 0.130649
Subterranean2_X8 2.635188 1.955079 2.662149 0.258758

SPEEDY-2-192 1.119609 0.806595 1.167997 0.110700
✓ 0.729113 0.521127 0.725931 0.066281

SPEEDY-3-192 1.733313 1.257028 1.842109 0.173992
✓ 0.737364 0.528380 0.728356 0.068753

SPEEDY-4-192 2.376308 1.709736 2.549025 0.237866
✓ 0.737837 0.521994 0.742094 0.069379

SPEEDY-5-192 2.994643 2.178075 3.187368 0.300466
✓ 0.745205 0.520147 0.722302 0.070076
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Table 7: Comparison of the area consumption of relevant building blocks when synthesized
for maximum operating frequency.

Area [GE]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 306.25 297.00 237.00 273.00

LFSR64 465.50 496.75 502.67 635.75
LFSR64_X32 710.00 764.50 741.33 756.25
LFSR64_X64 903.50 954.25 830.33 915.50
LFSR64_X96 1045.25 1097.25 1020.67 1293.00
LFSR64_X128 1284.25 1288.50 1169.33 1588.25

F-LFSR-GrainV1_80 605.00 600.75 657.33 825.75
F-LFSR-GrainV1_80_X16 1100.50 1182.25 1150.33 1247.50
F-LFSR-GrainV1_80_X32 1741.25 1637.75 1648.33 1934.50
F-LFSR-GrainV1_128 976.00 976.50 1043.33 1275.00
F-LFSR-GrainV1_128_X16 1733.50 1848.75 1571.33 1746.25
F-LFSR-GrainV1_128_X32 2082.50 2472.75 1969.33 2269.25

Bivium 1266.25 1381.25 1450.67 1730.00
Bivium_X32 2310.75 2487.25 2050.67 2386.00
Bivium_X48 2624.25 2945.75 2315.33 2546.75
Bivium_X64 3019.00 3410.50 2607.67 2830.50
Bivium_X72 2840.75 2865.00 2684.67 3150.50
Trivium 1950.50 2080.25 2348.33 2649.50
Trivium_X32 3341.00 3834.25 3322.00 3777.50
Trivium_X48 3961.75 4560.75 3734.67 4195.50
Trivium_X64 4460.50 4994.00 4023.67 4483.75
Trivium_X72 4458.50 4388.00 4158.33 4825.25
Kreyvium 3641.25 3924.00 4193.00 5016.00
Kreyvium_X32 5099.25 5614.00 5582.67 6535.00
Kreyvium_X48 5780.75 6295.00 6013.00 6848.75
Kreyvium_X64 6318.00 6763.25 6376.00 7324.75
Kreyvium_X72 6543.50 6658.25 6747.33 7437.75

GrainV1_80 1236.75 1409.25 1466.67 1662.25
GrainV1_80_X8 2411.75 2508.00 2216.00 2592.00
GrainV1_80_X16 3455.00 3618.75 3130.33 3643.00
GrainV1_80_X32 5687.50 5779.00 5050.00 5841.25
GrainV1_128 1937.75 2086.25 2183.00 2544.50
GrainV1_128_X16 3732.25 3879.50 3470.33 4004.00
GrainV1_128_X32 5314.25 5880.50 5048.67 5555.753
GrainV1_128_X48 7003.25 7294.25 6076.67 7037.25

MICKEY2_80 2288.00 2363.25 2258.33 2611.50
MICKEY2_80_X2 3660.75 3600.00 3214.67 3775.50
MICKEY2_80_X4 6475.00 6410.50 5415.00 6253.00
MICKEY2_80_X32 62447.25 62259.50 48821.67 55493.00
MICKEY2_128 3594.00 3872.00 3542.33 4097.25
MICKEY2_128_X2 5520.50 5418.50 5068.00 5945.25
MICKEY2_128_X4 9591.25 9539.75 8320.67 9671.25
MICKEY2_128_X32 94555.25 95573.00 76321.67 85654.50

Gimli-8 27505.00 30970.50 19582.33 23870.00
✓ 26474.00 30086.75 24636.67 27280.00

Gimli-16 53388.50 61880.75 32578.33 38078.50
✓ 52309.25 60988.25 47771.33 53210.00

Gimli-24 69833.75 79734.25 50366.33 55725.75
✓ 78828.00 90802.75 71544.00 79725.25

Subterranean2 5526.25 6244.75 5045.67 5945.25
Subterranean2_X2 9391.75 10550.50 8504.33 9991.50
Subterranean2_X4 17274.00 18951.25 13559.00 16087.75
Subterranean2_X8 33381.00 38775.00 24922.33 30368.50

SPEEDY-2-192 16443.00 18983.25 10792.67 12859.25
✓ 13344.00 14274.50 10827.67 11939.50

SPEEDY-3-192 26658.50 31058.75 16391.67 19988.00
✓ 20808.25 21642.00 17287.33 20742.75

SPEEDY-4-192 37013.75 40820.25 21994.33 27143.25
✓ 27989.00 28356.25 23492.33 28574.00

SPEEDY-5-192 47364.00 53856.00 27903.33 34649.00
✓ 34604.00 36380.00 30011.00 36056.00
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Table 8: Comparison of the power consumption of relevant building blocks when synthesized
for maximum operating frequency, estimated for 100 MHz operation.

Power [mW]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 0.0382 0.0219 0.0220 0.0074

LFSR64 0.1782 0.1054 0.0531 0.0252
LFSR64_X32 0.2241 0.1325 0.0881 0.0301
LFSR64_X64 0.2564 0.1556 0.1058 0.0360
LFSR64_X96 0.2708 0.1675 0.1311 0.0465
LFSR64_X128 0.3007 0.1853 0.1516 0.0581

F-LFSR-GrainV1_80 0.2260 0.1120 0.0703 0.0329
F-LFSR-GrainV1_80_X16 0.3051 0.1821 0.1408 0.0471
F-LFSR-GrainV1_80_X32 0.4175 0.2274 0.2165 0.0743
F-LFSR-GrainV1_128 0.3602 0.1953 0.1125 0.0508
F-LFSR-GrainV1_128_X16 0.4914 0.3010 0.1972 0.0668
F-LFSR-GrainV1_128_X32 0.5526 0.3656 0.2516 0.0852

Bivium 0.4833 0.2529 0.1618 0.0681
Bivium_X32 0.6458 0.4078 0.2550 0.0902
Bivium_X48 0.7168 0.4558 0.2910 0.0990
Bivium_X64 0.7872 0.5110 0.3310 0.1086
Bivium_X72 0.7304 0.4166 0.3406 0.1193
Trivium 0.7157 0.3991 0.2776 0.0974
Trivium_X32 0.9599 0.5950 0.4127 0.1439
Trivium_X48 1.0750 0.6864 0.4704 0.1583
Trivium_X64 1.1559 0.7276 0.5108 0.1705
Trivium_X72 1.1301 0.6370 0.5299 0.1859
Kreyvium 1.4335 0.7247 0.4449 0.2018
Kreyvium_X32 1.6782 0.9694 0.6799 0.2571
Kreyvium_X48 1.7909 1.0446 0.7525 0.2730
Kreyvium_X64 1.8916 1.0999 0.8017 0.2923
Kreyvium_X72 1.9194 1.0440 0.8620 0.2986

GrainV1_80 0.4479 0.2424 0.1742 0.0661
GrainV1_80_X8 0.6472 0.3750 0.2829 0.0998
GrainV1_80_X16 0.8222 0.4983 0.4107 0.1387
GrainV1_80_X32 1.2170 0.7298 0.7144 0.2369
GrainV1_128 0.7005 0.3705 0.2532 0.1016
GrainV1_128_X16 1.0080 0.5954 0.4455 0.1554
GrainV1_128_X32 1.2855 0.8108 0.6683 0.2167
GrainV1_128_X48 1.5699 0.9661 0.8331 0.2785

MICKEY2_80 0.6057 0.3425 0.2700 0.0942
MICKEY2_80_X2 0.8498 0.4772 0.3981 0.1399
MICKEY2_80_X4 1.3253 0.7962 0.7055 0.2344
MICKEY2_80_X32 18.3180 11.7230 11.9660 3.5713
MICKEY2_128 0.9650 0.5482 0.4274 0.1536
MICKEY2_128_X2 1.2706 0.7234 0.6327 0.2212
MICKEY2_128_X4 1.9906 1.1607 1.1222 0.3654
MICKEY2_128_X32 26.8160 17.6274 18.8430 5.6178

Gimli-8 8.0824 5.5274 4.1302 1.4268
✓ 9.8002 6.1129 4.5818 1.5078

Gimli-16 13.4989 9.8060 6.4017 2.0360
✓ 18.1331 11.7633 8.8154 2.8464

Gimli-24 17.4224 13.0373 9.7293 2.9185
✓ 26.6511 17.3752 13.1350 4.2043

Subterranean2 0.8247 0.5043 0.3999 0.1492
Subterranean2_X2 1.1644 0.7594 0.6346 0.2423
Subterranean2_X4 2.8752 1.9857 1.6683 0.5661
Subterranean2_X8 9.3689 7.1013 5.2655 1.7625

SPEEDY-2-192 4.6353 3.0388 1.9893 0.7162
✓ 3.8586 2.3635 1.9718 0.5813

SPEEDY-3-192 7.3420 5.0057 3.0958 1.1275
✓ 5.8516 3.5152 3.1976 1.1105

SPEEDY-4-192 10.1531 6.6220 4.1915 1.5378
✓ 7.8388 4.6164 4.3498 1.5172

SPEEDY-5-192 12.9344 8.7471 5.3422 1.9655
✓ 9.6633 5.8834 5.5623 1.9002
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Table 9: Comparison of the maximum throughput of relevant building blocks when
synthesized for maximum operating frequency.

Throughput [Gbit/s]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 5.5070 7.3636 4.7976 46.9197

LFSR64 5.0296 6.4497 5.9016 67.5493
LFSR64_X32 163.4354 203.2611 161.9925 1803.0201
LFSR64_X64 200.8353 284.9155 256.0010 2800.1400
LFSR64_X96 308.1536 437.9542 395.5843 4280.9365
LFSR64_X128 369.1495 481.2663 388.5110 4480.5377

F-LFSR-GrainV1_80 3.0224 4.2333 3.3190 39.5570
F-LFSR-GrainV1_80_X16 42.1739 57.3029 52.8321 537.0209
F-LFSR-GrainV1_80_X32 55.1815 70.0493 64.0960 643.2161
F-LFSR-GrainV1_128 2.8193 4.0166 3.2279 33.0022
F-LFSR-GrainV1_128_X16 45.1880 62.9512 50.6247 522.3296
F-LFSR-GrainV1_128_X32 79.2318 130.7238 94.7564 1082.9836

Bivium 4.5893 7.4092 5.1414 58.9067
Bivium_X32 163.8153 193.6261 146.7439 1647.9555
Bivium_X48 198.3192 285.3271 248.8104 2468.5009
Bivium_X64 270.5616 366.7769 286.1384 3431.4514
Bivium_X72 190.0729 260.0987 218.9255 2551.4724

Trivium 4.5951 8.4700 5.1410 58.9032
Trivium_X32 171.3668 177.3757 155.5596 1557.2534
Trivium_X48 192.6318 288.1758 215.2640 2548.9884
Trivium_X64 262.7172 368.4811 311.8924 3375.7055
Trivium_X72 189.4134 261.9353 255.8772 2559.3630

Kreyvium 3.5744 4.8675 4.2698 46.2364
Kreyvium_X32 109.9101 154.0995 132.2866 1527.6651
Kreyvium_X48 170.8422 230.3805 202.0372 2231.0016
Kreyvium_X64 234.6626 306.1322 240.4957 2843.4334
Kreyvium_X72 181.7324 254.6374 216.8198 2171.0288

GrainV1_80 1.8105 2.8468 2.3176 24.6427
GrainV1_80_X8 15.4144 19.6854 16.1483 179.5010
GrainV1_80_X16 28.5878 39.3044 28.2703 316.6310
GrainV1_80_X32 33.0819 40.5884 36.1465 358.7524
GrainV1_128 2.1043 3.0970 2.3858 25.0407
GrainV1_128_X16 31.8059 44.4772 33.8378 365.1467
GrainV1_128_X32 65.9519 93.6856 70.6589 726.7112
GrainV1_128_X48 62.3784 87.3692 68.0305 667.0929

MICKEY2_80 2.8013 4.2708 3.1409 29.4872
MICKEY2_80_X2 3.5398 5.1838 3.5629 34.6999
MICKEY2_80_X4 4.0214 5.3508 4.1327 41.4405
MICKEY2_80_X32 3.5171 4.8232 3.3259 35.6610
MICKEY2_128 2.7971 3.7427 3.1345 25.5925
MICKEY2_128_X2 3.1718 4.4284 3.3040 33.3050
MICKEY2_128_X4 3.4512 4.7320 3.6835 34.8435
MICKEY2_128_X32 3.1346 4.3513 2.9874 30.7268

Gimli-8 237.0708 326.5412 251.4183 2582.2591
✓ 1131.8753 1334.5381 1213.3775 13101.7776

Gimli-16 132.6433 185.4145 139.1923 1396.8767
✓ 1077.7223 1449.2425 1138.2432 12979.9892

Gimli-24 87.5540 122.7870 87.6057 911.1552
✓ 1065.5952 1441.4631 1184.8487 12959.8380

Subterranean2 78.8686 111.4586 78.7626 931.2884
Subterranean2_X2 88.5680 120.4661 88.9638 926.9720
Subterranean2_X4 93.6741 128.6060 94.7343 979.7243
Subterranean2_X8 97.1468 130.9410 96.1629 989.3414

SPEEDY-2-192 171.4884 238.0377 164.3840 1734.4173
✓ 263.3337 368.4323 264.4879 2896.7577

SPEEDY-3-192 110.7705 152.7412 104.2284 1103.4990
✓ 260.3870 363.3748 263.6074 2792.6054

SPEEDY-4-192 80.7976 112.2980 75.3229 807.1772
✓ 260.2201 367.8203 258.7273 2767.4080

SPEEDY-5-192 64.1145 88.1512 60.2378 639.0074
✓ 257.6472 369.1264 265.8168 2739.8824
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Table 10: Comparison of the energy consumption per bit of relevant building blocks when
synthesized for maximum operating frequency, estimated for 100 MHz operation

Energy per bit [fJ/bit]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 382.0000 219.0000 220.0000 74.0000

LFSR64 1782.0000 1054.0000 531.0000 252.0000
LFSR64_X32 70.0312 41.4062 27.5312 9.4062
LFSR64_X64 40.0625 24.3125 16.5312 5.6250
LFSR64_X96 28.2083 17.4479 13.6562 4.8438
LFSR64_X128 23.4922 14.4766 11.8438 4.5391

F-LFSR-GrainV1_80 2260.0000 1120.0000 703.0000 329.0000
F-LFSR-GrainV1_80_X16 190.6875 113.8125 88.0000 29.4375
F-LFSR-GrainV1_80_X32 130.4688 71.0625 67.6562 23.2188
F-LFSR-GrainV1_128 3602.0000 1953.0000 1125.0000 508.0000
F-LFSR-GrainV1_128_X16 307.1250 188.1250 123.2500 41.7500
F-LFSR-GrainV1_128_X32 172.6875 114.2500 78.6250 26.6250

Bivium 4833.0000 2529.0000 1618.0000 681.0000
Bivium_X32 201.8125 127.4375 79.6875 28.1875
Bivium_X48 149.3333 94.9583 60.6250 20.6250
Bivium_X64 123.0000 79.8438 51.7188 16.9688
Bivium_X72 101.4444 57.8611 47.3056 16.5694

Trivium 7157.0000 3991.0000 2776.0000 974.0000
Trivium_X32 299.9688 185.9375 128.9688 44.9688
Trivium_X48 223.9583 143.0000 98.0000 32.9792
Trivium_X64 180.6094 113.6875 79.8125 26.6406
Trivium_X72 156.9583 88.4722 73.5972 25.8194

Kreyvium 14335.0000 7247.0000 4449.0000 2018.0000
Kreyvium_X32 524.4375 302.9375 212.4687 80.3438
Kreyvium_X48 373.1042 217.6250 156.7708 56.8750
Kreyvium_X64 295.5625 171.8594 125.2656 45.6719
Kreyvium_X72 266.5833 145.0000 119.7222 41.4722

GrainV1_80 4479.0000 2424.0000 1742.0000 661.0000
GrainV1_80_X8 809.0000 468.7500 353.6250 124.7500
GrainV1_80_X16 513.8750 311.4375 256.6875 86.6875
GrainV1_80_X32 380.3125 228.0625 223.2500 74.0312
GrainV1_128 7005.0000 3705.0000 2532.0000 1016.0000
GrainV1_128_X16 630.0000 372.1250 278.4375 97.1250
GrainV1_128_X32 401.7188 253.3750 208.8438 67.7188
GrainV1_128_X48 327.0625 201.2708 173.5625 58.0208

MICKEY2_80 6057.0000 3425.0000 2700.0000 942.0000
MICKEY2_80_X2 4249.0000 2386.0000 1990.5000 699.5000
MICKEY2_80_X4 3313.2500 1990.5000 1763.7500 586.0000
MICKEY2_80_X32 5724.3750 3663.4375 3739.3750 1116.0312
MICKEY2_128 9650.0000 5482.0000 4274.0000 1536.0000
MICKEY2_128_X2 6353.0000 3617.0000 3163.5000 1106.0000
MICKEY2_128_X4 4976.5000 2901.7500 2805.5000 913.5000
MICKEY2_128_X32 8380.0000 5508.5625 5888.4375 1755.5625

Gimli-8 210.4792 143.9427 107.5573 37.1563
✓ 255.2135 159.1901 119.3177 39.2656

Gimli-16 351.5339 255.3646 166.7109 53.0208
✓ 472.2161 306.3359 229.5677 74.1250

Gimli-24 453.7083 339.5130 253.3672 76.0026
✓ 694.0391 452.4792 342.0573 109.4870

Subterranean2 257.7188 157.5938 124.9688 46.6250
Subterranean2_X2 181.9375 118.6562 99.1562 37.8594
Subterranean2_X4 224.6250 155.1328 130.3359 44.2266
Subterranean2_X8 365.9727 277.3945 205.6836 68.8477

SPEEDY-2-192 241.4219 158.2708 103.6094 37.3021
✓ 200.9688 123.0990 102.6979 30.2760

SPEEDY-3-192 382.3958 260.7135 161.2396 58.7240
✓ 304.7708 183.0833 166.5417 57.8385

SPEEDY-4-192 528.8073 344.8958 218.3073 80.0938
✓ 408.2708 240.4375 226.5521 79.0208

SPEEDY-5-192 673.6667 455.5781 278.2396 102.3698
✓ 503.2969 306.4271 289.7031 98.9688
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Table 11: Comparison of the product between power consumption, area consumption and
critical path delay of relevant building blocks when synthesized for maximum operating
frequency.

Power-Area-Time product [mW][GE][ns]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 2.1243 0.8833 1.0868 0.0431

LFSR64 16.4927 8.1178 4.5228 0.2372
LFSR64_X32 31.1533 15.9474 12.9016 0.4040
LFSR64_X64 73.8220 33.3531 21.9621 0.7533
LFSR64_X96 88.1806 40.2868 32.4728 1.3483
LFSR64_X128 133.9031 63.5016 58.4040 2.6362

F-LFSR-GrainV1_80 45.2390 15.8941 13.9228 0.6868
F-LFSR-GrainV1_80_X16 127.3823 60.1122 49.0509 1.7506
F-LFSR-GrainV1_80_X32 421.5739 170.1313 178.1644 7.1507
F-LFSR-GrainV1_128 124.6942 47.4800 36.3625 1.9626
F-LFSR-GrainV1_128_X16 301.6168 141.4362 97.9335 3.5732
F-LFSR-GrainV1_128_X32 464.7786 221.3002 167.3287 5.7128

Bivium 133.3495 47.1468 45.6527 2.0000
Bivium_X32 291.5054 167.6304 114.0318 4.1791
Bivium_X48 455.2811 225.8752 129.9806 4.9026
Bivium_X64 562.1626 304.1004 193.0565 5.7332
Bivium_X72 785.9701 330.3986 300.7265 10.6062

Trivium 303.7958 98.0200 126.8023 4.3811
Trivium_X32 598.8608 411.5790 282.0249 11.1701
Trivium_X48 1061.2280 521.4315 391.7323 12.5066
Trivium_X64 1256.0165 631.1114 421.7436 14.4938
Trivium_X72 1915.2590 768.3241 620.0316 25.2348

Kreyvium 1460.3192 584.2258 436.8939 21.8925
Kreyvium_X32 2491.5083 1130.1188 918.1657 35.1941
Kreyvium_X48 2908.7176 1370.0655 1074.9978 40.2268
Kreyvium_X64 3259.4553 1555.1762 1360.2941 48.1902
Kreyvium_X72 4975.9478 1965.4902 1931.4025 73.6543

GrainV1_80 305.9562 119.9936 110.2395 4.4587
GrainV1_80_X8 810.0913 382.2126 310.5738 11.5289
GrainV1_80_X16 1589.8835 734.0543 727.6183 25.5330
GrainV1_80_X32 6695.3137 3325.0966 3193.8676 123.4315
GrainV1_128 645.0580 249.5804 231.6758 10.3240
GrainV1_128_X16 1892.5360 830.9354 731.0320 27.2645
GrainV1_128_X32 3314.6421 1628.5653 1528.0290 53.0139
GrainV1_128_X48 8460.1595 3871.5587 3571.9094 141.0208

MICKEY2_80 494.7177 189.5217 194.1307 8.3427
MICKEY2_80_X2 1757.6833 662.8062 718.3882 30.4434
MICKEY2_80_X4 8535.6477 3815.5201 3697.5979 141.4755
MICKEY2_80_X32 10407815.7900 4842337.0373 5620776.7213 177836.3749
MICKEY2_128 1239.9406 567.1350 483.0118 24.5907
MICKEY2_128_X2 4422.9668 1770.2931 1941.0146 78.9724
MICKEY2_128_X4 22128.4065 9359.8275 10139.7768 405.6853
MICKEY2_128_X32 25884984.9057 12389558.8766 15404941.1574 501128.9139

Gimli-8 360085.0347 201308.6328 123529.2349 5064.6208
✓ 88021.1749 52920.3622 35723.4526 1205.5608

Gimli-16 2086373.0632 1256709.4941 575360.7881 21312.3218
✓ 337967.4729 190092.7241 142071.0266 4480.7022

Gimli-24 5336154.6290 3250957.4325 2147933.9245 68541.6358
✓ 757067.5566 420297.2160 304559.1178 9931.6462

Subterranean2 1849.1503 904.1495 819.7850 30.4793
Subterranean2_X2 7902.2740 4256.5616 3882.4599 167.1466
Subterranean2_X4 67865.8889 37454.1775 30563.5933 1189.8564
Subterranean2_X8 824137.2619 538336.6870 349349.8962 13849.8877

SPEEDY-2-192 85334.6251 46529.4812 25076.7302 1019.5243
✓ 37541.4147 17581.6685 15498.6266 460.0187

SPEEDY-3-192 339255.6457 195431.1298 93478.4328 3921.1655
✓ 89782.5878 40197.0149 40262.0385 1583.7132

SPEEDY-4-192 893026.7767 462161.6370 234992.6627 9928.7385
✓ 161881.5656 68330.9943 75832.3129 3007.7512

SPEEDY-5-192 1834592.9331 1026055.8860 475125.5513 20462.5187
✓ 249188.2304 111331.2714 120574.0067 4801.1598
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