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In a single secret leader election protocol (SSLE), one of the system participants is chosen and, unless it decides to

reveal itself, no other participant can identify it. SSLE has a great potential in protecting blockchain consensus

protocols against denial of service (DoS) attacks. However, all existing solutions either make strong synchrony

assumptions or have expiring registration, meaning that they require elected processes to re-register themselves

before they can be re-elected again. This, in turn, prohibits the use of these SSLE protocols to elect leaders in

partially-synchronous consensus protocols as there may be long periods of network instability when no new

blocks are decided and, thus, no new registrations (or re-registrations) are possible. In this paper, we propose

Homomorphic Sortition – the first asynchronous SSLE protocol with non-expiring registration, making it the

first solution compatible with partially-synchronous leader-based consensus protocols.

Homomorphic Sortition relies on Threshold Fully Homomorphic Encryption (ThFHE) and is tailored to

proof-of-stake (PoS) blockchains, with several important optimizations with respect to prior proposals. In

particular, unlike most existing SSLE protocols, it works with arbitrary stake distributions and does not require

a user with multiple coins to be registered multiple times. Our protocol is highly parallelizable and can be run

completely off-chain after setup.

Some blockchains require a sequence of rounds to have non-repeating leaders. We define a generalization

of SSLE, called Secret Leader Permutation (SLP) in which the application can choose how many non-repeating

leaders should be output in a sequence of rounds and we show how Homomorphic Sortition also solves this

problem.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms Distributed algorithms.

Additional Key Words and Phrases: Byzantine Fault Tolerance, Single Secret Leader Election, Sortition,

Blockchain, Deterministic Termination, Proof of Stake

1 INTRODUCTION
Consensus and blockchains. Since the advent of Bitcoin [47], blockchain systems have grown to

an entire field of study in computer science. At a high level, a blockchain is a tamper-proof ledger

of blocks of data issued by the system members. As a baseline, the chain of data blocks keeps record

of asset transfers between the participants [47], but often it offers more general functionality [23].

To reach agreement on the order in which data blocks appear in the chain, blockchains resort to

the fundamental problem of consensus.
Consensus is one of the most studied problems in distributed computing. Mainstream consensus

implementations follow the classical leader-based approach [26, 43], where a single process is

selected to be the leader whose task is to propose a value and orchestrate the agreement.
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Secret leader election. Using a publicly known leader as a proposer of a new block opens the

door to the Denial of Service (DoS) attack. The adversary can try bringing down the leader, which

may slow down the consensus protocol, and thus the blockchain as a whole. This issue can be

addressed in multiple ways.

One alternative is to use so-called leaderless consensus protocols, as done, for example, in Red

Belly blockchain [30]. However, a vast majority of existing blockchains build atop their own

consensus protocols, which rely on leaders.

Alternatively, following the approach of Algorand [38], one can use verifiable random functions

(VRF), to select a set of participants as potential leaders and then pick one of them using a deter-

ministic tiebreaker (e.g., the lowest VRF output). However, many consensus protocols require a

single leader to be elected, and those that can manage multiple elected leaders require additional

communication steps in order to filter out a single proposal in the end.

Thus, one may want to pick a single leader beforehand and hide its identity until it makes its

proposal, and then it is too late to mount a DoS attack against it. This functionality is captured by

the single secret leader election abstraction (SSLE) first formalized by Boneh et al. [14].

Expiring registration. In many existing SSLE protocols, elections are run sequentially and each

leader needs to re-register after being elected. This action might include refreshing a secret or

shuffling some common known list, but it will always require other processes to agree on which

steps were taken to re-register, which means consensus is necessary in these situations.

In a synchronous setting, a consensus round with a correct leader always terminates, and thus

this correct leader will always be able to use this instance of consensus to re-register. However, in

partially synchronous systems, this is not always the case: even if a correct leader is elected, the

consensus round may still fail to terminate due to unbounded message delays. Therefore, most

existing SSLE solutions cannot be employed in partially synchronous leader-based consensus

protocols.

Our contributions.We present an SSLE solution that we call Homomorphic Sortition, based on

Threshold Fully Homomorphic Encryption (ThFHE). Unlike existing SSLE protocols, our protocol can

be instantiated in a purely asynchronous message passing system with non-expiring registration.
Indeed, our protocol allows different instances of leader election to be run in parallel, independently

of each other: the elected processes do not need to take any extra steps in order to continue

participating in future rounds. Therefore, our solution perfectly matches partially synchronous

consensus protocols.

Our protocol can be efficiently used in proof-of-stake (PoS) blockchains that rely on the assumption

that the participants controlled by an adversary can only hold a minor fraction of the total stake,

typically less than one third. Homomorphic Sortition fairly accounts for the stake distribution across

the participants: the probability of a party being elected is proportional to its share of stake among

the candidates. This is achieved without requiring users to register multiple times in the system,

greatly improving scalability.

On the practical side, our solution was designed to benefit from multiprocessing machines by

designing FHE circuits that can be run independently. Moreover, we tend to often apply the same

operation to multiple data, allowing us to take leverage of platforms that support SIMD operations.

Furthermore, once the setup phase is complete, the protocol does not require any information from

consensus when deployed in a blockchain, which allows us to run several instances of our protocol

in a pipeline and completely off-chain. By using precomputations, i.e., by electing the leaders in

advance, the block creation latency can thus be made comparable to that of deterministic, insecure

round-robin leader scheme.

Some blockchains require having a sequence of non-repeating leaders (e.g., Tezos based on

Tenderbake [4], or Cosmos based on Tendermint [22]), which allows them to provide a property
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called deterministic finality, in which a new block is certain to be produced within a certain number

of rounds after the network stabilizes. To address this challenge, we propose a generalization of

SSLE—Secret Leader Permutation (SLP) which allows for secretly electing a fixed-length permutation

of processes, weighted based on their stakes. Our Homomorphic Sortition protocol is designed to

solve this generalized problem too.

Roadmap. In Section 2, we formally state the problems of SSLE and SLP. In Section 3, after

reviewing handy cryptographic tools, we present our Homomorphic Sortition protocol. In Section 4,

we prove its correctness, and in Section 5—discuss its complexity. Section 6 reviews the related

work and Section 7 concludes the paper with a discussion of open questions. Appendix A discuss

other works that also hide information about an elected leader in a consensus protocol, without

guaranteeing a single leader, Appendix B presents an in depth discussion about possible circuits

that can be used in our protocol and Appendix C proves the correctness of one of the presented

circuits in particular.

2 PROBLEM STATEMENT
Consider a set of processes Π = {𝑝1, 𝑝2, . . . , 𝑝𝑛} forming a committee with stakes given by an array

𝑆 . Hence, the total stake of the committee is 𝑠𝑡 =
∑

𝑖∈[1..𝑛] 𝑆 [𝑖], and we assume that 𝑠𝑓 < 𝑠𝑡/2 can
be controlled by Byzantine processes that may exhibit arbitrary behavior. In particular, they may

collaborate, trying to prevent correct (non-Byzantine) processes from being elected. To this end,

they might omit information, send different messages to different processes (equivocate), share not

well-formed data, etc.

The communication channels are reliable: messages exchanged by correct processes are eventually

delivered. We assume, however, that the communication is asynchronous, i.e., communication delays

may not be bounded.
1

A Single Secret Leader Election (SSLE) protocol outputs a public voucher 𝑣 and 𝑛 private proofs
𝜋1, . . . , 𝜋𝑛 where, for each 𝑖 , 𝜋𝑖 is only known by 𝑝𝑖 and no information about it is revealed to any

other process or the adversary.

The protocol also defines a publicly known Boolean function verify that takes as inputs the index

of a process, a proof and a voucher. A process 𝑝𝑖 is said to be elected if 𝑝𝑖 can claim the voucher 𝑣

with its proof 𝜋𝑖 , i.e., verify(𝑖, 𝜋𝑖 , 𝑣) returns true.
An SSLE protocol must satisfy the following properties:

• Uniqueness: All correct processes output the same voucher 𝑣 and there exists unique

𝑖 ∈ {1, . . . , 𝑛} such that verify(𝑖, 𝜋𝑖 , 𝑣) = true. Moreover, the probability of the adversary

producing a proof 𝜋 such that for 𝑝 𝑗 ≠ 𝑝𝑖 , verify( 𝑗, 𝜋, 𝑣) = true is negligible, even if it

knows 𝜋𝑖 .

• Fairness: The probability of process 𝑝𝑖 being elected is proportional to the amount of stake

it holds in the committee. Formally, for all 𝑝𝑖 ∈ Π:

Pr[𝑝𝑖 is elected] =
𝑆 [𝑖]∑

𝑝 𝑗 ∈Π 𝑆 [ 𝑗]

• Unpredictability: if the elected process is correct, unless the proof 𝜋𝑖 is revealed, the

adversary cannot guess the leader with probability greater than 𝑆 [𝑖]/(𝑠𝑡 − 𝑠𝑓 ).

1
Notice that the consensus protocol that consumes the leader indications or the setup protocol may require stronger

synchrony assumptions. In particular, most leader-based consensus protocols assume partial synchrony: after an unknown

amount of time called global stabilization time, or GST ), all the messages must arrive within a certain known upper bound

time Δ. Moreover, they typically assume a smaller threshold on the Byzantine stake: 𝑠𝑓 < 𝑠𝑡 /3 instead of 𝑠𝑓 < 𝑠𝑡 /2.
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• Termination: If all correct processes execute the protocol, then every correct process 𝑝𝑖
eventually locally outputs a proof 𝜋𝑖 and a voucher 𝑣 .

The definition of uniqueness at the same time ensures the protocol elects a unique leader and

also forbids the scenario where a leader reveals itself and a malicious process steals the election by

communicating faster with other processes after seeing the elected process’ proof. Meanwhile, the

fairness property of the election translates into a fair distribution of blocks in the blockchain where

the proportion of blocks produced by a user must be at least its proportion of stake in the system.

As for unpredictability, it guarantees that the best strategy for the adversary to know the leader

if it is not among corrupted processes is to use the stake distribution of the remaining processes

to guess who the leader is. Finally, the termination property guarantees the progress of correct

processes cannot be obstructed by Byzantine participants.

We also propose a generalization of SSLE which allows for electing a sequence of 𝑑 distinct

leaders. We call this generalization of SSLE Secret Leader Permutation (SLP), with SSLE being a

special case of SLP where 𝑑 = 1. An SLP protocol outputs a list of 𝑑 public vouchers 𝑣1, . . . , 𝑣𝑑 and 𝑛

private proofs 𝜋1, . . . , 𝜋𝑛 and satisfies the following properties:

• Uniqueness: ∀𝑟 ∈ {1, . . . , 𝑑}, all processes output the same voucher 𝑣𝑟 and there exists

unique 𝑖 ∈ {1, . . . , 𝑛} such that verify(𝑖, 𝜋𝑖 , 𝑣𝑟 ) = true. Moreover, the probability of the

adversary producing a proof 𝜋 such that for 𝑝 𝑗 ≠ 𝑝𝑖 , verify( 𝑗, 𝜋, 𝑣𝑟 ) = true is negligible,

even if they know 𝜋𝑖 .

• Fairness: The leader in every round 𝑟 ∈ {1, . . . , 𝑑}, denoted 𝑖𝑟 , is selected from Π \
{𝑖1, . . . , 𝑖𝑟−1} with probability proportional to its fraction in not yet claimed amount of

stakes. Formally, for all 𝑝𝑖 ∈ Π:

Pr[𝑖𝑟 = 𝑝𝑖 ] =
{
0, if 𝑝𝑖 ∈ {𝑖1, . . . , 𝑖𝑟−1}

𝑆 [𝑖 ]∑
𝑝𝑗 ∈ (Π\{𝑖1,...,𝑖𝑟−1}) 𝑆 [ 𝑗 ]

, otherwise

• Unpredictability: if the elected process 𝑝𝑖 in a given round 𝑟 is correct, unless the proof 𝜋𝑖
is revealed, the adversary cannot guess the leader for the round 𝑟 better than based on the

information about the stakes, the set of already revealed leaders and the processes it has

corrupted.

• Termination: If all correct processes execute the protocol, then every correct process 𝑝𝑖
eventually locally outputs the proof 𝜋𝑖 and vouchers 𝑣1, . . . , 𝑣𝑑 .

Here we define the properties of SSLE for 1 round and 𝑆𝐿𝑃 for 𝑑 rounds, but any number of

rounds of consensus can be executed by repeatedly running the protocol, obtaining an ever growing

sequence of leaders.

3 PROBLEM SOLUTION
Before presenting our Homomorphic Sortition protocol, we introduce our notation scheme and

recall the cryptographic primitives we use.

Scalar values are denoted by lowercase Latin and Greek letters (e.g., 𝑓 or 𝜋 ), vectors by uppercase

Latin letter (e.g., 𝐿), and sets are represented by capital Greek letters (e.g., Λ). Values that are
homomorphically encrypted are equipped with an underline (e.g., 𝑆 ). We typically use 𝑏 to denote

binary values (even though they might be encoded in fields larger than 2, by having 0 and 1).

Subscripts might be added to variables to give more context when necessary. A list of values

enclosed in square brackets (e.g., [𝑥,𝑦, 𝑧]) denotes a column vector, and (·)𝑖 denotes a value signed
by process 𝑝𝑖 .
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3.1 Cryptographic primitives
Encryption and signature schemes. First of all, we need a digital signature scheme, hence

every process 𝑝𝑖 has a pair of public and private signature keys. For setup, as it will be later

discussed, it is also necessary to have a symmetric encryption scheme. We also need a Threshold

Fully Homomorphic Encryption system (ThFHE) [15], which enables computations over encrypted

data. Moreover, the scheme guarantees that a certain threshold stake of key holders (defined by a

threshold value) are able to cooperate to decrypt the computation results.

Method Inputs Outputs

ThFHE.Enc 𝜅𝑝 , [𝑥1, 𝑥2, . . . , 𝑥𝑛] [𝑥1, 𝑥2, . . . , 𝑥𝑛]

ThFHE.Eval C, Inputs Evaluation of C applied to Inputs

ThFHE.PDec 𝜅𝑖 , 𝑥 the 𝑖-th share of 𝑥

ThFHE.Ver 𝑦, 𝑥 , 𝑗 1 if 𝑦 is the 𝑗-th share of 𝑥 , 0 otherwise

ThFHE.Dec [𝑦1, 𝑦2, . . . , 𝑦𝑠 ] (distinct valid shares of 𝑥 holding at least 𝑠𝑓 + 1 stake) 𝑥

Table 1. Methods exported by the ThFHE scheme

The methods provided by the ThFHE scheme are shown in Table 1. After a setup is complete,

each process 𝑝𝑖 has access to a private key 𝜅𝑖 used to partially decrypt a ciphertext encrypted with

the joint public key 𝜅𝑝 known to every process. An encryption operation is denoted ThFHE.Enc
and a partial decryption operation is denotedThFHE.PDec. Once processes holding at least 𝑠𝑓 + 1

stake issue a partial decryption operation for a given encrypted value, it is possible to retrieve the

corresponding clear-text value. Shares corresponding to less than 𝑠𝑓 + 1 stake reveal no information

about the encrypted value. Additionally, before decrypting the final value using the operation

ThFHE.Dec, a process can check that the partial decryption it receives corresponds to an encrypted

value by callingThFHE.Ver .
FHE schemes. There are many different implementations of FHE. Notably, some of these construc-

tions, such as FHEW [33] and TFHE [29]
2
encrypt the input bit-wise

3
, meaning that operations can

be done on each bit separately. Other constructions, such as BGV [21] and BFV [34] encrypt inputs

word-wise, meaning that each cipher-text contains information of multiple data that is packed

together, notably allowing operations to be done accross multiple data (SIMD). The schemes of the

first type are able to execute binary circuits where the possible operations are XORs and ANDs;
while the second type uses arithmetic circuits, performing modular addition and multiplication

over some pre-defined prime number.

Some noise is added to the ciphertexts as operations are done on encrypted data, particularly

when multiplication (including AND) operations are performed. If this noise becomes too large,

values cannot be decrypted anymore and the data is forever lost. An operation called bootstrapping

can then be performed, reducing the noise present in ciphertexts and potentially allowing an infinite

number of operations to be executed.

Specifically, there is a very efficient algorithm for performing bootstrapping in TFHE, but no

efficient solution is currently known for schemes such as BGV and BFV. The latter schemes avoid

2
Here, TFHE stands for Torus FHE [29]. To avoid confusion, we use a different notation (ThFHE) to denote Threshold FHE.

3
Even though TFHE was initially described by Chilloti et al. as a bit-oriented FHE-scheme, many recent works investigate

the possibility to encrypt integers, and the use of its functional-bootstrapping feature. In this work, we use TFHE as initially

described in [29].
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the problem by only considering circuits with bounded multiplicative depth (the maximum number

of chained multiplication operations) and by choosing parameters that guarantee safe noise levels.

We assume ThFHE has the properties presented in [15], namely compactness, correctness, robust-
ness, semantic security, plaintext extractability, and simulation security.

Circuit Inputs Outputs

C< 𝑥, [𝑦1, 𝑦2, . . . , 𝑦𝑛] [𝑥 < 𝑦1, . . . , 𝑥 < 𝑦𝑛]

C01 [𝑏1, . . . , 𝑏𝑛] where 𝑏𝑖 = 𝑏1 =⇒ ∀𝑗 ≥ 𝑖 : 𝑏 𝑗 = 1 [𝑏1, 𝑏2 − 𝑏1, . . . , 𝑏𝑛 − 𝑏𝑛−1]

C𝑆𝑒𝑙 [𝑥1, 𝑥2, . . . , 𝑥𝑛], [𝑏1, 𝑏2, . . . , 𝑏𝑛], ∃!𝑖 : 𝑏𝑖 = 1 ∧ ∀𝑗 ≠ 𝑖, 𝑏 𝑗 = 0 𝑥𝑖

CPRF 𝑘, 𝑥 𝑃𝑅𝐹 (𝑘, 𝑥)

C𝐻 𝑥 𝐻 (𝑥)

Table 2. SSLE circuits

We present our protocol in an agnostic manner, so it can be instantiated in any chosen FHE

scheme. Operations over encrypted data are done via the methodThFHE.Eval using publicly known
circuits presented in Table 2. In Appendix B we give a list of possible implementations of the circuits

depending on the chosen type of the FHE scheme. The motivation for operations performed by

each circuit will become clear to the reader in the next section, where we present the protocol and

the circuits are put into context.

For SSLE, we need the circuits C< to compare an encrypted scalar with each of the values in a

plaintext vector, obtaining a binary vector as a result; C01 to find the first number equal to 1 in a

vector of non-decreasing binary numbers; and C𝑆𝑒𝑙 to extract a value from an array in the only

position equal to 1 in a binary vector.

The circuit CPRF receives as input a ciphertext of a key (𝑘) and a plaintext value (𝑥 ) and outputs

the ciphertext of the value of 𝑃𝑅𝐹 (𝑘, 𝑥), where 𝑃𝑅𝐹 is a pseudo-random functionwith output domain

[0, 1, . . . , 𝛿 − 1], meaning that 𝑃𝑅𝐹 (𝑘, ·) is indistinguishable from a random function for anyone

who does not know the secret key
4 𝑘 . The circuit C𝐻 evaluates a hash function 𝐻 . The property

we require for this function is collision resistance: the probability that the adversary can find two

values 𝑥,𝑦, s.t. 𝑥 ≠ 𝑦 and 𝐻 (𝑥) = 𝐻 (𝑦) is negligible. Collision-resistant hash functions also provide

the input hiding property: given a large random number
5 𝑥 and two different arbitrary values 𝑦

and 𝑧, 𝐻 (𝑥 | |𝑦) is statistically indistinguishable from 𝐻 (𝑥 | |𝑧) [18].
Table 3 provides the additional circuits required for solving SLP. Notice that contrary to C<

which compares an encrypted value with a plaintext array, C< has an encrypted array as its input.

The circuit C𝑠𝑐𝑎𝑙𝑒 changes the domain of a uniform random number and C− subtracts a scalar from

a vector in positions indicated by another binary vector.

3.2 The Homomorphic Sortition Protocol
Overview. Our Homomorphic Sortition protocol (presented in Algorithm 1) assumes, as global

knowledge, a stake distribution 𝑆 , an encrypted random seed 𝑞 and a list 𝑇 of encrypted random

numbers, which we will call tickets. Also, every process 𝑝𝑖 gets a hold of its ticket 𝑡𝑖 (we discuss the

4
Note that for a known 𝑘 , the function is deterministic.

5
It is precisely because we need this random number that we use the PRF function.
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Variables
𝐸 1 in the position of elected process for round 𝑟 , 0 otherwise 𝑚 unselected stake

𝐿 0 in positions left to the elected process, 1 otherwise 𝑠𝑡 total system stake

𝑠𝑓 upper bound on the Byzantine stake 𝑛 number of participants

𝑇 processes’ tickets 𝑆 processes’ stakes

𝑠𝑟 stake of round 𝑟 leader 𝑡𝑟 ticket of round 𝑟 leader

𝑣𝑟 voucher of round 𝑟 leader 𝑖𝑟 ID of the round 𝑟 leader

Λ partial decryptions of result 𝑥 random number

𝑈 stake partial sum 𝑍 scaled stake partial sum

𝑞 random seed

Table 4. Homomorphic Sortition variables

Algorithm 1 Homomorphic Sortition for 𝑝𝑖

1: Given 𝑞, 𝑆,𝑇

2: operation sortition(𝑟,𝑑)

3: 𝑥 := ThFHE.Eval (CPRF , 𝑞, 𝑟 )
4: if 𝑟 − 1 mod 𝑑 = 0 then
5: 𝑈 :=

[ ∑
𝑗 ∈ [1] 𝑆 [ 𝑗 ], . . . ,

∑
𝑗 ∈ [𝑛] 𝑆 [ 𝑗 ]

]
6: 𝑚 := 𝑈 [𝑛]
7: ∀𝑖 ∈ [𝑛] : 𝑍 [𝑖 ] := 𝑆 [𝑖 ]𝛿/𝑚
8: 𝐿 := ThFHE.Eval (C<, 𝑥, 𝑍 )
9: else // Never executed in SSLE, only in SLP

10: 𝑈 := ThFHE.Eval (C−, 𝑠𝑟−1,𝑈 , 𝐿)
11: 𝑚 := 𝑈 [𝑛]
12: 𝑥 := ThFHE.Eval (C𝑠𝑐𝑎𝑙𝑒 , 𝑥,𝑚)
13: 𝐿 := ThFHE.Eval (C<, 𝑥,𝑈 )

14: 𝐸 := ThFHE.Eval (C01, 𝐿)
15: 𝑠𝑟 := ThFHE.Eval (C𝑆𝑒𝑙 , 𝐸, 𝑆 )
16: 𝑡𝑟 := ThFHE.Eval (C𝑆𝑒𝑙 , 𝐸,𝑇 )
17: 𝑖𝑟 := ThFHE.Eval (C𝑆𝑒𝑙 , 𝐸, [1..𝑛] )
18: 𝜋𝑟 := ThFHE.Eval (CPRF , 𝑡𝑟 , 𝑟 )
19: 𝑣𝑟 := ThFHE.Eval (C𝐻 , 𝜋𝑟 | |𝑖𝑟 )
20: Send ⟨ PVoucher,ThFHE.PDec (𝑣𝑟 ) ⟩ to all

21: upon receiving ⟨PVoucher, (𝑣𝑟 ) 𝑗 ⟩ from 𝑝 𝑗

22: if ThFHE.Ver (𝑣𝑟 , 𝑣𝑟 ) ∧ (·) 𝑗 ∉ Λ𝑟 then
23: Λ𝑟 := Λ𝑟 ∪ (𝑣𝑟 ) 𝑗

24: upon
∑

( ·) 𝑗 ∈Λ𝑟 𝑆 [ 𝑗 ] ≥ 𝑠𝑓 + 1

25: 𝑣𝑟 := ThFHE.Dec (Λ𝑟 )

Algorithm 2Combining consensus with Ho-

momorphic Sortition: process 𝑝𝑖

26: Let 𝜋𝑖,𝑟 = 𝑃𝑅𝐹 (𝑡𝑖 , 𝑟 ) and 𝑣𝑖,𝑟 = 𝐻 (𝜋𝑖,𝑟 | |𝑖 )
27: for 𝑟 ∈ {1, 2, 3, . . . } do
28: before executing consensus𝑟

// If 𝑟 mod 𝑑 ≠ 0, wait sortition for 𝑟 − 1

29: sortition(𝑟,𝑑 )

30: upon 𝑣𝑖,𝑟 = 𝑣𝑟

31: Propose block in consensus𝑟 with 𝜋𝑖,𝑟

32: upon receiving 𝜋 𝑗 : 𝑣𝑟 = 𝐻 (𝜋 𝑗 | | 𝑗 ) from 𝑝 𝑗

33: Accept 𝑝 𝑗 ’s proposal in consensus𝑟
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Fig. 1. SSLE components of Homomorphic Sortition
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Fig. 2. SLP components of Homomorphic Sortition
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Method Inputs Outputs

C< 𝑥, [𝑦1, 𝑦2, . . . , 𝑦𝑛] [𝑥 < 𝑦1, . . . , 𝑥 < 𝑦𝑛]

C𝑠𝑐𝑎𝑙𝑒
𝑥,𝑚

where x is a uniform random value over {0, . . . , 𝛿 − 1} and 𝛿 ≫𝑚
𝑦 uniformly distributed over {0, . . . ,𝑚 − 1}

C− 𝑦, [𝑥1, . . . , 𝑥𝑛], [𝑏1, . . . , 𝑏𝑛] [𝑥1 − 𝑦 · 𝑏1, . . . , 𝑥𝑛 − 𝑦 · 𝑏𝑛]

Table 3. Additional circuits required for SLP

setup for this at the end of this section). An encrypted random number 𝑥 is obtained via a PRF in

the encrypted domain using the seed 𝑞. This encrypted random number 𝑥 is used, in conjunction

with the stake distribution, to sample a member of the committee to be the leader in a fair manner

with respect to the stake vector 𝑆 . Each process then uses the encrypted version of the leader’s

ticket to produce a voucher representing the result of the election.

An instance of the protocol receives a round number 𝑟 and the length of the permutation 𝑑 . If

the application only requires SSLE, the instance is invoked with 𝑑 = 1. To compute a sequence of

leaders, one can repeatedly call the sortition operation with a incremented round number. Once a

voucher is sampled, the corresponding process’ information is updated in the sampling mechanism

so that each user is selected at most once in a given sequence of 𝑑 SLP leaders. In both cases, once

enough correct processes execute the protocol, the voucher is decrypted to its plain value (line 25).

Figure 1 shows the steps of the protocol corresponding to SSLE requirements and Figure 2 shows

the steps corresponding to SLP.

Scaling. To elect the first leader in a permutation of SLP (or the only leader in SSLE), the protocol

first builds an array of partial sums of the stakes, labeled 𝑈 . The last element of this array is the

total stake of the system, which at this point is also the total amount of unselected stake, denoted

by𝑚. The random number 𝑥 received as an input has a maximum value 𝛿 − 1. We then scale up

the partial sum array by multiplying every element by 𝛿/𝑚 so the proportion of every element is

maintained, but the last element of the new array, denoted by 𝑍 , becomes 𝛿 .

Comparison and leader selection. By checking the first position of 𝑍 that is greater or equal to

𝑥 we are able to pick a random process fairly. Intuitively, this is equivalent to having an interval

partitioned in segments proportional to each process stake and then picking a point in the interval

uniformly at random. To this end, we first check which indices of 𝑍 store values that are strictly

larger than 𝑥 (using circuit C<) and then select the corresponding elements using circuit C01,

obtaining the array 𝐸 as a result (line 14). Note that before the comparison, all operations are done

in clear data. Moreover, this comparison itself involves an encrypted number and clear data, which

can be done much faster than comparing two encrypted numbers.

Selection. Once vector 𝐸 is built, it suffices to use the circuit C𝑆𝑒𝑙 to obtain the encrypted version

of the leader’s stake, ticket and the leader’s identifier.

Vouchers. The goal of the sortition protocol is to determine who is the leader of a given round,

however, this result must be announced in a manner that only the leader knows it was elected.

Recall that each process 𝑝𝑖 holds a plain version of its ticket 𝑡𝑖 and an encrypted version of all

tickets 𝑇 . While any elected process is capable of generating a proof to claim the winning voucher

using the plain version of its ticket, the sortition protocol compute the winning voucher using

the encrypted version of all tickets 𝑇 . Note that by not revealing its ticket, but only the proof, the

tickets do not need to be refreshed and allows us to not have expiring registration.

The proof is the evaluation of the PRF with the winner’s ticket and the round number. The

properties of PRF ensure that disclosing the proof reveals nothing about the ticket and it is impossible
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to predict the elected process proof for any other round knowing its current proof (to be revealed

later). Finally, the voucher is the hash of the winner’s proof appended with the leader’s identifier

(in some implementations the id of the process might even replace the final bits of the proof,

for making the hash evaluation more efficient). Hence, prior to the leader revealing itself, other

processes cannot feasibly know who the leader is, as it would require inverting the hash function

and breaking the PRF. Furthermore, once the leader reveals itself, producing a proof that would elect

another process having access to this information would require breaking the collision resistance

of the hash function.

SLP: Updating. Suppose now that the application needs a sequence of non-repeating leaders

(𝑑 > 1). For 𝑟 mod 𝑑 ≥ 1, first, using C− and vector 𝐿, the stake of the previous leader 𝑠𝑟−1 is
subtracted from the partial sum array 𝑈 in the position of the elected process, as well as in all

positions to the right (line 10). Again, one can visualize the result as an interval of the length equal

to the total unselected stake, where all segments to the left from the previous leader stay at their

place, all segments to the right of are shifted by 𝑠𝑟−1. Notice that the amount of unselected stake

will always be given by the last position of the partial sum array.

SLP: Scaling and comparing. Unlike the first round of SLP, to compute the 𝑟 -th leader for 𝑟

mod 𝑑 ≥ 1, instead of scaling the partial sum array to the domain of the random number, we now

to scale down the random number to the amount of unselected stake (lines 11 and 12). Hence, 𝐿 is

now computed by comparing the shrunk random number with the unchanged partial sum array

(line 13).

Decryption. The remaining part of Algorithm 1 describes how each voucher is decrypted (lines 20

to 25). Every process first broadcasts its partial decryption and waits until valid messages from the

processes carrying 𝑠𝑓 + 1 stake are received (a message is valid if it passes the partial decryption

test). Once at least 𝑠𝑓 + 1 stake is validated, the final decryption yields the plaintext value of the

voucher.

Combining consensuswithHomomorphic Sortition. One of the key advantages of our protocol
is that once setup is done, it can be run asynchronously, off-chain, i.e., independently of the parallel

blockchain consensus instances. However, the very goal of electing leader is precisely using them

in the consensus protocol. Algorithm 2 describes how the leaders produced by our protocol can be

fed to leader-based consensus instances. The result of homomorphic sortition for round 𝑟 must be

obtained before executing the consensus instance for this round. A clever scheduling, combined

with the pipelining of independent components of the protocol permit the result of a round to

be always ready once it is time to execute the corresponding consensus instance, guaranteeing a

global progress at the same pace as simply picking leaders in an insecure round robin fashion. Once

a process is elected leader for round 𝑟 , i.e., its proof claims the voucher of 𝑟 , it proposes a block

appending the proof. When a process receives a block and a proof for round 𝑟 , it accepts the block
if the proof is valid. Notice that SSLE rounds are completely independent and can be executed in

any order, while in SLP, after the first round in a sequence, the other rounds can only be executed

after the previous one finished. Different sequences remain independent, however.

Setup. Our protocol requires the ThFHE keys, the tickets and encrypted random seed to be de-

termined at setup. For the first instance of the protocol, this might come in the form of a trusted

setup containing all this information. Alternatively, one can rely on a consensus protocol (using

round-robin leaders, for instance) for Distributed Key Generation (DKG), the tickets and the seed.

For example, every process can locally generate 𝑛 + 1 random numbers and use consensus to

agree on a set proposed by processes possessing at least 𝑠𝑡 − 𝑠𝑓 stake. Finally, by adding (xoring) the
vectors element-wise and using the first 𝑛 elements as tickets and the (𝑛 + 1)-th element as the seed,

we obtain a vector meeting the desired conditions. The seed is never decrypted, but each process

must have access to its own ticket. This is achieved by symmetrically encrypting each ticket with
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a key only the holding process knows via FHE friendly block ciphers discussed in Appendix B,

prior to decrypting them from the FHE domain. From time to time a new setup must be executed,

as the distribution of stake will change and then it can be updated in the protocol, refreshing the

encryption system. The good thing is that at this point, a new parallel consensus instance can be

used for setup.

4 CORRECTNESS
Let 𝑃 be the space of proofs, 𝑉 be the space of vouchers, 𝑅 be the space of rounds.

We make use of the following game 𝑠𝑡𝑒𝑎𝑙 in Proposition 4.7.

(1) The challenger samples 𝑖 from [𝑛], following the probability distribution defined in the

fairness property of SSLE, and then picks 𝑡1, 𝑡2, . . . , 𝑡𝑛 at random from 𝑇 and 𝑟 ∈ 𝑅. The
challenger computes 𝜋𝑖 = 𝑃𝑅𝐹 (𝑡𝑖 , 𝑟 ) and sends 𝐻 (𝜋𝑖 | |𝑖) and 𝑟 to the adversary.

(2) The adversary A picks a set of indices 𝐽 ⊆ [𝑛], and sends it to the challenger.

(3) The challenger sends ∀𝑗 ∈ 𝐽 : 𝑡 𝑗 to A.

(4) The adversary A submits a sequence of queries ( 𝑗1, 𝑥1), ( 𝑗2, 𝑥2), . . . , where ∀𝑘 : 𝑗𝑘 ∈ [𝑛]
and 𝑥𝑘 ∈ 𝑅.

(5) The challenger replies to each query ( 𝑗𝑘 , 𝑥𝑘 ) with 𝑃𝑅𝐹 (𝑡 𝑗𝑘 , 𝑥𝑘 ).
(6) The adversary A wins if for some 𝑗 ≠ 𝑖 it outputs 𝜋 𝑗 ∈ 𝑃 s.t. 𝐻 (𝜋 𝑗 | | 𝑗) = 𝐻 (𝜋𝑖 | |𝑖).
We define the game 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 , used in Proposition 4.9 by applying the following changes to 𝑠𝑡𝑒𝑎𝑙 :

• In step 4, the adversary cannot query the PRF evaluated in keys of processes it has not

corrupted at the value 𝑟 .

• In step 6, the adversary A outputs 𝑗 ∈ [𝑛] and wins if 𝑖 = 𝑗 .

The following lemmata follow directly from the algorithm and can be easily checked to be true:

Lemma 4.1. The values in the partial sum array𝑈 are increasing.

Lemma 4.2. 𝐿[𝑖] = 1 =⇒ ∀𝑗 ≥ 𝑖, 𝐿[ 𝑗] = 1.

Lemma 4.3. 𝑖𝑟 = 𝑖 =⇒ ∀𝑗 < 𝑖, 𝐿[ 𝑗] = 0.

Lemma 4.4. 𝐿[𝑛] = 1

Lemma 4.5. No value is decrypted without at least one correct process issuing a partial decryption
for it.

Proposition 4.6. Homomorphic Sortition ensures termination.

Proof. The array 𝑇 and the seed 𝑞 are shared among all correct processes, as they are given by

the setup, and the stake distribution is maintained common knowledge by the blockchain. Therefore,

the participants will obtain the same values for the vouchers.

Moreover, the progress of the individual processes is only halted for waiting the partial decryp-

tions of the vouchers (line 24). Since every round is executed by all correct processes and 𝑠𝑓 < 𝑠𝑡/2,
there will always be shares from sets of processes who hold at least 𝑠𝑓 +1 stake coming from correct

processes executing the same instance. Hence, the decryption will always be successful and the

protocol will always terminate. □

Proposition 4.7. Homomorphic Sortition ensures uniqueness.

Proof. First, let us show that in each round there is a unique voucher obtained by all correct

processes.
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Homomorphic Sortition is a protocol with deterministic steps, obtaining random results by having

sources of randomness as its inputs. Notably, since the setup guarantees that every correct process

has the same values for𝑇 and 𝑞 and the stake distribution is public knowledge, all correct processes

will issue decryptions for the same voucher. As our ThFHE scheme is robust, all correct participants
decrypt the same voucher.

As the threshold system requires decryptions issued by participants holding at least 𝑠𝑓 + 1 stake

to produce a value, it is impossible for malicious processes to force the protocol to produce a second

voucher, as it would imply some correct processes decrypt different vouchers, which we already

ruled out.

Now, let us prove that in each round there exists a unique process that can claim the voucher.

It is clear that at least one participant is able to claim the voucher because, by construction, our

protocol selects the ticket of one of the participants and performs the same operations later needed

to claim this voucher in order to produce it.

Let us show that the probability of any other member being able to claim this voucher is negligible.

To this end, we will consider the attack game 𝑠𝑡𝑒𝑎𝑙 described in the beginning of this section. This

game is a good model for breaking the uniqueness property of our protocol given that there is a

unique winning voucher obtained by all correct processes, which we demonstrated earlier. Indeed,

the semantic security of our ThFHE scheme ensures that the information available to the adversary

is restricted to the secrets held by Byzantine processes and the data that is decrypted or exchanged

in the clear. Hence, after the leader reveals itself, the information available to the adversary is

restricted to the tickets of Byzantine participants and the proofs produced so far by the protocol

(the knowledge of vouchers is redundant, given the proofs). Here, we allow the adversary to have

even more freedom and query the proof of any round it wants in order to achieve its goal: to find

another proof that claims the same voucher. Note that the adversary can know the proof for round

𝑟 , and it should not be able to elect another process even after knowing this proof. The advantage
of the adversary is then defined as the probability of it winning the game.

1𝑎𝑑𝑣 [A, Sortition] = Pr[𝐻 (𝜋 𝑗 | | 𝑗) = 𝐻 (𝑃𝑅𝐹 (𝑡𝑖 , 𝑟 ) | |𝑖)]
This probability is clearly negligible, as otherwise it would break the collision resistance of the

hash function.

□

Proposition 4.8. Homomorphic Sortition ensures fairness.

Proof. The variable𝑚 keeps track of the total unselected stake in the system. This invariant

is maintained by initializing it with the total amount of stake

∑
𝑝 𝑗 ∈Π 𝑆 [ 𝑗]. In subsequent rounds,

since 𝐿[𝑛] is always 1, the previous leader stake is always subtracted from 𝑈 [𝑛], which is used to

track𝑚, maintaining the invariant.

The window of a process 𝑝 𝑗 is the range of values [𝑈 [ 𝑗 − 1],𝑈 [ 𝑗]) for 𝑗 ∈ [2..𝑛] and [0,𝑈 [1])
for 𝑗 = 1. Initially, the window of every process 𝑝 𝑗 has length 𝑆 [ 𝑗], by construction. In the first

round of a permutation, or in SSLE, every window size is multiplied by the same constant 𝛿/𝑚,

with the values of the array going from 0 to 𝛿 . As a result, the interval [0..𝛿 − 1] is split among all

process, with process 𝑗 getting a fraction 𝑆 [ 𝑗]/𝑠𝑡 of it. The leader is chosen by picking a point in

the interval uniformly at random. Hence, the probability of process 𝑖 being elected in this case is:

Pr[𝑖𝑟 = 𝑖] = Pr

[ ⌊
𝛿

𝑚
𝑈 [𝑖 − 1]

⌋
≤ 𝑥 <

⌊
𝛿

𝑚
𝑈 [𝑖]

⌋ ]
=

⌊
𝛿
𝑚
𝑈 [𝑖]

⌋
−
⌊
𝛿
𝑚
𝑈 [𝑖 − 1]

⌋
𝛿



12
Luciano Freitas, Andrei Tonkikh, Adda-Akram Bendoukha, Sara Tucci-Piergiovanni, Renaud Sirdey, Oana Stan, and Petr

Kuznetsov

Since we require 𝛿 ≫𝑚, this probability converges to

𝛿
𝑚
·𝑆 [𝑖 ]
𝛿

=
𝑆 [𝑖 ]
𝑚

, as required by the fairness
criteria.

When running the protocol for SLP, after the election of process 𝑝𝑖 , its window size becomes zero

in the beginning of the next round, while the windows of other processes remain unchanged. This

holds because the partial sum is updated by subtracting the elected stake 𝑆 [𝑖] from every position

where 𝐿 = 1. Therefore,𝑈 remains unchanged in every position less than 𝑖 (c.f. Lemma 4.3), keeping

the corresponding processes windows unchanged, while for positions greater than 𝑖 , both sides

of the window are shifted by the same amount (c.f. lemma 4.2), conserving the length. However,

at the round following the election of 𝑝𝑖 , the lower end of its window is fixed, while the right is

moved 𝑆 [𝑖] to the left, so its length becomes 𝑆 [𝑖] − 𝑆 [𝑖] = 0.

The selection of a leader corresponds to the event where random variable 𝑥 falls within its

window. Assuming that 𝑥 is a random number between 0 and𝑚 − 1, fairness follows immediately.

□

Proposition 4.9. Homomorphic Sortition ensures unpredictability.

Proof. Let us consider the game 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 presented in the beginning of this section. Differently

than uniqueness, unpredictability only holds before the correct leader reveals itself, hence we must

restrict the adversary to not evaluate the 𝑃𝑅𝐹 at this point for processes it has not corrupted. The

advantage of the adversary in this game, which we shall denote 𝑈𝑎𝑑𝑣 is given by the probability

it predicts process 𝑖 as the leader better than the information conveyed by the stakes and the

corrupted processes:

𝑈𝑎𝑑𝑣 [A, sortition] =

Pr[𝑖 = 𝑗] − 𝑆 [𝑖 ]

𝑠𝑡−
∑
𝑗 ′ ∈ 𝐽

𝑆 [ 𝑗 ′ ] if 𝑖 ∉ 𝐽

0 otherwise

We can make use of the following hybrid arguments:

H0 the original game 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 .

H1 replace the challenger’s response in step 3 to 𝑖 if 𝑖 ∈ 𝐽 , ⊥ otherwise.

H2 in step 1, the challenger picks 𝑖 from [𝑛] following the fairness distribution and produces

proofs 𝜋1, 𝜋2, . . . , 𝜋𝑛 at random by sampling 𝑃 . The challenger then sends 𝐻 (𝜋𝑖 | |𝑖) to A.

H3 delete step 4.

H4 the challenger only produces proof 𝜋𝑖 .

H1 is indistinguishable from H0 because all tickets are independent, hence the only information

obtained by the adversary is the identity of 𝑖 , by testing the tickets it obtains if it manages to

guess a set 𝐽 which contains it or the fact that 𝑖 ∉ 𝐽 . H2 is indistinguishable from H1 because

of the properties of the 𝑃𝑅𝐹 function whenever the adversary does not know the key
6
. H3 is

indistinguishable from H2 because the adversary is simply probing a true random function. H4 is

indistinguishable from H3 because all other information which is deleted is never shared with the

adversary, but kept locally. After applying these hybrids, we simplify the game to the following

steps:

(1) The challenger selects 𝜋 ∈ 𝑃 and 𝑖 ∈ [𝑛] at random. It then sends 𝐻 (𝜋 | |𝑖) to A.

(2) The adversary picks a set of indices 𝐽 ⊆ [𝑛] and sends it to the challenger.

6
A complete proof requires having the challenger to pick a random number 𝑘 ∈ {0, 1, . . . , 𝑛}, using PRF to generate proofs

from numbers between 1 and 𝑘 and a true random function for the rest. Then, using standard proofs, it can be shown that

the adversary can distinguish the results obtained between by 𝑘 = 𝑘 ′ and 𝑘 = 𝑘 ′ + 1 with negligible probability. Finally,

hybrid argument shows that the probability it can distinguish the case 𝑘 = 0 and 𝑘 = 𝑛 is also negligible
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(3) The challenger replies the A with 𝑖 if 𝑖 ∈ 𝐽 , or ⊥ otherwise.

(4) The adversary outputs 𝑗 ∈ [𝑛] and wins if 𝑗 = 𝑖 .

If the adversary manages to obtain non-negligible advantage in this game, it means it obtains

information about 𝑖 by analyzing the result of the hash function in the last game, otherwise the

best it can do to find 𝑖 is to guess it correctly with probability 𝑆 [𝑖]/(𝑠𝑡 −
∑

𝑗∈ 𝐽 𝑆 [ 𝑗]), obtaining
advantage 0. This contradicts the fact that our hash function provides the input hiding property (c.f.

Appendix B), which informally implies that it is impossible to obtain any information about an

input which is prefixed by a large random number. □

5 COMPLEXITY
5.1 Communication complexity
Let us first analyze the Homomorphic Sortition protocol from a distributed systems perspective, that

is, by measuring the number of message round trips necessary per election (time complexity) and
the number of words needed to be exchanged between processes (communication complexity). The
only messages exchanged in the system are the partial decryption messages, which have all size

𝑂 (𝜆𝛽), where 𝜆 is the size of the hash function used and 𝛽 is the size of the encryption of a bit. In

binary circuits, each bit is encrypted into 𝜆 bits, while arithmetic circuits encrypt several integers at

once, making 𝛽 a small number between 0 and 1. Therefore the latency of Homomorphic Sortition

per round is of one message delay and the number of bits exchanged in total is 𝑂 (𝑛2𝜆𝛽).

5.2 Computational complexity
For measuring the computational complexity of our protocol, it is necessary to know the complexity

of the circuits it utilizes. Hence, we shall use the suggestions we present in Appendix B and analyze

the number of gates used in a possible TFHE implementation that executes binary circuits and

the multiplicative complexity of a possible BGV circuit executing our arithmetic circuits. These

complexities are summarized in Table 5.

Circuit Nb of gates
possible TFHE circuit

Multiplicative Depth
possible BGV circuit

C< 𝑂 (𝑛 log 𝑠𝑡 ) (2 inputs: one plain, the other encrypted) 2

C01 𝑂 (𝑛) 1

C𝑆𝑒𝑙 𝑂 (𝑛2) 1

CPRF 4218 (AND gates only) 6

C𝐻 4218 (AND gates only) 6

C< 𝑂 (𝑛 log 𝑠𝑡 ) 𝑂 (log(𝑛 log 𝑠𝑡 ))

C𝑠𝑐𝑎𝑙𝑒 𝑂 ((log 𝑠𝑡 )2) –

C− 𝑂 (𝑛) 1

Table 5. Complexity of circuits

For more details on how each complexity was computed, please refer to Appendix B. We can

conclude that our example TFHE solution would require the evaluation of𝑂 (𝑛2) gates in both SSLE

and SLP, while the suggested BGV implementation has multiplicative depth 16.
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5.3 Threshold overhead
So far we have relied in FHE primitives for instantiating the circuits and anaylzing our complexity.

In [16], authors develop a general approach for adding a threshold functionality that allows to

split the secret key into a number 𝑛 of shares for LWE-based (Learning with errors) homomorphic

schemes, with the property that the full decryption requires a number 𝑡 ≤ 𝑛 of partial decryptions

(using secret key shares). The overhead due to a threshold scheme, as shown by the same work,

comes from the set up phase and the decryption operations while the performances of homomorphic

operations are unaffected by the "thresholdizing", so the operations themselves which are the most

costly part are unchanged. The works of [12, 37] show how to obtain weighted forms of threshold

systems required by our protocol.

6 RELATEDWORK
Here we present an overview of the existing literature on SSLE protocols. As we shall see, most of

earlier solutions are subject to expiring registration and/or do not account for stake distribution in

an efficient way. In Appendix A, we discuss related work that, though not exactly in the context of

SSLE, also concern with hiding information about the proposing process in some manner.

Original SSLE formulation. Boneh et al. [14] formally defined the problem of a single secret

leader election (SSLE), [14] and described three way of solve SSLE: Obfuscation [8, 36], Threshold
Fully Homomorphic Encryption (ThFHE) [15], and Shuffling [39]. The first technique was proposed

to demonstrate theoretical feasibility of SSLE, while the other two were designed to be implemented

in practice.

The ThFHE solution in [14] consists in generating an encrypted random number of log𝑛 bits

and then expanding it to a vector of size 𝑛 where exactly one position is equals to 1 and all the

rest is equals 0. (We believe that this implicitly restricts this solution to 𝑛 being powers of 2). Then,

similarly to our solution, they use this vector to select a single secret, and the leader can later reveal

some information to prove it. Contrary to ours, though, their solution has expiring registration: the

way they reveal the secret does not allow it to be reused (it would be similar to our solution using

tickets instead of vouchers to claim the election).

The shuffling solution in [14] consists in producing a list of DDH pairs, where each entry

corresponds to a user, and only this user is able to open the commitment. Once a leader is elected,

they replace their secret and shuffle the list, masking previous values first. This way other processes

are still not able to determine which position the leader occupies in the list. Notice this action of

replacing a secret and agreeing on the new shuffled list using this specific leader requires synchrony.

Quantifying the gains of SSLE In subsequent work, Azouvi and Cappelletti [5] performed an

in-depth analysis of potential performance gains of using SSLE. They compared protocols that

elect one leader on expectation (that is, some rounds might elect none or several leaders) which

are known as Probabilistic Leader Election – PLE – with SSLE. They found that compared to PLE,

SSLE reduces the latency of block creation by 25% when the blockchain is under a private attack. In
this attack, the adversary creates its own private chain in parallel, not sharing it with the rest of

miners and trying to seize the longest chain.

Native Ethereum SSLE. The ethereum foundation announced an upcoming SSLE protocol based

on Boneh’s solution with shuffling, called Whisk [3], in which they made some modifications which

makes the shuffling routine more efficient, but does not guarantee perfect unpredictability as a

trade-off. They have later announced a new version which is quantum secure [50].

Using functional encryption. Catalano, Fiore and Giunta [27] proposed a solution based on

functional encryption [17, 48] in which, given a ciphertext 𝑐 encrypting a keyword𝑤 and a secret

key 𝑠𝑘 associated to another keyword𝑤 ′
, the decryption allows one to learn if𝑤 = 𝑤 ′

and nothing
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more. The SSLE protocol of [27] is based on the idea that, for every election a small committee of

users generates a ciphertext 𝑐 that encrypts a random keyword 𝑗 ∈ {1, · · · , 𝑁 }, every user is given

a secret key 𝑠𝑘𝑖 associated with an integer 𝑖 , and can claim victory by giving a non interactive zero

knowledge (NIZK) proof that they can decrypt the election’s ciphertext. They achieved a protocol

that allows stake slashing of misbehaving nodes and, if executed without faults, the complexity of

the protocol becomes sublinear on the number of participants. Although this protocol does not

seem to have expiring registration, they do seem to require synchrony in order to produce unique

ciphertexts.

Adaptive secure SSLE. Catalano, Fiore and Giunta [28] also modified Boneh et al.’s shuffling

solution. In particular, they had the protocol maintain two lists: one which is kept in place, and is

modified once the leader needs to re-register, while the other is shuffled. Moreover, they require

the leader to produce an NIZK of the secret, instead of revealing the secret. After these changes,

they prove the protocol to be adaptive secure and universally composable.

Using MPC. In [7], Backes, Berrang, Hanzlik and Pryvalov describe an MPC protocol where they

explore the homomorphic properties of a secret sharing protocol to organize the processes in a tree

structure. In the leaves of this tree, there are the secrets that will eventually elect one process as

the leader, and they show how having access to a random beacon they are able to select one out

of two secrets, and then applying this in their tree, to choose one out of 𝑛 secrets. Because of this

structure, they show that considering weighted processes makes the latency of the protocol grow

by log 𝑠𝑡 where 𝑠𝑡 is the total stake of the system.

7 CONCLUDING REMARKS
We are currently working on implementing our SSLE/SLP solution using state-of-the-art ThFHE

protocols, which will allow us to evaluate its performance in practice.

It would also be interesting to obtain an arithmetic implementation of the circuit C𝑠𝑐𝑎𝑙𝑒 required
for SLP, making it possible to use SIMD-friendly circuits for this scenario.

We also note that no existing SSLE solution, including ours, is able to produce correct results

in a setting where the stake distribution among the committee members is highly dynamic. In

alternative solutions requiring users to register multiple times, the protocol itself does not give

such flexibility, as updating the secrets would be impractical. But in the case of our protocol, the

encryption system becomes a bottleneck, which reflects the distribution of stake of keys at some

point and requires the keys to be redistributed from time to time. The fact that our solution "freezes"

the stake of processes that can be elected is compatible with many blockchains. Still, it would be

interesting to either obtain a solution that operates with ever-changing stakes or to show such a

solution is impractical for SSLE.
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appended and another (much smaller) to propose blocks – note that this is not a single leader

election protocol. This selection is known as cryptographic sortition and it uses verifiable random
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using a deterministic function (e.g., the minimal VRF output). Therefore, no participant can be sure

that she is a leader before every participant reveals its output.

Leader election as a smart contract. In order to employ secret leader election in Ethereum [23],

McCorry, and Meiklejohn [6] proposed a synchronous protocol that could be implemented by

paying 0.10$ in gas per leader election once deployed in the targeted blockchain. The protocol

advances in rounds from 1 to round𝑚𝑎𝑥 , with each participant creating a sequence of hashes

(ℎ1, ℎ2, · · · , ℎround𝑚𝑎𝑥
) where ℎ𝑖 = 𝐻 (ℎ𝑖−1), publicly committing 𝐻 (ℎround𝑚𝑎𝑥

). Every round round
has a threshold targetround and the processes generate together a common unpredictable random

number 𝑅round . Any process for which (ℎround ⊕ 𝑅round) < targetround is declared a leader of the

round and can reveal its election by publishing ℎ𝑟𝑜𝑢𝑛𝑑 . In this system, any subset, including the

empty set, of the participants can be elected; if the system requires that at most one process is

elected, the processes can agree that the participant with the lowest local hash among the elected

is the leader.

Secrecy of stakes. Ganesh et al. [35] formulated a variation on traditional Proof-of-Stake called

Private Proof-of-Stake (PPoS) where the identities and stake of participants are not publicly available.
Their work focuses on implementations based on VRF functions and shows how a participant

can achieve the desired results by splitting its stake into several virtual accounts and by using an

anonymised version of VRF (AVRF ). In AVRF, proofs are still verifiable but have the property that it

is extremely hard to tell whether two proofs have been created by the same secret key or not.

Clusters of secrecy. An interesting approach to the problem was suggested by Tan et al. [51]. In

their system, the processes are organised in clusters, so that within a cluster, the identity of the

leader is known, but processes outside it can only state which cluster contains the leader. In this

manner, processes can choose trustworthy nodes they wish to form a cluster and form a resilient

system using simple primitives relying only on local computations.

B CIRCUIT IMPLEMENTATIONS
C< takes a scalar 𝑥 and a vector 𝑌 and outputs a binary vector where the 𝑖-th position is 1 if 𝑥 < 𝑦𝑖 ,

being 0 otherwise. [? ] presents an efficient algorithm for both binary and arithmetic circuits which

reduces the problem to a polynomial multiplication of a plain polynomial and an encrypted scalar.

They further improve the solution for the binary-wise encryption case by avoiding unnecessary

repeated comparisons when comparing multiple numbers, as in our case. Hence, the number of

gates in the binary circuit corresponds to AND gates where one of the inputs is given by clear data

and the multiplicative depth of the BGV circuit, as stated in the original paper, would be just 2.

C< takes a scalar 𝑥 and (contrary to C<) a vector 𝑌 and outputs a binary vector where the 𝑖-th

position is 1 if 𝑥 < 𝑦𝑖 , being 0 otherwise. Binary circuits can efficiently achieve this by subtracting

𝑥 from each element of 𝑌 and then taking the signal bit of each position, which can be efficiently

done using the sign bootstrapping operation described in [20]; the complexity of this operation is

hence the same as subtracting two numbers. An efficient circuit for doing comparison in BGV and

BFV was presented in [42] whose multiplicative depth is proportional to the logarithm of the array

size.

C01 takes as an input a binary vector 𝐵 which is increasing, in other words, after the position

containing the first element equals 1, all subsequent elements are also 1. The output of this circuit

is a vector which is 0 everywhere, except in the position of the first element 1. Equivalently, given

a vector in the form 00 . . . 011 . . . 1, the circuit determines the position of the transition between 0

to 1. This circuit can be implemented in binary schemes by the operation 𝐵&((¬𝐵) ≫ 1), i.e.: by
performing an element-wise parallel AND between the vector itself and the rotation of its negation

one position to the right (we consider the first element becomes zero after rotation). Arithmetic

circuits can accomplish this by doing the operation 𝐵 − (𝐵 rot 1) · [011 . . . 11]), i.e.: subtracting the
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vector by itself cyclicacly rotated one position to the right, replacing the first position by zero after

rotation.

C𝑺𝒆𝒍 takes a data vector𝑋 , a binary vector 𝐵 where one and only one position 𝑖 equals 1, while all

others are 0 and outputs 𝑥𝑖 . This is easily achieved in arithmetic circuits by making the dot product

of the two vectors, while binary circuits simply replace the product operations of the arithmetic

counterpart by ANDs.

The two following circuits rely on the evaluation of symmetric cryptographic primitives over FHE

encrypted inputs (keys or message block). Many works have tackled this issue, mainly motivated

by transciphering or proxy-reencryption [24, 25, 31, 32, 46] which aims at compressing the size

of an FHE ciphertext given the ability to securely switch from a symmetric cryptosystem to an

FHE one, by homomorphically decrypting the symmetric ciphertext. In other words, evaluate the

symmetric decryption algorithm using an FHE encrypted key results in an FHE encryption of

the message. Many FHE-friendly symmetric encryption schemes were designed with a focus on

optimized decryption circuits for FHE operations. Namely MiMC [1], LowMC [2], Kreyvium [25],

FLIP [46], and Rasta [31]. The decryption circtuit of these ciphers have a small multiplicative depth

by design. Therefore, they are perfectly suited for an implementation of the solution using levelled
FHE schemes as BGV or BFV. On the other hand, it turns out that TFHE performs better with

lightweight ciphers which were initially designed for devices of small computational resources

as discussed in [10]. Thereby, ciphers from NIST lightweight cryptography project [41] are good

candidates when using gate-bootstrapping-based FHE schemes (FHEW / TFHE).

CPRF takes two arguments 𝑘 and 𝑥 and outputs 𝑃𝑅𝐹 (𝑘, 𝑥), where 𝑃𝑅𝐹 : 𝐾 ×𝑋 → 𝑌 is a publicly

known pseudo-random function, indistinguishable from a truly random function.
7
A pseudo-random

permutation (PRP) is a restriction of a PRF, where 𝑌 = 𝑋 , ∀𝑘 ∈ 𝐾 : 𝑓 (𝑘, ·) is one-to-one, and is also

efficiently invertible. Bellare and Rogaway in [9] provided the PRP-PRF switching lemma which

ensures that a PRP is indistinguishable from a PRF, and therefore, by transitivity, a secure PRP
is indistinguishable from a truly random function.

8
In practice, the cryptographic primitive that

models the abstract concept of a PRP is a secure block-cipher. Therefore, our CPRF cricuit is an

evaluation of an FHE-friendly or lightweight block-cipher.

C𝑯 implements a cryptographic hash function 𝐻 . Iterated hash functions in which the com-

pression function contains a call or several calls to a block-cipher gave birth to provably secure

constructions in the black-box model [13, 44, 49]. Thus, to design our secure FHE-friendly hash

function that serves our protocol, we combine the following two paradigms: (1) the aforementioned

FHE-friendly ciphers initially meant to be used for transciphering or other lightweight ciphers

designed for low-resources environments, and (2) provably secure block-cipher-based constructions

of iterated hash functions. Again for this circuit, the distinction between the binary mode using

TFHE or FHEW or the arithmetic mode using BGV or BFV is done by selecting the proper cipher

for each FHE class of schemes.

To implement a secure hash function that has good performance when run in the homomoprhic

domain we suggest an instantiation of Soichi Hirose’s double-block-length hash construction from

[40] with an ultra lightweight block cipher, namely PRINCE [19] for TFHE/FHWE implementations,

or LowMC [2] for BGV/BFV implementations.

Hirose’s construction provides optimal bounds for pre-image, and collision resistance in the

black-box model. Formally, under the assumption that the underlying block-cipher is a random

keyed invertible permutation, and that an adversary is given access to encryption and decryption

7
We assume the the adversary is given 𝑞 oracle answers (𝑓 (𝑥𝑖 ) )𝑖 to its 𝑞 queries 𝑥𝑖 , and decides whether 𝑓 is truly random

or pseudo-random.

8
The indistinguishability bound is

𝑞 (𝑞−1)
2
𝛽+1 where 𝑞 is the number of oracle queries and 𝛽 is the size of the input/output.
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oracles, finding a pre-image for Hirose’s hash function requires at least 𝑂 (22𝑛) oracle queries,

while a collision-finding attack takes an optimal adversary 𝑂 (2𝑛) where 𝑛 is the block length of

the block-cipher. This block-cipher-based construction provides two advantages besides optimal

security in the black-box model. The first one, is being a double-block length construction, that is,

from an underlying block-cipher of block length 𝑛, it provides a hash function that outputs hashes

of size 2𝑛. The second advantage is the fact that all double-block-length hash constructions with

optimal security bounds make at least two calls to the block-cipher per round. Hirose’s construction

makes exactly two. In addition, the two calls are independent, and consequently executed in parallel.

This provides a runtime comparable to single block length constructions from PGV [49] which

make a single call to the block-cipher, and considerably better black-box security levels [11].

The complexity of the CPRF circuit shown in Table 5 refers to the Rasta block cipher, operating

with 256 bit long output. The C𝐻 circuit refers to the Rasta construction with 128 bit long output,

being evaluated twice as part of the Hirose construction, which for this specific case gives the same

values. Rasta was chosen to be presented in the table as they explicitly give the number of AND

gates used in their protocol (for this same reason, these lines on the table only count and gates),

while other constructions only mention their multiplicative depth.

C𝒔𝒄𝒂𝒍𝒆 takes a uniformly distributed random number 𝑥 of 𝛽𝑥 bits between 0 and 2
𝛽𝑥 − 1, as

well as a number𝑚 and outputs a uniformly distributed random number between 0 and𝑚 − 1.

Considering that the number of bits 𝛽𝑚 used to represent 𝑚 is much smaller than 𝛽𝑥 , binary

circuits can implement this by multiplying the number 𝑥 by𝑚 and then throwing away the 𝛽𝑥 less

significant bits of the result.
9

C− takes a scalar 𝑦 and two vectors 𝑋 = [𝑥1, . . . , 𝑥𝑛] and 𝐵 = [𝑏1, . . . , 𝑏𝑛], outputting a vector

where the 𝑖-th position contains 𝑥𝑖 − 𝑦 if 𝑏𝑖 = 1 or 𝑏𝑖 otherwise. This can be accomplished in

binary circuits by an AND operation between 𝑦 and the vector 𝐵, followed by a simple parallel

element-wise subtraction. Arithmetic circuits can multiply yand B, followed by an element-wise

subtraction that is a SIMD operation.

C CORRECTNESS OF HOMORMORPHIC SORTITION USING PROPOSED C𝑠𝑐𝑎𝑙𝑒
Let us show that our proposal of how to implement it using binary circuit in Appendix B is

correct. The calculation of a scaled 𝑥 ′, i.e.: the multiplication of 𝑥 by𝑚 and throwing away the

𝛽𝑥 less significant bits, corresponds to the expression 𝑥 ′ = ⌊(𝑥𝑚)/𝛿⌋, because 𝛿 in this case is

2
𝛽𝑥 − 1 − (0) + 1 = 2

𝛽𝑥
. Hence, the probability of a process 𝑖 being selected is given by:

𝑃 (𝑖𝑟 = 𝑖) = 𝑃 (𝑈 [𝑖 − 1] ≤ 𝑥 ′ < 𝑈 [𝑖]) = 𝑃
(
𝑈 [𝑖 − 1] ≤

⌊𝑥𝑚
𝛿

⌋
< 𝑈 [𝑖]

)
=

𝑃

(
𝑈 [𝑖 − 1] ≤ 𝑥𝑚

𝛿
< 𝑈 [𝑖]

)
= 𝑃

(
𝑈 [𝑖 − 1] 𝛿

𝑚
≤ 𝑥 < 𝑈 [𝑖] 𝛿

𝑚

)
We can take the floor out of the probability, because the same interval given a fixed 𝑥 is described

by it since stakes are integers. The probability of 𝑖 being elected, if it was elected before is therefore 0,

as its window shall have size 0. On the other hand, if 𝑖 was never elected in the current permutation,

its probability follow the same expression of the first round of SLP, thus, provided 𝛿 ≫ 𝑚, the

election is always fair.

9
As we shall see in the proofs, the distribution of each outcome of 𝑦 deviates from a uniform distribution by at most

2
−(𝛽𝑥 −𝛽𝑚 )

.
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