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Abstract. Fully homomorphic encryption suffers from a large expan-
sion in the size of encrypted data, which makes FHE impractical for
low-bandwidth networks. Fortunately, transciphering allows to circum-
vent this issue by involving a symmetric cryptosystem which does not
carry the disadvantage of a large expansion factor, and maintains the
ability to recover an FHE ciphertext with the cost of extra homomor-
phic computations on the receiver side. Recent works have started to
investigate the efficiency of TFHE as the FHE layer in transciphering,
combined with various symmetric schemes including a NIST finalist for
lightweight cryptography, namely Grain128-AEAD. Yet, this has so far
been done without taking advantage of TFHE functional bootstrapping
abilities, that is, evaluating any discrete function “for free” within the
bootstrapping operation. In this work, we thus investigate the use of
TFHE functional bootstrapping for implementing Grain128-AEAD in a
more efficient base (B > 2) representation, rather than a binary one. This
significantly reduces the overall number of necessary bootstrappings in a
homomorphic run of the stream-cipher, for example reducing the num-
ber of bootstrappings required in the warm-up phase by a factor of ≈ 3
when B = 16.

1 Introduction

Despite its privacy advantages in cloud services, Fully Homomorphic Encryp-
tion (FHE) has a notable drawback of expanding the size of encrypted data to
a significant extent, which limits its practicality for low-bandwidth networks.
However, transciphering provides a solution by using a symmetric cryptosystem
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that does not result in a large expansion factor and still allows the recovery of
an FHE ciphertext with extra computation on the receiver’s end.

Previous research [BBS22] has shown the effectiveness of TFHE [CGGI18] as
the FHE layer in transciphering, combined with various symmetric schemes such
as Grain128-AEAD [HJMM06], which is a finalist for NIST call for lightweight
cryptography. The functional bootstrapping feature of TFHE allows the evalu-
ation of any function with the bootstrapping operation, leading to a significant
improvement in transciphering performance.

This work explores the utilization of TFHE’s functional bootstrapping to
implement the boolean operators which are required for updating the internal
state of a stream-cipher. The approach involves representing the internal state
of the stream-cipher using decomposition in a base B (B > 2) instead of a
binary one. This results in reducing the necessary number of bootstrappings in
a homomorphic run of the stream-cipher by a factor of log(B). As such, this
approach is expected to provide a notable speedup on the server side.

1.1 Transciphering

Transciphering, also referred to as Proxy-reencryption, uses a symmetric cryp-
tosystem as a way of securely compressing FHE ciphertexts prior to their trans-
mission to the cloud. Regarding symmetric cryptosystems, the expansion factor
is approximately equal to 11. Meanwhile, decompressing the ciphertext returns
a full-size FHE ciphertext that will be used as input to the desired computation
on the cloud side.

The main idea behind transciphering is to reduce the size of homomorphi-
cally encrypted data to be sent to the Cloud by encrypting it symmetrically
instead, and preserving the ability to recover a homomorphic encryption of
the initial data. To do so, a client encrypts his message m with a symmet-
ric encryption scheme as: SYM.EncSYM.sk(m), and encrypts the symmetric key
SYM.sk with a homomorphic cryptosystem as: FHE.EncFHE.pk(SYM.sk). At the
reception of (SYM.EncSYM.sk(m), FHE.EncFHE.pk(SYM.sk)), the Cloud server ho-
momorphically runs the symmetric cryptosystem’s decryption function. That
is, he evaluates SYM.Dec using the FHE encryption of the symmetric key:
FHE.EncFHE.pk(SYM.sk) to get FHE.EncFHE.pk(m).

With a stream-cipher, the client encrypts his message m with a keystream
ks as: m ⊕ ks, where ⊕ is the XOR operator. Then, he sends m ⊕ ks and the
stream-cipher secret key FHE.EncFHE.pk(SYM.sk) to the Cloud server. The latter
runs the stream-cipher warm-up homomorphically with FHE.EncFHE.pk(SYM.sk)
to get: FHE.EncFHE.pk(ks). Then, he computes m ⊕ ks ⊕ FHE.EncFHE.pk(ks) to
obtain: FHE.EncFHE.pk(m).

The size of the plaintext m can be arbitrarily large, whereas the size of the
symmetric key SYM.sk is constant and typically small enough to be homomorphi-
cally encrypted and transmitted only once. This results in compression, which

1 Symmetric algorithms will usually lead to negligible or small overheads due to some
padding rule.
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comes at the expense of running the symmetric scheme’s decryption function
homomorphically on the server side.

In terms of security, as most practically-used symmetric encryption algo-
rithms do not have formally established indistinguishability properties, it should
be emphasized that using transciphering jeopardizes the IND-CPA property of
the FHE scheme (FHE schemes can be at most IND-CCA1 and all the schemes
presently used in practice are only IND-CPA). This should however not be con-
sidered an issue in practice, provided that symmetric encryption more often
than not teams with provably-secure public-key encryption for efficiency reasons
in practical scenarios, and FHE is no exception. Nevertheless, if we assume a
perfect PRF on the symmetric side, the resulting construction would be IND-
CPA [CCF+18a].

Yet, one important point is to choose the key size of the symmetric encryp-
tion algorithm consistently with the parameters of the FHE scheme. At present,
common practice generally targets FHE security parameters λ of around 128
bits and not more as FHE performances significantly decreases in the parameter
regimes of larger λ. As such, at present, transciphering should consider symmet-
ric algorithms with 128 bits keys.

1.2 Related work

In [CCF+18a] authors introduced transciphering using a stream-cipher, as a
secure and efficient way of compressing FHE ciphertexts. They also provide the
first FHE-friendly 80-bits-key stream-cipher, Trivium, which was later extended
to Kreyvium [CCF+18b] that accommodates a 128-bits key.

With the advent of TFHE, and its fast bootstrapping operation, multiplica-
tive depth is no longer the bottleneck in fast-bootstrapping-based FHE. There-
fore, the possibility to homomorphically evaluate more sophisticated ciphers
became reachable. In [HMR20] authors evaluate FiLip with third generation
homomorphic schemes GSW [GSW13] and TFHE. [CHK+20] propose a stream-
cipher dubbed HERA suited for a hybrid HE framework allowing switching from
CKKS [CKKS16] to BFV [FV12]. On the other hand, [DGH+21] provides a
framework to build transciphering schemes, as well as the a stream-cipher called
PASTA, the last one of the RASTA family of ciphers. PASTA is well suited for
HE schemes supporting batching such as BGV [BGV12] and BFV [FV12].

Homomorphic evaluations of block-ciphers also has been studied under both
levelled and bootstrapping-based HE schemes. Low-MC [ARS+15] was designed
as an attempt to provide a minimal multiplicative-depth yet secure block-cipher
suited for levelled HE schemes. Other attempts to provide optimized FHE imple-
mentations of the advanced encryption standard AES were investigated [GHS12a]
but remain unpractical for real-life client/server use-cases. Subsequent works at-
tempting to design FHE-friendly ciphers investigate the design of generic smaller
stream or block-cipher components such as reduced-multiplicative depth Sboxes
[BP12] or boolean functions [CM19]. These components can then be integrated
in the design of FHE-friendly ciphers, providing a reasonable security/FHE-
friendliness tradeoff.
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As for TFHE, in [GBA21], ZB plaintext spaces of more than two elements
were investigated. In addition, many novel techniques [GBA21, KS22, OKC20,
CZB+22] investigated TFHE functional bootstrapping for evaluating discrete
non-linear functions over integers represented by their digits decomposition in a
base B > 2.

1.3 Contribution

Unlike previous works where the efforts were made to build FHE-friendly ciphers
that accommodate an FHE scheme or a class of FHE schemes 2 we focus on
existing and standardized symmetric schemes. We provide a generic technique
which reduces the number of bootstrappings required to transcipher from a
symmetric ciphertext to a TFHE one, that applies to a wide range of ciphers.
We validate our approach by providing an efficient implementation of Grain128-
AEAD with TFHE. Indeed, thanks to its bootstrapping, TFHE offers greater
freedom in the choice of the symmetric cryptosystem used for transciphering,
allowing to perform more operations and relaxing the constraints imposed by
the multiplicative depth 3.

Overall, we improve the work of Bendoukha et al., [BBS22], in which the
authors benchmarked implementations of transciphering with various stream-
ciphers (Trivium, Kreyvium and Grain128-AEAD) with TFHE, using the straight-
forward representation of the internal states of stream-ciphers as arrays of TFHE
encrypted bits. In this work, we investigate a digit representation of these stream-
ciphers internal states in a sequence of k digits in base B.

For this purpose we redefine boolean operations in bases B > 2 making the
most of TFHE’s functional bootstrapping. Reducing the number of ciphertexts
reduces the number of bootstrappings needed to update the internal state of a
stream-cipher by a factor log2(B). Since the bootstrapping is by far the most
time-consuming operation in TFHE, this technique results in a significant speed-
up of the decompression phase on the server side.

To illustrate the speed-up brought by this technique, we implement a NIST fi-
nalist for lightweight cryptography, Grain128-AEAD [HJMM06], using the TFHE
library 4. Our implementation is 40% faster than the one from [BBS22] with bi-
nary ciphertexts representation of cipher’s internal state. The choice of Grain128-
AEAD is motivated by the fact that besides (so far) unpractical attempts to run
AES in the homomorphic domain [GHS12b], no other works investigates the use
of a standard cipher in a transciphering construction. Therefore, our work aims
at demonstrating the feasibility and practicality of standard ciphers under TFHE.
In addition, its lightweight design induces a small number of gates which trans-
lates in a small number of homomorphic operations when using TFHE (which is

2 based on their approach : bootstrapping or levelled, and their plaintext-space: binary,
real, or Zq

3 The multiplicative depth of a circuit is the maximum number of successive multipli-
cations in the circuit.

4 https://github.com/tfhe/tfhe
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not subject to multiplicative depth contraints). Additionally, it is also amenable
to efficient x-bits implementations (e.g., as in [BLSK19]) which represents a good
starting point for using TFHE beyond gate-bootstrapping. Grain128-AEAD pro-
vides also a MAC computation along with the encryption procedure. This feature
can be used complementarily to transciphering in order to perform an oblivious
integrity check on the server side as described in [BBS21].

1.4 Paper organization

The remainder of this paper is organized as follows. After recalling the principle
of transciphering as a generic framework in the introduction (in Section 1.1),
we review our target FHE cryptosystem TFHE in Section 2. Then, in Section 3,
we describe how to use TFHE functional bootstrapping for computing boolean
operations efficiently in the homomorphic domain. Indeed, we specify boolean
operations for encrypted digits, from bases 4 and 16. In Section 4, we apply
our new operations to transciphering with the stream-cipher Grain128-AEAD
[HJM+21]. Finally, we discuss implementation details and performance results
in Section 5 before concluding the paper.

2 TFHE

2.1 Notations

We refer to the real torus by T = R/Z. T is the additive group of real num-
bers modulo 1 (R mod[1]) and it is a Z-module. TN [X] denotes the Z-module
R[X]/(XN + 1) mod[1] of torus polynomials, where N is a power of 2. R is the
ring Z[X]/(XN + 1) and its subring of polynomials with binary coefficients is
BN [X] = B[X]/(XN + 1) (B = {0, 1}). Finally, we denote respectively by [x]T,
[x]TN [X] and [x]R the encryption of x over T, TN [X] or R. The plaintext space
(prior to encoding as torus elements) with respect to the FHE encryption layer
is denotedM.

We refer to vectors by bold letters. ⟨x,y⟩ is the inner product of two vectors
x and y. We denote matrices by capital letters, and the set of matrices with m

rows and n columns with entries sampled in K by Mm,n(K). x
$←− K denotes

sampling x uniformly from K, while x
N (µ,σ2)←−−−−− K refers to sampling x from K

following a Gaussian distribution of mean µ and variance σ2.

2.2 TFHE Structures

The TFHE encryption scheme was proposed in 2016 [CGGI16]. It introduces
the TLWE problem as an adaptation of the LWE problem to T. TFHE relies on
three structures to encrypt plaintexts defined over T, TN [X] or R:

– TLWE Sample: (a, b) is a valid TLWE sample if a
$←− Tn and b ∈ T verifies

b = ⟨a, s⟩+ e, where s
$←− Bn is the secret key, and e

N (0,σ2)←−−−−− T.
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– TRLWE Sample: a pair (a, b) ∈ TN [X]k×TN [X] is a valid TRLWE sample

if a
$←− TN [X]k, and b = ⟨a, s⟩ + e, where s

$←− BN [X]k is a TRLWE secret

key and e
N (0,σ2)←−−−−− TN [X] is a noise polynomial.

Let M ⊂ TN [X] (or M ⊂ T) be the discrete message space5. To encrypt
a message m ∈ M ⊂ TN [X], we add (0,m) ∈ TN [X]k × TN [X] to a fresh
TRLWE sample (or a fresh TLWE sample if M ⊂ T). In the following, we
refer to an encryption of m with the secret key s as a T(R)LWE ciphertext
noted c ∈ T(R)LWEs(m).
To decrypt a sample c ∈ T(R)LWEs(m), we compute its phase ϕ(c) = b −
⟨a, s⟩ = m+e. Then, we round to it to the nearest element ofM. Therefore,
if the error e was chosen to be small enough while ensuring security, the
decryption will be accurate.

– TRGSW Sample: a vector of (k + 1) · l TRLWE samples is a TRGSW
sample. To encrypt a message m ∈ R, we add m ·H to a TRGSW sample,
where H is a gadget matrix6 using an integer Bg as a basis for its de-
composition. Chilotti et al., [CGGI18] defines an external product between
a TRGSW ciphertext A encrypting ma ∈ R and a TRLWE ciphertext b
encrypting mb ∈ TN [X]. This external product consists in multiplying A
by the approximate decomposition of b with respect to H (Definition 3.12
in [CGGI18]). It yields an encryption ofma ·mb i.e., a TRLWE ciphertext c ∈
TRLWEs(ma ·mb). Otherwise, the external product allows also to compute
a controlled MUX gate (CMUX) where the selector is Cb ∈ TRGSWs(b),
b ∈ {0, 1}, and the inputs are c0 ∈ TRLWEs(m0) and c1 ∈ TRLWEs(m1).

2.3 TFHE Bootstrapping

TFHE bootstrapping relies mainly on three building blocks:

– Blind Rotate: rotates a plaintext polynomial encrypted as a TRLWE ci-
phertext by an encrypted position (cp ∈TRLWEs(p)). It takes as inputs: a
TRLWE ciphertext c ∈ TRLWEk(m), a rescaled and rounded vector of cp
represented by (a1, . . . , an, an+1 = b) where ∀i, ai ∈ Z2N , and n TRGSW
ciphertexts encrypting (s1, . . . , sn) where ∀i, si ∈ B. It returns a TRLWE
ciphertext c′ ∈ TRLWEk(X

⟨a,s⟩−b ·m). In this paper, we will refer to this
algorithm by BlindRotate. With respect to independence heuristic7 stated
in [CGGI18], the variance VBR of the resulting noise after a BlindRotate
satisfies the formula:

VBR < Vc + EBR (1)

5 In practice, we discretize the Torus with respect to our plaintext modulus. For ex-
ample, if we want to encrypt m ∈ Z4 = {0, 1, 2, 3}, we encode it in T as one of the
following value {0, 0.25, 0.5, 0.75}.

6 Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [CGGI18] for more informa-
tion about the gadget matrix H.

7 The independence heuristic ensures that all the coefficients of the errors of TLWE,
TRLWE or TRGSW samples are independent and concentrated. More precisely, they
are σ-subgaussian where σ is the square-root of their variance.
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where EBR = n

(
(k + 1)ℓN

(
Bg

2

)2

ϑBK + (1+kN)
4.Bg2l

)
.

Vc is the variance of the noise of the input ciphertext c, and ϑBK is the the
variance of the error of the bootstrapping key. Note that the noise of the
BlindRotate is independent from the noise of the encrypted position cp.

– TLWE Sample Extract: takes as inputs both a ciphertext c ∈ TRLWEk(m)
and a position p ∈ J0, NJ, and returns a TLWE ciphertext c′ ∈ TLWEk(mp)
where mp is the pth coefficient of the polynomial m. In this paper, we will
refer to this algorithm by SampleExtract. This algorithm does not add any
noise to the ciphertext.

– Public Functional Keyswitching: transforms a set of p ciphertexts ci ∈
TLWEk(mi) into the resulting ciphertext c′ ∈ T(R)LWEs(f(m1, . . . ,mp)),
where f() is a public linear morphism from Tp to TN [X]. This algorithm
requires 2 parameters: the decomposition basis BKS and the precision of the
decomposition t. In this paper, we will refer to this algorithm by KeySwitch.
As stated in [CGGI18,GBA21], the variance VKS of the resulting noise after
KeySwitch follows the formula:

VKS < R2 · Vc + En,NKS (2)

where En,NKS = nN
(
tϑKS + base−2t

4

)
.

Vc is the variance of the noise of the input ciphertext c, R is the Lipschitz
constant of f and ϑKS the variance of the error of the keyswitching key. In
this paper and in most cases, R = 1.

TFHE specifies a gate bootstrapping to reduce the noise level of a TLWE
sample that encrypts the result of a boolean gate evaluation on two ciphertexts,
each of them encrypting a binary input. TFHE gate bootstrapping steps are
summarized in Algorithm 1. The step 1 consists in selecting a value m̂ ∈ T
which will serve later for setting the coefficients of the test polynomial testv
(in step 3). The step 2 rescales the components of the input ciphertext c as
elements of Z2N . The step 3 defines the test polynomial testv. Note that for all
p ∈ J0, 2NJ, the constant term of testv·Xp is m̂ if p ∈KN

2 ,
3N
2 K and −m̂ otherwise.

The step 4 returns an accumulator ACC ∈ TRLWEs′(testv ·X⟨ā,s⟩−b̄). Indeed,
the constant term of ACC is −m̂ if c encrypts 0, or m̂ if c encrypts 1 as long as
the noise of the ciphertext is small enough. Then, step 5 creates a new ciphertext
c by extracting the constant term of ACC and adding to it (0, m̂). That is, c
either encrypts 0 if c encrypts 0, or m if c encrypts 1 (By choosing m = 1

2 , we
get a fresh encryption of 1).

Since a bootstrapping operation is a BlindRotate over a noiseless TRLWE
followed by a Keyswitch, the bootstrapping noise (VBS) satisfies:

VBS < EBS , where EBS = EBR + EN,1
KS (3)

2.4 TFHE Functional Bootstrapping

Functional bootstrapping [CJP21, KS21, YXS+21, CLOT21, CZB+22] refers to
TFHE ability of implementing a Look-Up Table (LUT) of any function through
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Algorithm 1 TFHE gate bootstrapping [CGGI18]

Input: a constant m ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(x · 1
2
) with x ∈ B,

a bootstrapping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the
TRLWE interpretation of a secret key s′

Output: a TLWE sample c ∈ TLWEs(x.m)
1: Let m̂ = 1

2
m ∈ T (pick one of the two possible values)

2: Let b̄ = ⌊2Nb⌉ and āi = ⌊2Nai⌉ ∈ Z,∀i ∈ J1, nK
3: Let testv := (1 +X + · · ·+XN−1) ·X

N
2 · m̂ ∈ TN [X]

4: ACC ← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))
5: c = (0, m̂) + SampleExtract(ACC)
6: return KeySwitchs′→s(c)

the bootstrapping. In particular, TFHE is well-suited for negacyclic function8,
as the plaintext space for TFHE is T, where [0, 1

2 [ corresponds to positive values
and [ 12 , 1[ to negative ones, and the bootstrapping step 2 of the Algorithm 1
encodes elements from T into powers of X modulo (XN + 1), and Xα+N ≡
−Xαmod[XN + 1].

3 Functional-bootstrapping-defined boolean operators

TFHE was initially presented in [CGGI16] as a bit-oriented cryptosystem. The
homomorphic operations in this setting are limited to boolean operations (homo-
morphic XOR and homomorphic AND). Addition and multiplication of integers are
defined using their respective binary circuits, and a bootstrapping is performed
after every boolean gate.

Representing the internal state of a stream-cipher as an array of ciphertexts
encrypting two bits or more allows the computation of the round function of a
given stream-cipher with less bootstrappings compared to the binary represen-
tation (where each bit is encrypted separately). A non-realistic, yet compelling
illustration, is to represent the entire internal state as a single ciphertext, and to
encode the round function of a stream-cipher in a test vector as a Zq → Zq func-
tion, where q is a large enough integer. Doing so, a single functional bootstrap-
ping would be required to update the internal state. Unfortunately, achieving
this is not practical in real-world scenarios, as it requires enormous parameters
for TFHE, resulting in computation times that are not realistic.

Our work aims at reducing the number of ciphertexts encrypting the inter-
nal state of a stream-cipher, and consequently reduces the number of necessary
bootstrappings per round of the stream-cipher. Boolean operators in higher bases
(i.e., non-binary bases) have to be redefined using Look-Up Tables (LUTs), which
perfectly complies with the functional bootstrapping supported by TFHE.

8 Negacyclic functions are antiperiodic functions over T with period 1
2
, i.e., f(x) =

−f(x+ 1
2
).
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3.1 Bitwise operators

We provide a generic approach to evaluate any Z2
B → ZB boolean function

over integer ciphertexts with M = ZB , using TFHE functional bootstrapping
and [GBA21] chaining idea.

We denote by Op the logic gate that we want to evaluate. We set:

gOp
i :

ZB → ZB

x 7→ Op(x, i)

and GOp
i (X) =

∑B−1
k=0 gOp

i (k)Xk its polynomial representation.
The test vector of our functional bootstrapping is then constructed from the

polynomial representation of the lookup table which is of degree B2 − 1:

v(X) =

B−1∑
i=0

GOp
i (X) ·XiB (4)

For two values x and y ∈ J0, B−1K, we observe that the (Bx+y)-th coefficient
of v is equal to Op(x, y).

The test vector TV Op
B of degree (N −1) used in the corresponding functional

bootstrapping procedure is constructed from v by repeating each coefficient N
B2

times, as follows:

TV Op
B (X) =

B∑
i=0

B∑
j=0

N
B2 −1∑
k=0

gOp
i (j)Xk+j· N

B2 +i·NB (5)

Once the test vector constructed, running a bootstrapping on the TLWE en-
cryption of the linear combination of (Bx+y) and the input TRLWE ciphertext

from TV Op
B , outputs a TRLWE ciphertext encryption of Op(x, y).

Fact. Let’s consider two TLWE ciphertexts c1 and c2 encrypting respectively
the integer values a and b ∈ ZB . Calling TFHE gate-bootstrapping on the TLWE
sample c1B+ c2, with a test vector constructed from v as in Equation 5 outputs
a TLWE sample encrypting the value Op(a, b) with probability9:

P(success) = P(Err(c1B+c2) ≤
1

4B2
) = erf(

1

4B2
√

B2Vc1 + Vc2 + Vrounding ·
√
2
)

where:

– erf(x) = 2√
π

∫ x

0
e−t2dt is the Gaussian error function.

– Vc1 is the variance of the error of c1.
– Vc2 is the variance of the error of c2.
– Vrounding = n+1

48N2 is the variance of the rounding operation after re-scaling
in the bootstrapping algorithm (Line 2 of algorithm 1).

9 Please refer to [CZB+22] for a complete description on how to compute this proba-
bility.
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3.2 Example: AND gate with B = 4

We consider a message m in J0, 3K as the concatenation of two bits thanks to its
binary decomposition. We describe in this example how to compute a bitwise
AND gate between the ciphertexts c1 and c2 encrypting 2 messages m1 and m2.

We refer by ANDi to the truth table of the bitwise AND gate between a message
m and i. Thus, we get:

AND0 = (0, 0, 0, 0), AND1 = (0, 1, 0, 1), AND2 = (0, 0, 2, 2), AND3 = (0, 1, 2, 3).

Then, we build a test vector TV AND
4 , as described in Equation 5, from the

polynomial

v(X) = X5 +X7 + 2X10 + 2X11 +X13 + 2X14 + 3X15

Finally, we get, by applying a functional bootstrapping to (c1 +B · c2) with
TV AND

4 as a test vector, an encryption of AND(m1,m2) by selecting the element
N
B2 · (m1 +B ·m2 + e) of the test vector where e is an error term.

Note that a similar procedure can be applied to any bitwise operator.

3.3 Byte shifts

An 8-bit implementation of stream-cipher often requires the bytes of the internal
state to be shifted left or right in order to align the bits to be operated accord-
ing to the encryption/decryption specifications. When representing the internal
state as base 2 ciphertexts, a byte shift is a literal shift (simply consisting of
memory access and copy operations). However, when a byte is represented as k
ciphertexts encrypting base B integers, operating a shift with a position that is
not a multiple of log2(B) will have the effect of propagating a carry to the next
digit, and will require additional computation of the non-linear function that
provides both the output of the shift from the digit and the carry to propagate
to the next one. The best way to compute non-linear functions in TFHE is to use
a functional bootstrapping. Hence, our technique performs log2(B)-times less
bootstrappings to compute AND, OR, and XOR operations, but an additional num-
ber of bootstrappings is required to perform the shifts. Despite this drawback,
our method succeeds in significantly reducing the overall number of bootstrap-
pings. Table 1 gives an estimation of the number of bootstrappings per round for
an 8-bits implementation of Grain128-AEAD in different bases representations.

Base 4 A base 4 ciphertext representation of a byte is composed of four digits
b = (d0, d1, d2, d3), encrypted as c = (TLWEsk(d0),TLWEsk(d1),TLWEsk(d2),
TLWEsk(d3)). Shifting by an odd position r = 2s + 1 is performed as s direct
shifts, followed by a shift by one position that implies a functional bootstrapping-
based algorithm.

We would like to extract two elements from every digit in a sequential fash-
ion: (1) the result of the shift on the current digit res(di), and (2) the carry it will
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propagate to the next digit carry(di). The carry cannot be obtained using a lin-
ear function, so we extract it by using a functional bootstrapping corresponding
to the following look-up tables (LUTs):

v+ = [0, 0, 1, 1] if r > 0
v− = [0, 1, 0, 1] if r < 0

The TRLWE test vectors TV +(X) and TV −(X) of degree (N−1) are afterwards
generated by using the same method as in Equation 5 for v+ and v−, respectively.

Once the carry from digit di is obtained, the next element to extact is the
result of the shift over di, which is equal to 2 · di mod 4. TFHE provides a
natural modulo |M| operation due to the circular nature of the torus, but any
other homomorphic evaluation of a modulo with a different moduli smaller than
|M| would require extra bootstrapping. In our case |M| = 2B2 = 32. However
we observed that the required value can be obtained using the linear combination
res(di) = (2 · di − 4 · carry(di)) + carry(di−1) if r > 0, and res(di) = (2 · di − 4 ·
carry(di)) + carry(di+1) otherwise. This provides a byte shift operation at the
cost of (at most) 3 bootstrappings, and four linear of combinations. These steps
are summarized in Algorithm 2. Note that the inserted s digits (at the beginning
or at the end depending on the sign of r) are noiseless-trivial samples of 0 10.
Thus, in subsequent computations, when evaluating a gate with an operand
equal to a noiseless-trivial sample of 0, no bootstrapping is needed 11.

Base 16 A base 16 ciphertext representation of a byte is composed of two
digits. b = (d0, d1). The carry extraction only applies to d0. To shift by a positive
position pos = 4s + r, we perform s literal ciphertexts shifts (free in terms of
bootstrappings) followed by 0 ≤ r ≤ 3 shifts involving carry-handling operations.

The three possible values for r are handled using three lookup-tables C-
LUT+

1 , C-LUT+
2 , and C-LUT+

3 such that: C-LUT+
i [d] stores the carry value that

corresponds to shifting the digit d by i positions. Once the carry is obtained from
d, we run a second bootstrapping to extract the resulting ciphertext from the
operation (d >> r) using the same approach. Three look-up tables S-LUT+

1 S-
LUT+

2 S-LUT+
3 such that S-LUT+

i [d] = (d >> i) are used to extract the resulting
digit from the shift operation. The carry is afterwards propagated to d1 followed
by an evaluation of the same shift lookup table. Therefore, (at most) three
calls to TFHE functional bootstrappings are needed to shift a byte ciphertext
representation in the internal state. Following the same reasoning as with base 4
byte shifts, in the case where pos > 4, ⌈pos4 ⌉ noiseless-trivial encryptions of 0 are
inserted at the first digits resulting in bootstrapping-free operations over these
digits in subsequent operations. The same mechanism is applied for backward

10 c = (a, b) is a noiseless-trivial encryption of 0 if ai = 0 ∀i ∈ [n] and b = 0. In other
words, it represents an encoding of 0 as TLWE or TRLWE sample.

11 The output of OR and XOR gates when one of the two operands is a noiseless triv-
ial sample of 0 is equal to the other operand, while the output of an AND gate is
a noiseless-trivial encryption of 0. The same stands for subsequent shifts of such
samples, both the carry and the results are set to noiseless trivial samples of 0.
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Algorithm 2 Byte shift with base 4

Input: 4 TLWE samples encrypting a byte b in little-endian representation 12 c =
(c0, c1, c2, c3), an odd position r = 2s + 1, and a bootstrapping key BKs→s′ =
(BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE interpretation of a secret
key s′

Output: 4 TLWE samples (ĉ0, ĉ1, ĉ2, ĉ3) encrypting b shifted by r positions in little-
endian representation.

1: if r > 0 then ▷ right shift
2: for i = 0 to (3 - s) do
3: ĉi+s = ci

4: carry(c0) = FunctionalBootstrapping(c0, TV
+(X), BK)

5: ĉ0 = 2 · c0 − 4 · carry(c0)
6: for i = 1 to 2 do
7: carry(ci) = FunctionalBootstrapping(ci, TV

+(X), BK)
8: ĉi = (2 · ci − 4 · carry(ci)) + carry(ci−1)

9: carry(c3) = FunctionalBootstrapping(c3, TV
+(X), BK)

10: ĉ3 = 2 · c3− 4 · carry(c3)
11: if r < 0 then ▷ left shift
12: for i = 0 to (3 - s) do
13: ĉi = ci+s

14: carry(c3) = FunctionalBootstrapping(c3, TV
−(X), BK)

15: ĉ3 = 2 · c3 − 4 · carry(c3)
16: for i = 2 to 1 do
17: carry(ci) = FunctionalBootstrapping(ci, TV

−(X), BK)
18: ĉi = (2 · ci − 4 · carry(ci)) + carry(ci+1)

19: carry(c0) = FunctionalBootstrapping(c0, TV
−(X), BK)

20: ĉ0 = 2 · c0 − 4 · carry(c0)
return (ĉ0, ĉ1, ĉ2, ĉ3)

byte shifts with respective S-LUT−
i and C-LUT−

i lookup tables. Algorithm 3
describes this procedure.

3.4 Stream-cipher adaptation

Representing the internal state of a stream-cipher as base B integers will have
the effect of producing the keystream as base B integers as well, but the plain-
text space with respect to the TFHE encryption layer is of size 2B2. The en-
cryption (resp. decryption) process must then be slightly adapted. In order to
take advantage from the fact that the FHE encrypted keystream is added to
a symmetrically encrypted data, which is a plaintext-ciphertext operation with
respect to the FHE encryption layer, and such operations do not increase the
noise. Thus, no bootstrapping is required in this step of transciphering.

Instead of the classical XOR between the keystream and the message (resp.
ciphertext), one makes an addition (respectively substraction) modulo 2B2 14.

14 The modulo operation is never performed per se since the sum of two elements of
ZB is at most equal to 2(B − 1).
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Algorithm 3 Byte shift with base 16

Input: 2 TLWE samples encrypting a byte b in little-endian representation 13

c = (c0, c1), a position r = 4s+ q with |r| < 8
a bootstrapping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the

TRLWE interpretation of a secret key s′

Output: 2 TLWE samples (ĉ0, ĉ1) encrypting b shifted by r positions in little-endian
representation.

1: if r > 0 then ▷ right shift
2: if s == 1 then
3: ĉ0 ← Noiseless Trivial sample of 0
4: ĉ1 = FunctionalBootstrapping(c0, S-LUT+

q (X), BK)
5: else
6: carry(c0) = FunctionalBootstrapping(c0, C-LUT+

q (X), BK)
7: ĉ0 = FunctionalBootstrapping(c0, S-LUT+

q (X), BK)
8: ĉ1 = FunctionalBootstrapping(c1, S-LUT+

q (X), BK)
9: ĉ1+ = carry(c0)

10: if r < 0 then ▷ left shift
11: if s == 1 then
12: ĉ1 ← Noiseless Trivial sample of 0
13: ĉ0 = FunctionalBootstrapping(c0, S-LUT−

q (X), BK)
14: else
15: carry(c1) = FunctionalBootstrapping(c1, C-LUT−

q (X), BK)
16: ĉ1 = FunctionalBootstrapping(c1, S-LUT−

q (X), BK)
17: ĉ0 = FunctionalBootstrapping(c0, S-LUT−

q (X), BK)
18: ĉ0+ = carry(c1)

return (ĉ0, ĉ1)

Indeed, it would require a functional bootstrapping to evaluate a modulo B
addition of plaintext-ciphertext elements when the ciphertext lies in a greater set
than ZB (the keystream digits). This modification of the encryption/decryption
process has no effect whatsoever on the security of the stream-cipher.

Plaintext space size limitations. The bootstrapping operation as described in
[BMMP18] stores all the elements of a plaintext spaceM as coefficients of the
test vector. The potential lack of precision in the BlindRotate operation due
to the noise of the input ciphertext is solved, up to a certain level, thanks to
the redundancy of the coefficients in the test vector. Indeed, in practice, |M|
divides N so every element in M is repeated consecutively N

|M| times in the

TRLWE polynomial which will be rotated. Therefore, if the input ciphertext’s
noise and the rounding error make the BlindRotate operation fail to bring
the target coefficient of the test vector to the constant term, then the added
redundancy ensures that any adjacent coefficient by at most N

2|̇M|
− 1 positions,

to the left or right, according to the sign of the error, is still equal to the target
coefficient. Increasing the size ofM reduces the redundancy factor, and thus, the
precision of the (functional) bootstrapping. IncreasingN allows to proportionally
increase the size ofM without loss of precision in the bootstrapping. However,
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this solution also increases the size of a TRLWE ciphertext, and the runtime of
the bootstrapping operation, which is quasi-linear in the degree of the TRLWE
polynomial encoding the test vector. A challenging task is to find the right
balance between the size of M, the desired precision, and a parameter set for
TFHE which provides a reasonable ciphertext size, in order to still ensure a
significant speedup on the server-end. To that end, we provide a set of three
parameters-set for TFHE presented in Table 1.

4 Grain128-AEAD

Grain128-AEAD [HJM+21] is a widely-used stream-cipher that draws inspira-
tion from Grain128a [ÅHJM11]. It is a finalist in the NIST competition on
lightweight cryptography 15 and features slight modifications from its predeces-
sor. Grain128-AEAD has an Authenticated Encryption with Associated Data
(AEAD) mode, which allows for the encryption of a subset of plaintext bits us-
ing a mask d with the formula ci = mi ⊕ (ksi · di). Additionally, a larger 64-bit
MAC is computed on the encrypted data. The internal state of Grain128-AEAD
is 256 bits in length and consists of a 128-bit Non-linear Feedback Shift Register
(NFSR) and a 128-bit Linear Feedback Shift Register (LFSR), along with two
64-bit accumulator and shift registers for MAC computation.

Once warmed up with 384 rounds, Grain128-AEAD can generate two streams
of bits, namely the encryption keystream (ks) and the MAC keystream (ms),
which are extracted from the main keystream using bit parity. Specifically, ksi
is calculated as y384+2i and msi is calculated as y384+2i+1, where y383 represents
the last output bit from the warm-up phase of the cipher.

5 Experimental results

We ran single core performance tests on an 12th Gen Intel(R) Core(TM) i7-
12700H v6 @ 2.60GHz and 22GB RAM.

Table 1 shows the performance of transciphering after applying a base B ≥ 2
representation of the internal state of Grain128-AEAD. The performance met-
rics are the number of bootstrappings needed to homomorphically evaluate the
warm-up phase of Grain128-AEAD. The chosen set of parameters impacts the
runtime of a single bootstrapping operation, and therefore the runtime of entire
the warm-up operation.

With every parameter-set we aim at finding a good balance between the boot-
strapping’s runtime and its accuracy, under the constraint of a security level of
λ = 128 bits, and a circuit accuracy of 1−2−32. The runtime of the bootstrapping
operation is quasi-linear in the TRLWE polynomial degree N as well as linear in
the TLWE dimension n and the gadget decomposition parameter l [CGGI18]. As
such, we aim to minimize these parameters for better performances. The secu-
rity of the scheme is linked to the parameters n, N , and the standard deviations

15 https://csrc.nist.gov/Projects/lightweight-cryptography
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used to define the noise of TLWE ciphertexts and TRLWE ciphertexts. We use
lattice-estimator [APS15] to find secure sets of parameters for relatively small
values of n and N . The other parameters are chosen to optimize correctness
of computations under the chosen security. The selected sets of parameters are
presented in Table 1.

It is clear from Table 1 that our base 2 implementation slightly outperforms
base 2 implementations from [BBS21] (around 10% with equivalent computa-
tional resources) thanks to the introduced optimization where noiseless trivial
samples are inserted when a byte-shift is performed, resulting in bootstrapping-
free operations. The base 4 (4 ciphertexts) implementation results in a noticeable
speedup compared to base 2: 20% less bootstrappings, and 10% faster due to
larger parameters, while base 16 provides a significant improvement of almost
65% less bootstrappings compared to [BBS21]. However, base 16 warm-up time
is bigger than base 2 or base 4 times due to the use of huge parameters in order
to respect the fixed security level (λ = 128) and the bound on the error rate
(2−32).

Table 1. Summary of the performance results.

Base
2 4 16

TFHE Params

N 1024 2048 65536
n 595 740 930

log2(Bg) 5 11 32
l 4 3 1

keyswitch standard-dev. 1.26e−4 9.17e−6 3e−7

bootstrapping standard-dev. 5.6e−8 9.6e−11 1.0e−100

security level λ 128 128 128

Runtime
# of bootstrappings (warm-up circuit) 18912 16608 7718

runtime (a single bootstrapping) 13ms 17ms 92ms
runtime (warm-up circuit) 4.80min 3.98min 11.83min

Error estimation
error probability (a single bootstrapping) 2−47 2−46 2−45

error probability (warm-up circuit) 2−31 2−32 2−31.5

6 Conclusion

In this work we revisit transciphering with stream-ciphers using TFHE’s func-
tional bootstrapping by specifying a set of operators with inputs represented by
digits in base B. Despite the small adaptations that have to be taken into ac-
count when using this technique, regarding plaintext-space size, the decryption
procedure, and the careful choice of FHE parameters, these operators can be
readily employed to implement a wide range of stream-ciphers, and often result
in non-negligible improvements regarding the required number of bootstrappings
as shown with a standard encryption algorithm Grain128-AEAD.
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While the need for larger parameters in larger bases increases the runtime
for a single bootstrapping operation, this work also aims at leveraging cloud
hardware acceleration modules for FHE [BBTV23, MAM20, WSKB22] which
enables efficient FHE (LWE, RLWE, and RGSW) operations with a significantly
better accommodation of larger parameter-sets than software implementation.

We plan to extend this approach to the homomorphic evaluation of block-
ciphers, and other cryptographic primitives such as hash functions as investi-
gated in [BSS+23]. Subsequent works involve implementing non-homogeneous
base representation of a byte, using two digits in base 4 and a single digit in
base 8. This could potentially improve the accuracy/number of ciphertexts trade-
off, and showcase the versatility of encrypted byte representations, not only for
transciphering-related applications, but also for other use-cases of FHE. A fur-
ther optimization would be to take advantage of the symmetric aspect of the
lookup tables (from the fact that boolean operators are commutative) to reduce
the plaintext space size from 2B2 to B2 by providing a more compact way to
homomorphically reference elements inside the boolean operations lookup tables.
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HMR20. Clément Hoffmann, Pierrick Méaux, and Thomas Ricosset. Transciphering,
using filip and tfhe for an efficient delegation of computation. Cryptology
ePrint Archive, Paper 2020/1373, 2020. https://eprint.iacr.org/2020/1373.

KS21. Kamil Kluczniak and Leonard Schild. Fdfb: Full domain functional boot-
strapping towards practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2021/1135, 2021. https://ia.cr/2021/1135.

KS22. Kamil Kluczniak and Leonard Schild. Fdfb: Full domain functional boot-
strapping towards practical fully homomorphic encryption. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2023(1):501–537,
Nov. 2022.

MAM20. Toufique Morshed, Md Momin Al Aziz, and Noman Mohammed. Cpu and
gpu accelerated fully homomorphic encryption. In 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 142–
153, 2020.

https://eprint.iacr.org/2019/1446
https://eprint.iacr.org/2022/149
https://eprint.iacr.org/2012/144
https://ia.cr/2021/751
https://eprint.iacr.org/2020/1373
https://ia.cr/2021/1135


TFHE functional bootstrapping for transciphering 19

OKC20. Hiroki Okada, Shinsaku Kiyomoto, and Carlos Cid. Integerwise functional
bootstrapping on tfhe. In Willy Susilo, Robert H. Deng, Fuchun Guo,
Yannan Li, and Rolly Intan, editors, Information Security, pages 107–125,
Cham, 2020. Springer International Publishing.

WSKB22. ZhehongWang, Dennis Sylvester, Hun-Seok Kim, and David Blaauw. Hard-
ware acceleration for third-generation fhe and psi based on it, 2022.

YXS+21. Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou.
Tota: Fully homomorphic encryption with smaller parameters and stronger
security. Cryptology ePrint Archive, Report 2021/1347, 2021. https://ia.
cr/2021/1347.

https://ia.cr/2021/1347
https://ia.cr/2021/1347

	Optimized stream-cipher-based transciphering by means of functional-bootstrapping

