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Abstract

A major challenge of any asynchronous MPC protocol is the need to reach an agreement
on the set of private inputs to be used as input for the MPC functionality. Ben-Or, Canetti
and Goldreich [STOC 93] call this problem Agreement on a Core Set (ACS) and solve it by
running n parallel instances of asynchronous binary Byzantine agreements. To the best of our
knowledge, all results in the perfect and statistical security setting used this same paradigm for
solving ACS. Using all known asynchronous binary Byzantine agreement protocols, this type
of ACS has Ω(log n) expected round complexity, which results in such a bound on the round
complexity of asynchronous MPC protocols as well (even for constant depth circuits).

We provide a new solution for Agreement on a Core Set that runs in expected O(1) rounds.
Our perfectly secure variant is optimally resilient (t < n/4) and requires just O(n4 log n) ex-
pected communication complexity. We show a similar result with statistical security for t < n/3.
Our ACS is based on a new notion of Asynchronously Validated Asynchronous Byzantine Agree-
ment (AVABA) and new information-theoretic analogs to techniques used in the authenticated
model. Along the way, we also construct a new perfectly secure packed asynchronous verifiable
secret sharing (AVSS) protocol with just O(n3 log n) communication complexity, improving the
state of the art by a factor of O(n). This leads to a more efficient asynchronous MPC that
matches the state-of-the-art synchronous MPC.
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1 Introduction

Broadly, there are two main network conditions where secure multiparty computation protocols
were studied. The first is the synchronous setting, where all messages sent between honest parties
arrive after some known bounded delay. The choice of this delay bound is critical: setting a large
delay causes the protocol to be inefficient and slow, while setting a small delay might lead to non-
termination. The second category is the asynchronous model, where each message sent between
honest parties arrives after some finite delay. This model allows protocols to dynamically adjust to
adversarial network conditions and terminate even when the adversary can adaptively manipulate
the delays.

One of the core challenges for MPC protocols in the asynchronous setting is that they must
reach agreement on which private inputs to use as input for the circuit. Ben-Or, Canetti and
Goldreich (BCG) [11] call this problem Agreement on a Core Set (ACS). In this paper, we consider
protocols with optimal resilience in the asynchronous model against computationally unbounded
adversaries. From the lower bound of [5, 11, 13], perfect security for MPC implies that the number
of corruptions in this setting is at most t < n/4, so optimal resilience is when n = 4t+1. This is in
contrast to the optimal resilience of n = 3t+ 1 in the synchronous perfect security setting and the
asynchronous statistical security setting. The seminal result of [11, 15] is the first work to obtain
perfect security with optimal resilience in the asynchronous model.

Before proceeding, we refine the problem definition. Our main motivating application for ACS
is in asynchronous secure computation. Each party shares its input at the beginning of the protocol
using asynchronous verifiable secret sharing (AVSS). When a dealer is honest, then all honest parties
will eventually receive valid shares. If the dealer is corrupted and one honest party successfully
completes the AVSS, then all honest parties will eventually also receive valid shares. However, some
instance of corrupted dealers might never terminate, and some instances of honest dealers might
be very slow (due to adversarial dealys). The parties then wish to agree on a common core set of
n− t parties whose AVSS has been successfully completed or will eventually terminate. Reaching
an agreement is crucial for the sequel of the secure protocol. Using an ACS protocol, parties agree
on some set of n − t parties (“core”) whose AVSS has terminated or will eventually terminate for
all parties. The difficulty is that due to asynchrony, some of the inputs of honest parties (which
instances terminated) might arrive dynamically, and the corrupted parties might input identities
of instances that will never terminate.

In terms of round complexity, the best one can hope for is reaching agreement in constant
expectation [25]. However, to the best of our knowledge, all results in the asynchronous information-
theoretic setting run O(n) parallel asynchronous binary Byzantine agreement instances to agree on
a core set. All known asynchronous binary agreement protocols follow a geometric distribution, and
composing n such protocols in parallel, means that the expectation of the maximum is Ω(log n). So
for over 30 years, the best expected round complexity for asynchronous MPC has Ω(log n) overhead
(even for constant depth circuits)1. A natural question remained open:

Is there an asynchronous MPC with constant expected running time overhead? Or is
there an inherent Ω(log n) lower bound for ACS due to asynchrony?

1As opposed to some claims in the literature, the work of [12] does not provide an O(1) expected time ACS;
see Section 1.2.
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1.1 Our Contributions

Our main contributions are (1) a novel protocol for agreement on a core set in constant expected
time via a new multi-valued agreement protocol with asynchronous validation; (2) Efficiency im-
provements in the communication complexity of asynchronous verifiable secret sharing. Our new
ACS and AVSS together significantly improve the communication complexity and round complexity
of asynchronous MPC.

Asynchronously Validated Asynchronous Byzantine Agreement (AVABA). We achieve
ACS via a new notion that we introduce, called “AVABA”. This is an information-theoretic version
of Validated Asynchronous Byzantine Agreement (VABA [7]), where the external validity function
is replaced with asynchronous validation. Our AVABA protocol is perfectly secure and resilient
to t < n/4 corruptions. For inputs of size O(n) bits, it runs in O(1) expected time and requires
O(n4 log n) expected communication complexity. Parties are guaranteed to reach an agreement on
an input of one of the parties, and the value is guaranteed to pass an asynchronous validation.
In the MPC setting, this validation checks that the input contains n − t parties who verifiably
completed the input-sharing phase. To the best of our knowledge, the most efficient agreement
protocols [10, 24] with constant expected rounds and t < n/4 currently require O(n6 log n) bits to
be sent in expectation. Furthermore, these protocols are binary agreement protocols. Our protocol
improves the efficiency of those protocols and allows for multi-valued agreement.

Theorem 1.1 (Asynchronously Validated Asynchronous Byzantine Agreement (informal)). There
exists a perfectly secure protocol for asynchronous Byzantine agreement with asynchronous valida-
tion (AVABA) that is resilient to t < n/4 Byzantine corruptions. Each party has a valid input of
size O(n log n) bits. The protocol runs in constant expected time and O(n4 log n) expected commu-
nication complexity.

Agreement on a Core Set (ACS). Using this AVABA protocol and an asynchronous validation
checking which parties shared their inputs, we implement a perfectly secure, t < n/4 resilient
constant expected time protocol for Agreement on a Core Set (ACS) with an expected O(n4 log n)
communication complexity. To the best of our knowledge, this is the first time ACS is solved via
a multi-valued agreement in the information-theoretic setting without using any binary agreement
building blocks. See Section 1.2 for more details.

Corollary 1.2. There exists a perfectly secure protocol for asynchronous agreement on a core set
(ACS) with an asynchronous validation resilient to t < n/4 Byzantine corruptions. The protocol
runs in constant expected time and O(n4 log n) expected communication complexity.

As we elaborate in the related work section, the communication cost of ACS from [15] is
O(n7 log n).

Extensions for t < n/3 corruptions and statistical security. We also extend our results to
the statistical settings, and derive resilience to t < n/3 corruptions. Set Section 2.3.1 for further
details.

Asynchronous verifiable secret sharing. Our second main contribution is a new asynchronous
verifiable secret sharing (AVSS):

Theorem 1.3. There exists a perfectly secure protocol for asynchronous verifiable secret sharing
resilient to t < n/4 malicious corruptions. For sharing X secrets (of O(log n) bits each), the total
communication complexity is O(nX + n3 log n).
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This means that we get O(n) overhead for sharing Ω(n2) secrets. Prior to our work, the AVSS
protocol of [11] achieves total communication complexity of O(n4 log n) for sharing one secret, and
the one by [30, 19] obtains a total communication complexity of O(nX+n4 log n) bits for X secrets.
That is, for obtaining O(n) overhead the dealer has to share Ω(n3) secrets. In our ACS protocol,
the dealer has to share just O(n) secrets, in which case our AVSS requires O(n3 log n) as opposed
to O(n4 log n) by [30, 19], improving the communication by a factor of O(n).

Conclusion: asynchronous MPC. When plugging our new AVSS and new ACS in the recent
asynchronous MPC protocol of [3], we obtain the following corollary:

Corollary 1.4. For a circuit with C multiplication gates and depth D, there exists a perfectly se-
cure, optimally-resilient asynchronous MPC protocol with O((Cn+Dn2+n4) log n) communication
complexity and O(D) expected run-time.

Without our work, when combining the protocol of [3] with the ACS protocol of [15], together
with the AVSS protocol of [30, 19], the cost of the entire MPC is O((Cn + Dn2 + n7) log n) and
O(D+ log n) expected-time. Our work improves both the communication and round complexities.
See Section 2.3.2.

Synchronous vs. asynchronous MPC. We conclude this section by noting an accepted claim re-
garding the relationship between synchronous and asynchronous MPC is that (see, e.g., Nielsen [29]):

“Synchronous MPC has higher security and requires less communication than asyn-
chronous MPC.”

The first is part of the sentence is due to the different optimal bounds: Optimal resilient in perfect
MPC in the synchronous setting is t < n/3 whereas in the asynchronous setting is t < n/4. The
second part, as claimed in [29] is due to the fact that “Another advantage of synchronous MPC is
that we know how to construct them with much less communication in terms of bits sent than the
asynchronous ones”.

Our work shows that there is no support for the second part of the claim, at least, for perfect
MPC. Specifically, the current most efficient perfect synchronous MPC [2] protocol achieves the
exact same complexity as ours: O((Cn+Dn2+n4) log n) withO(D) expected rounds.2 Note that
while one could run asynchronous protocols in synchronous networks, asynchronous MPC protocols
are designed for lower corruption thresholds and only take n − t inputs into consideration. This
even gives rise to the hope that perhaps, one can even construct a more efficient asynchronous
MPC protocol than a synchronous protocol, and our understanding of the relationship between
synchronous and asynchronous protocols is still lacking.

1.2 Related Work

Agreement on a core set via n parallel binary agreements. In the asynchronous setting, an
MPC protocol cannot wait for input from all parties. One important task of any MPC protocol in
the asynchronous setting is reaching agreement on the set of parties whose private input is used as
the input for the MPC circuit. To solve this, Ben-Or, Canetti and Goldreich [11] suggest a protocol
called Agreement on a Core Set (ACS). To the best of our knowledge, all previous asynchronous

2A somewhat incomparable result [26] removes the O(Dn2) in the communication complexity: O((Cn+n5) logn)
communication with O(D + n) expected rounds. We are not aware of a comparable result in the asynchronous case.
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MPC protocols (in the perfect and statistical security setting) use the same ACS protocol suggested
by [11]. This ACS is based on running n parallel binary agreements. Roughly speaking, parties
enter input 1 to the ith binary agreement when they see that party Pi has completed secret sharing
its input and enter all remaining instances with the value 0 once they see at least n− t agreements
terminate with a decision of 1.

On the positive side, this elegant solution requires just simple binary agreement as a building
block. On the negative side, each binary agreement instance has an independent constant prob-
ability of terminating in each round, so in isolation, each instance has a constant expectation.
However, the expectation of the maximum of n such independent instances is Ω(log n). Therefore,
this approach of running separate binary instances seems to have a natural barrier for obtaining
O(1) expected round complexity. Lastly, the best known binary agreement protocols [10, 24] in
this setting require the expected total of O(n7 log n) communication bits for the ACS.

On Ben-Or and El-Yaniv’s work. The work of [11] claims that a result of Ben-Or and El-
Yaniv solves ACS in constant expected rounds. Here we explain why this is not the case. The
work by Ben-Or and El-Yaniv [12] (published 10 years after [11] cites them) deals with executing
n concurrent instances of Byzantine Agreement. The first part of [12] is for the synchronous model
and we believe it can be used to agree on a common subset in synchrony. The second part claims
that these techniques can be extended to solve some variant of multi-sender agreement in constant
expected rounds in the asynchronous model.

The situation for the asynchronous model is different. First, we note that [12] explicitly do not
mention that they can solve ACS in the asynchronous model. Indeed, the stated results of [12]
and the techniques of [12] do not provide a way to solve ACS (as needed for asynchronous MPC)
in constant expected rounds. They only solve an easier problem in which the input of each party
exists at the beginning of the protocol (unlike ACS, where due to asynchrony some of the inputs
may arrive dynamically over time).

The work of Ben-Or, Kelmer and Rabin [13]. In [13]’s ACS protocol, parties first invoke
the BA instances with input 1 for parties who are deemed valid according to a validity condition
(in the case of MPC, dealers whose VSS instances have been completed). Parties input 0 to the
remaining instances only after seeing n − t instances with output 1. Trying to naively apply the
techniques of [12] does not work because they require starting all BA instances at the same time
and synchronizing them using Select (the Select protocol in round r waits for all n log n BA
instances to reach round r+ 1) . It is possible that a less naive approach may work, synchronizing
some of the BA instances using Select, and then initiating the rest. This seems to require a much
more subtle approach since parties are required to wait for the agreed output for each party to be
1 before proceeding (while dealing with log(n) BA instances per party), and possibly using Select
several times.

A possible alternative approach is having each party set all inputs to the BA instances at once,
after seeing that at least n − t of those inputs are 1. Using this approach, it is possible that no
party has the unanimous support of all honest parties, meaning that each party has at least one
honest party input 0 to its BA instance. In this case, parties can output 0 in all instances and thus
output an empty set as the agreed core. Even protocols that strengthen the validity conditions are
likely to fail because it is possible that most BA instances have many 0 and 1 inputs, resulting in
small cores (for example, of size t+ 1 as opposed to n− t). We believe that obtaining a less naive
protocol could potentially be an interesting follow-up work.
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Recent and concurrent work. Two recent and concurrent works deal with tasks related to
information-theoretic agreement on a core set with constant round complexity. Duan et al. [23]
claims to have an information-theoretic construction of an ACS in constant expected rounds. How-
ever, their construction uses cryptographic hash functions and a threshold PRF, instantiated by
a threshold signature scheme. So while their work solves ACS with constant round complexity it
is not perfectly secure or statistically secure (it does not obtain O(1) expected rounds against an
unbounded adversary). Moreover, our core consensus protocol obtains the same efficiency while
requiring significantly weaker primitives. Our core consensus protocol obtains the same asymptotic
O(n3 log n) bit complexity but requires just a weak leader election (which can be implemented
information theoretically via AVSS, as we show). On the other hand, [23] requires a strong leader
election, which, to the best of our knowledge, requires a DKG and a computationally bounded
adversary for the required complexity. An additional recent work in the cryptographic setting is
that of Das et al. [22]. Their work only relies on a cryptographic hash function without additional
setup assumptions and achieves O(λn3) bit complexity and O(1) time complexity.

Cohen et al. [21] construct a constant expected round protocol for a linear number of binary
Byzantine agreement protocols (where all inputs arrive at the beginning of the protocol). The first
version of [21] offhandedly remarks that this primitive can be used to construct a constant round
ACS protocol. However, as stated in our discussion of Ben-Or and El-Yaniv’s work, these protocols
require parties to know their inputs to all instances of binary agreement at the same time. The
currently known reductions from binary agreement to ACS in the asynchronus setting rely on this
not being the case.

A newer version of [21] was made public after an earlier version of our work appeared online [4].
In this newer version, the authors use the information theoretic Gather protocol defined in our
paper in order to solve ACS (the gather protocol in [6] relied on cryptographic assumptions). The
resulting ACS of [21] uses our techniques, and requires at least Ω(n5κ2+n6) bits of communication
and is statistically secure, where κ is a statistical security parameter. This bound stems from
each party having to share n secrets. Using the packed secret sharing protocol of [20], each such
sharing requires Ω(n4κ2 + n5) bits of communication. Constructing a statistical ACS protocol
using our techniques will also have the same bottleneck of n packed sharings, resulting in the same
communication complexity. In comparison, our perfect ACS protocol can be used to solve ACS in
just O(n4 log n) bits of communication with perfect security.

2 Technical Overview

We provide a high level overview of our main techniques. In Section 2.1 we provide a brief overview
of our AVSS protocol, which might be of an independent interest. In Section 2.2 we provide the
overall structure of the ACS protocol, and our AVABA protocol. We also provide some extensions
to our result in Section 2.3.

The model. Before we start, let us first introduce the model. We assume asynchronous communi-
cation, which means that the adversary can arbitrarily delay messages sent between honest parties,
while it cannot necessarily see their content. Messages between honest parties can be delayed but
must be delivered eventually. Honest parties, therefore, cannot distinguish between the case where
a message (from a corrupted party to an honest party) has never been sent or whether a message
(from an honest party to an honest party) is delayed. Thus, protocols must make sure that parties
do terminate and parties cannot wait to receive messages from all parties. Parties can wait to

5



Protocol
Bit Complexity Expected Time

Security
Complexity Complexity

BCG [11] O(n7 log n) O(log n) perfect
BKR [13] Ω(n13k2) O(log n) statistical
FIN [23] O(λn3) O(1) computational with DKG
Cohen et al. [21] O(n5κ2 + n6) O(1) statistical
Das et al. [22] O(λn3) O(1) computational
This work (statistical) O(n5κ2 + n6) O(1) statistical
This work (perfect) O(n4 log n) O(1) perfect

Table 1: A comparison of ACS schemes, in terms of: (1) the total number of bits sent; (2) the ex-
pected number of rounds; (3) the type of security provided by the protocol (either perfect security,
statistical security, or computational security reliant on cryptographic assumptions). All of the
works are optimally resilient, i.e. assume n > 4t for perfectly secure schemes and n > 3t for sta-
tistical and computational schemes. κ and λ are statistical and cryptographic security parameters
respectively. Both [21] and our statistical protocol are evaluated using the packed ACSS protocol
of [20] for n instances of packed secret sharing, assuming sharing O(n) secrets costs O(n4κ2 + n5).

receive messages from more than n − t parties only when they are certain that not all messages
from honest parties have been received.

Notation. To describe the ith party, we use i or Pi interchangeably. In Section 2.1 we overview
our improvement in the communication complexity of AVSS. In Section 2.2 we overview our new
asynchronously validated asynchronous Byzantine Agreement.

2.1 Packed Asynchronous Verifiable Secret Sharing

In this section, we describe an information-theoretic packed AVSS protocol that requires O(nX +
n3 log n) for sharing X secrets.

A quick overview of the AVSS protocol of [11]. We start with a quick overview of the AVSS
protocol of Ben-Or, Canetti and Goldreich [11]. As a first step, we present an inefficient version
where the dealer runs in exponential time.

1. The dealer chooses a random bivariate polynomial S(X,Y ) of degree-t in both variables such
that S(0, 0) = s. It then gives each party Pi the shares fi(X) = S(X, i), gi(Y ) = S(i, Y ).

2. After receiving their fi and gi polynomials, which we call their shares, and seeing that they
are of the correct degrees, every party Pi forwards the values fi(j), gi(j) to every Pj .

3. When a party Pi receives a forwarded pair of values fj(i), gj(i) from some party Pj , it verifies
that these values are consistent with the values it has received from the dealer. Namely, that
fi(j) = gj(i) (= S(j, i)) and gi(j) = fj(i) (= S(i, j)). If this is the case, then Pi broadcasts
⟨ok, i, j⟩, signifying that Pi agrees with Pj .

4. The dealer initiates a graph G with V = [n] and E = ∅. Then, upon receiving broadcasted
messages ⟨ok, i, j⟩ and ⟨ok, j, i⟩ it adds the edge (i, j) to E. It then looks for a clique K ⊆ [n]
in G. If found, it broadcasts ⟨clique,K⟩. Otherwise, it continues to listen to more ok

messages, updates its graph, and repeats.
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5. Each party also initiates a graph as the dealer and adds edges in a similar manner. Once the
dealer broadcasts ⟨clique,K⟩, the party verifies that K is a clique in its respective graph. If
so, it terminates. Otherwise, it continues to listen to more edges.

It is easy to see that if one honest party Pj terminates, all honest parties will eventually terminate.
This is because Pj terminates only after the dealer has broadcasted a clique and Pj has verified
the same clique in its respective graph. Since all the messages that Pj considers are broadcasted,
each other honest party will eventually see the same clique in its graph. Moreover, if the dealer is
honest, then the dealer will eventually see the clique of all honest parties in its graph, will broadcast
it, and all honest parties will eventually verify it as well.

To show binding (i.e., there is a well-defined secret at the end of the sharing phase), assume
that the dealer has broadcasted some clique and an honest party has verified that clique. Since the
clique contains at least 3t + 1 parties, it contains at least 2t + 1 honest parties. Since each pair
of honest parties has verified that their shares agree, they all lie on the same bivariate polynomial
S(x, y). Moreover, parties only consider members of the clique during reconstruction. This implies
that in the reconstruction phase, we will have at least 2t + 1 correct shares and at most t errors,
and therefore reconstruction is guaranteed.

The star algorithm. To make the dealer computationally efficient, Canetti [15] defines the
FindStar algorithm that finds a large “star” [15] in a graph, which can be thought of as a relaxation
of a clique. It receives an undirected graph G = (V,E) as input and outputs a pair of sets
C,D ⊆ V such that C ⊆ D and there exists an edge (u, v) ∈ E for every u ∈ C, v ∈ D, and such
that |C| ≥ n− 2t (= 2t+ 1) and |D| ≥ n− t (= 3t+ 1). The algorithm might also output “no star
was found”. In addition, Canetti [15] showed a polynomial time algorithm that finds such a STAR
if there exists a clique of size n − t. The dealer then looks for a STAR in the graph instead of a
clique, and once found, it broadcasts ⟨star, C,D⟩. Each party verifies that (C,D) is a STAR in its
graph, and terminates if so.

This guarantees validity and binding: Validity: If the dealer is honest, then the protocol
should terminate, and reconstruction should be the secret that the dealer shared. When the dealer
is honest, eventually, there will be a clique in the graph of size n − t. The STAR algorithm then
outputs a star (C,D), and all honest parties will eventually verify that (C,D) is a STAR. All honest
parties receive shares that are consistent with the dealer’s polynomial. Binding: Once an honest
party terminates (regardless of whether or not the dealer is honest), the set C contains at least
t+1 honest parties, and all their shares must agree. Therefore, the set C defines a unique bivariate
polynomial S(X,Y ), and the shares of all honest parties in C lie on that polynomial. Moreover,
the set D contains at least 2t+ 1 honest parties, and their shares agree with all parties in C and,
therefore, must also agree with S. We obtain that there are at least 2t + 1 honest parties with
valid shares, and therefore reconstruction is guaranteed even if t errors are introduced during the
reconstruction phase, by utilizing Reed Solomon decoding.

Cost. When considering the costs of broadcasting ok messages, the above protocol requires
O(n4 log n) bits to be transmitted over the point-to-point channels. This is because each mes-
sage of size L being broadcasted requires O(n2L) bit sent over the point-to-point channels. Since
each party Pi broadcasts (ok, i, j) we have O(n2) messages being broadcasted. This implies that
overall, we have O(n4 log n) overhead for sharing a single secret.

Reducing the cost. To reduce the cost, the protocol of [30] utilizes the following two tricks:
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• Packing: Instead of having a bivariate polynomial of degree t in both variables, the dealer
can embed t+1 secrets in one bivariate polynomial. That is, the dealer holds secrets s0, . . . , st,
and uniformly samples a bivariate polynomial S(X,Y ) of degree 2t in X and degree t in Y
such that S(−k, 0) = sk for every k ∈ {0, . . . , t}.

• Batching: Instead of having one instance of AVSS, we can run O(n2) instances in paral-
lel while re-using the broadcast messages across all instances. That is, each Pi broadcasts
⟨ok, i, j⟩ only after it verified the shares of j across all O(n) instances.

Those two ideas together lead to a protocol in which parties send O(nX + n4 log n) bits point-to-
point for sharing X secrets (of O(log n) bits each). This yeilds an overhead of O(n) per secret,
starting from Ω(n3) secrets. However, if the dealer has to distribute only O(n) secrets (as in our
ACS protocol), we get an overhead of O(n3).

The difficulty is that there are n2 “short messages” to be broadcasted (⟨ok, i, j⟩), and the
overhead of each broadcast is O(n2). One might try to amortize these costs by having parties
send O(n) of these ok messages at the same time (in which case, a broadcast with an overhead
of O(n) can be used). However, parties do not even know how many ok they might broadcast.
For instance, in the case of an honest dealer, parties know that they will eventually broadcast oks
for the n − t honest parties, but they do not know how many corrupted parties would send them
correct sub-shares. So they can wait and broadcast one large n− t ok message, but then they will
still have to broadcast the remaining (even up to t = O(n)) messages one-by-one, as they arrive
one-by-one. Moreover, all parties must hear all the edges between honest parties, to verify that the
graph has a star. Thus, total communication of Ω(n4) looks like a natural barrier.

Breaking the Ω(n4)-barrier. We achieve O(n)-overhead for o(n3) secrets. To reduce the over-
head when the dealer has to share o(n3) secrets, we further improve the protocol and add one more
optimization to packing and batching:

• No broadcast: We completely eliminate any broadcast message in the protocol.

To achieve this property, first, consider trying to replace any broadcast message with multicast (the
sender simply sends the message to all parties). Edges (i, j) between pairs of honest parties will
appear in all graphs and will be consistent. On the other hand, edges between corrupted parties or
between an honest party and a corrupted party might not be consistent in the different graphs.

To overcome this difficulty, we instruct each party Pi to look for its own STAR (Ci, Di). More-
over, in addition to those two sets, we look for an extended star (see, e.g.,[30]) (Ci, Di, Ei, Fi) which
satisfies the following properties:

• Ci: a clique of size (at least) n− 2t (i.e., 2t+ 1), as before.

• Di: a set of size (at least) n− t that agrees with all Ci (i.e., for all d ∈ Di and c ∈ Ci there
exists an edge – (c, d)). This is again as before.

• Fi: a set of size n− t of all vertices that have at least n− 2t edges to Ci.

• Ei: a set of size n− t of all vertices that have at least n− t edges to Fi.

Each party finds an extended star in its graph. Then, the challenge is that different parties might
have different graphs. Nevertheless, we claim that the following holds: (1) Validity: If the dealer
is honest, then all honest parties will eventually find extended stars in their respective graphs;
(2) Binding: Any pair of extended stars found by honest parties define the exact same bivariate
polynomial, even they do not necessarily have the same graphs.
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• Validity: It is also easy to see that if the dealer is honest, then all honest parties will
eventually find such (Ci, Di, Ei, Fi): The clique of all honest parties will eventually appear in
the respective graphs of each honest party. An extended star will then always be found.

• Binding: We claim that for every honest party Pj , the honest parties in the sets that Pj has
found, i.e., the honest parties in the sets (Cj , Dj , Ej , Fj), define a unique bivariate polynomial.
Specifically:

1. The set Cj contains at least t + 1 honest parties; take an arbitrary subset C ′
j ⊆ Cj of

cardinality t+1; their f -shares (each is of degree-2t) define a unique bivariate polynomial
Sj(X,Y ) of degree (2t, t);

2. The set Dj contains at least 2t + 1 honest parties, and each such party agrees with all
parties in Cj ; As such, each such party must hold a g-share that lies on Sj(X,Y ). Since
Dj contains at least 2t+1 honest parties, it also implies that all the other honest parties
(if exist) in Cj \ C ′

j hold f -shares that lie on Sj .

3. The set Fj contains at least 2t+1 honest parties; each such honest party agrees with at
least n − 2t (i.e., ≥ 2t + 1) parties in Cj , i.e., with at least t + 1 honest parties in Cj .
Thus, all the g-shares of parties in Fj lie on Sj .

4. The set Ej contains at least 2t + 1 honest parties; each such party agrees with at least
3t+ 1 parties in Fj , i.e., with at least 2t+ 1 honest parties. As such, all the f -shares of
parties in Ej lie on Sj .

Moreover, we claim that for two honest parties Pj and Pk that might have distinct extended
stars (Cj , Dj , Ej , Fj) and (Ck, Dk, Ek, Fk) that define the bivariate polynomials Sj and Sk

respectively, Sj = Sk. This is because Ej and Ek are both sets of size 3t+ 1 and, therefore,
must have an intersection of size at least 2t+ 1 and thus have at least t+ 1 honest parties in
their intersection. The f -shares of those parties uniquely define Sj and Sk, respectively, and
thus it must hold that Sk = Sj .

The rest of the protocol. In the rest of the protocol, parties that do have shares help the other
parties reconstruct their shares. Since the shares of all honest parties that have an extended star
must define the same bivariate polynomial, we get that, eventually, all parties hold shares on that
polynomial. Therefore, we get a complete secret sharing : all honest parties have shares at the end
of the protocol. This makes the reconstruction phase almost trivial. Parties just send their shares
to one another, and use Reed Solomon decoding to eliminate errors. We refer to Section 5 for full
specification and proofs.

2.2 ACS and AVABA

We now describe how we construct the ACS protocol, and our new notion called “AVABA”, which
is an information-theoretic version of Validated Asynchronous Byzantine Agreement (VABA [7]).
This is a multivalued agreement protocol that allows parties to agree on a value which is “validated”.
The notion of validated will become clearer soon.

Our ACS. Recall that the main goal of ACS is to agree on a common core set of n−t parties whose
AVSS successfully terminated. Parties can asynchronously validate which parties can be considered:
A party Pi validates Pj when the AVSS of Pj as a dealer terminates. When a party Pi validates
a set of n − t parties, it broadcasts its set Si containing those n − t parties; However, it continue
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to store and update Si as more parties are being validated (i.e., their AVSS has terminated). The
parties now run an instance of AVABA – and try to reach an agreement on the sets Si; the main
difference is that this set Si is dynamic, and as Pi validates additional parties, say, some Pk, it
allows the agreed output to contain such additional parties that were dynamically added – such as
Pk. The AVABA protocol guarantees that all honest parties will reach an agreement on the set,
and whoever appears in the output was validated by an honest party. See Section 8.

AVABA. The construction of an AVABA protocol follows the ideas and construction of the No
Waitin’ HotStuff (NWH) protocol of [6], and replaces the cryptographic validation function with
an asynchronous validation notion, as described above. Seeing as the NWH protocol is designed
in the authenticated setting and uses a signature scheme, our work adapts these ideas to the
information-theoretic setting, removing the need for cryptography.

Our AVABA protocol proceeds in iterations called “views”. Parties start each view by ex-
changing suggestions for possible outputs from the protocol. These values are either derived from
messages they saw in previous views, or simply their inputs if no suitable previous values exist. Ev-
ery party then chooses the suggestion from the most recent view, and broadcasts it as its proposal
for the current view. After parties broadcast their proposals, one of them is chosen retroactively
and obliviously using a Verifiable Leader Election (VLE) protocol. Following that, parties check
whether the proposal can be safely output from the protocol without contradicting values output
by parties previously. If that is the case, they do so. We emphasize that when an honest leader
is elected, this is always the case. Otherwise, they proceed to the next view, while ensuring other
parties can proceed as well. We now elaborate on how the parties pick the leader.

Verifiable leader election. The first challenge is constructing a verifiable leader election (VLE)
protocol. In ordinary leader election, the goal is for all parties to agree on the identity of an hon-
est leader with some constant probability. In our setting, the chosen leader might be validated
by some asynchronous validation process (specifically, in our AVABA, a party is validated once it
broadcasted a proposal for an output). Our protocol is inspired by the synchronous leader elec-
tion protocol of [27], its efficiency improvements [1], and the asynchronous authenticated proposal
election protocol in the computational setting of [6].

The main idea of leader election is to assign to each party a random rank ci, and then pick
the party with the maximal rank as the leader. Each party cannot assign a random rank to
itself, as corrupted parties will not choose their values uniformly at random. Instead, each party Pj

contributes a sub-rank cj→i to each Pi, and we define (for now) the rank of Pi to be ci =
∑n

j=1 cj→i.
We call each cj→i the contribution of Pj to Pi. We cannot just let parties contribute random sub-
ranks, as the corrupted parties will wait to see the sub-ranks that the honest parties contributed
and then pick their own sub-ranks so that a corrupted leader will be elected. Instead, the parties
first “commit” to the sub-ranks and later “reveal” them. The commitment is performed using
AVSS.

We borrow ideas from [1, 6] and instead of having O(n2) AVSS instances (i.e., ci→j for every
i, j), we use O(n) “packed” AVSS instances in which each dealer can share O(n) secrets at once.
This reduces the number of instances to O(n). As mentioned, we improve the cost of packed AVSS
by a factor of O(n), leading to a more efficient VLE.

Verifiable party gather. Since the model is asynchronous, the above protocol suffers from a
similar problem to our starting point: how can the parties know and agree on which AVSS instances
terminated successfully and can be considered as contributions? Parties do not know whether to
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wait until a particular AVSS instance terminates, as it might never terminate. On the other hand,
agreeing on which AVSS instances were terminated is exactly the ACS problem!

Luckily, we do not have to reach an agreement fully. We avoid strong agreement using two
tools. First, we let each party Pi choose a set of t+1 dealers that have successfully shared secrets.
The value ci of Pi is defined to be the sum of their secrets. Since it is a sum of t + 1 parties, it
must include at least one honest dealer, which means that ci is uniformly distributed. Parties then
broadcast their choice of dealers, and wait to receive at least n− t such broadcasts.

However, if some broadcasts are delayed, we again run into a similar problem to ACS: different
parties might not consider the same set of parties as potential leaders, and as such parties might
not agree on the chosen leader. The parties have to agree on which broadcasts to consider. We now
employ our second tool to “roughly agree” on which broadcasts were received: the verifiable party
gather protocol. Verifiable party gather is a relaxation in which the parties might output distinct
sets, say C1, . . . , Cn, but with the following two guarantees: (1) All parties in all sets have been
validated by at least one honest party (which means that eventually, they will all be validated); (2)
The different sets are distinct, but are all supersets of some large “core” of n− t parties.

Since all of the ci ranks are uniform, each party has the same probability of having the maximal
value. If we are lucky and the party with the maximal random value is an honest party in the
shared core, all parties will see its ci rank and elect it as a leader. Luckily, since the core is large,
there are many honest parties in the core, and this event happens with a large probability. The
core is of size n − t in our case, and thus it contains n − 2t honest parties, which yields a success
probability of n−2t

n ≥ 1
2 . See more in Section 6.

Our verifiable party gather protocol is inspired by [6]. Unlike [6], which relies on signatures
and authentication, we implement an information theoretic version of gather whose inputs comply
with asynchronous validation. Moreover, our gather protocol is unique in that it outputs a set of
parties, while their values are inferred via asynchronous validation. See more on the gather protocol
in Section Section 4.

Verifiable leader election =⇒ AVABA. We now slightly elaborate on how we move from
VLE to AVABA. Here the main challenge is working with asynchronously validated inputs and
maintaining both safety (that all honest parties output the same value) and liveness (that the
protocol terminates) over the different iterations (views). Our protocol is an information-theoretic
adaptation of [6].

For safety, we use a common approach in authenticated protocols [18, 31] of using lock certifi-
cates and adapt them to the information-theoretic setting. Some of these techniques are inspired
by the approach of [8] that adapts the protocol of [31] to partial synchrony. Here we show how to
obtain liveness under fully asynchronous network conditions.

For liveness in asynchrony, there are two major challenges. The first is guaranteeing that all
honest parties will reach agreement on the leader’s proposal if a unique honest leader is elected. For
this, we use the key certificate approach of [7, 31] and adapt it to the information-theoretic setting.
The second, more challenging problem is guaranteeing that honest parties eventually proceed to
the next iteration (view) if the current iteration does not lead to agreement. As in [6], we observe
that there are two triggers to changing views (i.e., giving up on the current iteration/leader):

• The first is when two different honest parties decided on different leaders (failure of the VLE);
or

• The second is when the leader sends a proposal whose key is lower than a lock held by some
party (blame event): parties check whether the leader proposed values that are “acceptable”
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ACS: Agreement on a Core Set
(Section 8)

AVABA: Asynchronously Validated
Asynchronous Byzantine Agreement (Section 7)

VLE: Verifiable Leader Election
(Section 6)

Verifiable Party Gather
(Section 4)

AVSS: Packed Asynchronous
Verifiable Secret Sharing (Section 5)

n×

O(nX + n3 logn) for X secretsO(n3 logn)

O(n3 logn+ n · AVSS) (= O(n4 logn))

O(n3 logn+ VLE) (= O(n4 logn))

O(n3 logn+ AVABA) (= O(n4 logn))

Figure 1: The structure of our ACS protocol; In red: The communication complexity of each
primitive.

based on their current state, and “blame” the leader publicly if that is not the case.

In [6] these two events can be verified cryptographically, so any honest party that observes this
event simply forwards it to all parties. In our setting, we adapt validate the correctness of messages
asynchronously instead of using cryptographic tools. Roughly speaking, when the VLE fails or a
blame message is sent, parties record it and wait for it to be asynchronously validated. We refer
the reader to Section 7 for further details.

Structure. Figure 1 shows the structure of our ACS protocol, including the different building
blocks and showing their complexity.

2.3 Extensions

We conclude the overview and the preliminary part of the paper by discussing two extensions: The
statistical settings (Section 2.3.1), and the ramifications of our ACS and AVSS to asynchronous
MPC (Section 2.3.2).

2.3.1 The Statistical Settings

Our AVABA protocol requires O(n) secrets (each of size O(log n) bits) to be shared per party per
round and can be generalized to a protocol resilient to t < n/3 corruptions. Our ACS protocol uses
packed AVSS to generate randomness.

As proven in [5, 13], when n < 4t, any AVSS protocol must have some non-zero probability of
non-termination. The work of [17] constructs such an AVSS protocol with an adjustable security
parameter ϵ, allowing the protocol to fail or not terminate with ϵ probability. It is possible to
use such an AVSS protocol in our construction, resulting in an AVABA protocol with a similar
probability of non-termination, as described in the following:

Theorem 2.1 (General Asynchronously Validated Asynchronous Byzantine Agreement (infor-
mal)). Let c ∈ [3, 4]. Given a n > ct resilient protocol for asynchronous verifiable secret sharing
that has S(n, ϵ) communication complexity, ϵ ≥ 0 error, and 1− ϵ probability of termination, there
exists an agreement protocol that is resilient to t corruptions as long as n > ct. Moreover, the pro-
tocol is Õ(ϵ) secure (and in particular for ϵ = 0 is perfectly-secure). With probability 1− Õ(ϵ), the
protocol runs in constant expected time (and in particular for ϵ = 0 is almost-surely terminating)
and has O(n3 log n+ n2S(n, ϵ)) expected communication complexity.
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In the above theorem, setting c = 3, we get the first statistical ACS protocol for any n > 3t
parties that terminates in constant expected time, conditioned upon the success of the protocol.

Corollary 2.2. There exists a statistically secure protocol for asynchronous agreement on a core
set with asynchronous validation resilient to t < n/3 Byzantine corruptions. Conditioned upon the
protocol succeeding with probability 1− ϵ, the protocol runs in constant expected time.

It is also possible to directly construct our AVABA protocol using a single call to a verifiable
leader election protocol per round instead. This means that any construction of such a protocol will
immediately yield an AVABA protocol and consequently an ACS protocol as well. More precisely:

Theorem 2.3 (General Asynchronously Validated Asynchronous Byzantine Agreement (infor-
mal)). Let c ∈ [3, 4]. Given a n > ct resilient protocol for verifiable leader election that has
LE(n, ϵ) communication complexity, ϵ ≥ 0 error, and 1− ϵ probability of termination, there exists
an agreement protocol that is resilient to t corruptions as long as n > ct. Moreover, the protocol is
Õ(ϵ) secure (and in particular for ϵ = 0 is perfectly-secure). With probability 1−Õ(ϵ), the protocol
runs in constant expected time (and in particular for ϵ = 0 is almost-surely terminating) and has
O(n3 log n+ LE(n, ϵ)) expected communication complexity.

2.3.2 Asynchronous Secure Computation

Plugging our new AVSS and the ACS protocols in the recent asynchronous MPC protocol of [3]
leads to an efficiency improvement. Specifically, instead of MPC with O((Cn + Dn2 + n7) log n)
communication and O(D + log n) expected-time using the ACS of [15] and the AVSS of [19], we
obtain O((Cn+Dn2 + n4) log n) communication and O(D) expected-time.

The MPC protocol of [3] has the following structure:

Offline: beaver triplets generation. The goal is to distribute (Shamir, univariate degree-t)
shares of random secret values a, b, and c, such that c = ab. This is performed as follows:

1. Triplets with and without a dealer. Each party first distributes secrets ai, bi, ci such that
ci = ai · bi. If the computation requires C multiplications in total, each dealer has to generate
C/n such triplets. Using the previous best AVSS, this step requires O(n4 log n+ C log n) com-
munication for each dealer, i.e., a total of O(n5 log n+Cn log n) for all parties combined. Using
our AVSS protocol, this step is automatically reduced to O(n4 log n+Cn log n). Both protocols
are constant expected number of rounds.

2. Agreeing on a core set (ACS): The parties then have to agree on a core set of parties whose
beaver triplets generation terminated and will be considered in the sequel of the computation.
The communication cost of the ACS from [15] is O(n7 log n) with O(log n) rounds, which we
reduce to O(n4 log n) and expected constant time.

3. Triplets with no dealer: Once agreed on the core, there is a way to extract O(n) triplets
with no dealer (i.e., when no party knows the secrets a, b and c) from O(n) triplets with a dealer
(where the dealer knows the secrets a, b and c). This step costs O(n2 log n+ Cn log n).

To conclude, generating C multiplication triplets costs a total of O(n4 log n+ Cn log n).

Online. The second step follows the standard structure where each party shares its input (using
AVSS), and the parties evaluate the circuit gate-by-gate while consuming the multiplication triplets
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they have generated, using the method of [19]. Using our AVSS, the sharing phase is reduced from
O(n5 log n) to O(n4 log n). The computation of the circuit using the multiplication triplets remains
O((Cn+Dn2) log n) with an O(D) time requirement.

In total, using our ACS and AVSS, we obtain a protocol that requires O((Cn+Dn2+n4) log n)
communication and O(D) time.

3 Definitions and Assumptions

3.1 Network and Threat Model

This work deals with protocols for n parties with point-to-point communication channels. The
network is assumed to be asynchronous, which means that there is no bound on message delay, but
all messages must arrive in finite time. The protocols below are designed to be secure against a
computationally unbounded malicious (Byzantine) adversary. The AVSS protocol is secure when
the adversary controls t < n

4 parties, whereas the other protocols are secure even if the adversary
controls t < n

3 parties (assuming an AVSS protocol). Furthermore, for simplicity, our modeling
of the functionalities and the simulation proofs assume a static adversary, but we believe that our
construction can be extended to the adaptive adversary. We also provide proofs for property-based
definitions that are secure against an adaptive adversary that can choose to corrupt a party at any
time given that it hasn’t already corrupted t parties.

3.2 Asynchronous Secure Computation and SUC

We model our protocols in the simplified universally composable setting (SUC), formalized by
Canetti, Cohen, and Lindell [16], which implies UC security. We briefly overview the model here,
where this overview is taken almost verbatim from [3].

We consider an asynchronous network where the parties are {P1, . . . , Pn}. The parties are
connected via pairwise ideal private channels. To model asynchrony, messages sent on a channel
can be arbitrarily delayed, however, they are guaranteed to be eventually received after some
finite number of activations of the adversary. In general, the order in which messages are received
might be different from the order in which they were sent. Yet, to simplify notation and improve
readability, we assume that the messages that a party receives from a channel are guaranteed to be
delivered in the order they were sent. This can be achieved using standard techniques – counters,
and acknowledgements, and so we just make this simplification assumption.

Main difference from SUC. The SUC model allows the adversary to also drop messages, and the
adversary is not limited to eventually delivering all messages. To model “eventual delivery” (which
is the essence of the asynchronous model), we limit the capabilities of the adversary and quantify
over adversaries that eventually transmit each message in the network (i.e., they do not drop
messages). Formally, any message sent must be delivered after some finite number of activations
of the adversary.

As in SUC, the parties are modeled as interactive Turing machines, with code tapes, input
tapes, outputs tapes, incoming communication tapes, outgoing communication tape, random tape
and work tape.

Communication. In each execution there is an environment Z, an adversary A, participating
parties P1, . . . , Pn, and possibly an ideal functionality F and a simulator S. The parties, adversary
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and ideal functionality are connected in a star configuration, where all communication is via an
additional router machine that takes instructions from the adversary. That is, each entity has one
outgoing channel to the router and one incoming channel. When Pi sends a message to Pj , it sends
it to the router, and the message is stored by the router. The router delivers general information
about the message to the adversary (i.e., “a header” but not the “content”. That is, the adversary
can know the type of the message and its size, but cannot see its content). When the adversary
allows the delivery of the message, the router delivers the message to Pj . As mentioned, we quantify
only over all adversaries that eventually deliver all messages. In particular, even in an execution
with an ideal functionality, communication between the parties and this functionality is done via
the router machine and is subject to (finite) delivery delays imposed by the adversary.

Note that the router machine is also part of the ideal model. When the functionality gives
for instance, some output to party Pj , then this is performed via the router, and the simulator is
notified. Thus, if the adversary, for instance, delays the delivery of the output of some party Pj , we
do not explicitly mention that in the functionality (e.g., “wait to receive OKj from the adversary
and then deliver the output to Pj”), yet it is captured by the model.

Finally, the environment Z communicates with the adversary directly and not via the router.
In particular, the environment can communicate with the adversary (and it cannot communicate
even with the ideal functionality F). In addition, Z can write inputs to the honest parties’ input
tapes and can read their output tapes.

Execution in the ideal model. In the ideal model we consider an execution of the environment
Z, dummy parties P1, . . . , Pn, the router, a functionality F and a simulator S. In the ideal model
with a functionality F the parties follow a fixed ideal-model protocol. The execution is as follows:

1. The environment is first activated with some input z.

2. The environment delivers the inputs to the dummy honest parties, which forward the inputs
to the functionality (recall that this is done via the router, which then gives some leakage
about the message header to S, which can adaptively delay the delivery by any finite amount).
Moreover, Z can also give some initial inputs to the corrupted parties via S.

3. At a later stage, where the dummy parties receive output from the functionality F , they
just write the outputs on their output tapes (and Z can read those outputs). Again, these
messages go through the router, and the simulator can delay them.

4. At the end of the interaction, Z outputs some bit b.

The simulator S can send messages to Z and to the functionality F . The simulator cannot directly
communicate with the participating parties. We stress that in the ideal model, the simulator S
interacts with Z in an online way, and the environment can essentially read the outputs of the honest
parties and query the simulator (i.e., can ask to receive a simulated transcript of the adversary’s
view) at any point of the execution. We denote by idealF ,S,Z(z) an execution of this ideal model
of the functionality F with a simulator S and environment Z, which starts with an input z.

Execution in the real model with protocol π. In the real model, there is no ideal functionality
and the participating parties are Z, the parties P1, . . . , Pn, the router and the real-world adversary
A.

1. The environment is first activated with some input z, and it can give inputs to the honest
parties, as well as some initial inputs to the corrupted parties controlled by the adversary A.
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2. The parties run the protocol π as specified, while the corrupted parties are controlled by A.
The environment can see at any point the outputs of the honest parties, and communicate
directly with the adversary A (and see, without loss of generality, its partial view).

3. All messages go through the router and the adversary gets notified. The adversary can decide
when to deliver each message.

4. At the end of the execution, the environment outputs some bit b.

We denote by realπ,A,Z(z) an execution of this real model with the protocol π, the real-world
adversary A and the environment Z, which starts with some input z.

Definition 3.1. We say that an adversary A is an asynchronous adversary if for any message that
it receives from the router, it allows its delivery within some finite number of activations of A.

Definition 3.2. Let π be a protocol and let F be an ideal functionality. We say that π securely
computes F in the asynchronous setting if for every real-model asynchronous adversary A there
exists an ideal-world adversary S that runs in polynomial time in A’s running time, such that for
every Z:

{idealF ,S,Z(z)}z ≡ {realπ,A,Z(z)}z

3.3 Cooperative Adversaries

Most of the functionalities discussed in this paper do not involve private inputs. Specifically,
in many of these functionalities, the adversary is aware of all parties’ inputs and outputs. The
adversary’s primary capability is influencing these outputs to some degree. Such functionalities
often include a command like setOutput, allowing the adversary to set the output for certain honest
parties under specific conditions verified by the functionality. This can lead to a scenario where the
adversary might choose not to cooperate, failing to send any inputs and forcing the functionality
to “get stuck”.

To simplify matters, we model the adversary is always “cooperative”. This is done for simplicity
of exposition, to enhance readability and provide a more concise description of the functionalities.
In this model, the adversary eventually responds and cooperates with the functionality.

We justify this modeling by noting that any functionality assuming a cooperative adversary
can be transformed to handle a non-cooperative adversary. In such a case, the functionality would
specify default outputs for honest parties. This involves the functionality calling the setOutput
command that the ideal adversary would typically invoke. This message is routed to itself via the
router, and the adversary is notified. The adversary can decide to rush and reply with its own
setOutput command, or, it must eventually pass the first command to the functionality (recall that
we assume eventual delivery), which then sends the output to the honest parties. In the case of two
setOutput commands, the second one will be ignored. When describing a functionality that works
for every adversary, not necessarily a cooperative one, the eventual output will be the one that it
sent by the functionality to itself.

In other words, by modeling functionalities with cooperative adversary, we effectively “shift”
some of the functionality’s description to the simulator, resulting in more concise functionalities that
precisely describe the adversary’s capabilities. For instance, in FGather (Section 4), the adversary
might choose different outputs for different parties, but the functionality ensures that all outputs
share a significant common subset. We just define that the adversary is capable of choosing different
outputs to different parties, without necessarily describing what the outputs are when the adversary
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does not cooperate. This means that a simulator can use its access to define outputs, or give up
this right by being uncooperative and allow the functionality to define outputs instead.

3.4 Reliable Broadcast

We assume the existence of a Reliable Broadcast protocol. A Reliable Broadcast protocol is an
asynchronous protocol with a designated sender. The sender has some input value M from some
known domain M and each party may output a value in M. A Reliable Broadcast protocol has
the following properties assuming all honest parties participate in the protocol:

• Agreement. If two honest parties output some value, then it’s the same value.

• Validity. If the dealer is honest, then every honest party that completes the protocol outputs
the dealer’s input value, M .

• Termination. If the dealer is honest, then all honest parties complete the protocol and
output a value. Furthermore, if some honest party completes the protocol, every honest
party completes the protocol.

Concretely, we use the reliable broadcast protocol of [9] in which parties send O(n2 log n+n ·m)
bits when broadcasting a message of size O(m).

4 Verifiable Party Gather

In the leader election protocol, we wish to agree on a large set of parties that actively participated
and elect a leader among them. However, since some instances might terminate earlier than others
for some parties, exactly agreeing on the set is non-trivial and potentially expensive. We know,
however, that if an instance has terminated for one honest party then it eventually terminates for
all parties. The gather functionality comes to “synchronize” the parties. Exactly agreeing on all
terminating instances is rather expensive (in fact, this is the end goal of “agreement on a core set”
– of Section 8). At this point, we slightly relax our requirements, the parties might output different
sets, but under the following condition:

CORE: there exists some core C∗ of size n− t or greater such that the output of every
honest party contains C∗.

The parties also give their outputs to one another, and whenever Pj receives the output of
Pi it verifies that the output was computed correctly. As we will see, all the messages sent are
public, and therefore the view of the different parties should be the same. The only difference is
the different scheduling of messages. Thus, it should be possible to eventually verify an honestly
generated output, at least eventually.

4.1 Property-Based Definition

To aid understanding, we first give some property based definition of this primitive. We later
describe its functionality (Functionality 4.1). (Our proof refers to the functionality, the property-
based definition is given just for completeness.)

• Syntax: Each party eventually Pj eventually sets its output to be (output, j, Cj); Moreover,
it receives the sets of the other parties and verifies them (and (output, k, Ck) will also be part
of its output for other parties Pk).
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• Core: Once the first honest party outputs a value from the protocol, there exists a core set
C∗ such that |C∗| ≥ n − t. If an honest party Pj outputs a set (output, j, Cj) then it holds
that C∗ ⊆ Cj .

• Completeness: For every honest Pj , if Pj outputs (output, j, Cj) then all honest parties
would verify its set and have (output, j, Cj) as part of their output.

• Agreement on verification: For a corrupted Pi, if some honest party outputs (output, i, Ci),
then all honest parties eventually output (output, i, Ci).

• Validation of verification: For a corrupted Pi, if some honest party Pj outputs (output, i, Ci),
then it holds that C∗ ⊆ Ci and each element in Ci has been validated by Pj .

4.2 Gather Functionality

We now describe the gather functionality. As described in Section 3.3, we describe the functionality
with a cooperative adversary - namely, we assume that it always replies to the functionality.

Functionality 4.1: Gather Functionality

The functionality is reactive. Initialize C1, . . . , Cn = C∗ = ∅.

• validate(i, j): Whenever the functionality received this command from some party Pi (via the
router), forward (validate, i, j) to the ideal adversary and record the message.

• setCore(C): Whenever the ideal adversary sends this command, verify that |C| ≥ n − t and
that for every x ∈ C, there exists a recorded validate(ℓ, x) for an honest Pℓ. If so, store
C∗ = C; Otherwise, ignore the command.

• setOutput(i, C ′
i): Whenever the ideal adversary sends this command, verify that |C ′

i| ≥ n− t,
C∗ ⊆ C ′

i and for every x ∈ C ′
i, there exists a recorded validate(ℓ, x) for an honest Pℓ. If Ci = ∅

replace it with Ci = C ′
i, and send (output, j, Cj) to all parties. Otherwise (Ci ̸= ∅), ignore the

command.

Input Assumption 4.2. We prove that the protocol implements the functionality for restricted
environments. In particular, we assume the following:

1. For every pair of honest parties (j, k), the environment issues validate(j, k).

2. If the functionality issues validate(j, i) from an honest Pj and corrupted Pi, for any other
honest Pk, the environment will also issue validate(k, i).

4.3 Gather Protocol

The protocol consists of the following steps. The parties receive some validations of parties from
the environment (e.g., Pj validates Pi when the secret sharing of Pi terminates). Then:

1. In the first phase, parties try to establish sets Si ⊆ [n] of parties that were successfully
validated. Once the set Si is of size at least n− t, Pi broadcasts ⟨1, Si⟩ to all parties.

2. In the second phase, after an honest Pi receives such a set Sj from party Pj , it validates that
set. That is, it verifies that Sj is of size n − t, and for every k ∈ Sj , waits until validatei[k]
is 1. Once the message is validated, it adds the content of Sj to USi, and j to VerifiedBc-1i.
Once n− t broadcast-1 messages are validated (i.e., |VerifiedBc-1i| ≥ n− t), Pi broadcasts its
broadcast-2 message, consisting of USi and VerifiedBc-1i.
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3. In the third round, parties verify the broadcast-2 messages. Once n − t such messages are
verified, the party sets Ci = USi as its output, and broadcast Ci as a broadcast-3 message.

4. Finally, each party continues to listen to broadcast-3 message, and validates them. This
allows each party to know what is the output of each other party.

It is important to notice that when some honest party Pi sets its output Ci, then from counting
argument, there exists some i∗ that appears in t + 1 VerifiedBc-1i sets (recall that those sets are
being broadcasted in broadcast-2 messages). The CORE can be defined to be Si∗ , and the proof
shows that the sets Cj that parties output must contain Si∗ .

Protocol 4.3: Implementing Gather

Each party Pi intializes Si,USi,VerifiedBc-1i,VerifiedBc-2i, C1, . . . , Cn ← ∅, validatei = 0n and works
as follows:

validate(i, j): Upon receiving the command validate(i, j) from the environment, set validatei[j] = 1.

Main process:

1. Build initial set of validated parties Si and broadcast-1 message:

(a) For every j ∈ [n], upon validatei[j] = 1: Add j to Si.

(b) For the first time when |Si| ≥ n− t, broadcast ⟨1, Si⟩.
2. Validate broadcast-1 messages and send broadcast-2 message:

(a) Upon receiving ⟨1, Sj⟩ from j, verify that the message ⟨1, Sj⟩ is valid:
Verify that |Sj | ≥ n− t, and for every k ∈ Sj , wait until validatei[k] becomes 1.

(b) Upon the message ⟨1, Sj⟩ being validated, perform USi = USi ∪ Sj , and add j to
VerifiedBc-1i.

(c) For the first time when |VerifiedBc-1i| ≥ n− t, broadcast ⟨2,VerifiedBc-1i,USi⟩.
3. Validate broadcast-2 messages and send broadcast-3 message:

(a) Upon receiving ⟨2,VerifiedBc-1j ,USj⟩ from Pj , validate that the message is valid:
i. Verify that |VerifiedBc-1j | ≥ n− t.

ii. Verify that VerifiedBc-1j ⊆ VerifiedBc-1i (i.e., all the parties that Pj considered as
broadcasting message-1, Pi also heard those broadcasts and could verify that their
message-1 is valid);

iii. Consider US′j =
⋃

k∈VerifiedBc-1j Sk (i.e., simulate the set USj that Pj was supposed

to send according to its reported VerifiedBc-1j). Verify that USj = US′j .

(b) Upon the message ⟨2,VerifiedBc-1j ,USj⟩ being validated, add the pair (j,USj) to VerifiedBc-2i.

(c) Upon |VerifiedBc-2i| = n − t (i.e., n − t broadcast-2 messages were verified), then set
Ci = USi. Broadcast ⟨3, Ci⟩. Append (output, i, Ci) to the output tape.

4. Validate broadcast-3 messages and outputs:

(a) Upon receiving a broadcast ⟨3, Cj⟩ message from Pj , and Upon the following conditions
being satisfied, append (output, j, Cj) to the output tape: (1) Ci ̸= ∅; (2) Let num be
the number of (k,USk) ∈ VerifiedBc-2i such that USk ⊆ Cj . Then it should hold that
num ≥ n− t, and for every x ∈ Cj , validatei[x] = 1;
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4.4 Security Analysis

We start with a few lemmas and proceed to the simulation-based proof. The efficiency of the
protocol is analyzed in Appendix A.

Lemma 4.4. Assume some honest party Pi sets Ci. There exists some i∗ such that at least t + 1
parties sent broadcasts of the form ⟨2,VerifiedBc-1,US⟩ with i∗ ∈ VerifiedBc-1.

Proof. Before setting Ci in Step 3c, Pi found that |VerifiedBc-2i| ≥ n− t, and thus it received n− t
broadcasts of the form ⟨2,VerifiedBc-1j ,USj⟩ such that |VerifiedBc-1j | ≥ n− t. Let J be the set of
parties who sent those broadcasts. Now assume by way of contradiction that there is no such i∗,
i.e., every index k appears in at most t of the broadcasted sets VerifiedBc-1j such that j ∈ J . Since
there are a total of n possible values, this means that the total number of elements in all sets is no
greater than nt. On the other hand, there are n − t such sets, each containing n − t elements or
more, resulting in at least (n− t)2 elements overall. Combining these two observations:

(n− t)2 ≤ nt

n2 − 2nt+ t2 ≤ nt

n2 − 3nt+ t2 ≤ 0

However, by assumption n > 3t, and thus:

0 ≥ n2 − 3nt+ t2

= n2 − n · (3t) + t2

> n2 − n2 + t2

= t2 ≥ 0

reaching a contradiction. Therefore, there exists at least one value i∗ such that for at least t+1 of
the ⟨2, T,R⟩ broadcasts sent, i∗ ∈ T .

Lemma 4.5. Let Pi, Pj be two honest parties. Observe the sets VerifiedBc-1i,VerifiedBc-2i at
any time throughout the protocol. Eventually VerifiedBc-1i ⊆ VerifiedBc-1j and VerifiedBc-2i ⊆
VerifiedBc-2j.

Proof. Observe some k ∈ VerifiedBc-1i. Party Pi added k to VerifiedBc-1i after receiving a ⟨1, Sk⟩
broadcast from Pk such that |Sj | ≥ n−t and seeing that validatei[x] = 1 for every x ∈ Sk. From the
Agreement and Termination properties of the broadcast protocol, Pj eventually receives the same
message, and from the input assumption of the validity, it will eventually see that validatei[x] = 1 for
every x ∈ Sk. At that point, Pj adds k to VerifiedBc-1j as well. Similarly, observe some (k,USk) ∈
VerifiedBc-2i. Party Pi received a ⟨2,VerifiedBc-1k,USk⟩ message such that |VerifiedBc-1k| ≥ n − t
and saw that VerifiedBc-1k ⊆ VerifiedBc-1i. Party Pj will also receive that same message and
eventually see that VerifiedBc-1k ⊆ VerifiedBc-1i ⊆ VerifiedBc-1j , at which point it will add a tuple
(k,US′k) to VerifiedBc-2i. Note that both parties compute USk and R′

k to be the union of the Sl

sets such that l ∈ VerifiedBc-1k. Since both of them receive the same broadcasts ⟨1, Sl⟩, they both
compute the same set, and thus j adds the same tuple (k,R′

k) = (k,USk) to its VerifiedBc-2j set.

Lemma 4.6. There exists a core C∗ of cardinality ≥ n − t, such that for any (output, i, Ci) that
any honest party might output, it holds that C∗ ⊆ Ci. Moreover, this core C∗ can be efficiently
extracted from the view of the first honest party Pj that sets Cj.
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Proof. Assume the first honest party that sets its output Cj is Pj , and observe the index i∗ as
defined in Lemma 4.4. Party Pj only adds a tuple (k,USk) to VerifiedBc-2j after receiving a
⟨2,VerifiedBc-1k,USk⟩ message from party Pk. Before completing the protocol, Pj received n − t
such broadcasts and found that VerifiedBc-1k ⊆ VerifiedBc-1j . From Lemma 4.4, t+1 of the parties
broadcast some message ⟨2,VerifiedBc-1k,USk⟩ such that i∗ ∈ VerifiedBc-1k. Therefore, for at least
one party Pk, i

∗ ∈ VerifiedBc-1k ⊆ VerifiedBc-1j . Before adding i∗ to VerifiedBc-1j , Pj received a
⟨1, Si∗⟩ broadcast from party i∗ such that Si∗ ⊆ Sj and |Si∗ | ≥ n − t. Let the binding-core C∗ be
Si∗ . Clearly |C∗| ≥ n− t because |Si∗ | ≥ n− t. The fact that C∗ is a subset of every honest party’s
output from the protocol is a direct corollary of the Completeness and Includes Core properties of
the Gather protocol.

Lemma 4.7. For every honest Pj, if Pj outputs (output, j, Cj) then all honest parties would verify
its set and have (output, j, Cj) as part of their output.

Proof. Assume the input assumption as per Input Assumption 4.2. When an honest party Pj sets
Sj , it holds that validatej [x] = 1 for all x ∈ Sj . Pj then broadcasts ⟨1, Sj⟩.

Every honest Pk receives the message ⟨1, Sj⟩, and from the input assumption, if Pj validated
some x ∈ Sj , then Pk will also eventually see that x is validated. When all of Sj is validated,
Pk adds j to VerifiedBc-1k. After adding such an index for every honest party, it must be that
|VerifiedBc-1k| ≥ n−t and Pk can broadcast ⟨2,VerifiedBc-1k,USk⟩ (it might broadcast that message
also earlier, depending on the messages that the adversary sends).

Similarly, every honest party Pℓ eventually receives that broadcast and sees that |VerifiedBc-1k| ≥
n − t. From Lemma 4.5, eventually VerifiedBc-1ℓ ⊆ VerifiedBc-1k, at which point Pℓ adds a tuple
(k,USk) to VerifiedBc-2ℓ.

After adding such a tuple for every honest Pk, every honest Pℓ sees that |VerifiedBc-2ℓ| ≥ n− t,
and it can set Cℓ = USℓ. We therefore conclude that each honest party, Pℓ, eventually sets its own
set Cℓ. It then broadcasts ⟨3, Cℓ⟩ to all parties. Verifying this message holds for Pℓ, and therefore
each honest party would verify that message, as per Lemma 4.8.

Lemma 4.8 (Agreement on verification.). For a corrupted Pi, if some honest party outputs (output, i, Ci),
then all honest parties eventually output (output, i, Ci). Moreover, it holds that the core C∗ ⊆ Ci.

Proof. Assume that some honest Pj completes the verification and adds (output, i, Ci) to its output.
This means that it received a broadcast message ⟨3, Ci⟩ by Pi, and it saw that
|{k | ∃(k,X) ∈ VerifiedBc-2j , X ⊆ Ci}| ≥ n− t and that for every x ∈ Ci it holds that validatej [x] =
1. Let Pℓ be some other honest party. From Lemma 4.5, eventually VerifiedBc-2ℓ ⊆ VerifiedBc-2j
and thus eventually |{k | ∃(k,X) ∈ VerifiedBc-2ℓ, X ⊆ Ci}| ≥ n − t. In addition, from the input
assumption of validate, it will also hold that validateℓ[x] = 1 for every x ∈ Ci. Thus, Pℓ eventually
adds (output, i, Ci) to its output. Moreover, we have at least t + 1 honest parties Pℓ for which
(k,USk), it holds that USk ⊆ Ci. From Lemma 4.6 it holds that C∗ ⊆ Ci.

We proceed with the main theorem of this section:

Theorem 4.9. Protocol 4.3 securely realizes Functionality 4.1 in the presence of a malicious ad-
versary controlling at most t < n/3 parties, assuming the Input Assumption 4.2.

Proof. The simulator S works as follows:
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1. Since the parties have no inputs, the simulator just runs all honest parties with the adversary
A, allowing the adversary to also schedule the delivery of the messages in the simulated
execution.

2. Whenever the simulator receives (validate, j, i) from the functionality, it notifies the simulated
Pj in the simulated protocol (while the adversary A has the ability to delay the delivery of
the message).

3. When the first simulated honest party Pj sets the value Cj , extract the core C
∗ from the view

of the simulated honest parties, as elaborated in Lemma 4.6. Then, send setCore(C∗) to the
functionality.

4. Whenever a simulated honest party Pj sets the value Cj , send setOutput(j, Cj) to the func-
tionality. The functionality then sends a message (output, j, Cj) to all parties, and this
message is passed through the router. Deliver the message (output, j, Cj) to Pk only when
(output, j, Cj) is obtained by the simulated Pk.

5. Whenever a corrupted party Pi broadcasts ⟨3, X⟩ then verify that X ⊆ C∗ and that for
every k ∈ X there exists some honest Pℓ that sent validate(ℓ, k) command. If so, send
setOutput(i,X) to the functionality. Otherwise, wait until the above conditions hold. (In
particular, note that an honest party Pj never outputs Ci before setting its own Ci; thus,
no honest party would output Ci yet). When setOutput(i,X) is sent to the functionality,
the functionality then sends a message (output, j, Cj) to all parties, and the simulator allows
the delivery of that message only when (output, j, Cj) is written to the output tape of the
simulated Pk.

We now show that the real and ideal execution are identically distributed. The view of the
adversary is clearly identical, as there are no private inputs, and the simulator just runs the protocol
with the adversary as the honest parties do in the real. We now show that the outputs of the honest
parties are the same in the real and ideal:

1. When the first simulated honest party sets its Cj , it can extract a core C∗ ⊆ Cj as follows
from Lemma 4.6. Therefore, the functionality would accept Cj .

2. Moreover, for a corrupted Pi, an honest party would output (output, i, Ci) only if Pi has
broadcasted a ⟨3, Ci⟩ message, and Ci has been verified. In that case, in the ideal, the
simulator sends setOutput(i, Ci) to the functionality as specified in Step 5 in the simulation.
The functionality then verifies a few checks, and if they hold it sends (output, i, Ci) to all
parties, and the simulator delivers those messages in the exact same scheduling as in the
simulated protocol (which corresponds to the real). We now show that all those checks hold:

(a) C∗ ̸= ∅; This must hold as an honest party Pj outputs (output, i, Ci) only after it sets
Cj . As such, it must hold that the simulator already sent a core C∗ to the functionality.

(b) C∗ ⊆ Ci: This holds as part of Lemma 4.8.

(c) For every x ∈ Ci there exists a recorded validate(ℓ, x) command for some honest Pℓ: This
is also part of the verification that Pj performs before setting Ci.
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5 Packed AVSS

5.1 The Functionality

The protocol we present implements a complete secret sharing, where all parties receive output.
The dealer inputs a bivariate polynomial. If the polynomial is of the appropriate degree, all parties
receive shares on that polynomial and the functionality can terminate. If the polynomial is not
from the expected degree, the functionality does not terminate.

Functionality 5.1: Sharing phase of AVSS

1. The dealer sends the functionality a bivariate polynomial S(X,Y ).

2. The functionality verifies that S(X,Y ) is of degree at most 2t in X and degree at most t in
Y . If not - the functionality does not terminate.

3. Otherwise, it sends all the shares S(X, i), S(i, Y ) for each corrupted party Pi to the ideal
adversary. Moreover, it sends the shares S(X, j), S(j, Y ) to all honest parties j ̸∈ I. Recall
that the adversary has the ability to delay those messages.

5.2 The Protocol

Before describing the protocol, we first overview two algorithms that the protocol uses: FindStar
and RobustInt.

FindStar. FindStar finds a large “star” [15] in a graph, which can be thought of as a weak version
of a clique:

• Input: An undirected graph G = (V,E) with |V | = n. (The parameters n, t are implict)

• Output: C,D ⊆ V such that C ⊆ D and there exists an edge (u, v) ∈ E for every u ∈ C, v ∈
D, such that |C| ≥ n− 2t and |D| ≥ n− t. If not such (C,D) sets were found, the algorithm
outputs (∅, ∅).

It has been shown that if G contains a clique of size n − t, then the algorithm always finds such
(C,D)-star. Moreover, the set C will contain at least n−2t vertices from the clique. This property
was not originally formulated in [15] but is proven in [30].

RobustInt. The RobustInt algorithm is a decoding algorithm for the Reed-Solomon encoding [28]:

• Input: S, d, e such that S is a set of tuples (j, yj), d is the degree, and e is the number of
allowed errors.

• Output: It ouptuts a polynomial p(x) of degree d that agree with all but e points in S. If
there is no such polynomial, it outputs ⊥.

The algorithm always outputs ⊥ if |S| < d + e + 1 because there is no unique polynomial in that
case. Moreover, if |S| ≥ d+ e+m+ 1 for some m ≤ e, and for some polynomial p(x) there are at
most m tuples (j, yj) ∈ S such that p(j) ̸= yj , then RobustInt outputs p(x).

We are now ready to describe our AVSS protocol.

Protocol 5.2: Sharing phase of AVSS

Input: The dealer inputs a bivariate polynomial S(X,Y ). Each other party has no input.
The protocol:
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1. Initialization: (All parties)

(a) Initialize fi ← ⊥, gi ← ⊥, pi ← ⊥, qi ← ⊥.
(b) starsi ← ∅, interpolatedi ← ∅, pointsi ← ∅ Ci ← ∅, Di ← ∅, Ei ← ∅, Fi ← ∅
(c) Initialize an (undirected) graph Gi where the vertices are [n] and the set of edges is

empty.

2. Sharing: (The dealer only)

(a) For every i ∈ [n], the dealer sets fi(X) = S(X, i), gi(Y ) = S(i, y). It then sends
⟨polynomials, fj , gj⟩ to Pi.

3. Exchange sub-shares: (Each party Pi)

(a) Upon receiving ⟨polynomials, f ′
j , g

′
j⟩ message from the dealer, verify that fj is of degree

at most 2t and gj is of degree at most t. Then, store fi ← f ′
i and gi ← g′i, and send

⟨values, fi(j), gi(j)⟩ for every j ∈ [n].

(b) Upon receiving a message ⟨values, fj(i), gj(i)⟩ message from Pj , and Upon fi, gi ̸= ⊥,
verify that fi(j) = gj(i) and gi(j) = fj(i). If so, then send ⟨ok, i, j⟩ to all parties.

4. Look for an extended star: (Each party Pi)

(a) Upon receiving a message ⟨ok, j, k⟩ from Pj and ⟨ok, k, j⟩ from Pk, add (j, k) to Gi.
Then, as long as an extended star is still not found, look for an extended star:
i. Run Ci, Di ← FindStar(Gi).

ii. Let Fi ← {j ∈ [n] | |N(j) ∩ Ci| ≥ n− 2t}, i.e., all vertices in Gi that have at least
n− 2t neighbers in Ci.

iii. Let Ei ← {j ∈ [n] | |N(j) ∩ Fi| ≥ n− t}, i.e., all vertices in Gi that have at least
n− t neighbers in Fi.

iv. If |Ci| ≥ n− 2t and |Di| ≥ n− t, |Ei| ≥ n− t and |Fi| ≥ n− t then an extended star
has been found. Send ⟨star, i, Ci, Di, Ei, Fi⟩ to all parties.

(b) Upon receiving a ⟨star, j, Cj , Dj , Ej , Fj⟩ from Pj , add (star, j, Cj , Dj , Ej , Fj) to the
set starsi.

5. Reconstruct the final column polynomial: (Each party Pi)

(a) Upon a new star message has been received (as in Step 4b), or a new values message
has been received (as in Step 3b),
i. For every (j, Cj , Dj , Ej , Fj) ∈ stari call RobustInt, while considering only the points

(received in Step 3b) of parties in Ej , looking for a polynomial of degree-t with at
most t errors. If there is a reconstructed polynomial gi,j(y), then add (j, gi,j) to
interpolatedi.

(b) Upon interpolatedi being updated, if there is the same polynomial q′i that appears at
least t+ 1 times in interpolatedi, then set qi ← q′i, and send ⟨col, qi(j)⟩ to every j ∈ [n].

6. Reconstruct the final row polynomial: (Each party Pi)

(a) Upon receiving ⟨col, qj(i)⟩, add the point (j, qj(i)) to pointsi.

(b) Run p′i ← RobustInt(pointsi) for a polynomial of degree-2t with at most t errors. If
p′i ̸= ⊥, then set pi ← p′i.

7. Termination:

(a) Upon |stari| = n− t or receiving ⟨done⟩ from t+ 1 parties, send ⟨done⟩ to all parties.

(b) Upon receiving ⟨done⟩ from n − t parties and pi ̸= ⊥, qi ̸= ⊥: terminate, while
outputting (pi(X), qi(Y )).
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There are a few security lemmas that we show, followed by simulatability. The efficiency of the
protocol is analyzed in Appendix A.

Lemma 5.3. Assume some honest party i sent a ⟨star, Ci, Di, Ei, Fi⟩ message. Then every honest
party j ∈ Ci ∪Di ∪ Ei ∪ Fi has fj ̸= ⊥, gj ̸= ⊥. In addition, there exists a unique polynomial S of
degree 2t in X and t in Y such that for every honest j ∈ Ci ∪ Ei fj(X) = S(X, j) and for every
honest j ∈ Di ∪ Fi gj(X) = S(j, Y ).

Proof. Since Pi sent the star message in Step 4(a)iv, it computed Ci, Di using FindStar and found
that Ci is at least of size n − 2t and Di, Ei, Fi are at least of size n − t. By the definition of the
FindStar algorithm, for every j ∈ Ci, k ∈ Di, there exists an edge (j, k) in the graph Gi. Party Pi

only adds such an edge to Gi after receiving an ⟨ok, k, j⟩ message from Pk and an ⟨ok, j, k⟩ message
from Pj . Note that if Pj and Pk are honest, they only send such messages after having non-⊥ fj , fk
and gj , gk polynomials of degrees 2t and t respectively, sending each other values messages and
seeing that fj(k) = gk(j), gj(k) = fk(j). Since |Ci| ≥ n − 2t, |Di| ≥ n − t, Ci has indices of at
least t + 1 honest parties and Di has indices of at least 2t + 1 honest parties. In other words, for
every honest j ∈ Ci and k ∈ Di, fj is a polynomial of degree 2t, gk is a polynomial of degree t and
fj(k) = gk(j). In such a setting, there exists a unique bivariate polynomial R(X,Y ) of degree 2t
in X and t in Y such that for every such j, k, fj(X) = R(X, j) and gk(Y ) = R(k, Y ).

Now, observe an honest party j ∈ Fi. For similar reasons, its fj , gj fields contain polynomials
of degrees 2t and t respectively. Similarly, for every honest k ∈ Ci, gj(k) = fk(j) = R(j, k). There
are t + 1 such honest parties k ∈ Ci, so gj(Y ) and R(j, Y ) are two polynomials of degree t or less
that agree on at least t + 1 points, and thus gj(Y ) = R(j, Y ). Following very similar reasons, for
every j ∈ Ei, there are at least 2t+ 1 honest parties k ∈ Fi for which fj(k) = gk(j) = R(k, j) and
thus fj(X) = R(X, j).

Lemma 5.4. Assume two honest parties i, j sent star messages and let Si, Sj be the polynomials
defined for them in Lemma 5.3. Then, Si = Sj.

Proof. As in Lemma 5.3, the Ei, Ej , Fi, Fj sets sent by i, j are of size n − t. Since Ei ∪ Ej ⊆ [n],
|Ei ∩ Ej | ≥ 2t+ 1, and at least 2t+ 1− t = t+ 1 of the shared indices those of honest parties. For
each such honest k ∈ Ei ∩Ej , Si(X, k) = fk(X) = Sj(X, k). Therefore, for honest k ∈ Ei ∩Ej and
for every possible v, Si(v, k) = Sj(v, k). Both Si and Sj have degree t in Y , and for every value v,
Si(v, Y ) agrees with Sj(v, Y ) at t + 1 points. Therefore, for every value v, Si(v, Y ) = Sj(Y ) and
thus the polynomials are equal.

Lemma 5.5. If the dealer is honest, then all honest parties complete the Share protocol. Moreover,
if the input of the dealer is S(X,Y ) then the output of each honest party Pj is S(X, j), S(j, Y ).

Proof. Assume the dealer is honest. In that case, the dealer starts by inputting a bivariate
polynomial S(X,Y ) of degree 2t in X and t in Y and sends every party i the polynomials
fi(X) = S(X, i), gi(Y ) = S(i, Y ). From inspection of the protocol, an edge (j, k) is added to
the graph for every pair of honest parties Pj and Pk. As such, every honest party finds an extended
star, and sends it to all other parties. The polynomial that Pi interpolates upon receiving a star
(j, Cj , Dj , Ej , Fj) must be S(j, Y ) for every honest party Pj . Therefore, Pi adds at least t+1 times
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the polynomial S(j, Y ) to interpolatedi, and sends col messages. Each honest party Pi later receives
at least 3t+ 1 points on its row-polynomial S(X, i), and since at most t errors can be introduced,
Reed-Solomon decoding guarantees a unique decoding of S(X, i). Moreover, after receiving n − t
star messages, it sends done messages to all, and therefore all honest parties will eventually receive
n− t done, and therefore, Pi eventually must terminate and output S(X, i), S(i, Y ).

Lemma 5.6. If the dealer is corrupted and one honest party completes the Share protocol, then
all honest parties will eventually complete Share. Moreover, there exists a unique bivariate poly-
nomial S′(X,Y ) of degree at most 2t in X and at most t in Y , such that each honest Pj outputs
S′(X, j), S′(j, Y ).

Proof. Assume that some honest party completes the Share protocol. It does so after having its p
and q polynomials not equal ⊥ and receiving n− t done messages, with at least one of those being
sent by an honest party. The first honest party that sent such a message may have received done

messages from at most t Byzantine parties at that time, so it sent the done message as a result of
having received n − t star messages and adding the received values to its stars set. Out of these
messages, at least n− 2t are sent by honest parties, so every honest party receives those messages
as well and adds a tuple (j, Cj , Dj , Ej , Fj) to its stars set. From Lemmas 5.3 and 5.4 all of those
messages define the same bivariate polynomial S(X,Y ) of degree 2t in X and t in Y . Following the
same arguments as the ones for the previous property, every honest i party eventually interpolates
the polynomial gi,j(Y ) = S(i, Y ) for every (j, Cj , Dj , Ej , Fj) ∈ starsi such that j is honest and adds
(j, S(i, Y )) to interpolatedi. In addition, interpolatedi contains at most t tuples (j, gi,j(Y )) such that
gi,j(Y ) ̸= S(i, Y ). Therefore, after adding a tuple to interpolatedi for the n−2t honest parties from
which it received star messages, i sees that there are t + 1 tuples tuples of the form (j, S(i, Y ))
in interpolatedi and updates qi(Y ) to S(i, Y ). Now, following the exact same argument as above,
every honest party eventually updates pi(X) to S(X, i). In addition, as stated above, the honest
party that completed the protocol received n − t done messages, and thus at least n − 2t ≥ t + 1
of those messages were sent by honest parties. Every honest party receives those messages as well
and sends a done message as well. This means that every honest i eventually has pi ̸= ⊥, qi ̸= ⊥
and receives done messages from at least n− t parties, and thus it completes the Share protocol as
well.

Lemma 5.7. Assume some honest party Pi has pi ̸= ⊥ or qi ̸= ⊥ . Then some honest party Pj

sent a ⟨star, Cj , Dj , Ej , Fj⟩, and Pi has pi(X) = S(X, i) or qi(Y ) = S(i, Y ) respectively for the S
defined in Lemma 5.3.

Proof. First, assume i had qi ̸= ⊥. It updates qi after adding at least t+ 1 tuples to interpolatedi,
which it does after receiving a ⟨star, Cj , Dj , Ej , Fj⟩ from at least t + 1 different parties j and
successfully interpolating a polynomial for each one. At least one of the parties is honest. Let
that party be j and the sent values be Cj , Dj , Ej , Fj , and let S be the polynomial defined for j
in Lemma 5.3.

Party i updates qi after successfully interpolating gi,k polynomials for different parties k, adding
tuples of the form (k, gi,k) to interpolatedi, and seeing that for t+1 of those tuples gi,k = qi. It does so
after receiving a message ⟨star, k, Ck, Dk, Ek, Fk⟩ for each such k and adding a (k,Ck, Dk, Ek, Fk)
tuple to starsi. Following that, it interpolates gi,k by calling RobustInt(S, t, t) for S = {(l, yl) ∈
pointsg,i|l ∈ Ek}. From the definition of RobustInt, gi,k is of degree t or less. In addition, RobustInt
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only returns a non-⊥ value if it receives as input a set with at least t + t + 1 tuples, and returns
the unique polynomial gi,k such that gi,k(l) = yl for all but t tuples (l, yl) ∈ S. Party Pi adds
tuples (l, yl) to pointsg,i after receiving a ⟨values, vl, yl⟩ message from l, and honest parties send
such a message with yl = gl(i). From Lemma 5.4, for every such honest l, gl(Y ) = S(l, Y ) and
thus yl = S(l, i). Therefore, for every (l, yl) ∈ S such that l is honest, yl = S(l, yl). In other words,
gi,k(Y ) = S(Y, i) is a polynomial of degree at most t such that gi,k(l) = yl for all but t tuples
(l, yl) ∈ S, and thus it must also be the unique such polynomial output by RobustInt. Since this
is the case for every honest party k, interpolatedi contains tuples of the form (k, S(Y, k)) for every
honest k, and thus there are at most t tuples (k, gi,k(Y )) for which gi,k(Y ) ̸= S(Y, k). Finally, this
means that when i updated qi it did so to the polynomial qi(Y ) = S(Y, i).

Now assume that pi ̸= ⊥. Party i updates pi after successfully interpolating it using
RobustInt(pointsp,i, 2t, t). It only adds tuples of the form (k, yk) to pointsp,i after receiving a ⟨col, yk⟩
message from party k, and honest parties only send such a message with yk = qk(i) = S(k, i). As
in the above argument, RobustInt only outputs pi after pointsp,i contains at least 2t+ t+ 1 tuples.
Out of those, at least 2t+ 1 are tuples of the form (k, S(k, i)) added after receiving messages from
honest parties. This means that the polynomial S(X, i) is a polynomial of degree 2t or less such
that at most t tuples in pointsp,i disagree with it. Since pi(X) is the unique polynomial for which
this holds, pi(X) = S(X, i).

Theorem 5.8. Protocol 5.2 implements Functionality 5.1 in the presence of an (unbounded) ma-
licious adversary corrupting at most t < n/4 parties.

Proof. We show a simulation for the case of an honest dealer and a corrupted dealer.

The case of an honest dealer. The simulator works as follows:

1. It receives from the trusted party the shares of the corrupted parties fi(X), gi(Y ) for every
i ∈ I.

2. It fixes secrets (s0, . . . , st) = (0, . . . , 0).

3. It chooses an arbitrary bivariate polynomial S(X,Y ) of degree 2t in X and degree t in Y ,
under the constraints that:

(a) S(−k, 0) = sk for every k ∈ {0, . . . , t};
(b) S(X, i) = fi(X) and S(i, y) = gi(Y ) for all i ∈ I.

4. Run the protocol when the dealer inputs S(X,Y ), all the other honest parties have no input,
and communicate with the adversary A. Note that with each message that some Pj sends
to Pk, the adversary A is notified that the message has been sent and can decide when to
deliver that message. Moreover, whenever A allows the delivery of the last message that
causes some simulated Pj to terminate in the simulated protocol, the simulator then allows
the transmission of the output of Pj from the trusted party to the honest Pj in the ideal
world.

We show that the view of the environment Z in the real execution is identical to its view in the
ideal execution via a sequence of hybrid experiments:

1. Hyb0 : This is the ideal execution.

2. Hyb1: We assume a modified ideal execution in which the simulator receives from the trusted
party the polynomial S(X,Y ) that the honest sender has sent the trusted party. Then, the
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simulator, instead of choosing a polynomial S′(X,Y ) arbitrarily that agrees with fi(X) and
gi(Y ), simply uses the polynomial S′(X,Y ) = S(X,Y ). Note, however, that the outputs of
the honest parties in this execution are determined by the trusted party.

3. Hyb2 : This is the real execution. In particular, the honest dealer uses S(X,Y ), the other
honest parties have no input, and the output of all honest parties is determined by the protocol
(and in particular, there is no trusted party involved).

We now show that each consecutive hybrids are identically distributed. Specifically:

Hyb0 and Hyb1: The difference between the two hybrids is that in Hyb1 the dealer uses S(X,Y )
as input, whereas in Hyb0 it uses some S′(X,Y ) under the constraint that S(X, i) = S′(X, i) and
S(i, Y ) = S′(i, Y ) for every i ∈ I. By inspection, all the points that the adversary receives throguout
the protocol are those points/polynomials. Therefore, the view of the adversary is exactly the same
in both executions.
Hyb1 and Hyb2: In both hybrids the dealer uses the exact same input S(X,Y ). The difference
between the two hybrids is that in Hyb1 the outputs of the honest parties is determined by the
trusted party; Whenever the simulator sees that the simulated Pj terminates, it allows the delivery
of the output message S(X, j), S(j, Y ) from the trusted party to Pj in the ideal world. On the other
hand, Hyb2 is the real world; Since the protocol is correct and terminates in case of an honest
dealer (see Lemma 5.5), we have that each honest party terminates with the shares S(X, j), S(j, Y )
where S(X,Y ) is the input of the dealer. Moreover, this also implies that each honest party in the
simulated execution terminates, and according to the specification of the simulator, it then delivers
the message sent from the trusted party to the honest Pj in the ideal world (and this message is
the output – S(X, j), S(j, Y ). Therefore, all the honest parties in the ideal world also eventually
receive their outputs.

The case of a corrupted dealer. The simulator works as follows:

1. Since the dealer is corrupted, all honest parties have no input in the real execution of the
protocol. The simulator, therefore, can perfectly simulate a real execution of the protocol by
simply running the code of the honest parties.

2. If, and when, the first honest party Pk terminates in the simulated execution, we interpolate
the unique bivariate polynomial S′(X,Y ) of degree-2t in X and degree-t in Y that is defined
from the f and g shares of all honest parties in Ek, where Ek is part of the extended star
that Pk has found in Step 4(a)iv. Send S′(X,Y ) to the trusted party and allow the delivery
of the output to Pk in the ideal world.

3. Whenever a simulated honest party Pj terminates, the simulator allows the delivery of the
output of Pj (which is S′(X, j), S′(j, Y ) from the trusted party to the honest Pj in the ideal
world.

Clearly, the view of the adversary A is the same in both executions. The view of the environment
Z in the real and ideal executions (which contains the view of the adversary and it can see what
and when each honest party receives its output and terminates), we also claim that:

• First, if one honest party terminates, then eventually, all honest parties terminate (see Lemma 5.6).

• Let Pk the honest party that terminates first; Let S′(X,Y ) be the bivariate polynomial defined
from the shares of honest parties in Ek. Then, all honest parties eventually terminate with
shares on S′(X,Y ), as per Lemma 5.6.
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5.3 Reconstruction

We now turn our attention to the reconstruction protocol of the AVSS.

Functionality 5.9: Reconstruction Functionality

1. Upon receiving (point, i, k, pi(−k)) from all honest parties with the same index k ∈ {0, . . . ,−t},
forward the message to the ideal adversary .

2. After receiving these messages from t+ 1 parties, reconstruct the unique degree-t univariate
polynomial q(Y ) satisfying q(j) = pj(−k) for each honest Pj received.

3. Send q(Y ) to all parties.

Input Assumption 5.10. It is assumed that all the shares of the honest parties lie on a unique
degree-t univariate polynomial g(Y ).

Protocol 5.11: Reconstruct(k)

Input: The input of each honest party is (point, i, k, pi(−k)), where there exists a unique bivariate
polynomial of degree 2t in X and degree t in Y such that S(X, i) = pi(X).
The protocol: (each party Pi)

1. Initialize pointsi ← ∅
2. Send ⟨rec, k, pi(−k)⟩ to all parties.

3. Upon receiving a point ⟨rec, k, yj⟩ message from Pj :

(a) Add the point (j, yj) to pointsi.

(b) Once |pointsi| ≥ n− t, attempt to reconstruct q(Y )← RobustInt(pointsi, t, t).

(c) If q(Y ) ̸= ⊥ then output q(Y ) and terminate.

Theorem 5.12. Protocol 5.11 securely realizes Functionality 5.9 assuming Input Assumption 5.10,
against a malicious adversary corrupting t < n/4 parties.

Proof. The simulator works as follows:

1. Whenever an honest party sends its input to the functionality, allow the delivery of that
message.

2. When the functionality sends g(Y ) to the adversary as the output, simulate the protocol with
A, while simulating the honest parties; The input of each honest party is g(i). When a new
honest parties joins (by sending its inputs to the functionality) - allow the delivery of their
messages to the functionality and simulate them as well.

3. Whenever a simulated honest party Pj terminates, allow the delivery of the output of the
functionality to Pj in the ideal world.

The view of the adversary is identical in the real and ideal, since the adversary learns all the
inputs of all honest parties. The outputs of the honest parties in the ideal and real are identical:
Since there is a unique degree-t univariate polynomial g(Y ) such that g(i) = pi(−k) for every i,
RobustInt eventually outputs g(Y ) as there are at least 2t+1 correct points and at most t incorrect
points on that polynomial. A party might learn the output earlier; in which case, the ideal adversary
also allows the delivery of the message earlier, at the exact same time.

29



5.4 Putting it All Together

We now show a reactive functionality that combines the share and reconstruct phases.

Functionality 5.13: Reactive AVSS - FAVSS

The functionality is parameterized by the identify of the dealer.

• Share(s0, . . . , st): When the dealer transmits this message to the functionality with input
(s0, . . . , st), forward Share to the ideal adversary, and record (s0, . . . , st). Reply to all parties
with the message shared.

• Reconstruct(k) with k ∈ {0, . . . ,−t}: Whenever this message is received from some party Pi,
record that message. Once t + 1 honest parties sent Reconstruct(k), reply with (k, sk) to all
parties that sent that command and all following commands.

Protocol 5.14: Reactive AVSS

• Share(s0, . . . , st):

1. When the dealer calls this command, choose a random bivariate polynomial S(X,Y ) of
degree-2t in X and degree t in Y such that S(−k, 0) = sk. Call Functionality 5.1 with
input S(X,Y ).

2. Each party Pj receives the output (pi(X), qi(Y )) = (S(X, i), S(i, Y )) from Functional-
ity 5.1. Store these polynomials as private state, and output shared.

• Reconstruct(k) with k ∈ {0, . . . ,−t}:
1. When receiving this command from the environment, call Functionality 5.9 with input

(point, i, k, qi(−k)).
2. When receiving an output (k, g(Y )) from Functionality 5.9, output (k, g(0)).

Theorem 5.15. Protocol 5.14 securely implements Functionality 5.13 in the presence of a malicious
adversary for any t < n/4.

Proof. We separate between the case of an honest dealer and a corrupted dealer.

Honest dealer. In the case of an honest dealer, the simulator chooses a random polynomial
S(X,Y ) of degree 2t inX and degree t in Y with the constraint of S(−k, 0) = 0 for all k ∈ {0, . . . , t}.
It then runs the sharing protocol with this input. In the real, the difference is that S(X,Y ) is chosen
uniformly at random with the constraints that S(−k, 0) = sk for every k ∈ {0, . . . , t}. However,
the adversary sees just S(X, i), X(i, Y ) for every i ∈ I, and from simple counting, the same view is
obtained in both executions with the exact same probability (1/|F||I|(2t+1)+|I|(t+1−|I|)).

In the reconstruction protocol, whenever it learns some sk from the functionality, it chooses
a random degree t polynomial q(Y ) such that S(−k, i) = q(k) for every i ∈ I, and q(0) = sk.
Since |I| ≤ t, there exist |F|t−|I| such polynomials. It then sends points on those polynomial as
coming from the honest parties. The enviorment sees just s0, . . . , st, and the view of the adversary,
which consists first of S(X, i), S(i, Y ), and later being “fixed” to a different polynomial S′(X,Y )
satisfying:

1. S′(X, i) = S(X, i) and S′(i, Y ) = S(i, Y ) for every i ∈ I;
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2. S(−k, 0) = sk for every k ∈ {0, . . . , t}.

which is exactly as in the real.

Corrupted dealer. In the case of a corrupted dealer, the simulator receives from the adversary
the polynomial S(X,Y ) as it being sent to Functionality 5.1. The simulator then extracts (if indeed
S is of degree-2t in X and degree t in Y ) – s0 = S(0, 0),. . . ,S(−k, 0) = sk for every k ∈ {0, . . . , t}.
It sends (s0, . . . , st) to the trusted party. The honest parties, the aiding functionalities - are all
deterministic and have no inputs, and therefore, simulating the adversary’s view is straightforward.

Remark 5.16. In the following section, each dealer participats in ℓ = ⌈n/(t + 1)⌉ AVSS as a
dealer, to distribute n secrets in total. To improve readability, we abuse notation and assume that
we have one instance of FAVSS (Functionality 5.13) that can accommodate n secrets. This can be
implemented by distributing ℓ bivariate polynomials instead of just one.

6 Verifiable Leader Election

A perfect leader election would allow all parties to output one common randomly elected party.
Verifiable Leader Election (VLE) is an asynchronous protocol that tries to capture this spirit but
obtains weaker properties. Intuitively, there is only a constant probability that all parties elect the
same honest party. In the remaining cases, the adversary can control the output and even cause
different parties to have different outputs. However, even in these cases, all parties eventually
output some value. We proceed to define the VLE functionality in Section 6.1, followed by the
protocol (Section 6.2).

6.1 The Functionality

Following Section 3.3, we define the functionality for cooperative adversaries. Once again, there
is an external validity command that can be invoked, with the same input assumption as Input
Assumption 4.2. The functionality samples a random rank for each party. Ideally, we would like
all parties to consider all parties as possible candidates, and to choose the one with the highest
rank as leader. As we will see, by delaying the delivery of messages, the adversary can make some
parties not consider other parties as possible candidates. However, there is a large core of parties
that is considered by all parties. After describing the functionality, we prove that this suffices in
order to elect an agreed leader with a constant probability.

Functionality 6.1: FVLE – The Verifiable Leader Election Functionality

1. validate(i, j): Whenever the command is received from some party Pi, forward (validate, i, j)
to the ideal adversary and record the message.

2. setCore(C∗): Upon receiving this command from the ideal adversary, with C∗ ⊆ n, and
|C∗| ≥ n − t, verify that for every k ∈ C∗ there exists an honest j such that validate(j, k)
was recorded. Then, the functionality stores C∗ and chooses a random rank to every party
r1, . . . , rn.

3. setCandidates(i, Ci): Upon receiving this command from the ideal adversary, verify that that
C∗ ⊆ Ci, and that for every k ∈ Ci there exists an honest j such that validate(j, k) was
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recorded. The functionality sets ℓi = argmax{rk | k ∈ Ci}. Add (output, i, ℓi) to all parties,
and send (rk)k∈Ci

to the ideal adversary.
It is assumed that the adversary sends setCandidates(j, Cj) for every honest party Pj , and it
might also send such commands for some corrupted parties, according to its choice.

We assume the exact same input assumption as in Input Assumption 4.2.

Properties of the ideal functionality. We show that the functionality satisfies the following
properties. In particular, we show that with a probability of at least 1/3, all honest parties agree
on an honest leader, and the output of the corrupted parties (if it exists) also defines the same
leader.

Claim 6.2. The following properties hold:

1. With probability at least 1/3, there exists an index of an honest party ℓ∗, such that ℓi = ℓ∗

for all i for which (output, i, ℓi) has been sent to all parties (no matter whether Pi is honest
or corrupted). Furthermore, ℓ∗ is defined at the time that the first (output, i, ℓi) has been sent
by the functionality.

2. For every (output, i, ℓi) that has been transmitted by the functionality to all parties, there exists
an honest j such that the command validate(j, ℓi) has been received.

Proof. From the properties of the functionality, at the first time the functionality sent (output, j, Cj),
there exists a core C∗ of at least n − t indices, such that every Ci ⊆ C∗. Note that the ranks are
chosen only after the core C∗ is fixed. Moreover, the adversary cannot see the rank ri of some party
Pi, unless i is included in some Cj in some setCandidates(j, Cj) command.

Each party i ∈ C∗ has probability 1/n to have the maximal rank3. among all [n], i.e., including
all supersets of C∗. Since |C∗| ≥ n−t, we have at least n−2t honest parties in C∗, and therefore the
probability that some honest party ℓ∗ in C∗ has the maximal rank in [n] is at least (n−2t)/n ≥ 1/3.
Since each Ci must include C∗, all output messages have ℓ∗ as the leader. This is true even though
the adversary chooses Ci adaptively, as Ci is chosen after C∗ and all the ranks are determined.

For the second part of the claim, whenever the functionality receives some setCandidates(i, Ci)
message it verifies that all parties in Ci has been validated (i.e., for each k ∈ Ci, some honest
Pj has sent validate(j, k)). The chosen ℓi is some index in Ci, and therefore ℓi must have been
validated.

6.2 The Protocol

The protocol has the following phases:

1. Each party contributes a sub-rank to every other party, using AVSS, which serves as a com-
mitment scheme. This is to ensure that the adversary cannot bias the ranks.

2. Since some AVSS might not terminate, each party can decide which dealers that contributed
to it will be considered. It is required to have t+ 1 dealer, so its final rank will have at least
one honest contribution, and therefore is random. It then broadcast its choices.

3We ignore a negligible probability of two parties having the same rank. This can be accounted for by sampling
from a large enough F and noting that n−2t

n
≥ n

3
+ 1

n

32



3. Each broadcasted message is verified, i.e., other parties have to see that the AVSS instances of
those dealers does indeed terminate. If verified, that party can be considered as a candidate.

4. To ensure better agreement, the parties use the FGather functionality to have a large intersec-
tion between their possible candidates.

5. After receiving an output from FGather, which is a set of candidates, the parties reconstruct
the sub-ranks of the dealers that contributed to each candidate, and then learn the ranks of
all candidates. Each party outputs the party with the maximal rank among its candidate set
as its leader.

6. In addition, each party can compute the output of each other party.

We are now ready for the formal details.

Protocol 6.3: VLEi in the (FAVSS, FGather)-hybrid model

1. Initialization: Initialize dealersi ← ∅, attachedi ← ∅, candidatesi ← ∅, ranksi ← ∅, and
p1, . . . , pn. Moreover, initialize validatei = 0n and ℓ1, . . . , ℓn = ⊥.

2. The parties invoke the FGather functionality (Functionality 4.1).

3. Upon receiving the command validate(i, j), set validatei[j] = 1.

4. Contributing random sub-rank to all parties:

(a) Each dealer Pj chooses random sub-ranks cj→1, . . . , cj→n. For every j ∈ [n] the parties

call F j
AVSS.Share (Functionality 5.13) where Pj is the dealer (see also Remark 5.16).

5. Choosing which sub-ranks will be considered for computing your rank:

(a) Upon completing F j
AVSS.Share sharing calls with Pj as dealer do: Add j to dealersi. If

|dealersi| = t+ 1 then broadcast ⟨attach, dealersi⟩.
6. Verify the choices of chosen sub-ranks of other parties:

Upon receiving an ⟨attach, dealersj⟩ broadcast from Pj :

(a) Upon dealersj ⊆ dealersi, |dealersj | ≥ t+ 1 and validatei[j] = 1:
i. Set attachedi[j]← dealersj and call FGather.validate(i, j).

7. Learning candidate sets, reconstructing their ranks, and compute outputs:

(a) Upon receiving (output, j, candidatesj) from FGather:
i. For every k ∈ candidatesj :

A. Set rk = 0, and retrieve dealersk ← attachedi[k].

B. For every j ∈ dealersk: Call F j
AVSS.Reconstruct(k) – i.e., Pj as the dealer and

the secret corresponding to Pk. Upon retrieving an output cj→k from F j
AVSS,

perform rk ← rk + cj→k.

ii. Upon completing all reconstructions in dealersk: add (k, rk) to ranksi.

iii. Moreover, compute ℓj = argmax{rk | k ∈ candidatesj ∧ (k, rk) ∈ ranksi}, and
append (output, j, ℓj) to the output tape.

6.3 Security Analysis

We show that the protocol securely realizes Functionality 6.1. The efficiency of the protocol is
analyzed in Appendix A.
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Lemma 6.4. Let i and j be honest parties. Observe the sets dealersi,attachedi, and ranksi at any
time throughout the protocol. Eventually dealersi ⊆ dealersj, attachedi ⊆ attachedj and ranksi ⊆
ranksj.

Proof. We show each one of the three claims.

dealersi ⊆ dealersj : Let k be some index in dealersi. Party Pi adds Pk to dealersi after completing
all Share calls with Pk as dealer. From the FAVSS functionality, Pj completes those calls as well and
adds k to dealersj .

attachedi ⊆ attachedj : Let (k, dealersk) be a tuple in attachedi. Party Pi adds the tuple to attachedi
after receiving an ⟨attach, dealersk⟩ broadcast from Pk, seeing that dealersk ⊆ dealersi, that
|dealersk| ≥ t + 1 and that validatei(k) = 1. Eventually, Pj receives the same broadcast and as
shown above and eventually sees that dealersk ⊆ dealersi ⊆ dealersj and from the Input Assumption
of validate, validate(j, k) eventually occurs. Pj then adds (k, dealersk) to attachedj .

ranksi ⊆ ranksj : Finally, let (k, rk) be a tuple in ranksi. Pi adds a tuple (k, rk) after computing rk:

1. That is, rk =
∑

j∈dealersk cj→k.

2. Each cj→k is a result of F j
AVSS.Reconstruct(k), for every j ∈ dealersk.

3. The set dealersk = attachedi[k], i.e., it is a result of a message ⟨attach, dealersk⟩ has been
previously broadcasted by Pk.

4. Pi computes the rank of Pk, i.e., rk only if k exists in candidatesl for some l, that is, Pi received
an output (output, l, candidatesl) from FGather, and k ∈ candidatesl.

5. Pi receives an output from FGather only after having |attachedi| = n− t.

We now show that Pj also adds the tuple (k, rk) to ranksj . As shown above, eventually
attachedj ⊆ attachedi, so Pj will also see that |attachedj | = n − t at some point. As a re-
sult, it will also eventually receive outputs from FGather, and in addition, it will receive the same
(output, l, candidatesl) output from FGather. Since k ∈ candidatesl, and since ⟨attach, dealersk⟩
has been broadcasted by Pk, it will see the same set of dealersk as Pi. It will then call to all
F d
AVSS.Reconstruct(k) for all d ∈ dealersk, and will receive cd→k, and thus reconstruct rk. It adds

(k, rk) to ranksj .

Lemma 6.5. The Input Assumption of FGather is satisfied.

Proof. We show that for every pair of honest parties Pj , Pk, we have that Pj sent the command
FGather.validate(j, k). Since the sharing phase of honest parties must terminate, each honest party Pk

eventually broadcast ⟨attach, dealersk⟩ message. From Lemma 6.4, Pj will validated that message,
and from the input assumption of VLE, also validate(j, k) will be invoked. As such, Pj will invoke
FGather.validate(j, k) in Step 6(a)i.

Moreover, if some honest party Pj called FGather.validate(j, i) for some corrupted Pi, then even-
tually each other honest party Pk will call FGather.validate(k, i). If Pj called FGather.validate(j, i),
then Pi must have broadcasted ⟨attach, dealersi⟩ message that has been validated by Pj . This
implies that for Pk, it will also hold that dealersk ⊆ dealersi, it holds that |dealersi| ≥ t + 1, and
from the input assumption, since some party (Pj) called validate(j, i), then eventually also Pk will
call validate(k, i). As such Pk will call FGather.validate(k, i).
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Lemma 6.6. The simulator satisfies the assumptions in Functionality 6.1: It first sends setCore(C∗)
where C∗ is valid (will be accepted by the functionality). Moreover, the simulator sends setCandidates(j, Cj)
for every honest party Pj.

Proof. This follows from the assumption on the adversary: Since the input assumption of FGather

is satisfied (Lemma 6.5), then the adversary must call FGather.setCore(C
∗) for C∗ that is valid. The

simulator then calls to its own functionality with setCore. Moreover, the adversary must invoke
FGather.setOutput(Cj) for every honest party Cj . In that case, the simulator calls setCandidates(j, Cj).

Lemma 6.7. Each honest party Pj appends (output, k, ℓk) to its output tape for every other honest
party Pk.

Proof. 1. Since all honest parties call to FAVSS.Share, and since each such call must terminate
and return receipt, we have that every honest Pk will add at least t + 1 indices to dealersk,
and broadcast ⟨attach, dealersk⟩ in Step 5a.

2. From Lemma 6.4, each honest party Pl will eventually have dealersj ⊆ dealersl. Moreover,
according to the input assumption, there would be validate(l, j) command. As such, Pl will
add dealersj to attachedl, and will call FGather.validate(l, j). Since this holds for every j, l, the
input assumption of FGather is satisfied.

3. From the guarantees of FGather, all honest parties will eventually receive (output, k, candidatesk).

4. For every l ∈ candidatesk, it must have been that Pl has broadcasted ⟨attach, dealersl⟩ mes-
sage (otherwise, Pk would have not considered Pl). Then, it must have been that Pl received
receipt for each o ∈ dealersl and therefore the parties can reconstruct all the necessary values
and compute rl.

5. Since all the ranks in candidatesk can be recovered, Pj will compute ℓk = argmax{rl | l ∈
candidatesk ∧ (l, rl) ∈ ranksj}, and appends (output, k, ℓk) to its output tape.

Lemma 6.8. If some honest party appends (output, i, ℓi) to its output tape for some corrupted party
Pi, then all honest parties will eventually append (output, i, ℓi) to their output tape.

Proof. The proof follows from the same arguments as in Lemma 6.7.

Theorem 6.9. Protocol 6.3 securely implements Functionality 6.1 in the presence of a malicious
adversary for every t < n/4, in the FAVSS, FGather-hybrid model, assuming Input Assumption 4.2.

Proof. The simulator works as follows:

1. the simulator runs the protocol with the adversary A while simulating also the functionalities
FAVSS and FGather. Moreover, it runs the code of all honest parties in the protocol, with one
difference: Instead of picking cj→1, . . . , cj→n uniformly at random, each honest party Pj sends
nothing.

2. Whenever a message validate(i, j) is received from the functionality, the simulator invokes this
command in the simulated protocol.

3. Whenever a party sends F j
AVSS.Share (and recall that by our modification, honest parties

provide no input to that invocation), the simulator sends receipt to all parties.
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4. Whenever the adversary calls F i
AVSS.Share in the name of a corrupted dealer Pi, the simulator

receives its input – ci→1, . . . , ci→n. Simulate F i
AVSS.Share replying with receipt to all parties.

5. According to the scheduling of the delivery receipt messages from F j
AVSS.Share, the simulated

honest parties generate the ⟨attach, dealersj⟩ messages. Accordingly, simulate honest parties
call to FGather.validate(j, k) as per Step 6(a)i in the protocol (which notifies the adversary).

6. We will show that the input assumption of FGather is satisfied, which implies that eventually,
the cooperative adversary must send a valid setCore(C∗) to FGather. The simulator verifies that
|C∗| ≥ n− t and that for every i ∈ C∗ there exists an honest j such that FGather.validate(i, j)
has been called.

7. Likewise, since the input assumption of FGather is satisfied, then the adversary must send
setOutput(candidatesi) with a valid candidatesi. Whenever the adversary sends such a com-
mand:

(a) Verify that C∗ ⊆ candidatesi, and that for every k ∈ Ci, there exists an honest j such
that FGather.validate(j, k) has been called.

(b) Send to the functionality the command setCandidates(j, candidatesi).

(c) Receive back ℓi and the ranks (rk)k∈candidatesi from the functionality. The functionality
also sends (output, i, ℓi) as output to all parties. The adversary still does not allow the
delivery of those messages in the ideal (this will happen in Step 7e).

(d) For every k ∈ candidatesi:
i. Retrieve dealersk ← attachedi[k].

ii. If (cj→k)j∈dealersk is still not set, choose cj→k uniformly at random under the con-
straint that rk =

∑
j∈dealersk cj→k. Since |dealersk| = t + 1, it must contain at least

one honest party, for which we can choose its sub-rank (i.e., it was not determined
in the FAVSS.Share-phase).

iii. For every j ∈ dealersk: Simulate calling to F j
AVSS.Reconstruct(k) – i.e., Pj as the

dealer and the secret corresponding to Pk.

(e) According to the delivery of the messages, whenever a simulated honest Pj appends
(output, i, ℓi) to its output tape, allow the delivery of the message (output, i, ℓi) to Pj in
the ideal.

Since the honest parties have no inputs (those are just the validate commands coming from the
environment) the view of the adversary is clearly the same in both executions. We now show that
the outputs are the same in the real in the ideal. Specifically, we show that:

1. The input assumption of FGather is satisfied. This implies that the adversary must send
setCore message to the simulated FGather, followed by valid setOutput. We formalized this in
Lemma 6.5.

2. The simulator sends setCandidates(j, candidatesj) for every honest j. The functionality then
sends an output to all honest parties. We show that in the real, all honest parties have the
output of all other honest parties, and that the outputs are the same. This is formalized in
Lemma 6.7.

3. Likewise, if the adversary sends setCandidates(i, candidatesi) for a corrupted party i, then we
show that all honest parties append some (output, i, ℓi) to their output tape, both in the real
and ideal worlds. This is formalized in Lemma 6.8.

By combining those lemmas, we conclude that the output of the honest parties in the real and ideal
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executions are identical.

In the above theorem, the threshold t < n
4 stems from using AVSS protocols, for which this

threshold is necessary in order to guarantee their termination [5, 13]. Similar results can be achieved
by using AVSS protocols with an ϵ probability of failure or non-termination, resulting in proba-
bilistic guarantees and a resilience threshold of t < n

3 .

7 Asynchronously Validated Asynchronous Byzantine Agreement

This section deals with constructing our AVABA protocol, which is built upon ideas in [6] and [8]
and adapts them to the asynchronous information-theoretic setting.

7.1 The Functionality

Assuming once again a cooperative adversary (see Section 3.3), the functionality is relatively simple
to describe: There is an external validity command, where each party might validate some value
v ∈ V. At some point, the adversary decides on a value x and sends it to the functionality. If x
has been validated by some honest party, then this value is accepted and is sent to all parties as
output.

Functionality 7.1: FAVABA

The functionality is parameterized with a domain V, and support the following commands:

validate(i, x): Upon receiving this command from party Pi with a value v ∈ V, forward the command
to the adversary and store this command.

setInput(j, xj) Upon receiving this command from an honest Pj with xj ∈ V, forward the command
to the adversary and store this command.

setOutput(x): Upon receiving this command from the ideal adversary with x ∈ V, verify that there
exists an honest j such that validate(j, x) or setInput(j, xj) is recorded, send (output, x) to all parties
and terminate.

Input Assumption 7.2. We prove that the protocol implements the functionality for restricted
environments that follow the following assumptions:

1. If for some honest party Pj the environment issued setInput(j, xj) or validate(j, xj) then for
every other honest party Pk a command setInput(k, xk) or validate(k, xk) will be issued.

We remark that our protocol actually satisfies a stronger property, named “α-quality”: With
probability α, all parties output the input xj of a party Pj that was honest when starting the
protocol. This is not reflected in our functionality, and we will prove this property as a property-
based definition. This property is unnecessary for achieving the final ACS in Section 8, and we
prove it for completeness.
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7.2 The Protocol

The protocol of [6] heavily relies on cryptographic primitives (signatures) to obtain externally valid
outputs. Here we use asynchronous external validity instead. This requires redefining and adapting
new information-theoretic variants of verifiable gather (party gather) and verifiable leader election.
The protocol of [8] modifies the cryptographic protocol of [31] to the information-theoretic setting
in partial synchrony. Here we show how to extend this to full asynchronous network conditions,
which in turn requires a new information-theoretic view change protocol and consistency checks for
sent values.

In the AVABA protocol, parties proceed in “views”, which are just an iteration number (asyn-
chronous “phases”). In each view, parties propose values to agree upon and then try to choose
an honest leader using the VLE protocol. Recall that the VLE protocol might fail: either by not
agreeing on the chosen leader, or by electing a corrupt leader. However, once an honest leader is
chosen, its value will be adopted and the parties will terminate.

AVABA uses the “Key-Lock-Commit” paradigm used in previous HotStuff protocols (VABA, IT-
HS and NWH) to maintain safety and liveness. Given a value, a party first puts a “key” on it (this
is just an indicator on the view number), then a “lock”, and finally “commits” to it. Intuitively,
locks help guarantee safety by forcing parties to ignore old values, and ensuring that parties can
commit. Keys are used to ensure progress by convincing parties to accept proposed values in spite
of their locks if no commitment was made. In more detail:

• Commit: When a party commits to a value, it knows that this value will be the output, and
it pushes toward termination. It sends to other parties that it is ready to terminate.

• Lock: A lock consists of two values: lock, which is a view number, and lock val which is the
value seen when setting the lock (which is the potential output).
A party might lock a value, but this lock can still be later removed. However, it indicates
that this is a value that the parties should agree on, and it tells it to all other parties. Once
it hears n− t locks on the same value from other parties, it changes its status to “commit”.

• Key: This indicates that a party is witness to a current value; If it hears enough “key”
messages on the same value – it moves to “lock”. Just like a lock, a key consists of two
values: key, which is a view number, and key val which is the suggested value.

Overview. The parties proceed in 5 (asynchronous) rounds in each view. The general idea is that
parties first confirm that they all agree on the leader elected in the VLE protocol, set a key, set
a lock to the elected leader’s proposal, confirm that they are all locked, commit to the lock, and
terminate.

If at any point they see that the VLE failed, they move onto a new view and announce that
they are doing so. Recall that in VLE, eventually each party sees the output of the other parties,
and therefore if two leaders are elected, then all parties will see that eventually.

In the NWH protocol, parties provided cryptographic proofs for their keys and locks in the form
of signatures on echo and key messages respectively. These signatures are inherently transferable
since they can be sent to any party who can verify those signatures on their own. We cannot use
signatures. To allow the “transfer” of such proofs, parties broadcast their echo and key messages.
This allows a party that formed a key or a lock to know that any other party will eventually hear
the same echo and key messages and believe that it could have formed that key or lock. Similar
techniques are employed when providing blame messages, which are used to inform parties of a
failed VLE session.
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In each view (iteration), the parties run two protocols in parallel:

1. viewChange: The parties send each other suggestions for the current view. Parties then
compute their proposal for the current view. Every Pi broadcasts this proposal, which is
later used if it is chosen as a leader. Initially, this is the input of Pi, but later in the protocol,
Pi might adopt some other value based on other parties’ suggestions.

2. processMessages: This is the key-lock-commit mechanism. The leader is chosen, and the
parties proceed to see if they can agree on the proposal of the leader.

Round 1: The first round in each view begins with a viewChange protocol. In viewChange parties
choose their proposals and broadcast them. They send their current key to all other parties in a
suggest message. Before accepting a key, parties make sure that it could have been achieved in the
relevant view by waiting to receive the broadcasted messages required to form a key (echo messages
to be explained later). Upon accepting n− t keys, parties choose the key and value from the most
recent view and broadcast the chosen key and value in a proposal message. Following that, they
call the VLE protocol to choose a leader for the current view, while Pi validates Pj in VLE only
if Pj has broadcasted a valid proposal. This guarantees that any chosen leader has broadcasted a
proposal.

Round 2: In the second round, parties check whether the VLE was successful or not. If it was
successful they continue in the view, but if it was not, they inform each other and proceed to the
next view.

• Upon electing a leader using the VLE protocol, if the leader’s proposed value is correct, i.e. it
contains a key and value pair that could have been set in a view later than the current lock,
then send an echo message to all other parties.

• If the leader’s proposed value is “incorrect”, send a blame message and proceed to the next
view. In this context, by an “incorrect proposal” we mean that its key is not high enough to
open the receiving party’s current lock. Since a party puts a lock on a value based on public
messages, every party can check that the purported lock could have been set in a later view
by waiting to receive the same broadcasted key messages required to set that lock, and verify
whether the blame message is valid (note, however, that we cannot verify that a particular
blame message is false). Upon sending or receiving a valid blame message, reject the leader,
and proceed to the next view.

• Since each party Pi can see the outputs of all other parties from the VLE protocol, it can
verify if two different parties elected different leaders. In that case, the leader election fails,
and the party proceeds to the next view.

Round 3: Parties proceed to this round if they have received many echo messages without seeing
an error in the form of a blame or that of two different elected leaders. This also means that no
other value was committed to in an earlier view, meaning that a key can be formed. Upon receiving
n− t echo messages, update the key and key val fields before sending a key message to all parties.

Round 4: Upon receiving n − t key messages, update the lock and lock val fields before sending
a lock message to all parties. Before setting a lock, every party makes sure that at least t + 1
honest parties set their keys to the current value. By doing that, every party guarantees that when
choosing which value and key to input to the VLE protocol, all honest parties will hear of the
current value and will be capable of opening any older lock an honest party might have.

39



Round 5: Finally, upon receiving n− t correct lock messages, parties send commit messages with
the same value. Before committing to a value, every party makes sure that at least t + 1 honest
parties have set their lock in the current view. These parties will not echo any message about any
other value in subsequent views unless an adequate key is provided. Since forming a key requires
a message from one of those parties, we can reason inductively that no correct key will be formed
for a differing value in any subsequent view.
Output: In order to allow parties to terminate, a termination gadget is also run outside of any
specific view. Similarly to Bracha broadcast [14], every party echoes a commit message if it sees
t+1 such messages with the same value. Finally, parties terminate after seeing n− t such messages.

Protocol 7.3: AVABA: Asynchronously Validated Asynchronous Byzantine Agreement

Initialization: Intialize validatedi ← ∅. keyi ← 0, locki ← 0, lock vali ← ⊥. Moreover, define for
all v ∈ N: proposalsi ← ∅, echoesi,v ← ∅, keysi,v ← ∅, locksi,v ← ∅.

validate(i, x): Upon receiving this command with x ∈ V, add x to validatedi.

setInput(xi):

1. Store xi; add xi to validatedi.

2. viewi ← 1.

3. Set cur viewi ← viewi.

4. Run checkTermination() in the background.

5. While cur viewi = viewi:

(a) Invoke viewChange(viewi) and processMessages(viewi) in parallel.

(b) Delay any message from any view v > cur viewi. In constrast, continue updating sets
and participating in broadcasts from older views, but do not send new messages or
broadcast, and do not update keyi, key vali, locki, lock vali in previous views.

viewChange(view): This comes to compute my proposal for the view view. This is a value that Pi

suggests if it is chosen as the leader.

1. Start a new session of FVLE(view), for the current view.

2. suggestions← ∅ (suggestions is a multiset):

3. Send ⟨suggest, keyi, key vali, view⟩ to all parties.

4. Upon receiving the first ⟨suggest, key′j , key val′j , view⟩ message from party j such that key′j <
view, and Upon keyCorrecti,view(key

′
j , key val′j) = 1:

(a) Add (key′j , key val′j) to suggestions.

(b) If |suggestions| = n − t then (k, v) ← argmax(k,v)∈suggestions{k} (break ties arbitrarily).
I.e., take as a suggestion the one that has the highest view number.

(c) If k = 0: then (k, v)← (0, xi).

(d) Broadcast ⟨proposal, k, v, view⟩.
5. Upon receiving a ⟨proposal, k, v, view⟩ broadcast from Pj , and upon keyCorrecti,view(k, v)

terminating with output 1:

(a) Add (j, (k, v)) to proposalsi,view.

(b) Call FVLE(view).validate(i, j), i.e., Pi validates party Pj as a possible leader, since Pj

provided a valid suggestion.
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processMessages(view): Attempt to reach agreement on the value of the leader of the current view.
If the leader is honest, then the parties will reach an agreement by the end of this view.

1. Support or reject the leader’s proposal:
Upon receiving (output, i, ℓ) from FVLE(view) and having a tuple (ℓ, (k, v)) ∈ proposalsi,view:

(a) If k ≥ locki then support the leader’s proposal. Broadcast ⟨echo, view⟩.
(b) Otherwise, reject the leader’s proposal: broadcast ⟨blame, locki, lock vali, view⟩, and pro-

ceed to the next view (viewi ← viewi + 1).

2. Verify the rejects of other parties:
Upon receiving the broadcast message ⟨blame, lock′j , lock val′j , view⟩ from party Pj :

(a) Upon receiving (output, j, ℓj) from FVLE(view) and having a tuple (ℓj , (k, v)) ∈ proposalsi,view,
and upon lockCorrecti(lock

′
j , lock val′j)=1:

i. If k < lock′j then reject the leader and proceed to the next view. Set viewi ← viewi+1.

3. Verify that FVLE defines a unique leader:

(a) Upon some (output, a, ℓa) and (output, b, ℓb) are received with ℓa ̸= ℓb from FVLE(view)–
then reject the current view. Proceed to the next view (viewi ← viewi + 1).

4. Verify supports of other parties, and once enough supports - send key:
Upon receiving an ⟨echo, view⟩ broadcast from Pj , and Upon receiving (output, j, ℓj) from
FVLE(view) and having a tuple (ℓj , (k, v)) ∈ proposalsi,view:

(a) Add (j, k, v) to echoesi,view.

(b) If |echoesi,view| = n−t then keyi ← view, key vali ← v. Moreover, broadcast ⟨key, v, view⟩.
5. Verify keys of other parties, and once enough keys - send lock:

Upon receiving a ⟨key, v, view⟩ broadcast from Pj , and Upon keyCorrecti,view+1(view, v) ter-
minating with the output 1:

(a) Add (j, v) to keysi,view.

(b) If
∣∣keysi,view∣∣ = n− t then locki ← view, lock vali ← v; send ⟨lock, v, view⟩ to all parties.

6. Verify locks of other parties, and once enough locks - send commit:
Upon receiving the first ⟨lock, v, view⟩ message from Pj , and upon lockCorrecti(view, v)
terminating with the output 1:

(a) Add (j, v) to locksi,view.

(b) If |locksi,view| = n− t then send ⟨commit, v⟩ to every party.

keyCorrecti,view(k, v):

1. If view > k then upon v ∈ validatei:

(a) If k = 0 then output 1.

(b) Else, upon |{j|∃k′ s.t. (j, k′, v) ∈ echoesi,k}| ≥ n− t: output 1.

lockCorrecti(k, v):

1. If k = 0 then output 1;

2. Else, upon
∣∣{j|(j, v) ∈ keysi,k}

∣∣ ≥ n− t, output 1.

checkTermination():
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1. Upon receiving a ⟨commit, v⟩ message with the same value v from t + 1 parties: send
⟨commit, v⟩ to every party if no such message has been previously sent.

2. Upon receiving a ⟨commit, v⟩ message with the same value v from n − t parties: output v
from the AVABA protocol and terminate.

Security analysis. The protocol is analyzed by proving lemmas for the protocol’s safety and
liveness separately, and proving that the correctness checks for keys and locks output consistent
values for different parties. Using these lemmas, it is possible to prove Theorem 7.4. As in the
description of the VLE protocol, the resilience threshold is t < n

4 because of the use of a packed
AVSS protocol with guaranteed termination. Similarly to above, any resilience threshold between
n
4 and n

3 can be adopted by allowing an ϵ probability of error or non-termination in the AVSS
protocol, yielding the result of Theorem 2.1. A full description of the relevant lemmas, as well
as their proofs and proof of the below theorem are provided in Appendix B. The efficiency of the
protocol is analyzed in Appendix A.

Theorem 7.4. Protocol AVABA (Protocol 7.3) securely implements (Functionality 7.1) in the pres-
ence of t < n/4 corrupted parties, in the FVLE-hybrid model, assuming Input Assumption 7.2.

8 Agreement on a Core Set (ACS)

We now turn to the main functionality: agreement on a core set, which is a simple corollary of
Section 7. Recall the main application for MPC: Each party secret shares its input. If the dealer
is honest, it is guaranteed that the sharing phase will terminate and all honest parties will receive
their shares. If the dealer is corrupted, and the sharing phase terminated for one honest party,
then it will eventually terminate for all other honest parties. The goal of ACS is to agree on a set
of parties whose sharing phase has terminated.

The input assumption is the same as in Input Assumption 4.2: All honest parties validate
each other, and if some honest party validates a corrupted party Pi, then eventually all honest
parties will validate Pi. The functionality has a validate(i, j) command (“Pi sees that the sharing
phase of Pj has terminated”). The adversary eventually chooses a set C of n − t parties, and all
parties receive C as output. The guarantee is that for every k ∈ C, there is some honest party
that validated k. Again, we assume a cooperative adversary; otherwise, the functionality is slightly
more complicated. In that case, core set C is set to be the indices k for which there is some honest
party that validated k, and the parties receive that output when n− t honest parties validated n− t
parties each. We now proceed to the definition of the functionality and the protocol. The efficiency
of the protocol is analyzed in Appendix A.

Functionality 8.1: FACS – Agreement on a Core Set Functionality

• validate(i, j): Whenever this functionality receives this command from some party Pi (via the
router), forward the command to the ideal adversary and record the command.

• setOutput(C): Whenever the ideal adversary sends this command, verify that |C| ≥ n− t and
that for every x ∈ C, there exists a recorded validate(ℓ, x) for an honest Pℓ. Send (output, C)
to all parties and terminate.
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Protocol 8.2: ΠACS – protocol implementing FACS

1. Initialize: Each party Pi initializes Si ← ∅.
2. Upon receiving validate(i, k) for some k ∈ [n]:

(a) Add k to Si.

(b) If |Si| = n− t, then broadcast ⟨set, Si⟩ and call FAVABA.setInput(i, Si).

3. Upon receiving a ⟨set, S′
j⟩ broadcast from Pj and having S′

j ⊆ Si:

(a) If |S′
j | ⊆ [n] and |S′

j | ≥ n− t then call FAVABA.validate(i, S
′
j).

4. Upon receiving (output, i, S) from FAVABA: Output (output, S) and terminate.

Theorem 8.3. Protocol 8.2 securely realizes Functionality 8.1 in the presence of a malicious ad-
versary corrupting t < n/4 parties in the FAVABA-hybrid model.

Proof. The simulator runs the protocol with the real-world adversary A, while simulating the
FAVABA-functionality. The simulator receives validate(j, k) commands from the environment and
forwards the commands to the relevant parties in the simulated execution. In particular, with
each validate(j, k) command, it adds k to the simualted Sj set. Once |Sj | ≥ n − t, it simulates Pj

invoking FAVABA.setInput(j, Sj), which notifies the adversary, and simulates Pi broadcast ⟨set, Sj⟩.
Likewise, it simulates the rest of the protocol.

The adversary must eventually call to FAVABA.setOutput(C). The simulator then verifies that
|C| ≥ n − t and that for every x ∈ C, there is a recorded validate(ℓ, x) for an honest Pℓ, and then
it calls to FACS.setOutput(C). It allows the delivery of the message (output, C) to each honest Pj

in the ideal world whenever the simulated Pj gets output in the simulated execution.
Clearly, the view of the adversary is the same in both executions. To show that the outputs

are the same, we rely on the input assumption and on the functionality FAVABA. Specifically, Input
Assumption 7.2 is satisfied: if some honest party called to setInput(j, Sj), it then broadcasts the
set Sj . Each other honest party eventually validates the set Sj and calls to FAVABA.validate(Sj).
As such, the cooperative adversary must send setOutput to FAVABA. All honest parties receive an
output from FAVABA and this is their output in the real execution, exactly as in the ideal.
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A Efficiency

The efficiency of the provided protocols is analyzed in this section.

Verifiable Party Gather Efficiency

In the following discussion, we assume the existence of a broadcast protocol that terminates in
O(1) rounds with O(b(m)) bits sent when broadcasting inputs of size O(m) bits. Concretely, we
use the broadcast protocol of [9] in which parties send O(n2 log n+ n ·m) bits when broadcasting
a message of size O(m). In addition, we assume that if validatei(x) = 1 for some honest i at some
time, validatej(x) will terminate a constant number of rounds after that time for every honest j.

When using inputs of size O(n) and setting b(n) = n2 log n, as achieved by the above protocol,
we see in the following theorem that the Gather protocol requires O(n3 log n) bits and O(1) rounds.

Theorem A.1. The total communication complexity of the Gather protocol is O(nb(n)) and all
parties terminate after O(1) rounds.

Proof. In the protocol, every party sends a constant number of broadcasts, totaling in O(n · b(n))
bits sent. In addition, every honest i will receive a broadcast ⟨1, Sj⟩ from every honest j after
O(1) rounds. By assumption, ∀x ∈ Sj validatej(x) = 1 at the time j calls the protocol, and thus
validatei(x) = 1 will hold O(1) rounds after that. Following that, every honest party will send
a second broadcast up to O(1) rounds later, and terminate after receiving those broadcasts O(1)
rounds after that.

Packed AVSS Efficiency

Theorem A.2. The total communication complexity of Share is O(n3 log n) and the communication
complexity of each call to Reconstruct(k) is O(n2 log n), assuming a field element can be described
in O(log n) bits. In addition, if the leader is honest all parties terminate after O(1) rounds, and
if some honest party terminates for a Byzantine leader, all parties terminate O(1) rounds after it.
Furthermore, all parties complete Reconstruct(k) after a constant number of rounds.

Proof. In the Share protocol, the dealer starts by sending every party two polynomials of degree
O(n), for a total of O(n2 log n) bits. In addition, parties send each other values and col messages
with a constant number of field elements, ok messages with indices, star messages with a constant
number of sets of size O(n), and finally done messages. The largest of those messages contains
O(n) bits (described as bitmaps), resulting in a total communication complexity of O(n3 log n). In
each call to Reconstruct(k), parties only send a single rec message.

As can be seen in the proof of termination, when the dealer is honest all parties receive the
polynomials message, then send a values message, and then an ok message for every honest party
in 3 rounds. After receiving all of those honest messages in one round, parties find a star and send
a star message. After receiving those star messages and the values messages from all honest
parties, every honest party interpolates a polynomial qi and sends a col message, as well as a done

message. Parties receive those messages and interpolate pi, at which point they receive n− t done
messages and have pi ̸= ⊥, qi ̸= ⊥, they then terminate after a constant number of rounds.

Now assume some honest party completes the Share protocol. As shown in the proof of termi-
nation, at that time it already received n − t done messages and n − 2t honest parties sent star
messages. All parties receive these messages in a constant number of rounds, forward done message
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to all parties, and start interpolating a polynomial for each received star. For the same reasons as
above, all parties now terminate in a constant number of rounds.

Finally, for the reconstruction protocol, all parties simply send a single rec message and termi-
nate a single round later, after receiving all honest parties’ messages.

Verifiable Leader Election Efficiency

As above, we assume the existence of a broadcast protocol that terminates in O(1) rounds with
O(b(n)) bits sent when broadcasting inputs of size O(n) bits. We use the same broadcast protocol
with b(n) = n2 log n. In addition, we assume that if validatei(x) = 1 for some honest i at some
time, validatej(ℓ) will terminate a constant number of rounds after that time for every honest j.
In the VLE protocol, we use the packed AVSS protocol described in Section 5. This protocol has
O(n3 log n) complexity for sharing O(n) secrets. Reconstructing each secret in the sum individually
achieves O(n3 log n) complexity per sum reconstructed.

Theorem A.3. The total communication complexity of the VLE protocol is O(n · (b(n)+n3 log n))
and all parties terminate after O(1) rounds.

Proof. Each party starts by sharing n values, for a total of O(n4 log n) sent bits. Each party
broadcasts a constant number of messages of size O(n) resulting in O(nb(n)) sent bits. The par-
ties then run the Gather protocol in which O(nb(n)) more bits are sent. Following that, parties
reconstruct O(n) sums of secrets, requiring a final O(n4 log n) communication. In total, parties
send O(n(b(n) + n3 log n)) bits. Each call to the broadcast, reconstruct, or gather protocols termi-
nates after O(1) rounds. In addition, all honest parties complete the share invocations with honest
dealers after a constant number of rounds, and if some party completes a share invocation with a
Byzantine dealer before that (and adds it to its dealers set), every other honest party will complete
it in a constant number of rounds after that. Therefore, every call to the share protocol which
honest parties use in their dealers sets, and in their output from the gather protocol completes in
a constant number of rounds, totaling in a constant number of rounds in the whole protocol.

AVABA Efficiency

We set m to be the size of inputs to the protocol and we use the same broadcast protocol as
described in the previous efficiency sections. Similarly to above, define O(b(m)) to be the number
of bits sent when broadcasting messages with O(m) values, and have b(m) = n2 log n+n ·m. In the
theorem below, we get an Asynchronously Validated Asynchronous Byzantine Agreement protocol
with an efficiency of O(n4 log n+ n2 log n ·m).

Theorem A.4. The expected total number of bits sent in the AVABA protocol is O(n · (b(n+m) +
n3 log n+ n ·m)) and all parties terminate after O(1) rounds in expectation.

Proof. In each view, every party sends a constant number of messages of size O(n + m) to all
parties, totaling in O(n3 + n2 ·m) bits. In addition, each party broadcasts messages of size O(n+
m), totaling in O(nb(n + m)) additional sent bits. Finally, each party calls FVLE once in each
view, adding O(n · (b(n) + n3 log n)) total bits. Summing all of these terms gives the result of
O(n · (b(n + m) + n3 log n + n · m)) total communication in each view. In addition, each view
consists of protocols that terminate in O(1) rounds, yielding a constant number of rounds per view.
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As shown in the proof of termination, all parties terminate in a given view with probability 1
3

or greater. This means that the expected number of views required in the protocol is at most 3,
meaning that the protocol also requires an expected constant number of rounds and O(n · (b(n +
m) + n3 log n+ n ·m)) bits to be sent in expectation overall.

ACS Efficiency

Similarly to above, define O(b(m)) to be the number of bits sent when broadcasting messages with
O(m) values, and have b(m) = n2 log n + n · m. In the theorem below, we get an ACS protocol
with an efficiency of O(n4 log n).

Theorem A.5. The expected total number of bits sent in the ACS protocol is O(n ·(b(n)+n3 log n))
and all parties terminate after O(1) rounds in expectation.

Proof. Parties simply broadcast O(n) bits and call the AVABA protocol with inputs of size O(n)
(note that any subset of [n] can be represented as a bitmap of n bits). The total communication
complexity of these steps is O(n · (b(n) + n3 log n)). The broadcast protocols for all honest parties
terminate in O(1) rounds. After completing these broadcasts, parties call AVABA and complete
the protocol after O(1) expected rounds. In total this means that O(1) rounds are required in
expectation.

B Deferred Proofs for AVABA (Section 7)

In this section, we will show that AVABA is an Asynchronously Validated Asynchronous Byzan-
tine Agreement protocol in Theorem 7.4. We start by proving several lemmas. Lemma B.2 and
Lemma B.3 are instrumental for showing the safety of the protocol. By that we mean that:

Safety: if some honest party outputs a value v, no other honest party outputs a differing
value v′ ̸= v.

The Correctness property of the protocol is then an immediate consequence of Lemma B.9.
The remaining lemmas deal with the liveness of the protocol.

Liveness: eventually some progress is made, leading to the (almost surely) termination
of the protocol.

More specifically, we start by showing that parties don’t get stuck in any view without being
able to output a value or progress to the next view. We then show that once an honest party is
a unique chosen leader output from the FVLE protocol (which happens with constant probability),
all honest parties will commit at the end of that view.

We start by defining what it means for a key or lock to be correct.

Definition B.1. Correctness of key/lock:

• A key message of the form ⟨key, v, view⟩ is said to be correct if for some honest Pj, it holds
that keyCorrectj,view′(view, v) = 1 for every view′ > view.

• A lock message of the form ⟨lock, v, view⟩ is said to be correct if lockCorrectj(view, v) = 1
for an honest Pj.
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In addition, the value of each such message is said to be the field v.

As stated above, the following two lemmas are used in the proof that the protocol is safe. First,
we show that in any given view only one value can proceed into the later rounds, meaning that any
two values committed to in a single view must be the same. Following that, we show that if an
honest party committed to a value, there are t + 1 honest parties that won’t send echo messages
for any other value in any subsequent view. This prevents any other value from being included in
correct key or lock messages, thus preventing other values from being committed to in later views.
This idea is explored more fully and proved in Lemma B.9.

Lemma B.2. If two messages from a given view are correct, then they both have the same value v.

Proof. First, observe two correct messages ⟨key, v, view⟩ and ⟨key, v′, view⟩. The messages are
correct, so keyCorrecti,view+1(view, v) = 1 for some honest i. Because view > 0, this must mean
that |{j|∃k′ s.t.(j, k′, v) ∈ echoesi,view| ≥ n − t. Party Pi adds a tuple (j, k′, v) to echoesi,view after
receiving a broadcasted ⟨echo, view⟩ message from Pj , receiving (output, j, ℓ) from FVLE(view) for
some ℓ and a ⟨proposal, k′, v, view⟩ broadcast from Pℓ. This means that i received such broadcasts
and outputs with the same value v from at least n− t parties. For similar reasons, j also received
similar broadcasts with the value v′ from n − t parties. Since n ≥ 3t + 1 at least t + 1 of those
broadcasts must have been received from the same parties, and thus the received values v, v′ are
the same value.

Now observe a correct lock message ⟨lock, v′, view⟩. Similarly to the case above, for some
honest Pi, lockCorrecti(view, v

′) = 1 with view > 0, so
∣∣{j|(j, v′) ∈ keysi,view

∣∣ ≥ n − t. Following
similar logic to above, this means that i received correct ⟨key, v′, view⟩ broadcasts from n−t parties
before adding those tuples to keysi,view. As shown above, all of those messages have the same value
v, and thus also v′ = v.

Lemma B.3. If an honest party sends a ⟨commit, v⟩ message in line 6b of processMessages(view),
then for any view′ ≥ view there exist t+1 honest parties Pj that only send an ⟨echo, view′⟩ message
if they output (output, j, ℓ) from FVLE(view) such that Pℓ broadcast a message ⟨proposal, k, v, view′⟩
for some k.

Proof. We will prove inductively that for any view′ ≥ view, there must exist t + 1 such honest
parties that only send echo messages as defined in the Lemma’s statement.

First assume view′ = view. Since some honest Pi sends a ⟨commit, v⟩ in line 6b, it added n− t
tuples (j, v) to locksi,view and saw that |locksi,view| = n− t. An honest Pi only does so after receiving
⟨lock, v, view⟩ messages from n − t parties and seeing that lockCorrecti(view, v) = 1. Out of those
parties, at least t + 1 were honest, and they sent their ⟨lock, v, view⟩ broadcast after seeing that∣∣keysj,view∣∣ ≥ n− t. Following similar logic, they received n− t ⟨key, v, view⟩ messages and saw that
they are correct. At least one of those messages was sent by an honest Pi that added n− t tuples of
the form (j, k, v) to its echoes set after receiving ⟨echo, view⟩ broadcasts from n− t parties Pj′ for
whom Pi also received (output, j′, ℓ) from FVLE(view) for some ℓ and a ⟨proposal, k, v, view⟩ from
Pℓ. Note that Pi sent a key message, so it did not change the view number before sending the
message, and thus at that time, every output (output, j′, ℓ) it had received from FVLE(view) had
the same leader ℓ. Since that leader broadcasts only one proposal message, every tuple (j, k, v)
in echoesi,view had the same k and v. In other words, it sent its key message after receiving an
echo broadcast for parties with the same leader ℓ that broadcasted the value v in its proposal.
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Out of those parties, at least t + 1 are honest and they only send one echo broadcast per view.
From Lemma B.2, all correct key and lock messages from view have the same value v, and thus
the commit message has the same value as well.

Assume the claim holds for every view′′ such that view′ > view′′ ≥ view. As shown above,
there are at least t+ 1 honest parties that send ⟨lock, v, view⟩ broadcasts. Every honest party Pj

only sends such a message after setting its lockj field to view. Let the set of those honest parties
be I. It is important to note that the field lockj only grows throughout the protocol, so every one
of the parties Pj such that j ∈ I has lockj ≥ view from that point on. Now assume by way of
contradiction that some party Pj such that j ∈ I sent an ⟨echo, view′⟩ message with after having
received (output, j, ℓ) from FVLE(view

′) and a broadcast ⟨proposal, k′, v′, view′⟩ with v′ ̸= v. From
the properties of the FVLE functionality, some honest party Pi validated Pℓ′ at that time, so there
was a tuple (ℓ′, (k′, v′)) ∈ proposalsi,view′ , and k′ ≥ lockj ≥ view because Pi did not send a blame

broadcast. Party Pi adds such a tuple after receiving a ⟨proposal, k′, v′, view′⟩ from ℓ′ and seeing
that keyCorrecti,view′(k′, v′) = 1, so view′ > k′ and

∣∣{j′|∃k′′, ℓ′, s.t. (j′, k′′, v′, ) ∈ echoesj,k′}
∣∣ ≥ n− t.

As discussed above, each honest party only adds a tuple (j′, k′′, v′) to echoesj,k′ after receiving
an echo, message, an output (output, j′, ℓ) from FVLE(k

′) for some j′, ℓ and a ⟨proposal, k′′, v′, k′⟩
broadcast from Pℓ. However, view′ > k′ ≥ view, so by assumption there exist t + 1 parties that
never send such a message in view k′. Any set of n− t parties that sent the echo broadcasts must
have at least one party in common with the parties in I, reaching a contradiction.

We now turn to deal with the liveness of the protocol, showing that parties either progress
through views or terminate.

Definition B.4. An honest party i is said to reach a view if at any point its local viewi field equals
view. Similarly, an honest party i is said to be in view if its local viewi field equals view at that
time.

We will start by showing that the input assumption holds for FVLE. In addition, we will show
that parties always think that their own keys and lock are correct, and that if some honest party
thinks that a key or lock is correct, all honest parties eventually think so as well. This means that
every honest party will be convinced of the correctness of other parties’ keys and locks, allowing
them to progress through views in the case that blame messages are sent.

Lemma B.5. The input assumption of FVLE holds for any view. In addition, let keyi, key vali
be the key set by an honest party Pi at some point in time. For any view > keyi, it holds that
keyCorrecti,view(keyi, key vali) = 1 at any point after setting the key (i.e. immediately returns
1). Furthermore, if for any pair (k, v) and honest party Pi, keyCorrecti,view(k, v) returns 1, then
keyCorrectj,view(k, v) eventually returns 1 for any honest Pj.

Proof. Let Pi, Pj be two honest parties and assume that at some point in time keyCorrecti,view(k, v)
output 1. From the definition of keyCorrect, view > k and v ∈ validatei. Note that Pi only
adds v to validatedi after receiving validate(i, v) from the environment, and thus from the in-
put assumption, every honest Pj will also validate v and add it to validatedj . If k = 0, then
keyCorrectj,view(k, v) will terminate at that time and output 1. We will now prove by induction on
view that any call keyCorrectj,view(k, v) eventually terminates and outputs 1 if keyCorrecti,view(k, v)
does and that Pj eventually calls FVLE.validate(j, ℓ) if Pi calls FVLE.validate(i, ℓ). For view = 1, since
keyCorrecti,view(k, v) = 1, view > k, and thus k = 0. In this case, we’ve already shown above that
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keyCorrectj,view(k, v) will terminate with the output 1. In addition, if Pi calls FVLE.validate(j, ℓ), then
Pi received a ⟨proposal, k′, v′, view⟩ broadcast from ℓ and seeing that keyCorrecti,view(k

′, v′) = 1. Pj

will receive the same broadcast and as shown above, eventually see that keyCorrectj,view(k
′, v′) = 1.

Following that Pj will also call FVLE.validate(j, ℓ).
Now assume that the claim holds for every view′ < view and that Pi outputs 1 from keyCorrecti,view(k, v).

If k = 0, the claim holds immediately. Otherwise, |{j|∃k′ s.t. (j, k′, v) ∈ echoesi,k}| ≥ n− t. Pi adds
a tuple of the form (j, k′, v) to echoesi,k after receiving an ⟨echo, k⟩ broadcast from a party Pj′ ,
receiving a tuple (output, j′, ℓ) from FVLE(k) and receiving a ⟨proposal, k′, v, k broadcast from Pℓ.
Party Pj will receive the same broadcasts and call VLEVerifyj,k(ℓ). Note that view > k and thus the
input assumption holds for FVLE(k), and thus Pj will eventually receive (output, j′, ℓ) as well and
receive the same broadcasts. According to the functionality FVLE, some party validated ℓ in FVLE(k)
and from the input assumption on FVLE(k), Pj eventually does so as well. Before validating ℓ, Pj

receives the same broadcast ⟨proposal, k′, v, k from Pℓ and adds (ℓ, (k′, v)) to proposalsj,view. This
means that Pj adds the same tuples to echoesi,k as Pi and eventually sees that the same condition
holds, at which point it will output 1 from keyCorrecti,view.

As for the input assumption of FVLE(view), similarly to above, if Pi validated ℓ in FVLE(view),
it received a ⟨proposal, k′, v′, view⟩ broadcast from Pℓ and saw that keyCorrecti,view(k

′, v′) = 1.
Pj will receive the same broadcast, and from the above claims, Pj eventually outputs 1 from
keyCorrectj,view(ℓ) At that point, Pj will also validate ℓ in FVLE(view). In addition, parties only
broadcast proposal messages after receiving suggest messages, checking that the suggested keys
are correct and choosing one of them. As argued above, all honest parties will see that the keys
are correct as well, and thus accept the broadcasts and validate each other.

We will now show that keyCorrecti,view(keyi, key vali) = 1 for any view > keyi at any point after
Pi sets keyi, key vali. First, by definition view > keyi so the first condition checked in keyCorrecti,view
holds. If Pi has not updated keyi, key vali throughout the protocol, then keyi = 0, key vali = xi.
By definition, Pi’s input is validated at the time Pi calls AVABA, so Pi will immediately see that
keyi = 0, output 1 and terminate. Otherwise, Pi updated both fields in the view keyi in line 4b
after seeing that

∣∣echoesi,keyi∣∣ = n− t. Pi only adds values to echoesi,keyi after receiving ⟨echo, keyi⟩
broadcasts from parties Pj and (output, j, ℓ′) from FVLE(keyi) for some ℓ′, and having a tuple
(ℓ′, (k′, v′)) in proposalsi,view. Pi does so after checking that keyCorrecti,keyi(k

′, v′) = 1, and thus
v′ ∈ validatedi at that time. At that time for every (j′′, k′′, v′′) ∈ echoesi,keyi , (k

′′, v′′) = (k′, v′).
That is because if that is not the case, Pi added tuples after receiving broadcasts and (output, j, ℓ)
for different leaders Pℓ, and would have proceeded to the next view in line 3a before updating
keyi. Therefore, |{j|∃k′′ s.t. (j, k′′, v′) ∈ echoesi,keyi}| ≥ n− t at that time, so Pi will output 1 and
terminate from keyCorrecti(keyi, key vali).

Lemma B.6. Let locki, lock vali be the lock set by an honest party Pi at some point in time. Then
lockCorrecti(locki, lock vali) = 1 at any point after setting the lock. Furthermore, if for any pair
(l, v) and honest party Pi, lockCorrecti(l, v) returns 1, then lockCorrectj(k, v) eventually returns 1
for any honest Pj.

Proof. Let Pi,j be two honest parties and assume lockCorrecti(k, v) = 1 outputs 1 at some point
in time. If k = 0, then Pj immediately outputs 1 from lockCorrectj(k, v) as well. Otherwise,
k > 0. Since Pi output 1 from lockCorrecti(k, v), it saw that

∣∣{j|(j, v) ∈ keysi,k}
∣∣ ≥ n − t. Pi only

adds a tuple (j, v) to its keysi,k sets after receiving a ⟨key, v, k⟩ broadcast from j and seeing that
keyCorrecti,k+1(k, v) = 1. From Lemma B.5, keyCorrectk+1 eventually keyCorrectj,k+1(k, v) outputs
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1 as well. At that point, Pj will add the same tuple (j, v) to keysj,k. After adding all of those
tuples, Pj will see that the same condition holds and return 1 from lockCorrectj(k, v).

Next, we will show that lockCorrecti(locki, lock vali) = 1 at any point after Pi sets locki, lock vali.
If Pi did not update those fields, then locki = 0, lock vali = ⊥. In that case, when running
lockCorrecti, Pi will immediately see that locki = 0 and output 1. Otherwise, Pi updated its locki
and lock vali fields after adding a tuple (j, v) to keysi,view and seeing that

∣∣keysi,view∣∣ = n− t. This
happens after receiving a ⟨key, v, view⟩ broadcast from j and seeing that keyCorrecti,view+1(view, v) =
1. From Lemma B.2, those messages have the same value v, and thus |{j|(j, v) ∈ keysi,view}| ≥ n− t
at that time, meaning that lockCorrecti(view, v) = 1 at that time.

The next lemmas show that progress is made. We start in Lemma B.7 by showing that parties
don’t get stuck in a view. More precisely, if no honest party completes the protocol in a given view,
every honest party eventually reaches the next view. Lemma B.8 then shows that if an honest
party is chosen as the unique leader using the FVLE protocol, the adversary cannot convince any
honest party to proceed to the next view using a blame message. We then show in Lemma B.9 that
if some honest party terminates, every honest party does so as well. Finally, Lemma B.10 shows
that there is a constant probability of all parties terminating in any given view, using the fact that
there is a 1

3 probability that an honest party is elected in that view. The proofs of the following
lemmas are straightforward and mostly consist of showing that parties eventually send the required
messages and reach agreement.

Lemma B.7. If the input assumption holds, all honest parties participate in the protocol, and no
honest party terminates during any view′ such that view′ < view, then all honest parties reach view.

Proof. We will prove the claim inductively on view. First, all honest parties start in view = 1.
Now observe some view > 1 and assume no honest party terminated in any view′ < view, and
that they all reached view− 1. Since they reached view− 1, they started off broadcasting suggest

messages with their current key, key val fields. An honest Pi only updates its keyi field to the view
it is currently in, and thus at the beginning of view − 1, keyi < view − 1. From Lemma B.5, for
every honest Pj , keyCorrectj,view−1(keyj , key valj) = 1 at the time it sent those fields, and eventually
keyCorrecti,view−1(keyj , key valj) terminates with the output 1 for every honest Pi. After receiving
such a message from every honest Pj and seeing that the suggested keyj , key valj are correct, every
honest Pi adds a tuple to suggestions. After adding a tuple for each honest party, Pi broadcasts
⟨proposal, k, v, view⟩ with (k, v) either being a tuple from suggestions or (k, v) = (0, xi). Note
that (k, v) is only added to suggestions after Pi sees that keyCorrecti,view−1(k, v) = 1. In addition,
0 and xi are the first values to which keyi and key vali are set, so as argued in Lemma B.5,
keyCorrecti,view−1(0, xi) = 1 at that time. This means that when receiving its own broadcast, Pi

adds (i, (k, v)) to and validates itself in FVLE(view− 1). As shown previously, the input assumption
of FVLE(view−1) holds, and thus every honest Pi eventually receives (output, j, ℓj) for every honest
Pj .

First, we will show that if some honest party proceeds to the next view, then the claim holds. If
some honest party Pi sends a ⟨blame, locki, lock vali, view−1⟩ broadcast, then it output (output, i, ℓi)
from FVLE(view−1) and saw that there is a tuple (ℓi, (k, v)) ∈ proposalsi,view such that k < locki. It
then sent the blame broadcast, and from Lemma B.6, lockCorrecti(locki, lock vali) = 1 at that time.
Pi added the tuple (ℓi, (k, v)) to proposalsi,view−1 after receiving a ⟨proposal, k, v, view− 1⟩ broad-
cast from Pℓi and outputting 1 from keyCorrecti,view−1(k, v). Every honest Pj eventually receives
the same broadcast. From Lemma B.5, Pj will eventually output 1 from keyCorrectj,view−1(k, v)
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and add the same tuple to proposalsi,view−1. It will also eventually receive the blame message
sent by Pi. Pj will see that k < l and eventually receive (output, i, ℓi) from FVLE(view − 1)
and 1 from lockCorrectj(l, lv). After receiving all of these messages, Pj will proceed to the next
view in line 2(a)i. On the other hand, if Pi proceeds to the next view in line 2(a)i, it received
(output, j, ℓj) from FVLE(view − 1) and had a tuple (ℓj , (k, v)) ∈ proposalsi,view−1. It then saw that
k < l and that lockCorrecti(l, lv) = 1 . Similarly, from Lemma B.6, every honest party will see that
lockCorrecti(l, lv) outputs 1, and the same broadcasts that caused (ℓj , (k, v)) to proposalsi,view−1. Af-
ter that, every honest party will proceed to the next view. On the other hand, if an honest party Pi

proceeds to the next view in line 3a, then it received (output, a, ℓa), (output, b, ℓb) from FVLE(view−1)
such that ℓa ̸= ℓb. Every other honest party receives the same outputs from FVLE(view − 1) and
proceed to the next view. In other words, if some honest party proceeds to the next view, and no
honest party completes the protocol in this view, then all honest parties proceed to view.

Now assume no honest party proceeds to view. In that case, every honest party Pi even-
tually outputs (output, i, ℓi) from FVLE(view − 1). Since ℓi was by some honest party Pj , it re-
ceived a ⟨proposal, k, v, view − 1⟩ broadcast from Pℓi and saw that keyCorrectj,view−1(k, v) = 1.
From Lemma B.5, Pi receives the same message and eventually sees that the same condition holds.
This means that it broadcast a ⟨echo, view − 1⟩ message since it did not send a blame message
instead. Every honest Pj receives that message, the same value (output, i, ℓi) from FVLE(view− 1),
and the same proposal broadcast. After receiving these values, it adds a tuple to echoesi,view−1.
After adding such a tuple for each honest party, Pi has |echoesi,view−1| ≥ n− t, and thus it updates
keyi to view− 1 and key vali to v and broadcasts a ⟨key, v, view− 1⟩ message during view− 1. From
Lemma B.5, at that time keyCorrecti,view(view − 1, v) = 1. Every honest Pj receives that message
and from Lemma B.5, eventually sees that keyCorrectj,view(view − 1, v) = 1 as well. After that, Pj

adds a tuple to keysj,view−1 for every honest party and sees that
∣∣keysj,view−1

∣∣ ≥ n− t, so Pj sends
a lock message to every party. Following identical reasoning, every honest Pi receives the lock

message from every honest party, eventually sees that lockCorrecti(view, v) = 1 and updates its
locksi,view set. After doing so for all honest parties, it sends a commit message. From Lemma B.2,
all correct lock messages contain the same value, so all honest parties sent commit messages with
the same value. Finally, after receiving those messages from all honest parties, every honest Pi sees
that it received n− t such messages and completes the AVABA protocol in line 2. In other words,
every honest party completes the protocol, reaching a contradiction.

Lemma B.8. No honest party Pi proceeds to the next view in lines 1b as a result of receiving
(output, i, ℓi) from FVLE(view) if ℓi is honest or in 2(a)i as a result of receiving ⟨blame, l, lv, view⟩
from Pj and (output, j, ℓj) from FVLE(view) if ℓj is honest.

Proof. Assume by way of contradiction some honest party Pi does so. In both cases, it received
(output, k, ℓ) from FVLE(view) for some honest Pℓ, and had already added (ℓ, (k, v)) to proposalsi,view
after receiving a ⟨proposal, k, v, view⟩ broadcast from Pℓ and seeing that keyCorrecti,view((k, v)) = 1.
Since keyCorrecti,view(k, v) = 1, either k = 0 or there exist at least n − t tuples in echoesi,k with
k > 0 and thus k ≥ 0. In addition, if Pi proceeds in 1b, then l = locki, lv = lock vali, and from
Lemma B.6, lockCorrecti(l, lv) = 1 at that time. If Pi proceeded to the next view in line 2(a)i,
then it first checked that lockCorrecti(l, lv) = 1 at that time. It cannot be the case that l = 0,
because then k ≥ l, reaching a contradiction. Therefore,

∣∣{j′|(j′, v) ∈ keysi,l}
∣∣ ≥ n− t. Each tuple

(j′, v) was added to keysi,l after receiving a ⟨key, v, l⟩ message from j′. At least t + 1 of those
tuples were added after receiving a key message from honest parties. Note that an honest Pj′ sends
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such a message after updating keyj′ to l and key valj′ to v. Since the keyj′ field only increases
throughout the protocol, keyj′ ≥ l from this point on. Let I be the indices of the honest parties
j′ that sent those key messages, for whom it is guaranteed that keyj′ ≥ l from this point on. Now
observe the pair (k, v) that Pℓ broadcast in its proposal message. At the time it chose (k, v), Pℓ had
|suggestions| = n−t, so it received ⟨suggest, k′, v′, view⟩ from n−t parties and added corresponding
tuples to suggestions. As shown above, |I| ≥ t + 1, so at least one of those messages was received
from a party Pj′ such that j′ ∈ I, for whom k′ = keyj ≥ l. Pℓ chooses the tuple (k, v) to be the one
with the maximal k in suggestions. Therefore, k ≥ k′ ≥ l, reaching a contradiction.

Lemma B.9. If some honest party outputs v and terminates, then all honest parties eventually do
so as well.

Proof. Assume some honest party output v and terminated. It first received ⟨commit, v⟩ messages
from n− t parties, with t+1 of them being honest. Let Pi be the first honest party that sent such a
message. First we will show that no honest party sends a ⟨commit, v′⟩ message with any other value
v′ ̸= v. Assume by way of contradiction that some honest party sends such a message, and let Pj

be the first honest party to send such a message. Since both Pi and Pj were the first honest parties
to send such messages, at the time they sent the message they received commit messages from at
most t parties. This means that both Pi and Pj sent their respective commit messages in line 6b
at the end of view and view′ respectively. Assume without loss of generality that view ≤ view′.
From Lemma B.3, in view′, there are t + 1 honest parties that never send an echo message with
any value v′ ̸= v. If some honest party sends a key message in view′, then it does so after receiving
n− t echo messages from parties Pk and receiving (output, k, ℓ) for each one with the same leader
Pℓ. At least one of those messages was sent by the t+1 honest parties described above, so any key

message sent by an honest party in view′ has the value v. For similar reasons, any lock message
sent by an honest party in view′ has the value v. Before sending a commit message, Pj receives
n − t correct lock messages and sends a commit message with the value v′ of a received correct
lock message. From Lemma B.2, those messages had the value v, and thus v = v′, reaching a
contradiction. Therefore, if two honest parties send commit messages, they send messages with the
same value v.

We will now turn to show that if Pi completes the protocol with the output v, every honest
party will do so as well. Since Pi completed the protocol, it received ⟨commit, v⟩ messages from
n− t parties, with t+1 of them being honest. Those honest parties send their commit messages to
all parties, and thus every honest party receives ⟨commit, v⟩ messages from at least t + 1 parties.
Once that happens, every honest party sends the same message to all parties in line 1. every honest
party then receives those messages from at least n− t honest parties and outputs v and terminates
in line 2. Note that if some honest party terminated before receiving the commit messages from the
t+1 honest parties specified above, it must have received commit messages from n− t other parties
with the same value v′. At least one of those was sent by an honest party, so v = v′. Therefore,
before completing the protocol every honest party also receives ⟨commit, v⟩ messages from some
n− t parties and also sends a ⟨commit, v⟩ message as described above.

Lemma B.10. If all honest parties start view and every honest i has an input xi such that at the
time it calls the AVABA protocol validatei(xi) = 1, then with constant probability all honest parties
terminate during view.
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Proof. If at any point some honest party terminates with the value v, then from B.9 every honest
party will do so as well. From this point on, we will not deal with the case that some of the
parties terminate early in view and some do not terminate at all. The first thing that an honest
party Pi does in view is calling viewChange and sending a suggest message to every party with
the local fields keyi and key vali. From Lemma B.5, keyCorrecti,view(keyi, key vali) at that time,
and thus every honest Pj eventually has keyCorrectj,view(keyi, key vali) = 1 as well. Therefore,
when an honest party Pj receives that message, it eventually adds a tuple to suggestions. After
receiving such a message from every honest party, Pj finds that |suggestions| ≥ n − t, and it
broadcasts a ⟨proposal, k, v, view⟩ message. At that time it either has (k, v) = (0, xj) and as
shown in Lemma B.5 keyCorrectj,view(k, v) = 1, or it has chosen a tuple (k, v) ∈ suggestions for
which it checked that keyCorrectj,view(k, v) = 1.

Before an honest Pi proceeds to the next view, it must output some tuple (output, j, ℓ) from
F(VLE)(view). This means that all honest parties call F(VLE)(view) and wait to receive an output
before any of them proceed to the next view. We now prove that if there is a party P ∗

ℓ that
acted honestly while broadcasting its proposal message such that every output (output, k, ℓ) from
FVLE(view) has ℓ = ℓ∗, then all parties terminate during view. As shown in Claim 6.2, there is at
least a 1

3 probability of this event taking place.
If an honest Pi adds a tuple (j′, k′, v′) to echoesi,view, then it did so after receiving an echo mes-

sage from Pj , an output (output, j, ℓ) from FVLE(view), and seeing a tuple (ℓ, (k′, v′)) in proposalsi,view.
By assumption, ℓ = ℓ∗. An honest Pi adds a tuple (ℓ∗, (k′, v′)) to proposalsi,view after receiving a
⟨proposal, k′, v′, view⟩ broadcast from ℓ∗, and thus all tuples in the set echoesi,view have the same
values k′, v′. No honest party proceeds to the next view in line 3a because all outputs from
FVLE(view) have the same leader. In addition, as shown in Lemma B.8, no honest party proceeds
to the next view in either line 1b or line 2(a)i because they only receive outputs of the form
(output, k, ℓ∗) from FVLE(view) for an honest Pℓ∗ .

Since no honest Pi sends proceeds to the next view in line 1b, each one sends an ⟨echo, view⟩
message after receiving (output, i, ℓ∗) from FVLE(view), and so do all other honest parties. After
receiving the echo message and the same output from FVLE(view), every honest Pi adds a tuple to
echoesi,view. After such a tuple is added for every honest party, Pi sees that |echoesi,view| = n−t and
it sends a message ⟨key, v, view⟩ to all parties after updating keyj to view and key valj to v. From
Lemma B.5, at that time keyCorrecti,view+1(view, v) = 1 so eventually keyCorrectj,view+1(view, v) = 1
for every honest Pj . Therefore, when receiving that message, every honest Pj eventually sees that
the message is correct and adds a pair (i, v) to keysi,view. After adding such a pair for every honest
party, Pj has

∣∣keysi,view∣∣ = n− t and it sends a lock message. Using identical arguments, eventually
every honest party sends a commit message. Finally, after receiving a commit from n − t parties,
every honest party terminates.

Main proof of AVABA

Theorem B.11. Protocol 7.3 satisfies the following properties:

1. Agreement. All honest parties that complete the protocol output the same value.

2. Validity. If an honest party i outputs a value yi then validatei(yi) = 1 at that time.

3. α-Quality. With probability α, all parties output the input xi of a party i that was honest
when starting the protocol.

4. Termination. All honest parties almost-surely terminate, i.e. with probability 1.
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Proof. Each property is proven individually.
Correctness. This property was proven in Lemma B.9.
Validity. Before some honest i outputs a value v, it sends ⟨commit, v, view⟩ message. As

discussed in the proof of Lemma B.9, at least n − t parties sent key messages in view with the
value v as well. At least one of those parties is honest. Pi only sends a ⟨key, v, view⟩ message
after receiving an ⟨echo, view⟩ and seeing a corresponding tuple (ℓ, (k, v)) ∈ proposalsi,view. Pi

adds a tuple (ℓ, (k, v)) to proposalsi,view after receiving a ⟨proposal, k, v, view⟩ from ℓ and having
keyCorrecti,view(k, v) = 1. Before keyCorrecti,view(k, v) terminates with the output 1, Pi sees that
v ∈ validatedi, which only happens after Pi received (validate, i, v).

Termination. If at any point an honest party terminates, from Lemma B.9, all honest parties
do so as well. Observe some view, and assume no honest party terminated during view′ for any
view′ < view. In that case, from Lemma B.7 all honest parties eventually reach view. Then, from
Lemma B.10, with constant probability all honest parties terminate during view. In order for an
honest party not to terminate by view, that constant probability event must not have happened
in each one of the previous views. The honest parties run the VLE protocol with independent
randomness in each view and thus for any adversary’s strategy, there is an independent constant
probability (at least 1

3) of terminating in each view. Therefore, the probability of reaching a given
view decreases exponentially with the view number and thus approaches 0 as view grows. In other
words, all honest parties almost surely terminate. Furthermore, the expected number of views is
bounded by 3.

Quality. Assume some honest party Pi completed the protocol, otherwise the claim holds
trivially. This means that it called FVLE(1) protocol in view = 1. From Claim 6.2, with probability 1

3
or greater all honest parties output (output, j, ℓ∗) for a party Pℓ∗ that was honest when broadcasting
a ⟨proposal, k, v, 1⟩ message. Every honest party receives the message, eventually validates v and
adds (ℓ∗, (k, v)) toproposalsi,view. From Lemma B.10, every honest party that hasn’t committed due
to a message from an earlier view eventually terminates after sending a commit message with the
value v proposed by party Pℓ∗ . No party can commit due to a message from an earlier view because
there is no earlier view. Outputs the value v that Pℓ∗ proposed. Before sending its proposal,
Pℓ∗ sees that |suggestions| = n − t. Pℓ∗ only adds a tuple to suggestions after receiving the first
⟨suggest, k, v, view⟩ message from each party. Each of those tuples must have k < view = 1 because
keyCorrecti,1(k, v) = 1. At that time no honest party updated its keyj and key valj fields, so they
send messages with k = 0. Since at least one of the n − t messages was sent by an honest party,
there exists some (k, v) ∈ suggestions such that k = 0, and as shown above there is no such tuple
with k > 0. Therefore, when computing choosing the tuple (k, v), Pℓ∗ sees that the tuple with
maximal k in suggestions has k = 0. Pℓ∗ then sets (k, v) = (0, xi, ), with xi being its input to
the AVABA protocol. As shown above, with constant probability all honest parties that start view
output xi, completing the proof.

AVABA Simulation

Theorem B.12 (Theorem 7.4, restated). Protocol AVABA (Protocol 7.3) securely implements
(Functionality 7.1) in the presence of t < n/4 corrupted parties, in the FVLE-hybrid model, as-
suming Input Assumption 7.2.

Proof. We provide the simulator S: The simulator receives from the functionality notifications
about the commands validate(i, x) and setInput(j, xj). As such, there are no secret inputs for the
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honest parties. It just simulated the honest parties in the ideal execution; whenever it receives
a setInput(j, xj) command for party Pj , it simulated the simulated Pj receiving this command
from the environment. Whenever it receives a validate(j, x) command - it again forwards it to the
simulated Pj . Moreover, it invokes the adversary A and simulates the protocol execution with the
adversary. When the first simulated honest party Pj terminates (we will show that honest parties
always terminate at some point), it sees its output. It takes its output yj , and sends the command
setOutput(yj) to the functionality. The functionality verifies that yj was validated by an honest
party.If so, the functionality sends (output, yj) to all parties. We will later show that the simulator
always sends to the functionality an output that was validated by an honest party, and therefore,
the functionality always accepts this value. The simulator allows the delivery of such to the honest
Pk in the ideal world only when the simulated Pk terminates and receives its output. Note that
along the way, the simulator also simulates the FVLE functionality to the adversary A, and follows
the behavior of Functionality 6.1.

Since there are no secret inputs for the honest parties, the simulator perfectly simulates the
adversary’s view. To show that the outputs of the real execution and the ideal executions are
identical, we have to show that:

1. Some honest party almost surely terminate in the simulated execution. This is proven in
the Termination property in Theorem B. Moreover, this honest party outputs a value that
is validated. This is the validity property in Theorem B. This guarantees that the simulator
always sends some setOutput command to the functionality, and therefore, the simulator is
“cooperative”. Moreover, this guarantees that the functionality accepts the simulator value.

2. Once the simulator sends setOutput(y) with some value y, the functionality sends that value
to all parties in the ideal execution. It allows the delivery of y to party Pj in the ideal world
only when the simulated Pj terminates. To show that the simulator is valid, and that the
outputs distribute as in the real, we show that all honest parties must terminate, and that
their output is the same as the first honest party that terminated. This is formulated in
Lemma B.9.
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