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Abstract. Side-channel Collision Attacks (SCCA) constitute a subset of non-profiling
attacks that exploit information dependency leaked during cryptographic operations.
Unlike traditional collision attacks, which seek instances where two different inputs to a
cryptographic algorithm yield identical outputs, SCCAs specifically target the internal
state, where identical outputs are more likely. In CHES 2023, Staib et al. presented
a Deep Learning-based SCCA (DL-SCCA), which enhanced the attack performance
while decreasing the required effort for leakage preprocessing. Nevertheless, this
method inherits the conventional SCCA’s limitations, as it operates on trace segments
reflecting the target operation explicitly, leading to issues such as portability and low
tolerance to errors.
This paper introduces an end-to-end plaintext-based SCCA to address these challenges.
We leverage the bijective relationship between plaintext and secret data to label the
leakage measurement with known information, then learn plaintext-based profiling
models to depict leakages from varying operations. By comparing the leakage
representations produced by the profiling model, an adversary can reveal the key
difference. As an end-to-end approach, we propose an error correction scheme to
rectify false predictions. Experimental results indicate our approach significantly
surpasses DL-SCCA in terms of attack performance (e.g., success rate increased
from 53% to 100%) and computational complexity (training time reduced from
approximately 2 hours to 10 minutes). These findings underscore our method’s
effectiveness and practicality in real-world attack scenarios.
Keywords: Side-channel Analysis · Side-channel Collision Attack · Deep Learning.

1 Introduction
Side-channel analysis (SCA) of symmetric-key cryptography implementations is typically
divided into non-profiling and profiling attacks depending on the availability of a second
(clone) device identical (similar) to the device under attack (target). Non-profiling attacks
operate without a clone device. The adversary gathers measurements encapsulating secret
information, conducting statistical analysis to deduce the secrets. Conversely, profiling
attacks assume the adversary has unrestricted access to an identical device. Using this
device, the adversary studies and comprehends the device’s side-channel behavior, utilizing
this understanding to extract secret information from the target device.

Side-channel collision attacks (SCCA), a type of non-profiling SCA, were introduced
in [SWP03], using SCA data to detect collisions in the internal state of an AES implemen-
tation. This strategy benefits from not depending on any leakage model. Recently, Staib et
al. incorporated deep learning into SCCA by learning the plaintext [SM23]. The technique
was denoted as a deep learning side-channel collision attack (DL-SCCA). Similar to SCCA,
DL-SCCA preprocesses the leakage traces into segments representing the processing of each
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targeted intermediate data (i.e.,Sbox output), characterizing a trace segment, and tries
to recover the key difference by comparing with a different trace segmentation with deep
learning. Despite the performance improvement, the limitations of conventional SCCA
are inherited by DL-SCCA, constraining its application to practical attack scenarios. The
main limitations are:

• Trace Segmentation. Trace segmentation is the most intricate procedure for
SCCA, including DL-SCCA. Indeed, the traces segment is analyzed to extract
secret information; imprecise segmentation could directly impact attack performance.
DL-SCCA employs a multi-stage traces segmentation method involving deep learning-
based sensitivity analysis and visual inspection. Regrettably, this method is time-
consuming and dependent on human expertise (e.g., model tuning and finding
leakages). Errors may be introduced at each trace segmentation stage, and the
generality of this method is questionable.

• Portability Problem. DL-SCCA employs a model trained on one trace segmenta-
tion (representing the processing of a single intermediate data) to attack a different
trace segment, introducing the well-known SCA portability problem [BCH+20].
Specifically, the method’s effectiveness relies on 1) Temporal Consistency: the timing
of leakage features between two trace segments must be well aligned for the trained
model to extract information from features at the identical location; 2) Spatial
Consistency: the leakage features between two traces segments should be alike. Any
discrepancy between features could diminish attack performance.

• Error Tolerance. The attack performance of DL-SCCA relies solely on the DL
model trained on a reference trace segment. In realistic attack scenarios where the
adversary does not know the key, blindly depending on one model can be problematic,
as there is no mechanism to confirm the correctness of the predicted key relationship.

This paper introduces a novel plaintext-based side-channel collision attack (PSCCA)
to circumvent the above-mentioned limitations. Our main contributions are:

1. We propose a novel approach for SCCA based on the learning from plaintexts, which
eliminates the need for trace segmentation, operating directly on the raw traces.

2. We present an error correction method that can rectify incorrectly predicted key
relationships based on the prediction of the key relationship of other bytes.

3. We employ multi-task learning to expedite the training process while maintaining
attack performance.

4. We provide a comprehensive experimental analysis showcasing the exceptional attack
performance of the proposed method in terms of key difference rank and success
rate. Our method outperforms the state-of-the-art DL-SCCA even without error
correction. When applied, the success rate is significantly increased.

5. We investigate several hyperparameters relevant to our attack: data augmentation
and batch size. In the meantime, we discuss the efficiency of error correction in
different settings.

The rest of this paper is organized as follows. Section 2 provides the necessary
background information. Section 3 discusses related works. Section 4 details the threat
model, then performs a theoretical analysis of the method and presents the attack scheme.
Finally, a case study is given. In Section 6, we offer experimental results. Section 7
presents the evaluation of some hyperparameters. Finally, Section 8 concludes the paper
and discusses potential future research directions.
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2 Background
This section starts by introducing the notation we follow. Afterward, the relevant informa-
tion about the side-channel analysis, collision attack, evaluation metrics, and considered
datasets are introduced.

2.1 Notation
We denote sets using calligraphic letters such as X , while the related uppercase letters
X represent random variables and random vectors X that are defined over the domain
of X . The corresponding lowercase letters x and x symbolize realizations of X and X,
respectively. Furthermore, functions, represented as f, are given in a sans-serif font.

The symbol k represents a candidate key byte from a key space K. ∆ denotes the xor
key difference between two different key bytes. A dataset T comprises traces, symbolized
as ti, which have corresponding associations with plaintext/ciphertext pairs di ∈ D and
keys ki, or ki,j and di,j when partial key recovery on byte j is under consideration. Since
we focus on byte processing, ki and di represent a byte for simplicity. This work considers
a fixed key scenario where ti has the same ki, utilizing byte vector notation exclusively in
equations.

2.2 Side-channel Analysis
As briefly mentioned in the introduction section, side-channel analysis (SCA) can be
broadly classified into two categories: profiling SCA and non-profiling SCA, based on the
availability of a fully-controlled cloned device.

Profiling side-channel attacks aim to connect a set of inputs (such as side-channel
traces) to outputs (like a probability vector of key guesses). Profiling attacks have two
stages. In the profiling stage, the adversary builds a profiling model, represented as
fM
θ , which is determined by a leakage model M and a group of learning parameters θ.

In this paper, the terms fM
θ and fθ are used interchangeably. This model maps inputs

(side-channel measurements) to outputs (classes obtained by evaluating the leakage model
during a sensitive operation) using a set of N profiling traces. Then, in the attack stage,
the trained model processes each attack trace ti and produces a probability vector pj ,
reflecting the likelihood of the related leakage value or label j. The adversary chooses
the best key candidate based on this probability vector. If the adversary can build an
effective profiling model, only a few measurements from the target device could be enough
to break its security. Profiling attacks include methods like the template attack [CRR02],
stochastic models [SLP05], and supervised machine learning-based attacks [HGM+11,
MPP16, PHJ+17].

Non-profiling attacks tend to assume less powerful adversaries who do not have access
to a cloned device. An adversary collects a series of traces created during the encryption
of different plaintexts. Then, the adversary can guess part of the key by analyzing the
correlation between the key-related intermediate values and the leakage measurements.
This strategy often follows a ’divide-and-conquer’ approach. Initially, the adversary groups
the traces based on the predicted intermediate value tied to the current key guess. If the
groups show clear differences (how ’difference’ is defined depends on the attack method),
it suggests that the current key guess is likely correct. Non-profiling attacks may need
many measurements (possibly millions) to reveal sensitive information. Examples of
non-profiling attacks include simple power analysis (SPA), differential power analysis
(DPA) [KJJ99a], correlation power analysis (CPA) [BCO04], and some machine learning-
based attacks [Tim19, DLH+22, WPP23a]. It is also worth mentioning that side-channel
collision attack [SWP03, Bog07] is considered a non-profiling SCA, but it follows a slightly
different strategy, which will be discussed in the following section.
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2.3 Side-channel Collision Attack
Side-channel Collision Attacks (SCCA) form a category of non-profiling attacks that exploit
data inter-dependence leaked during cryptographic procedures. Unlike traditional collision
attacks that leverage instances where two different inputs into a cryptographic algorithm
lead to an identical output, SCCA specifically targets the internal state, which is more
likely to coincide between two cryptographic operations.

In SCCA, an adversary monitors the side-channel information while the system processes
different inputs. The adversary then searches for repeated leakage patterns signifying a
collision event. When a collision is detected, the adversary can use this information to infer
insights about the inter-dependencies of different key sections or the algorithm’s internal
state. For instance, let us consider the SubBytes operation of the Advanced Encryption
Standard (AES) with the same substitution box (Sbox). The same data has been processed
if two different Sbox operations lead to an identical side-channel pattern. Since the Sbox
operation is bijective (that is, it establishes a one-to-one correspondence between two sets),
we obtain the following equations:

Sbox(ki ⊕ pi) = Sbox(kj ⊕ pj)
=> ki ⊕ pi = kj ⊕ pj

=> ki ⊕ kj = pi ⊕ pj .

(1)

We represent the result of ki⊕ kj as ∆i,j . Unlike other SCA techniques focusing on key
recovery, SCCA strives to expose the linear difference between various keys. An adversary
guesses one subkey to achieve full key recovery, as the rest of the key can then be calculated
based on this linear difference. Since all subkeys can be recovered by correctly guessing
one of the subkey bytes, the remaining keyspace shrinks to 28.

2.4 Evaluating the Attack Performance
This work employs the maximum log-likelihood distinguisher to obtain a cumulative sum
S(∆) for each ∆ candidate:

S(∆) =
Q∑

i=1
log(pi,j(∆)), ∆ ∈ K, (2)

where pi,j(∆) denotes the probability of each ∆ ∈ K being chosen as the correct ∆i,j ; Q
represents the number of attack traces. The result of an attack is a ∆ guessing vector
g = [g1, g2, . . . , g|K|], which is computed for Q traces in the attack phase. This vector orders
the ∆ candidates in descending likelihood, with g1 being the most probable candidate and
g|K| the least probable one. The position of ∆i,j within the ∆ guessing vector g is utilized
to estimate the effort needed to reveal the secret key difference, and the corresponding
rank is referred to as the ∆ rank. In the experimental section, each attack is conducted ten
times, and we calculate the success rate, representing the percentage of successful attacks
out of ten.

Since the side-channel collision attack engages multiple sub bytes, we are also interested
in the overall efficiency of the attack in retrieving ∆i,j with different sub bytes. Therefore,
we also assess the overall success rate, indicating the percentage of successful recoveries of
the key difference among all tested ∆i,j .

2.5 Evaluated Datasets
The experiments in this study involve the following datasets, all of which employ first-
order Boolean masking countermeasures. The raw side-channel measurements for each
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dataset are as follows. It is worth noting that handling such large intervals of side-channel
measurements can be time-consuming. To address this, we adopt the resampling technique
with a resampling window 80, aligned with the approach outlined in [PWP22].
ASCAD_F. This dataset comprises measurements from an 8-bit AVR microcontroller

executing a masked AES-128 implementation [BPS+20]. It consists of 60,000 leakage
traces.

ASCAD_R. Similar to ASCAD_F, this dataset employs the same measurement setup [BPS+20].
However, ASCAD_R also includes traces with random keys. For our experiments,
we solely utilize the leakage traces associated with a fixed key, commonly used for
testing with DLSCA. We employ 60,000 traces for the attack.

CHES_CTF 1. This dataset comprises the CHES Capture-the-flag (CTF) AES-128 mea-
surements released in 2018 for the Conference on Cryptographic Hardware and
Embedded Systems (CHES). The traces correspond to masked AES-128 encryption
performed on a 32-bit STM microcontroller. Our experiments consider 40,000 traces
for the ∆ recovery.

3 Related Works
The Side-channel Analysis community has been conducting research on profiling attacks for
over two decades. The first profiling attack was introduced by Chari et al., which established
the template attack [CRR02]. This attack is the most powerful one from an information-
theoretic standpoint. However, it makes assumptions difficult to satisfy, such as an
unlimited number of profiling traces and noise following a Gaussian distribution [LPB+15].
Other "classic" profiling attacks include the stochastic model [SLP05]. The field has also
seen a rise in the application of machine learning techniques, initially employing simpler
methods like random forest [LMBM13] and support vector machines [HGM+11], as the
most common examples. While simple (compared to, e.g., deep learning), these techniques
have already shown performance surpassing template attacks or stochastic models. Since
2016, significant attention is given to deep learning techniques for profiling SCA. The first
work utilizing convolutional neural networks (CNNs) already established the potential of
deep learning in breaking various targets [MPP16]. The following years provided advance-
ments in building methodologies for CNNs [ZBHV19, WAGP20], advanced hyperparameter
tuning strategies [WPP22b, RWPP21], data augmentation [CDP17, MBPK22], ensem-
bles [PCP20], or custom loss functions [ZZN+20, KWPP22]. Current research has made
considerable advancements, breaking datasets perceived as challenging a few years ago,
even with a single measurement [LZC+21, WPP22a, PWP22]. While deep learning-based
SCA provides excellent results, multiple challenges still need to be addressed [PPM+23].
One of the main ones is how to move away from the “classical” profiling paradigm.

However, profiling attacks do not apply to black-box adversaries without access to
a profiling device. In these cases, non-profiling SCA becomes relevant. The differential
power analysis, a classical non-profiling SCA, is widely adopted in academia and indus-
try [KJJ99b]. The concept of using deep learning in non-profiling SCA was first proposed
by B. Timon [Tim19], which involved training multiple neural networks corresponding to
different key guesses. Later, advancements by Hoang et al. introduced a multi-output
classification technique for non-profiling SCA, which significantly improved the efficiency
and effectiveness of the attack [HDD22]. Recently, multi-output classification (MOC) and
multi-output regression (MOR) models for non-profiling SCA were investigated by Do
et al. [DLH+22]. Finally, Wu et al. employed plaintext distribution to perform the key
recovery [WPP23a].

Side-channel collision attacks (SCCA) have received less attention than profiling and
non-profiling attacks. The concept of SCCA was first introduced to use SCA data to
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detect collisions in the internal state of an AES implementation [SWP03]. The advantage
of this strategy is its independence from any leakage model. Initially limited to single
collision, these attacks were refined to include all possible collisions in the measurement
set [MME10, MS16]. Furthermore, SCCAs can bypass countermeasures previously deemed
’impossible’ through conventional profiling SCA [WPP23b]. The integration of deep
learning into SCCA, known as Deep Learning Side-Channel Collision Attack (DL-SCCA),
was recently proposed by Staib et al. [SM23]. This methodology designates a target byte
as a reference, employing corresponding trace segments and plaintexts to train a deep
learning model. The trained model is subsequently applied to a distinct trace segment
to predict the key relationship. However, identifying the trace segment in this method is
performed through deep learning-based sensitivity analysis and visual inspection, which
could be prone to inaccuracies and potentially introduce new challenges to the attack
process, as detailed in the next section.

4 Plaintext-based Side-channel Collision Attack
This section first introduces the threat model we follow. Afterward, the theoretical
evaluation and case study of the plaintext-based side-channel collision attack are presented.

4.1 Threat Model
We assume the adversary has access to a device running the target cipher and possesses a
fixed yet undisclosed key. The adversary can instruct the device to perform encryption or
decryption operations, but it is assumed that they can only observe the employed plaintext
or ciphertext and cannot manipulate their values.

The adversary lacks information about the hardware implementation, the countermea-
sure settings, and the source code. To execute attacks, the adversary captures multiple
side-channel leakages using a high-speed oscilloscope and subsequently analyzes these
leakage traces in conjunction with plaintexts and/or ciphertexts.

4.2 The Curse of Trace Segmentation
Consider a leaking device using a fixed secret key denoted by k. Cryptographic processes
include sub-key ki and a string of data di, considered as an n-bit word. Typically,
n = 8 due to the byte-oriented nature of AES, which is widely examined in related
works [ZBHV19, WPP22a, SM23]. The side-channel leakage can be modeled by a leakage
function ψ applied to intermediate data l(ki, di) plus some additive noise Zi ∼ N (0, σ2),
shown in Eq. (3).

ti = ψ(l(ki, di)) + Zi, di ∈ D, (3)

where ti represent the leakage traces. The purpose of a side-channel collision attack
(SCCA) is to enable an adversary to identify a key difference ∆, which results in the
smallest difference between two trace segments ti and tj, denoting the leakage traces from
two identical operations processing different data within one cryptographic function:

∆i,j = arg min
∆

ψ(l(ki, di))− ψ(l(kj , dj)) + (Zi − Zj), dj = di ⊕∆. (4)

In this context, ki and kj are fixed, unknown values representing the secret sub-key
of two trace segments. As the collision between l(ki, di), and l(kj , dj) is not consistently
present in a single cryptographic function, an adversary must segment ti and tj from
different traces such that dj = di⊕∆, then making comparison of trace segments from two
operations. Nonetheless, this process can be problematic from a realistic point of view.
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• Identification of target operations. SCCA is categorized as a non-profiled attack,
as no cloned device for leakage characterization exists. Thus, an adversary needs
to detect the leakage, for instance, via simple power analysis. The identification of
leakage operation typically necessitates distinct leakage traces. Considering that
a hardware AES operation can be completed in microseconds, the corresponding
side-channel leakage may only have negligible patterns (e.g., a small power peak
representing all AES rounds), significantly complicating the trace segmentation
process. Concurrently, identifying the leakage operation could require an extra
understanding of the source code or the ability to alter the source code to place
separators before and after the target process. Although these requirements might
be met in a white-box evaluation, a stronger attack assumption is required, reducing
the chance of a successful attack in a black-box setting.

• Feature alignment and noise. A fundamental assumption of SCCA is the
perfect alignment of leakage features from two trace segments. Ideally, the target
operation’s pattern should be unique and noise-free, facilitating easy alignment for
an adversary. However, even hardware with a naive cryptographic implementation
can be subject to environmental noise and clock jitters. One might suggest that
leakage randomness due to environmental noise could be compensated with a low-pass
filter or averaging techniques. Nevertheless, clock jitter complicates this process
and introduces variability in execution time. To counter this, an adversary could
apply elastic alignment [vWWB11] or align on a specific feature subset. Still, these
methods may ignore features pertinent to the target operations, potentially reducing
attack effectiveness.

Even though three limitations are discussed in the introduction, trace segmentation is
the primary hurdle that hinders the broader application of SCCA-related methods. Simply
operating on raw leakage features, such as the latest DL-SCCA [SM23], may not suffice
to overcome this obstacle. An ideal approach should autonomously identify the target
operation, extract relevant information, and generate a representation of the leakages.
Consequently, an adversary could compare these representations with various ∆ guesses to
determine the correct value.

4.3 Learning from Plaintext
Plaintext learning has demonstrated its effectiveness in recent works [WPP23a, SM23].
Specifically, in the context of profiling SCA, a profiling model fθ encapsulates the relation-
ship between the input leakage measurement and output intermediate data, as processed
by a leakage model M. When an attack trace is fed into fθ, the output is a probability
vector corresponding to all potential intermediate data:

pi(y) = fθ(ti), (5)

where y = M(l(ki, di)), di ∈ D. Since we focus on a specific sub-key byte, ki and k are
used interchangeably. In SCCA, as the adversary is unaware of the key in use, he cannot
leverage l(k, di) to estimate θ. However, if k remains constant across all leakage traces for
SCCA, the label l(k, di) and di would satisfy:

di 7→ l(k, di). (6)

The bijectivity between the label l(k, di) and di depends on the choice of l. For example,
Sbox output is often employed as a label function (and intermediate data) for AES attacks.
In such a case, given a fixed key ki, di and Sbox(di⊕ki) are bijective. If Eq. (6) is valid, di

and l(k, di) can be interchangeably mapped using mapping functions map parameterized
by k:

l(k, di) = mapk(di). (7)
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Let p(l(k, di)|ti) be the probability of l(k, di) given ti. Following Eq. (7), it can be
represented by p(mapk(di)|ti). As map is a fixed function that does not influence the
profiling process, in the context of profiling models, we obtain:

fθd
(ti) = map′

k(fθ(ti)), (8)

where fθd
refers to the profiling model trained with plaintexts, and map′

k is a fixed function
that transforms the probability of input l(k, d) to its corresponding output d, for all d ∈ D.
Given their bijectivity, the same leakage features are learned when profiling with di or
l(k, di). As a result, the models based on these features, fθd

and mapk(fθ), can be regarded
as equivalent.

Eq. (8) indicates that a profiling model can be established based on plaintext to
extract leakage information. No trace segmentation is required in this process. The next
section will introduce a method that compares the plaintext prediction outputs from two
cryptographic operations to reveal the key difference ∆.

4.4 Plaintext-based Collision
Given an input trace ti, fθd

generates a prediction vector p(d|ti), d ∈ D, which represents
the probability of all possible plaintexts. We argue that the distribution of the p(d|ti)
correlates with the key. To demonstrate this, let us consider an ideal case in leakage
features, which we assume follow a Gaussian distribution, with the mean value for each
class linearly correlated with their actual labels. In this context, a probability density
function can represent the conditional probability of a label y given a correct label yi:

p(y|ti) = p(y|yi) = 1
σ
√

2π
e− 1

2 ( a|yi−y|
σ2 ), y ∈ Y, (9)

where |·| represents the squared Euclidean distance between two variables, a denotes
the linear correlation coefficient, and σ represents the variance of the leakage features
corresponding to yi. Note each ti associates with a unique yi, thus p(y|ti) = p(y|yi)
applies.

As yi is parameterized by di and ki. Given a fixed ki, we can extend Eq. (9) to calculate
p(d|di):

p(d|di) = 1
σ
√

2π
e− 1

2 ( a|M(l(ki,di))−M(l(ki,d))|
σ2 ), d ∈ D. (10)

In the SCCA context, an adversary cannot estimate σ as the key ki is unknown. We thus
assume it to be a constant, and then p(d|di) is solely determined by ki. This connection
can be leveraged to compute the key difference ∆i,j . Consider another intermediate data
l(kj , dj). If di = dj and ∆i,j = ki ⊕ kj , then:

p(d|dj) = p(d⊕∆i,j |di ⊕∆i,j), d ∈ D. (11)

Proof. Following Eq. (10), p(d|dj) can be represented by:

p(d|dj) = 1
σ
√

2π
e− 1

2 (
a∥M(l(kj ,dj ))−M(l(ki,d))∥

σ2 ), d ∈ D. (12)

Since ∆ = ki ⊕ kj and di = dj , p(d|dj) can be rewritten to:

p(d|dj) = 1
σ
√

2π
e− 1

2 (
a∥M(l(ki⊕∆i,j ,di))−M(l(ki⊕∆i,j ,d))∥

σ2 )

= 1
σ
√

2π
e− 1

2 (
a∥M(l(ki,di⊕∆i,j ))−M(l(ki,d⊕∆i,j ))∥

σ2 )

= p(d⊕∆i,j |di ⊕∆i,j), d ∈ D.

(13)
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Eq. (11) encapsulates the core idea of this paper, denoting plaintext-based collision. If
the plaintext used in two separate intermediate data is the same, the plaintext prediction
vector from one operation can be converted to that of the other using the correct ∆ guess.
The correct ∆i,j can be retrieved via Eq. (14).

∆i,j = argmax
∆

corr(p(d|dj), p(d⊕∆|di ⊕∆)), di = dj , ∆ ∈ K, (14)

where corr represents the Spearman correlation 2 [HK11] that evaluates the monotonic
relationship between two inputs. In this context, we are not solely interested in plaintext
prediction (as they are already known) but in the probability distribution of each plaintext.
For this reason, the Spearman correlation is best suited for this task.

4.5 Error Correction
During attacks utilizing plaintext-based SCCA, one may encounter incorrect prediction
outcomes due to, for instance, complicated leakage features or insufficient attack traces.
Fortunately, the prediction differs from profiling and non-profiling methods, which predict
each key byte individually. Indeed, SCCA predictions rely on the key difference ∆, enabling
an adversary to correct prediction outcomes with the aid of predictions from other bytes.
Specifically, considering ∆i,j = ki ⊕ kj , the following relationship holds:

∆i,j = (ki ⊕ ka)⊕ (kj ⊕ ka)
= ∆i,a ⊕∆j,a, a /∈ {i, j}.

(15)

Here, ka denotes an arbitrary key byte, and ∆i,j can be expressed as the xor of two
key differences ∆i,a and ∆j,a that involve an additional byte. In cases where ∆i,j is
mispredicted, while ∆i,a and ∆j,a are accurate, we can ascertain the true value of ∆i,j

using other predictions. Our error correction technique is inspired by the Low-Density
Parity Check (LDPC) decoding method [GS12].

Formally, let the outcome of Eq. (14) denote the probability of each ∆ ∈ K being
chosen as the correct ∆i,j , symbolized as pi,j(∆). We can then correct pi,j(∆) using the
following expression:

pi,j(∆) = pi,j(∆) ·
∏

a/∈{i,j}

max
β

(pi,a(β) · pj,a(β ⊕∆)), ∆ ∈ K, β ∈ [0, 255]. (16)

The right-hand side of the equation comprises two components: the original probability
pi,j(∆), and the composite probability of two ∆ values that include a third key byte. We
choose the maximum combined probability for all possible β, diverging from the original
formulation, which proposed summation [GS12]. Ideally, when β = ∆i,a and β⊕∆ = ∆j,a,
pi,a(∆i,a) · pj,a(∆j,a) will yield the maximum value. The maximum combined probability
more accurately reflects the likelihood of each ∆ guess, thereby enhancing the effectiveness
of the attack, as demonstrated in the following sections.

5 Attack Scheme
Following Section 4, this section describes our attack scheme, which consists of three steps,
shown in Figure 1. Note that an adversary will always execute the first two steps. Error
correction is only performed when incorrect predictions are detected, detailed in the later
paragraphs.

2The Spearman correlation offers more numerical stability than the Pearson correlation, as it has high
tolerance when the labels and leakage features are not linearly correlated.



10 Plaintext-based Side-channel Collision Attack

Train a profiling 
model with 
plaintexts

Predict key 
difference Error correction

Figure 1: Plaintext-based SCCA.

In the first step, instead of profiling each plaintext byte separately, we employ multi-task
learning (MTL) to profile all plaintexts simultaneously. MTL is a well-studied machine
learning technique that trains multiple learning tasks in parallel [Car97, Rud17]. The main
idea of MTL is to learn multiple tasks together to improve the learning of each task by
leveraging information shared among related tasks [Car97, ZY21]. For its side-channel
applications, previous works from Maghrebi and Masure et al. use MTL to attack multiple
secret shares, leading to an enhanced attack performance compared with the single task
learning [Mag20, MS21].

Figure 2 illustrates this paper’s deep learning network architecture. The shared layers
are responsible for processing the leakage and extracting general features. Then, several
task-specific layers are constructed, forming sub-branches for each plaintext byte. First,
the shared structure encourages the profiling model to learn the general features of different
tasks, potentially leading to improved performance and resilience to overfitting. Second,
MTL is computationally efficient as it only requires training a single model.

…

Plaintext byte 0

…

Plaintext byte 1

Plaintext byte 15

Shared layers
Task-specific layers

Side-channel 
traces

Figure 2: Deep learning architecture of plaintext-based SCCA.

It is worth noting that the proposed plaintext-based side-channel collision attack
(PSCCA) is not limited to deep learning and can be applied to other profiling methods,
such as Gaussian templates. In such cases, each plaintext would need to be profiled
separately. We demonstrate its usage in Section 5.1.

Once the profiling step is completed, we calculate pi,j(∆) for each pair of key bytes ki

and kj using Eq. (14). Finally, error correction is applied if any of the predicted pi,j(∆)
values are incorrect. In the case of SCCA, it is straightforward to detect the presence of
incorrect predictions. Assuming an SCCA targeting 16 bytes k0, k2, · · · , k15, a successful
secret recovery would satisfy Eq. (17). If the equation does not hold, the error correction
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method presented in Section 4.5 is applied.

arg max
∆

p0,15(∆) = arg max
∆

p0,1(∆)⊕ arg max
∆

p1,2(∆)⊕ · · · ⊕ arg max
∆

p14,15(∆) (17)

To provide a clear formulation of PSCCA, the pseudocode of the attack is shown in
Algorithm 1. Line 1 represents the building of the profiling model using plaintexts. The ∆
guess is obtained from Line 2 to Line 6. Lines 7 and 8 are dedicated to the error correction
step. As mentioned in Section 4.4, the plaintext-based collision requires di = dj . Therefore,
as shown in Line 4, it is important to reorder the traces to ensure this condition is satisfied
for each ∆ guess.

Algorithm 1: Plaintext-based DL Collision Attack
Input : Traces T, Plaintext d, byte index i, byte length L, Profiling model PM
Output : Key difference ∆i,j , i, j ∈ L

1 Train model PM← Train(T, d);
2 while i < L− 1 do
3 while i < j and j < L do
4 Reorder T to make di = dj ;
5 p(d|di),p(d|dj)← PM(T), d ∈ D;
6 pi,j(∆)← corr(p(d|dj), p(d⊕∆|di ⊕∆)), ∆ ∈ K;

7 if arg max∆ pi,j(∆) is incorrect then
8 ∆i,j ← Error_Correction(pi,j(∆))

5.1 Case Study with Simulated Datasets
To demonstrate the effectiveness of PSCCA, we present attack results using simulated
datasets as described by Eq. (18).

leakage = Sbox(di ⊕ ki) + Z, i ∈ [0, 15], (18)

where di and ki denote random plaintexts and a fixed key, respectively. All features are
manipuated with noise Z ∼ N (0, σ2). To ensure the noise has the same effect on each test
case, the leakage is normalized between 0 and 1. A total of 5 000 traces were simulated.
As mentioned in Section 5, PSCCA can be applied to various profiling methods. In this
case study, we utilize the Gaussian template as the benchmark due to its non-parametric
nature. The profiling of each plaintext byte is performed separately.

Two test cases are considered, with different levels of noise represented by two σ
values: 0.05 and 0.3. In the low-noise test case, the key difference between all key bytes is
successfully recovered, highlighting the effectiveness of selective recovery with plaintext
learning and plaintext-based collision. When the σ value is increased to 0.3, as shown
in Figure 3a, we observe some unsuccessful ∆ recoveries for certain key bytes using the
plaintext-based collision method. Fortunately, by leveraging the ∆ dependencies between
different key bytes, as illustrated in Figure 3b, all key differences are successfully recovered
after applying the error correction. This demonstrates the efficiency of the proposed error
correction method in challenging scenarios with higher levels of noise.

6 Experimental Results
In this section, we evaluate the effectiveness of our proposed attack strategy using three
publicly available side-channel datasets. We aim to perform a plaintext-based side-channel
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(a) Before error correction. (b) After error correction.

Figure 3: Rank table of ∆ before and after the error correction with the simulated dataset.

collision attack and recover all 16 subkeys. To achieve this, we employ a deep learning
model shown in Section 5 that offers the advantage of attacking all sub bytes simultaneously.

The overall architecture of the model is depicted in Figure 2. Specifically, we adapt a
Convolutional Neural Network (CNN) as detailed in [PWP22].3 The network architecture
is shown in Table 1. Note that a convolution block consists of a convolution layer, a
pooling layer, and a batch normalization layer. The convolution block is used as shared
layers; the remaining dense layers are assigned to each sub-branches.

Table 1: Deep learning architectures used in the experiments.

Layer Kernel number/size Pooling stride/size Neurons

Convolution block 40/20 2/2 -

Dense - - 200

Dense - - 200

Regarding other hyperparameters, the activation function used for each layer is Selu,
except for the final layer, which employs Softmax. The DL model is trained for 100
epochs. Based on our preliminary analysis, varying the training epochs does not significantly
influence the attack performance. The batch size is set to 768, and the implications of this
hyperparameter choice are discussed in Section 7.2. Data augmentation is implemented
using a random translation layer following the input layer, randomly shifting the leakage
measurements within a predefined augmentation level of 5. A comprehensive analysis of
data augmentation is provided in Section 7.1.

It is important to note that the deep learning model and its hyperparameters remain
constant across all attack methods. Although customizing the model and tuning hyperpa-
rameters for each dataset and method may enhance attack performance, such variables can
significantly complicate our benchmarking conclusions by introducing model complexity
and increasing training effort. Moreover, even after customizing the model and conducting
hyperparameter tuning, it is impossible to guarantee the model’s generality for a specific
scenario. Since the main contribution of this paper lies in introducing a new attack method,
the impact of selecting optimal solutions can be disregarded by opting for a model with
acceptable performance.

3The deep learning models were implemented using Python 3.6 and TensorFlow library version 2.6.0.
Training algorithms were executed on an Nvidia GTX 1080TI GPU, managed by Slurm workload manager
version 19.05.4.
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To ensure reliable and robust evaluation, each attack scenario considered in this section
is independently tested ten times to reduce the influence of random factors (e.g., random
weight initialization) on attack performance [WPP22c]. The results are then averaged to
represent the overall performance of each attack method.

6.1 Attack Performance Analysis
This section provides a detailed analysis of the attack performance on the datasets under
consideration. Aligned with Section 5.1, we present the results separately with and without
the error correction.

Figure 4 illustrates the ∆ ranks for different combinations of key bytes. It is important
to note that the ASCAD_F and ASCAD_R datasets’ first two bytes are unmasked
and therefore excluded from the attack due to their relative simplicity. As a result, all
key bytes depicted in Figure 4 are mask-protected. The results show that the proposed
plaintext-based collision method successfully recovers all key differences for ASCAD_F
and ASCAD_R, thereby reducing the remaining key space to 28. For the CHES_CTF
dataset, 13 of the 16 tested ∆ values are successfully recovered.

(a) ASCAD_F.

(b) ASCAD_R.

(c) CHES_CTF.

Figure 4: ∆ rank for each dataset (no error correction).

A comprehensive overview of the attack performance for each dataset is depicted in
Figure 5, which presents the ∆ rank for all possible subkey combinations. Our method
successfully breaks ASCAD_F with all possible subkey combinations, even without error
correction. For ASCAD_R and CHES_CTF, the proposed method recovers a significant
portion of ∆. As expected, the attack results improved further after applying the error
correction method. It is worth mentioning that the 12th subkey of CHES_CTF consistently
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exhibits mediocre performance in the ∆ calculation. Fortunately, when error correction
is applied, the ∆ rank experiences a significant improvement. An overview of the overall
success rate, representing the percentage of successfully recovered ∆i,j , is provided in
Table 2. The error correction method contributes to a higher success rate for the ASCAD_R
and CHES_CTF datasets.

(a) ASCAD_F: before error
correction.

(b) ASCAD_R: before error
correction.

(c) CHES_CTF: before error
correction.

(d) ASCAD_F: after error
correction.

(e) ASCAD_R: after error
correction.

(f) CHES_CTF: after error
correction.

Figure 5: Rank table of ∆ before and after error correction.

Table 2: Overall success rate of ∆ recovery.

ASCAD_F ASCAD_R CHES_CTF

Before error correction 100% 96% 78%

After error correction 100% 100% 88%

Our results outperform DL-SCCA [SM23] even without employing the error correction
method. To demonstrate this, the success rate for all possible subkey combinations is
presented in Figure 6. For the ASCAD_F and ASCAD_R datasets, DL-SCCA achieves an
average success rate (across all guessed ∆) of 53% and 85%, respectively. In contrast, our
method increases these rates to 100% and 97% before error correction and 100% and 100%
after error correction. In the case of CHES_CTF, which is considered more challenging
than ASCAD_F and ASCAD_R, with a higher number of attack traces required for key
recovery in a profiling setting [PWP22], the average success rate is 82%, which improves to
94% after error correction. More importantly, our method is designed to work directly on
the raw traces. Since the trace segmentation step is excluded from the attack, our method
is more practical and could potentially handle complicated attack scenarios (i.e., hardware
crypto implementation) where precise trace segmentation is impossible to be retrieved.

Our method is also more computational efficiency than DL-SCCA. With 100 training
epochs, the average training time per dataset is approximately ten minutes. Knowing
that a black-box attack with DL-SCCA requires around two hours [SM23], our method is
significantly more efficient. Furthermore, attacking both sets of 16 bytes simultaneously
allows each byte’s attack to be completed in less than a minute, which is comparable with
the state-of-the-art method with careful hyperparameter tuning to reduce its size [ZBHV19].
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(a) ASCAD_F: before error
correction.

(b) ASCAD_R: before error
correction.

(c) CHES_CTF: before error
correction.

(d) ASCAD_F: after error
correction.

(e) ASCAD_R: after error
correction.

(f) CHES_CTF: after error
correction.

Figure 6: Success rate table of ∆ before and after error correction.

It is worth noting that achieving a success rate of 100% is not always necessary for
recovering ∆. One could count the occurrences of each ∆ candidate being the most likely
∆ over multiple attacks (we conducted ten attacks in this paper), and the one with the
highest count number can be considered the correct key. Accordingly, the overall success
rate for CHES_CTF can reach 100% as well. For instance, as shown in Figure 6f, the
success rate of ∆7,12 is 60%, meaning that the correct candidate has been selected six
times over ten attacks. In this case, an adversary is confident that the correct ∆7,12 is
retrieved by choosing the ∆ candidate that happens the most frequently.

7 Hyperparameter Evaluation
This section investigates various hyperparameters on the proposed plaintext-based side-
channel collision attack. The overall success rate of all possible ∆ is used to understand
the influence of hyperparameter changes better. In the meantime, the influence of the
error correction method is also analyzed in this section.

7.1 Data Augmentation
Preprocessing of leakage measurements is essential for an efficient attack. For this work,
in addition to normalizing the data, data augmentation plays a pivotal role in the success
of the proposed attack. To demonstrate this, we study the impact of different data
augmentation levels on attack performance, and the comprehensive findings are presented
in Table 3.

When the data augmentation level is set to zero, PSCCA achieves a 100% success
rate only with the ASCAD_F dataset. However, a significant performance improvement
is observed when introducing random shifts in the datasets. For instance, as shown
in Figure 7, PSCCA has a mediocre performance when the data augmentation level is zero;
when increasing to 5, most of the key differences can be recovered. Indeed, optimal results
consistently emerge within the data augmentation range of 5 across all test scenarios.
These observations underscore the critical role of data augmentation in enhancing the
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Table 3: Hyperparameter evaluation on data augmentation.

0 5 10 20

ASCAD_F 100% 100% 100% 28%

ASCAD_R 7% 96% 99% 94%

CHES_CTF 16% 78% 48% 15%

effectiveness of the proposed method. As a regularization technique, data augmentation
helps prevent the profiling model from fixating on specific features, enabling it to focus on
global features instead. In the context of side-channel attacks, where data leakages exist in
only a few features, such techniques prevent the model from overfitting irrelevant features.
Note that various strategies can be employed to mitigate overfitting. For instance, early
stopping techniques can be applied, halting model training if a monitored metric fails to
improve after a certain number of epochs.

(a) Data augmentation: 0. (b) Data augmentation: 5.

Figure 7: Rank table of ∆ for ASCAD_R dataset with different data augmentation levels.

Nevertheless, it is important to note that employing an excessively high level of data
augmentation can have adverse effects, leading to a decline in attack performance. As
the data augmentation level reaches 20, there is a noticeable deterioration in attack
performance across various configurations. This high augmentation level increases the
complexity of fitting the model to the leakage as the timing of the leakages becomes
more random. Consequently, longer training periods or larger models may be required,
increasing computational effort.

Considering our objective of providing an end-to-end solution for the side-channel
collision attack, we aim to reduce the hyperparameters’ tuning effort while achieving
commendable attack performance, and error correction would be a suitable solution.
Table 4 presents the effect of data augmentation variation with error correction enabled.
A noticeable increase in the success rate is observed across all test settings, except when
the guessing entropy is zero. This limitation arises because the error correction method
relies on key differences involving a third byte. The error correction method becomes
non-functional if these key differences are also incorrect. In such scenarios, as outlined at
the end of Section 6.1, a potential workaround could be applying an ensemble method.
This approach would involve repeating the attack multiple times and choosing the most
frequently occurring ∆ candidate.
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Table 4: The influence of error correction on the data augmentation variation.

0 5 10 20

ASCAD_F 100% 100% 100% 49%

ASCAD_R 7% 100% 100% 100%

CHES_CTF 16% 88% 67% 31%

7.2 Batch Size
Batch size in a deep learning model refers to the number of examples (input-output pairs)
used in a single training iteration. This parameter plays a crucial role in shaping the
behavior and overall performance of the deep learning model. Table 5 illustrates that larger
batch sizes generally improve attack performance in the proposed method. This can be
attributed to larger batch sizes providing a more accurate gradient estimation. As a concert
example, Figure 8 shows the influence of the batch size variation with the ASCAD_R
dataset. One could observe a significant performance leap with larger batch size. Indeed, in
deep learning, the gradients guide the model’s learning process by indicating the direction
in which the model parameters should be updated. With a larger batch size, the gradient
estimation becomes more reliable as it incorporates information from more data points,
potentially leading to better learning and performance.

Table 5: Hyperparameter evaluation on batch size.

128 256 512 768 1 024

ASCAD_F 31% 7% 100% 100% 100%

ASCAD_R 7% 95% 97% 96% 97%

CHES_CTF 6% 72% 73% 78% 81%

(a) Batch size: 128. (b) Batch size: 256.

Figure 8: Rank table of ∆ for ASCAD_R dataset with different batch sizes.

Moreover, larger batch sizes enable more efficient utilization of computational resources,
particularly GPUs, which tend to exhibit optimal performance when processing computa-
tions in larger blocks. In our experiments, for example, a batch size of 1 024 completed
tests on all datasets four times faster than a batch size of 128, highlighting the advantage
of utilizing larger batch sizes in terms of computational efficiency.

Consistent with the previous section, we also investigated the impact of batch size on
attack performance when error correction is enabled. Similarly, error correction contributes
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to a success rate increase in most test cases except in test cases where the success rate is
already low. Notably, the CHES_CTF dataset consistently achieves an 88% success rate
when the batch size exceeds 256. As detailed in Section 6.1, the performance is mediocre
when the key difference calculation involves the byte 12 of the CHES_CTF key, compared
to other scenarios. For error correction, the correction of, for example, ∆1,12, would involve
∆1,x and ∆x,12, where x represents a random byte that does not equal 1 or 12. Since
∆x,12 is also incorrect, the resultant corrections would likewise be erroneous. In this case,
the ensemble method proposed at the end of Section 6 would be a potential solution to
recover the correct key.

Table 6: The influence of error correction on the batch size variation.

128 256 512 768 1 024

ASCAD_F 42% 7% 100% 100% 100%

ASCAD_R 7% 100% 100% 100% 100%

CHES_CTF 6% 88% 88% 88% 88%

8 Conclusions and Future Work
This paper presents a novel end-to-end approach for side-channel collision attacks. We
introduce a plaintext-based side-channel collision attack, eliminating the need for trace
segmentation during an attack. Additionally, we propose an error correction scheme to
enhance the accuracy of the correction key difference prediction, thereby improving the
overall attack performance. Furthermore, we employ multi-task learning to attack all
sub-key bytes simultaneously, resulting in efficient key difference recovery without targeting
each byte individually. By applying our framework to three publicly available masked
AES datasets, we achieve profiling attack results that significantly surpass the current
state-of-the-art deep learning-based side-channel collision attack [SM23] regarding attack
performance and computation effeciency. Importantly, our approach demonstrates its
generality across various attack scenarios, as minimal effort is required for hyperparameter
tuning.

Building upon this work, there are several promising directions for further investigation.
Firstly, exploring improved methods for retrieving the correct key difference would be
interesting, such as refining the Spearman correlation technique. This could lead to
a significant reduction in the number of attack traces required. Secondly, we plan to
continue enhancing the error correction method, potentially incorporating ensembles or
other techniques. Developing a more robust deep learning model could also strengthen the
relationship between the input and each task. For instance, direct connections between
the input layer and the model’s subbranch may reduce reliance on the main branch and
improve feature extraction capabilities. Lastly, given that our proposed method eliminates
the need for trace segmentation, it would be worthwhile to investigate its effectiveness
in hardware crypto implementations. Such an exploration would contribute to a deeper
understanding of the method’s effectiveness in challenging cryptographic scenarios.
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