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Abstract. Grover’s algorithm is a very versatile cryptanalytical tool.
Even though it doesn’t provide an exponential speed-up, it still changed
the cryptographic requirements all over the world. Usually, Grover’s al-
gorithm is executed with a fixed well-defined function indicating good
states. In this paper, we want to investigate what happens if the function
is changed over time to mark less and less good states. This is achieved
by considering a family of s-long punctured ciphertexts. We compute the
amplitudes after 2s/2 steps of an adjusted Grover’s algorithm proposed
by Zheng et al. in Nested Quantum Search Model on Symmetric Ciphers
and Its Applications (2023). We use the amplitudes to reason that such
an approach always leads to a worse run-time when compared to the
näıve version. We also indicate at which point in Zheng et al. the coun-
terintuitive nature of quantum computation leads to false assumptions.
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1 Introduction

When discussing the power of quantum computers, Grover’s algorithm is often
treated as an obvious argument to double the key length. The premise, no matter
how strong, is simple enough that there is not much space left for improvements
other than implementations of the oracle. This is even more amplified by the
proofs of optimality of Grover’s algorithm [4]. This, and the esoteric nature of
quantum computation, can often lead to wrong assumptions about its runtime.
In this paper, we want to investigate why intuitive arguments fail when discussing
Grover’s speed-up.

The inspiration for this paper was a publication by Zheng et al. [5]. They
suggested an iterated (nested) approach, where for a set of punctured ciphertexts
(z1, z2, ..., zr), one investigates the sets of keys K1,K2, ...,Kr such that Ki = {k :
fi(k) = zi ∧ k ∈ Ki−1}. In this case, a punctured ciphertext is a string created
by projecting the ciphertext onto a subset of its bits. One can also consider what
changes when we define Ki as Ki = {k : fi(k) = zi}, we will shortly mention this
case in Section 4. The idea is to begin with a whole key space K0 = {k ∈ {0, 1}n}
and start searching for the consecutive key sets using oracles Ozi :

K0

Oz1−−→ K1

Oz2−−→ K2

Oz3−−→ ...
Ozr−−→ Kr
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Since for all i : Ki+1 ⊂ Ki, for a good encryption function the sets will usually
drop keys at a constant rate depending on the size of the punctured ciphertext.
In fact, for an s-long punctured ciphertext, each round finds |Ki| out of |Ki−1|
keys with |Ki−1|

|Ki| = 2s. The assumption then is that this search with Grover

would require
√
2s steps. For r := n/s with high probability, Kr consists of a

single key that delivers a correct punctured ciphertext for all i = 1, ..., r. This
results in a runtime of

√
2s ·n/s, which if s is chosen to be 2, gives us polynomial

runtime of n.
We will first introduce the notation used throughout the paper, and briefly

introduce Grover’s algorithm [2] and its iterated version [5]. In Section 3, we
introduce methods and apply them to compare the two approaches. Finally, we
will give an intuitive argument why the mentioned technique will not work.

2 Notation

Let E : {0, 1}n × {0, 1}n → {0, 1}n be an encryption function with

E : (k, p) 7→ c.

Further, for a fixed plaintext-ciphertext pair (P,C), define F : {0, 1}n → {0, 1}n
with

F (k) = E(k, P )

and for some index-set I:

FI(k) =
(
E(k, P )

)
|I .

In this case x|I is a projection of x on the bits in I. If |I| = s, FI(k) is an
s-bit punctured ciphertext of P . We are interested in finding a key k′ such that
F (k′) = C. This also implies that for any I ⊆ {1, 2, ...n}, FI(k

′) = CI .

2.1 Grover’s algorithm

In this section, we will introduce Grover’s algorithm [2] and the notation we use
to describe it. We begin by introducing the setting in which the algorithm is
considered.

Statement 1. Let f : {0, 1}n → {0, 1} be an arbitrary boolean function with
|f−1(1)| ≥ 1. There exists a quantum algorithm A that, given oracle access to a

unitary version of f , finds an x : f(x) = 1 in O(
√

2n

|f−1(1)| ) time.

The original algorithm consists of multiple identical steps, each of them having
2 phases:
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– for a function f we mark the states |x⟩ which fulfil the clause f(x) = 1 using
Uf :

Uf |x⟩ |y⟩ =

{
|x⟩ |¬y⟩ , if f(x) = 1

|x⟩ |y⟩ , otherwise.

We can then use the second register to obtain mapping

|x⟩ |f(x)⟩ 7→ (−1)f(x) |x⟩ |0⟩ .

– we apply Grover’s diffusion operator to reflect each amplitude by the mean
of all amplitudes. This can be achieved by applying Us = 2 |m⟩ ⟨m| − Id,

where |m⟩ = 1√
2n

∑2n−1
i=0 |i⟩.

In our setting the function f will be defined as:

f(k) =

{
1, if F (k) = C

0, otherwise.

Upon the last step, we can apply the Uf again and measure the second register.
When |1⟩ is measured, we know that all the x values in the superposition in first
register fulfil the clause f .

Algorithm 1: Grover’s algorithm

Input : Uf , K = |{k : f(k) = 1}|, L = ⌊ 2n

K
⌋

1 Start with a uniform superposition |s⟩ |y⟩ = 1√
2n

∑2n−1
k=0 |k⟩ |0⟩

2 for step in range(
√
L) do

Grover step:
3 Negate amplitude of the states marked by Uf

4 Apply Grover’s diffusion operator to adjust the amplitudes

5 Measure the |y⟩ register
6 if |y⟩ = |1⟩ then
7 |s⟩ = 1

K

∑
k:f(k)=1 |k⟩

Output: |s⟩, the uniform superposition of all keys fulfilling the clause f

2.2 Iterated version

In this section, we will introduce the notation used for iterated version of Grover’s
algorithm from [5]. For iterated (nested) approach, the algorithm consists of
multiple iterations. We need a set of punctured ciphertexts (z1, z2, ..., zr), these
are valid ciphertexts projected to some subset of bits of the original ciphertext.
These can be generated by one or multiple ciphertexts. We will assume they are
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generated from a single ciphertext (and therefore single plaintext) for the ease of
notation, but this must not be the case. Define Ki = {k : Fi(k) = zi∧k ∈ Ki−1},
with (Fi)1≤i≤r being a family of projections of the original F function. We start

off with an Assumption 1 which will help us determine the ratio |Ki|
|Ki−1| .

Assumption 1. [5] For a strong pseudo-random function family (Fm)m∈M ,
Fm : {0, 1}n → {0, 1}s, a fixed vector (correct key) k′ and an arbitrary vector
(key) k, the probability of a collision is:

Prk′ ̸=k

(
Fm(k′) = Fm(k)

)
= 2−s

Assumption 2. For a well-designed encryption function E(·, ·) with a fixed
plaintext P , if given any r independent index-sets, then the corresponding func-
tions F1, ..., Fr are pairwise independent.

The Assumption 1 and Assumption 2 tell us that for two independent index-sets,
given the set of keys Ki−1, each key k ∈ Ki−1 will fulfil the clause Fi(k

′) = Fi(k)
with probability 2−s. This means ∀1 ≤ i ≤ r:

|Ki|
|Ki−1|

=
|Ki−1| · 2−s

|Ki−1|
= 2−s,

so in each iteration we only keep 2−s of the previous keys.
Each iteration consists of a classical Grover search for a changing punctured

function fi:

– choose an index i
– define Ufi as

Ufi |x⟩ |y⟩ =

{
|x⟩ |¬y⟩ , if fi(x) = 1

|x⟩ |y⟩ , otherwise,

for fi defined as:

fi(k) =

{
1, if Fi(k) = zi ∧ k ∈ Ki−1

0, otherwise.

i indexes a changing subset of bits of the ciphertext C.
– perform standard Grover search as in Algorithm 1 using Ufi .

After sufficiently many steps are repeated, as in classical Grover, we can apply
Ufi again and measure the second register to get a superposition of all keys
fulfilling the clause |ϕ⟩ = 1√

|Ki|

∑
k∈Ki

|k⟩. This concludes the i’th iteration and

we move on to the next punctured ciphertext.
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Algorithm 2: Iterated Grover by [5]

Input : Uf1 , Uf2 , ..., Ufr , a constant rate L = |Ki−1|
|Ki| = 2s

1 Start with a uniform superposition |s⟩ |y⟩ = 1√
2n

∑2n−1
k=0 |k⟩ |0⟩

2 for i in 1 to r do
i’th Grover iteration:

3 Use Ufi as the oracle for Grover’s algorithm with |s⟩ |y⟩ as input:
4 for step in range(

√
L) do

Grover step:
5 Negate amplitude of the states marked by Ufi
6 Apply Grover’s diffusion operator to adjust the amplitudes

7 Measure the |y⟩ register
8 if |y⟩ = |1⟩ then
9 |s⟩ = 1

|Ki|
∑
k:fi(k)=1 |k⟩

10 if |y⟩ = |1⟩ then
11 |s⟩ = |k′⟩

Output: k′, the correct key that fulfills all the clauses f1, ..., fr

We finish by applying the last punctured function fr one more time and
measuring the second register. If a |1⟩ is measured, the value in the first register
holds the correct key k′.

3 Comparison of amplitudes in two cases

In this section we will compare the behaviour of the amplitudes in the scenario
described in [5] and standard Grover’s algorithm. We will prove that a single it-
eration of the nested approach results in a worse amplitude distribution (needing
more follow-up Grover’s steps to land at a comparable state) than if we perform
the same amount of steps immediately searching for the single correct key.

We start by introducing a useful theorem which lets us compare the states of
quantum registers. It uses the amplitudes distribution to estimate the amount
of steps needed to guarantee the highest success rate of the measurement.

Theorem 1. [1] Let f : {0, 1}n → {0, 1} be a boolean clause. Further, let k|τ⟩(t)
be the average over amplitudes of the keys which fulfil the clause f (correct keys)
at time t for quantum state |τ⟩. Analogously, let l|τ⟩(t) be the average amplitude
of the keys which don’t fulfil the same clause f (incorrect keys). Finally, let
N = 2n, and K be the amount of the correct keys K := |f−1(1)|. Then:

1. C(t) = 2
N

(
(N −K) · l|τ⟩(t)−K · k|τ⟩(t)

)
2. k|τ⟩(t+ 1) = C(t) + k|τ⟩(t)

3. l|τ⟩(t+ 1) = C(t)− l|τ⟩(t).

Let I ⊆ {1, . . . , n} be a set with s elements. In this case FI produces a
punctured ciphertext of length s. Define our F1 from Algorithm 2 as the FI
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function (and by extend, the f1 clause is fI). By Assumption 2, to find a super-
position of only the keys in K1 we would need a single iteration of Algorithm 2,

which requires
√

2n

2n−s = 2s/2 Grover steps. After the measurement in step 7 of

Algorithm 2, the resulting quantum state would be:

|ψ⟩ =
√

1

2n−s

∑
k∈K1

|k⟩ .

Now assume we want to find a specific key k′ in |ψ⟩.
From Theorem 1 we know, that the runtime of Grover’s algorithm for ar-

bitrary amplitude distribution depends only on the average amplitude of the
correct and incorrect keys.

Proposition 1. For the state |ψ⟩ achieved after one iteration of Algorithm 2
with 2s/2 Grover steps, we have:

k|ψ⟩(2
s/2) =

√
1

2n−s

l|ψ⟩(2
s/2) ≈

√
2n−s

2n

Proof. In our scenario, the only correct key is k′:

k|ψ⟩(2
s/2) = 1 ·

√
1

2n−s
=

√
1

2n−s

By the same formula, for the incorrect states we have:

l|ψ⟩(2
s/2) =

(
(2n−s − 1) ·

√
1

2n−s

)
+

(
(2n − 2n−s) · 0

)
2n − 1

=

2n−s
√
2n−s

− 1√
2n−s

2n − 1

=

√
2n−s

2n − 1
− 1√

2n−s(2n − 1)

≈
√
2n−s

2n

The value of l|ψ⟩(2
s/2) is computed as the average of the 2n−s− 1 incorrect keys

in KI each with amplitude
√

1
2n−s , and the keys in K0 \ KI with amplitude

0.

Next, we want to compare this result with the state of the register if we
would immediately start the search for k′ instead of K1 (this would correspond
to performing standard Grover’s search, not the iterated approach).
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Proposition 2. For the state |ϕ⟩ achieved after 2s/2 Grover steps of Algo-
rithm 1, we have:

k|ϕ⟩(2
s/2) ≈

√
4

2n−s
+ 2−n/2

l|ϕ⟩(2
s/2) ≈

√
2n−s

2n
·
√
2s.

Proof. The state |ϕ⟩ at time t can be described as [3]:

|ϕt⟩ = sin θt |k′⟩+ cos θt

(√ 1

2n − 1

∑
k ̸=k′

|k⟩
)

=: sin θt |k′⟩+ cos θt |k′⊥⟩ ,

with θ = arcsin 1√
2n

. For small values, we know

sin(x) ≈ x, (1)

so θ ≈ 1
2n/2 . Further, θt = (2t+ 1)θ, so for t = 2s/2 we have:

θ2s/2 = (2 · 2s/2 + 1) ·
√

1

2n

= 2
s−n
2 +1 +

1

2n/2

=

√
1

2n−s−2
+ 2−n/2

=

√
4

2n−s
+ 2−n/2.

Using (1) we get:

k|ϕ⟩(2
s/2) = sin θ2s/2 = sin

(√ 4

2n−s
+ 2−n/2

)
≈

√
4

2n−s
+ 2−n/2.

Further, using Pythagorean trigonometric identity, we know:

cos θ2s/2 =

√
1− sin2 θ2s/2 =

√
1−

(√ 1

2n−s−2
+ 2−n/2

)2

≈
√

2s · 2n−s
2n
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and the average amplitude of an incorrect state is:

l|ϕ⟩(2
s/2) =

√
1

2n
· cos θ2s/2

≈
√

1

2n
·
√

2s · 2n−s
2n

=

√
2n−s

2n
·
√
2s.

This means that k|ϕ⟩(2
s/2) > k|ψ⟩(2

s/2) resulting in the higher probability to
measure k′ in |ϕ⟩ than in |ψ⟩ and less following iterations of Grover’s algorithm
to arrive at the desired state.

Further, one must notice that l|ϕ⟩(2
s/2) ≈

√
2s ·l|ψ⟩(2s/2). Counter-intuitively

this results in state |ϕ⟩ needing fewer Grover steps to arrive at the desired distri-
bution. This is caused by the fact that the amplitudes follow the corresponding
recurrence (by Theorem 1):

k(t+ 1) = C(t) + k(t)

l(t+ 1) = C(t)− l(t)

where C(t) is the doubled mean of all the states. Bigger value of l|ϕ⟩(2
s/2) means

the updates of k increase the amplitudes of the correct states (decrease the
amplitudes of the incorrect states) quicker.

Finally, we would like to note that the evaluation time of the function Fi
should not be much higher than that of the function F . Even the näıve ap-
proach of simply computing F and only considering the interesting bits can be
implemented with a constant time overhead (e.g. since all punctured ciphertexts
are derived from the same message, instead of picking a new set of indices for
projection we can just expand the current one).

4 Discussion

As seen in the previous section, directly searching for the single correct state
brings a better result than the iterated approach. An equally distributed ampli-
tude among the incorrect states gives us a higher amplitude amplification for the
correct state. Equally important, the amplitude of the correct state after 2s/2

steps is higher in the case of standard Grover’s approach.
First, we want to highlight the faulty intuition when considering the search

in a partially collapsed quantum state:

|ϕ⟩ = 1√
|Ki−1|

∑
k∈Ki−1

|k⟩ .
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Both of Grover’s iteration steps, the negation of the correct amplitudes and
computation of the mean of all amplitudes, are implemented over the whole
register. This means that states |k⟩ ̸∈ Ki−1 with 0 amplitude will be reintroduced
into the superposition. Therefore, we do not search in key space of size |Ki−1|
but in K0 with non-uniform amplitudes. To overcome this, we would have to
define Grover’s operators over Ki−1, meaning we need to know which exact keys
are in Ki−1 defeating the purpose of the previous i− 1 searches.

Another argument could be the previously mentioned optimality of Grover’s
search [4]. It states that any algorithm, which accesses the oracle negating the
amplitude of the correct states, requires at least as many oracle queries as stan-
dard Grover. One could question whether the special structure of the nested
approach plays any role. After all, we are dropping keys at a constant rate after
each measurement, which is only the case for good cryptographic functions, not
for any arbitrary search problem. However, we draw attention to the so-called
Deferred Measurement Principle. It states that delaying measurements until the
very end of a quantum computation does not affect the probability distribution
of the final outcome. Therefore, skipping steps 7-9 of Algorithm 2 does not affect
the probability of success, nor the outcome of the procedure. In other words, the
rate at which we drop the keys has no impact on the required amount of Grover’s
iterations, only the rate of the final correct keys to the whole space.

Finally, we wanted to mention the different behaviour if we define the sets
Ki as Ki = {k : fi(k) = zi}. The difference is that now the correct states might
also have a 0 amplitude. In fact, for a good cipher, we would on average expect
only a few of the states from Ki−1 to also be in Ki (besides the one correct key).
This means that the average over the correct keys would be

k|ψ⟩(2
s/2) ≈

√
1

2n−s
· 1

2s−ϵ

which is significantly smaller than in any other previously mentioned case. This,
however, should not be a surprise, since the set of correct keys diverges in each
iteration, and the one correct key which is present in each of them has very little
influence on the average amplitude of the correct keys.
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