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Abstract

This paper explores the use of a system of equations to factor semiprime num-

bers. Semiprime numbers are a special type of composite number that are the

product of two prime numbers. Factoring semiprime numbers is important in

cryptography and number theory. In this study, we present a method that ap-

plies a system of polynomial equations to factor semiprime number M . Where

M can be any semiprime number. In fact, we build a family of systems where

each system compose from three polynomial equations with three variables. The

results of this study show that a solution for one system results with a complete

factorization for a semiprime number. It may be possible to apply well known

algorithms, such as Gröbner method [1], to solve one of those systems for a

particular semiprime number M .
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1 Introduction

Let s1, s2, and S be any integers such that S = s1s2, then

(s2 − s1)
2 + 4S

is a perfect square. Indeed

(s2 − s1)
2 + 4S = (s2 + s1)

2.

Let M be a semiprime number and let p, q be its prime factors, where q > p.

Let d = q − p and let n and x be any integers, such that n divides M − x, then√(
M − x

n
− n

)2

+ 4(M − x) =

∣∣∣∣M − x

n
+ n

∣∣∣∣ (1.1)

is a positive integer. Thus, if
(
M−x

n − n
)2−4x is a non-negative perfect square,

then (
M − x

n
− n

)2

− 4x = d2. (1.2)

Equation (1.2) implies that

M − x

n
− n =

√
4x+ d2.

Hence, x must contain a factor t such that

x

t
− t = d.

The number x must be of the form:

(d+ j)j

where j is an integer. Let k be a positive integer less than p, then substituting

x with k(d+ k) in equation (1.2) yields(
M − (d+ k)k

n
− n

)2

− 4(d+ k)k = d2 (1.3)

Solving equation (1.3) for d we get the following two solutions

d0 = M−k2+2kn−n2

k−n = M−(k−n)2

k−n

d1 = M−k2−2kn−n2

k+n = M−(k+n)2

k+n

(1.4)
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Since d is a positive integer. The first equality of equation (1.4) implies that

|k − n| = 1 or

|n− k| = p (1.5)

Substituting k with k1 and n with n+1 in equation (1.3) yields |k1−(n+1)| = p

and from this we get k1 = k + 1. Similarly, substituting k with k2 and n with

n+2 in equation (1.3) yields |k2 − (n+2)| = p which gives us k2 = k+2. This

gives us the following system(
M−(d+k)k

n − n
)2

− 4k(d+ k) = d2

(
M−(d+(k+1))(k+1)

n+1 − (n+ 1)
)2

− 4(k + 1)(d+ (k + 1)) = d2

(
M−(d+(k+2))(k+2)

n+2 − (n+ 2)
)2

− 4(k + 2)(d+ (k + 2)) = d2

(1.6)

System (1.6) has three equations with three variables n, k, d, however this system

is dependent. We may overcome this problem by trying other functions. Let

t : Z → Z be any function, replace n with t(n) and k with u in equation (1.3).

Equality (1.5) implies that u − t(n) = p (or t(n) − u = p) and k − n = p (or

n− k = p), which gives us a system of equations

u− t(n) = p

k − n = p

from which we deduce u − k − t(n) + n = 0 or equivalently u = k + t(n) − n.

We get the following equality:M −
(
d+

(
k + t(n)− n

))(
k + t(n)− n

)
t(n)

− t(n)

2

+

−4
(
k + t(n)− n

)(
d+

(
k + t(n)− n

))
= d2

(1.7)

2 Building systems of equations with d0

Based on equation (1.7) we can deduce a new system of three equations with

three variables k, n and, d. We may find three functions t1, t2, t3 : Z → Z and

replace t(n) with t3(n) to get the third equation, t(n) with t2(n) to get the

second equation, and finally t(n) with t1(n) to get the first equation. The key

here is to select the functions t1, t2, and t3 in such a way that our system has a
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unique solution, where |n− k| ≠ 1. When moving d2 to the left side of equality

(1.7) and multiplying it with t2(n), the left side of this equality becomes:

ϕ(t, n, k, d) :=

((
M −

(
d+

(
k + t(n)− n

))(
k + t(n)− n

))
− t2(n)

)2

−4t2(n)
(
k + t(n)− n

)(
d+

(
k + t(n)− n

))
− t2(n)d2

(2.1)

If t is a polynomial function in R with integral coefficients, then ϕ can be viewed

as a polynomial function from R3 to R. In this case we also denote the function

ϕ(t, n, k, d) with ϕt(x, y, z). We thus get a system of polynomial equations:

ϕt1(x, y, z) = 0

ϕt2(x, y, z) = 0

ϕt3(x, y, z) = 0

(2.2)

3 Building systems of equations with d1

The problem with d0 is that the variant of system (1.7) is infinite, any integer

n, k such that |n− k| = 1 satisfying this system. However, applying solution d1

in equality (1.4) and requiring that n, k be positive integers implies that

k + n = p. (3.1)

Replacing n with t(n) and k with u in equation (1.3) we get the following system

u+ t(n) = p

k + n = p
(3.2)

from which we deduce u+ t(n)−k−n = 0 or equivalently u = n+k− t(n). Now

we can replace k with n + k − t(n) and n with t(n) and d with d1 in equation

(1.3) to get M−
(
d+

(
n+k−t(n)

))(
n+k−t(n)

)
t(n) − t(n)

2

−4
(
n+ k − t(n)

) (
d+

(
n+ k − t(n)

))
= d2

(3.3)

Since t(n) relies on the second equality of (1.4) and since t(n) differs from n, the

first solution in (1.4) won’t solve equality (3.3). Hence, by replacing t(n) with

polynomial t1(n) with positive coefficients we get two independent polynomials.
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Let us denote

ψt(n, k, d) :=
(

M−(d+n+k−t(n))(n+k−t(n))
t(n) − t(n)

)2

− 4
(
d+ (n+ k − t(n))

)(
n+ k − t(n))

)
− d2

then equality (3.3) becomes

ψt(n, k, d) = 0. (3.4)

If we set t(n) = n, then equation (3.4) is equivalent to (1.3). However, if poly-

nomial t(n) differs from n, then solution d0 is lost. Hence, for any polynomial

t2(n) with positive integers that differs from n, polynomials ψn and ψt2(n) are

independent.

We can repeatedly use the result u = n+ k − t(n), obtained from system (3.2),

to get the following system of three polynomial equations with three variables:

ψt1(n, k, d) = 0

λt2(n, k, d) = ψt1(t2(n), n+ k − t(n), d) = 0

ψt1(t3(n), n+ k − t(n), d) + λt2(t3(n), n+ k − t(n), d) = 0.

(3.5)

If polynomials t1, t2, and t3 differ in pairs and having non-negative integers and

if none of these polynomial is zero, then none of the polynomial in system (3.5)

depends on the other.

4 Conclusions

The RSA cryptosystem [4] as well as all public key cryptography implementa-

tions rely on the complexity of semiprime factorization. Mathematical attacks

based on known relations, such as Pythagorean primes [3] or the use of a polyno-

mial of third degree order [6] have been recently proposed for potential methods

for factoring semiprimes numbers. When it comes to factoring large semiprime

numbers, well known existing algorithms may consume too much memory and

running time. Other algorithms, such as the firefly algorithm [5], may address

some of these issues [2].

In this article the problem of semiprime factorization has been attacked by ex-

ploiting relationships between M and two different numbers, that are less than

M . We have used only quadratic relationships to construct a family of systems,
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where each of the system has three polynomial equations with three variables.

Finding a solution for one of these systems may lead to a complete factorization

of the semiprime number M .
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