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Abstract. Profiling side-channel analysis (SCA) is widely used to eval-
uate the security of cryptographic implementations under worst-case at-
tack scenarios. This method assumes a strong adversary with a fully
controlled device clone, known as a profiling device, with full access to
the internal state of the target algorithm, including the mask shares.
However, acquiring such a profiling device in the real world is challeng-
ing, as secure products enforce strong life cycle protection, particularly
on devices that allow the user partial (e.g., debug mode) or full (e.g., test
mode) control. This enforcement restricts access to profiling devices, sig-
nificantly reducing the effectiveness of profiling SCA.
To address this limitation, this paper introduces a novel framework that
allows an attacker to create and learn from their own white-box refer-
ence design without needing privileged access on the profiling device.
Specifically, the attacker first implements the target algorithm on a dif-
ferent type of device with full control. Since this device is a white box
to the attacker, they can access all internal states and mask shares. A
novel conditional generative adversarial network (CGAN) framework is
then introduced to mimic the feature extraction procedure from the ref-
erence device and transfer this experience to extract high-order leakages
from the target device. These extracted features then serve as inputs
for profiled SCA. Experiments show that our approach significantly en-
hances the efficacy of black-box profiling SCA, matching or potentially
exceeding the results of worst-case security evaluations. Compared with
conventional profiling SCA, which has strict requirements on the profil-
ing device, our framework relaxes this threat model and, thus, can be
better adapted to real-world attacks.

1 Introduction

Commonly used cryptographic algorithms, such as AES and 3DES, are math-
ematically secure, as simply knowing the input and output data along with
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the details of the algorithm is insufficient to recover the key within a reason-
able computation time. However, cryptographic implementations on hardware
may introduce unintentional information leakages via, for instance, power con-
sumption [26], electromagnetic emission (EM) [1], execution time [25], temper-
ature [23], and acoustics [17]. These leakages could be exploited through side-
channel analysis (SCA) and finally extract secret information.

The research community has known the threat of SCA for more than 25 years.
Multiple attacks have been developed and can be generally categorized into two
groups, depending on the availability of the profiling device. Non-profiling SCA
leverages statistical methods, distinguishers, and leakage assessment techniques
to launch direct side-channel attacks. Examples of such attacks include Differ-
ential Power Analysis [27], Correlation Power Analysis [5], and Mutual Infor-
mation Analysis [18]. These attack methods are implicitly treated as real-world
security threats, mainly because an attack is directly mounted on the victim’s
device; querying encryption or decryption executions are the only requirements
to deploy the attack. On the other hand, research on profiling SCA, such as
template attack [11] and deep learning-based SCA [44,33] has largely aimed at
enabling worst-case security assessments [7] with an assumption of access to an
identical copy of the target device. A profiling model is first built by mapping
the relationship between the leakage measurements and the corresponding la-
bels (key-related intermediate data) obtained from this copy. Then, an attacker
collects leakage measurements from the target device and feeds them to the pro-
filing model to obtain the label prediction. On top of this threat model, recent
works further assume insight into values of mask shares generated during cryp-
tographic executions [35], making the attack fully white-box. An attacker can
profile each intermediate data or mask share and can finally combine the profil-
ing results together to recover the secret. Although optimal attack performance
can be reached via this threat model, we argue this threat model, including the
access to an identical device copy and the mask-shares knowledge, is not realis-
tic, as secure products often enforce robust life cycle protections, especially on
devices that offer partial (e.g., debug mode) or full (e.g., test mode) user con-
trol. Even for the security evaluation labs that are supposed to have all design
details [41], this threat model is overly strong, as the mask shares are commonly
stored in protected registers and are not accessible even by a kernel user. Even
in evaluation settings for software implementations, it is often not possible to
access randomness as this would require modifications to the implementation
(e.g., using a known seed or instrumenting source code), which results in the
evaluation targeting a characterization of the implementation as opposed to the
actual target [29]. On the other hand, if an attack can be performed with this
attack assumption, attacks are significantly easier as an attacker can profile each
individual mask share and finally recover the secret with, for instance, Soft An-
alytical Side-Channel Attacks [39].

This paper introduces a novel framework based on conditional generative
adversarial networks (CGAN) to address the overly strong attack assumptions
in profiling side-channel analysis (SCA). In line with [29], we assume that the
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attacker is aware of the cryptographic implementation and masking scheme used
on the target device. With this design knowledge, the attacker sets up a simi-
lar cryptographic implementation on a different type of the device, referred to
as the reference implementation. Since the attacker is not restricted by the de-
vice type, they can freely choose devices that grant full control and access to
all internal states of the target algorithm, including mask shares. The proposed
CGAN-based structure is then introduced to mimic white-box feature selection
performed on the reference implementation and efficiently extract features from
a target implementation with unknown masks. This framework transforms a con-
ventional (black-box) profiling attack into a white-box profiling attack but with
reduced attack assumptions. Additionally, our framework enhances the inter-
pretability of the attack on the target dataset by splitting the feature extraction
and exploitation phases, providing deeper insights into the attack process.

In summary, our main contributions are:

– We propose a novel conditional generative adversarial network-based SCA
framework (CGAN-SCA) that allows an adversary to leverage the knowl-
edge from a reference implementation to extract features from a target im-
plementation. This modified threat model and corresponding CGAN-based
framework demonstrate the potential risks that arise when an adversary has
full control over an implementation similar to the target one.

– The proposed framework allows an adversary to convert a black-box profiling
attack towards a white-box profiling attack capability, which drastically im-
proves the black-box profiling attack performance. Our results demonstrate
that applying our framework significantly reduces the difficulties of finding
an optimal profiling model in a non-worst-case security evaluation.

– The proposed CGAN-SCA framework can extract features from high-order
leakages, such as first-order masking schemes. We provide a detailed analysis
to demonstrate how the generator in a CGAN architecture precisely mimics
the features selected from a reference implementation.

– Our results indicate that once an efficient CGAN architecture is found, a
hyperparameter search for a profiling attack can be done with negligible
effort, similar to a worst-case security evaluation.4

Our source code is available in a repository at.5

2 Background

2.1 GANs and CGANs

Generative models are machine learning models that learn the underlying prob-
ability distribution of a given dataset [19]. Their primary objective is to generate
new samples that resemble the training data in terms of statistical properties and
4 We refer to Section 6 of [29] for a discussion about difficulties in finding deep learning-

based profiling models in worst and non-worst case security evaluations.
5 https://github.com/Sengim/cgan_sca

https://github.com/Sengim/cgan_sca
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structure. While discriminative models focus on learning the decision boundary
between different classes or categories of data, generative models aim to under-
stand and capture the characteristics and patterns of the entire dataset.

Generative adversarial networks proposed a novel way to train generative
models [20]. The overall idea is to adversarially train a generator and discrim-
inator where the discriminator attempts to differentiate between real and gen-
erated images, and the generator is trained to generate fake images that fool
the discriminator. These types of models have been used extensively across a
wide variety of domains. Examples include image generation [20], image trans-
lation [24], and speech-synthesis [28].

As shown in Figure 1a, the structure consists of two adversarial models com-
peting against each other: a generator G, with parameters θg, and a discriminator
D, with parameters θd. The main goal of the generator is to take input noise dis-
tribution p(z) and to produce synthetic or fake output data G(z, θg) that follows
a data distribution present in real data. The discriminator is trained to provide
the probability D(x, θd) that an input data x comes from a real training set or
the generator. Both generator and discriminator are trained simultaneously in
a way that θg to minimize log(1 − D(G(z))) and θd to minimize logD(x), as
following a min-max game with value function:

min
G

max
D

V (G,D) = Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]. (1)

Conditional Generative Adversarial Networks (CGANs) [31], illustrated in
Figure 1b, are a variant of the traditional GAN architecture incorporating ad-
ditional information to guide the generation process. In CGANs, the generator
and discriminator receive extra input in the form of conditional variables, which
can be class labels, attribute vectors, or any other auxiliary information. This
conditioning allows for generating more targeted and controlled outputs.

(a) GAN (b) CGAN

Fig. 1: GAN and CGAN structures.

2.2 Generative Models for SCA

Generative models in side-channel analysis have been limited to a few applica-
tions. In [40], the authors considered generative adversarial networks for data
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augmentation. Later, a more elaborated analysis with conditional generative ad-
versarial networks also considered data augmentation [32]. Both analyses were
applied to protected AES implementations. In [43], the authors considered Vari-
ational AutoEncoders (VAE) to generate reconstructed and synthetic traces that
model the true conditional probability distribution of real leakage traces. In [13],
the authors proposed the EVIL-machine, a framework using a GAN-like struc-
ture to find a suitable leakage model for the target device, replacing the need
for prior knowledge of the leakage characteristics. The structure is extended to
mount non-profiled attacks that exploit the learned leakage model. In [10], the
authors presented an approach using a GAN-based structure to mitigate the
issues related to the portability of profiling models. Like our framework, the
authors extracted an intermediate representation of the leakages from a profil-
ing device and then trained a generator to extract a similar representation from
unlabeled attack traces measured on another device of the same model. They
considered only unprotected implementations running on the same device model.
Finally, in [16], a GAN structure is used to translate between side-channel do-
mains. To accomplish this, pairs of traces are required. Again, only unprotected
implementations are considered. While these works consider GAN structures to
transform leakage traces, these require paired measurements in different side-
channel domains [16] or only consider portability [10]. As such, the differences
between the adversarial and target datasets are fairly minimal, allowing for train-
ing the GAN structure without labels. In this work, the differences are more
significant, necessitating the inclusion of labels in the discriminator to facilitate
the convergence of our models.

When we look at applications in DLSCA where information on other im-
plementations is utilized to build more powerful models, the use cases are still
limited. Several works have looked at utilizing transfer learning techniques to
limit the profiling complexity of attacking novel targets [37,15,42]. These works
generally look at fine-tuning models that were pre-trained on a similar task,
which reduces the number of profiling traces required from the profiling device.
Similarly, several works incorporate knowledge of the masking scheme to im-
plement tailored DL layers that explicitly recombine secret shares [9,29]. The
main benefits here are, again, to reduce the number of required profiling traces.
The CGAN-SCA framework that we propose in the next section acts as a fea-
ture extractor from raw datasets, and therefore, our work can also be seen as a
preprocessing method. Regarding applying deep neural networks for preprocess-
ing leakage traces specifically, we refer to Section 4.2 from [35]. We emphasize
that none of the related works consider a generative adversarial architecture
to efficiently extract features from a target dataset by learning the probability
distribution from an adversarial dataset, as detailed next.

2.3 Signal-to-Noise Ratio (SNR)

The signal-to-noise ratio (SNR) measures the strength of a desired signal com-
pared to the background noise level, indicating the clarity and quality of the
signal in relation to the interference or irrelevant information present. In the
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side-channel analysis context, SNR is a measure of the amount of leakage that
is present in a side-channel trace. It is defined as:

SNR =
V ar(E(X|Y ))

E(V ar(X|Y )))
. (2)

Here, E represents the arithmetic mean function and V ar is the variance. Gener-
ally, we assume X to be a single point in a side-channel trace, and we condition
on Y , representing the intermediate value leaked.

3 CGAN-SCA Framework

This section proposes a novel profiling attack framework based on conditional
generative adversarial networks for side-channel analysis (CGAN-SCA). To this
end, we propose an extended profiling SCA threat model, as described next.

3.1 Threat Model and Notations

The classic threat model for profiled attacks in SCA assumes an attacker has an
open and programmable copy of the attacked device [11]. With this privileged
access right, an attacker can enable and disable countermeasures and has access
to mask shares used to generate masks (on the profiling device). This threat
model allows an evaluator to create templates for each secret share straight-
forwardly and then explicitly recombine the retrieved shares during the attack
phase. As a consequence, this attack assumption leads to near-optimal attack
performance with relatively limited resources [8]. However, as mentioned in the
introduction, access to mask shares is often not possible in practical settings.
In line with the scheme-aware threat model proposed in [29], where an attacker
has (some) knowledge of the implementation specifics of the masking scheme
but does not have access to mask shares, this work extends this threat model by
including an additional device (on top of the profiling and attack device) that
runs a similar implementation in a fully white-box setting (i.e., with access to
mask values during profiling). We refer to this device as the reference implemen-
tation. Here, access to mask values is not a problem as the reference is a separate
implementation the adversary develops themselves. Therefore, any restrictions
that apply to the identical device clone that is used in conventional profiling
SCA do not apply to the reference implementation. In scenarios where an at-
tacker has access to the target source code, this can even be used to create the
reference dataset by instrumenting it and taking separate measurements. In less
permissive scenarios where an attacker only knows the type of countermeasure
(i.e., the target is protected with first-order Boolean masking), they can create
a different implementation that runs the same (type of) countermeasure. If a
similar public dataset is available, the reference implementation could even be a
publicly released dataset.

One may doubt the similarity between the reference device and the target
device. It is intuitively clear that the more similar the reference and target device
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are, the better. However, when differences are too large, the framework might not
be able to improve over standard profiling attacks. Broadly, it is advisable to take
devices (and implementations) that operate on the same word sizes. In practice,
this means that it seems unlikely that using a software device that operates
on 8 bits of the internal state at a time as a reference can help when we are
trying to attack a hardware (or bit-sliced) implementation that operates on larger
states. Based on our results, improvements to Black-box attacks can be achieved
even when reference and target are running on different device architectures and
running different implementations of the same masking scheme. A more in-depth
discussion can be found in Section 8.

Based on our threat model, we refer to three categories of trace sets: Xref ,
Xprof , and Xtarget, representing leakages from the reference, profiling, and tar-
get devices, respectively. For clarity, Xref has known key(s) and masks, Xprof

has known key(s) and unknown masks, and Xtarget has unknown key and masks.
A feature selection process over Xref results in an adversarial dataset6 for the
proposed CGAN, also referred to as reference features fref . The features ex-
tracted with the proposed CGAN-based architecture from Xprof and Xtarget

are referred to as target or generated features fprof and ftarget. Nf , is the num-
ber of features in each element of the fref , fprof , or ftarget sets. Note that we
do not separately denote a set of validation traces as those are part of Xprof .

3.2 A Novel Conditional GAN Framework

The proposed Conditional GAN-based framework, referred to as CGAN-SCA,
is illustrated in Figure 2. The structure consists of the following main blocks:

1. Feature selection (top of Figure 2): this block receives at its inputs the set
of reference side-channel measurements Xref and the masks (randomness)
associated with this dataset. This block outputs the features fref (i.e., the
adversarial dataset), which should contain the most leaky samples from Xref ,
similar to the points of interest selection. In this paper, we consider different
methods for feature selection: SNR, Linear Discriminant Analysis (LDA),
and Principal Component Analysis (PCA). The feature selection process
must only be done once for each reference dataset and feature selection
method.

2. Generator G (middle of Figure 2): this block receives the side-channel mea-
surements from the target implementation at its inputs, Xprof or Xtarget.
The generator’s output is the set of extracted features, fprof or ftarget, also
a latent representation of the traces. It is trained to generate fprof that looks
real to the discriminator.

3. Discriminator D (upper right of Figure 2): this block receives at its input
the set of features (fref or fprof ) and the corresponding set of labels (Yref

or Yprof ). The output of the discriminator is a value representation of the
6 The term adversarial is not connected with the domain of security of AI, e.g., adver-

sarial examples, but with the fact that it is a dataset used by an adversary utilizing
a GAN.
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Fig. 2: Proposed CGAN-SCA framework. Xref is the reference dataset with
known secrets (i.e., masks and keys), Xprof is the profiling set with known key(s)
and unknown masks, and Xtarget is the target device with unknown key and
mask. Yref and Yprof are corresponding labels to the Xref and Xprof datasets,
respectively.

loss function. The discriminator is trained to discriminate between real and
generated features (fref and fprof ) using labels Yref and Yprof .

4. Profiling attack (lower half of Figure 2): after the generator G is trained, it is
used to generate fprof and ftarget and a profiling attack is applied on these
features. The attack follows the same classic profiling attack structure (i.e.,
profiling and attack phases), where any type of profiling model can be used.
The main difference is that the model is profiled with extracted features
fprof to attack ftarget, which should contain only leaky points of interest
from the original target traces.

The main goal of training the proposed CGAN model is to generate ftarget
outputs with the same dimension as given by fref and with most of its features
containing main side-channel leakages from Xtarget. Thus, the generator acts
as a feature extraction or dimensionality reduction mechanism. Different from
a classic CGAN structure where the generator receives at its inputs a random
source and a label, our generator receives only the original traces Xtarget from the
target implementation and no labels. This is important as for Xtarget, we do not
have labels Ytarget, and if the generator relies on labels for extracting features,
it is not possible to apply the generator to Xtarget as labels are unavailable. We
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emphasize that this architecture is a new concept that has been introduced in
this paper.

The main goal in training the generator G is to learn parameters θG such
that new samples fprof are statistically indistinguishable from samples from
reference fref . In other words, we train θG to transform input target traces
Xtarget to the probability distribution of fref . Determining the distance between
two distributions is a two-sample hypothesis test problem, which is difficult for
complicated distributions with high dimensions. Therefore, we will also judge
the quality of the generator by computing the SNR between ftarget (i.e., the
output of the generator) and the high-order secret shares from the target device.
In our threat model, an attacker does not know these high-order secret shares
from Xtarget, and these values will not interfere with the training of generator
and discriminator models. Here, we consider them only to visually confirm that
the generator extracts meaningful representations from Xtarget. It is important
to note that, during the CGAN training, we can only use Xprof , as the structure
requires the knowledge of its labels Yprof . In this paper, the labels Yref and Yprof

are always the value of the S-box output byte from the first AES encryption
round, without assuming the knowledge of any mask value.

After training the CGAN structure, the trained generator model is used
to transform the profiling, validation, and attack sets from Xprof and Xtarget

into fprof and ftarget, as shown in the bottom part of Figure 2. Note how this
feature extraction process (i.e., predicting ftarget from Xtarget) does not involve
any label. In the next phase, we utilize the transformed fprof and ftarget sets to
launch standard profiling attacks. In the attack phase, we obtain the probability
P (k) for each key candidate k, which allows us to derive the guessing entropy or
success rate [36] of the correct key. Therefore, the main advantage of using the
CGAN-SCA framework as a preprocessing step is that feature extraction can
be done against a black-box profiling target, allowing key recovery results closer
to white-box profiling attack performance without expensive hyperparameter
tuning efforts, as shown in Section 7.

3.3 CGAN Architecture

We conducted preliminary experiments on the CGAN-SCA framework to deter-
mine well-performing (though not yet optimal) architectures for both the dis-
criminator and generator models. Since this work only addresses synchronized
datasets, we verified that small MLP-based architectures for the discriminator
and generator already demonstrate satisfactory performance. However, a thor-
ough hyperparameter search is essential to achieve better results. In the case
of desynchronized measurements, CNN-based layers are highly recommended,
but this is beyond the scope of this paper and will be explored in future works.
In this section, we first describe the architectural choices for the discriminator
and generator. Then, we discuss how to evaluate the efficacy of CGAN feature
selection. We cover the specifics of our hyperparameter searches to find optimal
solutions in Section 4.2.
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During the training of the CGAN model, the objective of the discriminator is
to distinguish between fref and fprof . Conversely, the objective of the generator
is to generate fprof that is similar to fref . While these objectives will result in
realistic-looking fprof , the generator is not forced to extract the side-channel
leakages from Xprof in any way as it is not conditioned. While a conventional
CGAN model, where labels Yprof are provided to both the generator and the
discriminator, seems like a straightforward solution to alleviate this problem,
the labels are unavailable during the attack phase. In other words, the generator
needs to convert Xtarget into ftarget without labels. As such, we provide labels
only to the discriminator, which only received fprof . This choice allows the dis-
criminator to check whether the provided leakages in fprof correspond to the
label Yprof . This will then force the generator to use the side-channel leakages
in Xprof in its generated fprof as otherwise, the discriminator can easily classify
fprof as fake.

Discriminator Architecture We first look at how to construct the discrimi-
nator model as a poorly configured discriminator will always result in the CGAN
model failing to generate useful ftarget. Our main goal in constructing the dis-
criminator is to ensure it uses the leakages in fref and fprof and does not ‘mem-
orize’ the correct fref . Several works have shown the capability of MLPs to learn
to classify first-order protected datasets from relatively small intervals containing
leaky samples [3] or even raw traces [33]. Thus, it should be relatively easy for an
MLP-based discriminator to learn to combine leakages when its inputs contain
only leaky samples. Developing architectures for other schemes should also be
straightforward, as full access to secret shares of the reference implementation
is available. Pre-training (part of) the discriminator in a classification task, as
is done in [10], can also be an option. Learning higher-order schemes can then
be accomplished using knowledge of secret shares during training [30,14].

The discriminator serves two primary purposes: (1) classifying the input,
which comprises a combination of labels and features, into two classes (0 or
‘fake’ and 1 or ‘real’), and (2) comprehending the relationship between labels
and features. In the second case, we expect the discriminator to recognize an
input combination of labels and features as ‘real’ if the features represent the
corresponding label class. If the discriminator cannot classify whether a given
combination of features and labels is real or fake, we assume that the generated
features, denoted as fprof , are as realistic as the reference features fref . The
discriminator model is set with a binary cross-entropy loss function.

The number of features in fref and fprof is limited to a maximum of Nf =
100, as the evaluated datasets contain a limited number of leaky points of interest
to what concerns the processing of high-order leakages (e.g., masks and masked
S-box output bytes). In the first experiments from Section 4, we define Nf =
100 for ASCADr, ASCADf, and DPAv4.2. For CHES CTF 2018 and ESHARD-
AES128, we consider Nf = 20, as these two datasets are more noisy than previous
ones.
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Figure 3 illustrates the generic structure of the MLP-based discriminator
architecture. The input label (due to the conditioned fashion of the CGAN
structure) is concatenated with the input features that can be either fref or
fprof . For this architecture, we use relatively large, fully connected (dense) lay-
ers after the embedding layer of the class label. Later, in Section 4, we refer
to the number of dense layers after the embedding layer as dense layers em-
bedding, in which the number of neurons in these layers will be referred to as
neurons embedding. After the concatenation layer, we consider dense layers, and
each one of them is followed by a dropout layer. Similarly to the embedding
layers, the number of dense layers after the concatenation, whose are always in-
terleaved with a dropout layer, will be referred to as dense layers dropout, each
one with a number of neurons referred to as neurons dropout. The output layer
of the discriminator always employs the sigmoid activation function for binary
classification. Dropout layers are included in the discriminator as a means of reg-
ularization. We recommended performing hyperparameter tuning, using random
search [33] as detailed in Section 4.2, to determine the optimal number of dense
layers, their activation functions, and the corresponding number of neurons. To
reduce the search space, this model utilizes the Adam optimizer with a learn-
ing rate of 0.0025 and a β value of 0.5. These hyperparameters are commonly
employed in MLP-based profiling attacks [3,35], and we assume they will also
yield favorable results in this case. We emphasize that tuning is performed for
the rest of the hyperparameters.

Fig. 3: Generic architecture for the discriminator.

Generator Architecture Different from the originally proposed CGAN struc-
ture [31] and its variants [45,12], our generator receives at its input real data
Xprof/Xtarget rather than a noise distribution p(z). The generator architecture is
a simple MLP structure without any regularization mechanism. What is expected
from the generator is to learn a mapping function f(x, θG) : Xtarget −→ ftarget
representing a feature extraction process. When Xtarget is a set of leakage traces
collected from a first-order masked AES implementation, the generator is ex-
pected to transfer from the input to the output the features from Xtarget that
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contain the highest SNR values with respect to two secret shares in the case of
the first order masked dataset.

While the task the generator needs to perform is conceptually fairly simple,
in practice, learning to extract leaky points of interest can be difficult. This
is especially true when attacks against the (resampled) full-length traces are
considered. In Table 9 of [33], we see that only between 0% and 5% of random
models result in successful attacks against full-length traces, while when features
are selected based on SNR values in the RPOI scenario, almost all of them can
successfully recover the target key byte. As such, finding an architecture that is
well-tuned to the task of extracting these features also requires hyperparameter
tuning effort.

3.4 Assessing CGAN’s Efficiency

Our CGAN-SCA framework assumes that only the reference device is fully con-
trolled and that its secret shares are known. On the other hand, the randomness
used to generate masks of the profiling/target dataset is unknown. This creates
a challenging situation where accurately verifying the quality of the extracted
features from Xprof/Xtarget becomes difficult. In simpler terms, we aim to mea-
sure the extent to which ftarget represents the extracted high-order leakages from
Xtarget when the target is an n-order masked implementation. To demonstrate
the effectiveness of our CGAN-SCA solution, we utilize publicly available AES-
128 datasets that also provide access to masks. Consequently, we calculate the
SNR of the secret shares derived from the extracted features, ftarget, which comes
from the generator’s output. These SNR values are computed solely to confirm
that the trained generator can automatically extract leakages from Xtarget. We
emphasize that the CGAN model is neither trained nor validated using any in-
formation regarding the masks associated with the target dataset. Thus, for the
targeted implementation, the threat model always follows the classic black-box
profiling attack scenario.

At the end of each CGAN training epoch, we predict the generator with the
attack set from the target dataset Xtarget, and we compute the SNR between
extracted features ftarget and the secret shares. This gives us two vectors with
the same number of features from ftarget. From these SNR vectors, we store the
maximum SNR value. As the results from Section 4 confirm, the generator can
extract features from Xtarget, and the SNR values of secret masks from ftarget
are high.

4 Experimental Results

This section first introduces the reference implementation we considered in this
paper. Then, we perform a hyperparameter search to find generator and dis-
criminator architectures for different reference and target dataset combinations.
The best CGAN architectures are used to conduct profiling attacks and compare
them with the state-of-the-art.
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4.1 Datasets

Our framework requires limited similarity between the reference and target im-
plementations. To illustrate this, this paper considers five publicly available AES
software implementations, and each of them can serve as a reference implemen-
tation. The implementation details and side-channel measurement setup are de-
tailed in Table 1. The AES is implemented on different platforms with different
instruction set architectures and clock speeds. In terms of leakage measurement,
besides the difference in the leakage sources, the side-channel acquisition pro-
cess varies significantly between each implementation: ASCAD datasets were
acquired with a sampling rate of 2G samples per second (S/s), the ESHARD-
AES128 dataset was measured with a sampling rate of 200MS/s (for other
datasets, this information is not available).

Table 1: Dataset setups. All the datasets implement the AES-128 algorithm.
Dataset Side-Channel Type Platform and ISA Clock Speed Countermeasure
ASCADf [3] EM AVR RISC (8 bits) 4MHz Boolean Masking
ASCADr [3] EM AVR RISC (8 bits) 4MHz Boolean Masking
DPAv4.2 [4] Power AVR MIPS (8 bits) 4MHz RSM Masking
CHES CTF 2018 [22] Power ARM Cortex-M4 (32 bits) 168MHz Boolean Masking
ESHARD-AES128 [38] EM ARM Cortex-M4 (32 bits) 30MHz Boolean Masking

The side-channel leakages of four of them, namely ASCADr, ASCADf, DPAv4.2,
and CHES CTF 2018, are the same as adopted for the NOPOI scenario in [33]
(see Section 2.3 and Table 2 of [33] for specific details of the selected inter-
vals). The raw side-channel measurements from ASCADr, ASCADf, DPAv4.2,
and CHES CTF 2018 contain large traces with 100 000, 250 000, 150 000, and
150 000 sample points per trace, respectively. Working with such large intervals
is computationally intensive, and in this paper, we also consider window resam-
pling with a window of 20 and a step of 10. The resampled datasets result in
preprocessed side-channel measurements with 25 000, 10 000, 15 000, and 15 000
samples per trace, and we consider 200 000, 50 000, 70 000, and 30 000 measure-
ments as profiling sets for ASCADr, ASCADf, DPAv4.2, and CHES CTF 2018,
respectively. For all datasets, we consider 5 000 measurements as validation sets
and another 5 000 as attack sets.

The fifth dataset is ESHARD-AES128, and it consists of side-channel mea-
surements collected from a software-masked AES-128 implementation running
on an ARM Cortex-M4 device. The AES implementation is protected with a
first-order Boolean masking scheme and shuffling of the S-box operations. In
this work, we consider a trimmed version of the dataset that is publicly avail-
able 7 and includes the processing of the masks and all S-box operations in
the first encryption round without shuffling. This dataset contains 100 000 mea-
surements, which are split into groups of 90 000, 5 000, and 5 000 for profiling,
validation, and attack sets, respectively.
7 https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled

https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled
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ASCADf and ESHARD-AES128 datasets are the only datasets in which the
profiling, validation, and attack keys are equal and fixed. For the rest of the
datasets, profiling, validation, and attack keys differ.

4.2 CGAN Hyperparameter Search

Through preliminary experiments, we have already confirmed that identifying
effective generator and discriminator architectures is a cost-effective process, as
most of the hyperparameter combinations we have tested yield satisfactory re-
sults, but better sets of hyperparameters can be found. For this purpose, we
employ a random search approach with predefined hyperparameter ranges, as
outlined in Table 2. Dense layers may have different numbers of neurons for the
generator, and the subsequent layer never has more neurons than the previous
layer. This design choice reduces the search space. Due to the limited options
available for each specific hyperparameter, the number of potential generator
architectures is capped at 744, while the number of potential discriminator ar-
chitectures is limited to 324. Consequently, there exists a total of 241 056 possible
CGAN hyperparameter selections. In addition, the generator and discriminator
employ the Adam optimizer with fixed learning rates. For the discriminator, we
set the learning rate to 0.0025, while for the generator, the learning rate is set to
0.0002. The imbalance in learning rates follows [21]. Like other neural network
training procedures, the CGAN training process is conducted in batches, with a
fixed batch size of 400 measurements across all hyperparameter configurations
and experiments from this paper. Although the batch size and learning rates
could also be included in the hyperparameter search process, we decided to fix
these as using bad learning-rate/batch-size combinations would result in training
an unnecessarily large amount of non-converging models.

Table 2: Hyperparameter search ranges for generator and discriminator archi-
tectures.

Generator Discriminator
Hyperparameter Options Hyperparameter Options
Dense layers 1, 2, 3, 4 Dense layers Embedding 1, 2, 3
Neurons 100, 200, 300, 400, 500 Neurons Embedding 100, 200, 500
Activation Function linear, relu, selu, Dense layers Dropout 1, 2, 3

elu, leakyrelu, tanh Neurons Dropout 100, 200, 500
Dropout Rate 0.5, 0.6, 0.7, 0.8
Activation Function leakyrelu

To identify the best hyperparameter setup, we need an evaluation metric. As
conventional Machine learning metrics are generally not suitable for assessing
models in SCA [34], we perform a profiling attack (on the validation set) on
extracted features to evaluate the trained models. The target dataset Xprof is
split into profiling and validation sets. As illustrated in Figure 2, the input to
the generator is only the profiling set from Xprof . After the CGAN training is
finished for every hyperparameter search attempt, we predict on profiling and
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validation sets from Xprof with the trained generator. This gives us fprof and
fval, respectively. For both sets, the keys are assumed to be known, allowing us to
validate the whole process. To check how well the trained generator can extract
leaky features from Xprof , we perform a profiling attack by training a profiling
model with fprof and by computing guessing entropy from fval. The profiling
model consists of a 4-layer MLP (each layer with 100 neurons and elu activation
function) trained for 100 epochs. These hyperparameters were defined based on
preliminary experiments and delivered relatively efficient profiling attack results.
Here, we could also tune the profiling model architecture to find the optimal
solution, which is a process that we cover in Section 7. The trained generator
that extracts fprof and fval resulting in the most successful profiling attack (i.e.,
the profiling model that requires the least number of validation traces fval to
reach guessing entropy equal to one) is considered the optimal solution.

The inputs to the discriminator in the CGAN architecture include the ex-
tracted features (fref or fprof ) and their corresponding labels (yref or yprof ).
The labels yref or yprof refer to one output byte from the first S-box in the
first AES encryption round: S-box(di,j ⊕ ki,j). di,j (resp. ki,j) denote the j-th
plaintext byte (resp. j-th key byte) from the i-th side-channel measurement.
Only when ESHARD-AES128 is involved, the datasets are labeled according to
the Hamming weight of S-box output bytes, i.e., HW (S-box(di,j ⊕ki,j)), as this
dataset leaks in this leakage model and no successful attack results were found
otherwise. Note that yref or yprof need to be labeled with the same leakage
model.

Next, we provide results for ASCADr reference datasets. This dataset was
selected as a reference here as it provides the best results across the board.
Further results with different reference datasets are provided in Appendix A.

4.3 ASCADr as the Reference Dataset

In our first analysis, ASCADr is considered the reference dataset. We deploy a
random hyperparameter search process for each target dataset with 100 search
attempts. The CGAN is trained for 200 epochs for each of these search at-
tempts. At the end of each training epoch, we compute SNR between generated
features ftarget and secret shares, specifically, the masks and masked S-box out-
put, available with the target dataset. It is important to note that, as mentioned
in Section 3.4, these secret shares are assumed to be unknown to the attacker.
However, in this context, we utilize their knowledge to provide evidence of our
results.

Table 3 lists the best-found CGAN hyperparameters when ASCADf, DPAV4.2,
ESHARD-AES128, and CHES CTF 2018 are considered as target datasets. Each
profiling attack conducted after each hyperparameter search attempt is applied
only to the target key byte. When the target dataset is ASCADf, the target key
byte is k2, the first masked key byte in this dataset. For the DPAv4.2, ESHARD-
AES128, and CHES CTF 2018 datasets, the target key byte is k0.
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Table 3: Best CGAN hyperparameter for different target datasets when ASCADr
is a reference dataset.

Generator Network
Hyperparameter ASCADf DPAv4.2 ESHARD-AES128 CHES CTF 2018
Dense layers 1 4 3 4
Neurons 300 200-200-200-100 500-500-500 100-100-100-100
Activation Function linear linear leakyrelu linear

Discriminator Network
Hyperparameter ASCADf DPAv4.2 ESHARD-AES128 CHES CTF 2018
Dense layers Embedding 2 1 1 2
Neurons Embedding 100 100 200 200
Dense layers Dropout 3 1 1 1
Neurons Dropout 200 200 200 200
Dropout Rate 0.7 0.8 0.7 0.5
Activation Function leakyrelu leakyrelu leakyrelu leakyrelu

After finding the best CGAN architecture for each target dataset when AS-
CADr is set as the reference dataset, we repeat the CGAN training plus the
profiling attack for the rest of the key bytes in the target dataset.

Our datasets are all first-order masked AES implementations. The extracted
features ftarget should contain leakages from the masked S-box output byte
and the mask. However, as the Boolean masking operation is commutative, the
generator cannot know what secret share should be the first or the second share.
However, the order of secret shares in the generator’s output has no impact on
the whole process as long as the generator can extract leaky features from the
two secret shares from Xtarget. Notably, for masking schemes where the order
of share values matters for recombination, the generator should learn to order
shares accordingly.

Figure 4 shows the evolution of the maximum SNR values for each secret
share during CGAN training. This plot illustrates the results for all target key
bytes, and the average SNR is illustrated in blue for share 1 and orange for
share 2. The results are provided for ASCADf, DPAv4.2, and ESHARD-AES128
as target datasets.8 Note that these figures also show the maximum SNR values
from the fref (in dashed green line) and Xtarget (dashed red line), which are
averaged over SNR obtained from secret shares associated to each key byte. As
we can see, for all target key bytes, the generator can extract features ftarget
from Xtarget, which results in high SNR values. This confirms that our proposed
CGAN structure can efficiently extract features from high-order leaky points. In
Section 6, a visualization analysis is applied to the generator to express in more
detail what features are extracted from Xtarget.

Another interesting outcome from the results shown in Figure 4 is that when
DPAv4.2 and ESHARD-128 are the target datasets, the averaged SNR levels
from ftarget (extracted features) are higher than the SNR levels from Xtarget

(raw datasets). This occurs due to averaging but also because for some of the
target key bytes, the SNR from ftarget is higher than the SNR from Xtarget.

8 As masks are unavailable for the CHES_CTF 2018 dataset, we cannot perform this
analysis for this target.
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(a) ASCADf. (b) DPAv4.2. (c) ESHARD-AES128

Fig. 4: Performance of CGAN architecture against different target datasets,
Xtarget, when ASCADr is the reference dataset.

This emphasizes the high capability of the trained generator to act as an efficient
feature extractor.

4.4 Profiling Complexity of the CGAN-SCA Framework

In this section, we evaluate the profiling complexity of the CGAN as a feature
extractor and its impact on the complexity of a black-box profiling attack on
the target dataset. This is conducted by varying the number of measurements
from Xprof that is considered for the training of generator and discriminator
architectures. This will allow us to check whether using reduced Xprof datasets
still provides efficient applications of our proposed CGAN-SCA framework. An
attacker that is limited in the number of measurements from the target device
is a realistic assumption, and having a framework that works well under these
circumstances is beneficial for security assessments. Note that we do not limit
the number of traces that can be collected from a reference implementation as
in our extended threat model. We assume this is not a serious limitation for an
attacker.

In this experimental setup, we first find hyperparameters that work in more
limited scenarios. The best architectures found in Section 4.2 using the full target
datasets do not generalize well when fewer traces are available. Thus, we repeat
the random hyperparameter search using the ranges provided in Section 4.2.
We run 100 search attempts combination and select the best generator and
discriminator architectures using the validation metric explained in Section 3.4.
For this random search, we considered 30 0000 traces from Xprof .

Using the best-found generator and discriminator architectures, we then train
CGAN models using the reference dataset and 10 000 through 70 000 traces with
10 000 trace steps. To check how the CGAN model trained with different num-
bers of profiling traces Xprof impacts the performance of a black-box profiling
attack, we ran a random search using the obtained fprof with varying numbers of
profiling traces. As the main idea here is to focus on the process that is efficient
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with less hyperparameter tuning efforts with respect to finding a good profiling
model, we decided to limit the profiling model size to small MLP networks with
up to four hidden layers. The hyperparameter ranges for the profiling attack
model search are shown in Table 4.

Table 4: Hyperparameter search ranges for MLP as a profiling attack model.
Hyperparameter Options
Dense layers 1, 2, 3, 4
Neurons 20, 50, 100, 200, 300, 400, 500
Activation Function elu, selu, relu, leakyrelu, tanh
Learning Rate 0.001, 0.005, 0.0001, 0.0005
Batch Size 100, 200, 300, 400
Weight Initialization random (normal/uniform), he (normal/uniform), glorot (normal/uniform)

For comparison, we also run these attacks in a white-box (WB) profiling
scenario (following the white-box DL setup in Section 7) where features from
Xprof/Xtarget are selected based on SNR.

As can be seen in Table 5, the CGAN framework can be used even in scenar-
ios where only limited profiling traces are available from the target device. The
columns indicate the number of profiling traces Xprof considered for training
the CGAN architecture. Successful attacks are possible with only 10 000 profil-
ing traces in both tested scenarios. While the attack results are not as efficient as
with more traces, the ability of the CGAN network to learn in this limited sce-
nario is somewhat surprising as the conventional discriminative DLSCA models
often require significantly more profiling traces to generate efficient models [29].
In fact, our results are more aligned with the scheme-aware adversary who uti-
lizes knowledge of the masking scheme to explicitly embed the combination of
secret shares into a neural network layer (namely, the Grouprecombine- [29] and
Bilinear [9] layers). As such, we note that including reference traces has similar
benefits to these layers in terms of aiding the networks in learning the secret-
share recombination.

Furthermore, in Table 5, we see that training a CGAN model with larger
numbers of profiling traces can alleviate the need for using the full profiling set
in the subsequent attack phase. The CGAN feature selection has a similar effect
to selecting features in a white-box setting. While using more profiling traces has
clear benefits regarding attack performance, the feature selection provided by
the CGAN makes it significantly easier for attack models to converge in limited
scenarios by eliminating the presence of uninformative samples. This emphasizes
that the CGAN framework can, to an extent, emulate feature selection effectively
without having access to the mask shares of a target device.

5 The Analysis of the Latent Space

In this section, we analyze how variations in the construction of fref can impact
how the generator network performs at extracting features. We first look at
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Table 5: Number of traces to reach GE=1 for varying numbers of profiling traces
for ASCADr vs. DPAv4.2

CGAN training traces
Profiling Traces 10 000 20 000 30 000 40 000 50 000 60 000 70 000 WB

70 000 - - - - - - 9 1
67 500 - - - - - - 11 1
65 000 - - - - - - 10 1
62 500 - - - - - - 9 1
60 000 - - - - - 19 10 2
57 500 - - - - - 21 10 1
55 000 - - - - - 20 10 1
52 500 - - - - - 25 11 2
50 000 - - - - 21 20 11 1
47 500 - - - - 22 25 12 1
45 000 - - - - 22 26 10 2
42 500 - - - - 24 22 11 2
40 000 - - - 29 25 25 11 2
37 500 - - - 35 27 29 11 2
35 000 - - - 31 25 22 11 2
32 500 - - - 35 26 23 15 2
30 000 - - 14 36 25 29 12 2
27 500 - - 11 35 28 30 15 2
25 000 - - 15 37 29 29 15 2
22 500 - - 18 38 27 28 20 2
20 000 - 28 21 39 33 28 19 3
17 500 - 30 21 45 31 34 27 3
15 000 - 37 26 58 45 56 34 3
12 500 - 32 33 72 70 66 60 4
10 000 627 48 38 99 89 155 96 4
7 500 680 56 46 131 143 107 203 5
5 000 797 91 78 251 252 372 285 12

the effect of organizing leaky features in fref in various ways and whether the
generator network can mimic these patterns accurately. Second, we investigate
whether fref can also be created using alternative pre-processing methods, such
as PCA and LDA.

5.1 Varying fref Leakage Pattern

Here, we analyze whether the generator network in the CGAN framework can
mimic the leakage patterns present in the adversarial set fref . This analysis
provides more insights into the relationship between the generator and discrim-
inator. As explained before, the generator needs to extract main features from
Xtarget, and it is important to confirm if these extracted features ftarget follow
the pattern from reference features fref . This is an expected outcome from the
generator as it follows the principle of GAN architectures where the generator
is trained to produce outputs that are statistically similar to the adversarial
dataset (which, in our case, is given by fref ).

This analysis considers ASCADr to be the reference dataset and ASCADf to
be the target dataset. This scenario was chosen as these datasets have very high
SNR peaks concerning their secret shares and are of the same implementation
and device model, simplifying the analysis without expensive hyperparameter
tuning efforts. Note, however, that these datasets were acquired with distinct
acquisition settings.
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From the SNR-based feature selection process on ASCADr, we select 50
features for each secret share to have a total of Nf = 100. Thus, we organize
these features in two different patterns, as shown in Figures 5a and 5c. During
the training of the CGAN architecture, at the end of each epoch, we compute the
SNR levels for the secret shares on ftarget, provided by the generator. Note in the
results given in Figures 5b and 5d how the generator learns to mimic precisely the
leakage distributions from fref . These plots represent the range of minimum and
maximum SNR values obtained during CGAN training epochs (i.e., we compute
the SNR at the end of each CGAN training epoch). The solid lines represent
the mean SNR values. These results confirm that our generator can extract
leaky features from the input target traces Xtarget. An essential insight derived
from this analysis is the significant role played by the feature selection process
in transforming Xref into fref for the generator’s feature extraction task. The
number and distribution of leaky points of interest in fref directly impact the
generator’s performance on its task.

5.2 Varying Reference Feature Selection Method

While it is clear that the generator can effectively emulate feature selection
of SNR peaks, this method is relatively straightforward when compared with
methods currently used in literature, like LDA [6] or PCA. It is interesting to
verify whether our framework allows alternative feature selection methods to be
emulated. To this end, we run experiments using LDA and PCA for constructing
fref . For both methods, we first select the 100 highest SNR features for each
share and then transform these features into 5 components per share. Thus, in
total, the number of features becomes Nf = 10. To test whether the framework
can also emulate these methods, we run attacks against DPAv4.2 using ASCADr
as a reference. To tune models for these cases, we run a hyperparameter search
using the same ranges as in Section 4.2.

In Figure 6, we see that the more complex feature selection methods used for
the reference dataset still result in converging generators. After training genera-
tor and discriminator models, when both PCA and LDA are taken into account
for feature selection from the reference dataset, we apply profiling attacks on
extracted features fprof and ftarget. We can retrieve the correct key byte with
4 and 3 traces for PCA and LDA, respectively. The final performance is similar
to the performance of the generators in Section 4, and the attack performance
is comparable to the attacks with the same datasets in Table 6. From these re-
sults, we can conclude that the CGAN framework is not limited to only using
SNR-based feature selection and also performs well for alternative solutions.

6 Visualizing Generator’s Feature Extraction with LRP
Attribution Method

In the previous section, we demonstrated that the generator effectively extracts
features from Xtarget by mimicking the pattern observed in fref . Additionally,
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(a) fref (ASCADr). (b) ftarget (ASCADf).

(c) fref (ASCADr). (d) ftarget (ASCADf).

Fig. 5: SNRs of fref (left) with the corresponding ftarget (right).

we also verified that the feature selection method to produce fref has little
impact on the whole CGAN-SCA results. This section applies the Layer-wise
Relevance Propagation (LRP) [2] method to analyze the generator further. LRP
is a cost-effective solution that provides interpretability and, for our case, con-
firms that the generator accurately captures leakage from actual leaky points of
interest from Xtarget. The primary objective of this section is to present evidence
that the generator, although not conditioned with labels, can extract features
from the high-order leaky points of interest rather than functioning solely as a
preprocessing step that leads to dimensionality reduction.

In Figure 7, we provide two scenarios. The figure on the top-left shows the
LRP values obtained from the trained generator when the reference dataset is
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(a) PCA (b) LDA

Fig. 6: Maximum SNR evolution for the best model hyperparameter search AS-
CADr vs. DPAv4.2 using LDA/PCA for generating fref .

ASCADr and the target dataset is ASCADf. The generator’s output produces
ftarget with Nf = 100 features per trace. For this case, the selected pattern
for fref is exactly what is shown in Figure 5a. Thus, as the generated features
ftarget have the same shape as shown in Figure 5b, we compute LRP for the first
50 features for share 1 and the other 50 features for share 2. Comparing with
the SNR values obtained from the same target key byte of ASCADf (plot on the
bottom-left of Figure 7), we see that the generator extracts the correct features
from Xtarget.

Fig. 7: Comparison between LRP magnitude and SNR values from secret shares
obtained for a single target key byte.

Furthermore, we present an example using the ESHARD-128 dataset. In this
case, the generator is trained with ASCADf as the reference dataset. Following
the same process as in the previous example, we obtain the results depicted
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on the right side of Figure 7. It is noteworthy how the generator can extract
features that align with the location of SNR peaks concerning the processing
of high-order leakages. This interpretability analysis confirms the generator’s
effectiveness in extracting high-order leakages from a target dataset when it is not
even conditioned to any label class. Indeed, only conditioning the discriminator in
our proposed CGAN structure is enough to implement efficient feature extraction
from masked datasets. However, as the CGAN structure never sees the labels
from the target attack set and is still able to extract features from this attack set
efficiently, we may intuitively conclude that the generator learns to extract input
features from specific positions. The results in this section provide conditions to
make the application of the CGAN-SCA framework to black-box profiling attacks
more interpretable. It points out the locations in the target dataset Xtarget,
where feature extraction can expose potential vulnerabilities in the implemented
countermeasures.

7 Profiling Attacks and Comparison with State-of-the-Art

We employ state-of-the-art profiling attack methods as a benchmark to compare
against our results. More precisely, we compare the number of attack traces that
are necessary to achieve guessing entropy equal to 1 when the attack considers
up to 2 000 traces. Moreover, we compare the success of a hyperparameter search
process. The following analysis is conducted for each dataset:

- CGAN-SCA with DL-based profiling attack (CGAN-SCA): this
attack is implemented with the CGAN-SCA framework presented in Section 3.2.
The CGAN-SCA architecture is trained to achieve an efficient generator model
that converts Xprof and Xtarget traces into fprof ,ftarget. After obtaining these
extracted features, we apply a DL-based profiling attack.

- DL-based black-box profiling attack (BBDL): in this case, we apply
DL-based profiling SCA on datasets without feature selection. The attack is
considered a black box as the profiling phase does not consider any knowledge
about countermeasures or secret randomness.

- DL-based white-box profiling attack (WBDL): this profiling attack
assumes that during profiling, an adversary can implement feature selection as
countermeasures (i.e., the masking scheme) and secret randomness (i.e., secret
masks) are known. Therefore, feature or points of interest selection can be applied
to profiling and attack traces.

- White-box Gaussian Template Attack (WBTA): this process follows
a white-box profiling attack in which points of interest are selected based on
the set of highest SNR peaks obtained with the knowledge of secret masks.
For all scenarios, we select 1 000 points of interest by targeting a second-order
leakage function (500 points of interest for each share), which is reduced with
linear discriminant analysis (LDA) to 10 points of interest. Afterward, we build
Gaussian templates with them.

The first three profiling methods, which consist of deep learning-based pro-
filing models, include a hyperparameter tuning process for a small MLP model.
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For each of the 16 target key bytes from the full AES 128-bit key, we search
for 100 random MLP architectures using the same hyperparameter ranges from
Table 4. Each of these MLP architectures is then trained, validated, and tested
separately with:
1. fprof , ftarget, and fval sets, respectively, obtained by predicting the generator

G with the profiling, validation, and attack sets from the Xprof and Xtarget.
This way, we implement the aforementioned CGAN-SCA with DL-based
profiling attack;

2. original Xprof (split into profiling and validation traces) and Xtarget,to imple-
ment the aforementioned DL-based black-box profiling attack: BBDL.

3. SNR-based selected features from Xprof and Xtarget to implement the afore-
mentioned DL-based white-box profiling attack: WBDL.

Fig. 8: GE results for key-byte 2 for various targets and methods (ref: ASCADr)

Through this comparison, we emphasize the significantly reduced effort from
the CGAN-SCA approach in finding an efficient profiling model that shows per-
formance comparable to optimal profiling models, as is expected for WBDL and
WBTA. Table 6 provides the performance of the five aforementioned profiling
attack methods on datasets listed in Section 4.1. For the case of CGAN-SCA
methods, we provide results for different reference datasets. This table shows
results with different colors to differentiate among profiling attack categories for
better readability.

As can be seen in Figure 8 and Table 6, the attacks using ASCAdr as a refer-
ence for all targets improve substantially over the BBDL attacks. Furthermore,
in the best-case scenarios for ASCAD(r/f) and DPAv4.2, results are compara-
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Table 6: The minimum number of attack traces to obtain guessing entropy equal
to 1. The symbol x indicates that the target key byte is not recovered with 2 000
attack traces. The NA indicates that the attack is not applicable because the
target key bytes are unprotected.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

Method
Target ASCADr

CGAN-SCA (ref: ASCADf) NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CGAN-SCA (ref: DPAv4.2) NA NA 4 2 2 2 5 11 10 2 6 8 5 2 2 2
White-Box DL NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Black-Box DL NA NA 1 2 3 1 29 5 1 16 9 9 9 6 1 1
White-Box TA NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ASCADf
CGAN-SCA (ref: ASCADr) NA NA 1 1 1 1 1 1 4 1 5 1 15 5 1 5
CGAN-SCA (ref: DPAv4.2) NA NA 3 3 2 2 2 3 7 2 5 2 7 5 2 5
White-Box DL NA NA 1 1 1 1 1 1 4 1 2 1 3 3 1 1
Black-Box DL NA NA 9 6 9 8 18 x 27 6 20 6 x 34 17 7
White-Box TA NA NA 1 1 1 1 1 1 4 1 2 1 8 4 1 5

DPAv4.2
CGAN-SCA (ref: ASCADr) 1 3 2 5 3 2 4 2 7 2 3 3 2 2 5 2
CGAN-SCA (ref: ASCADf) 5 2 3 12 3 6 5 9 4 3 7 6 3 2 5 8
White-Box DL 1 1 1 2 3 1 2 1 3 1 2 2 1 1 2 1
Black-Box DL x 315 140 x x x 1454 x x x x x x x x x
White-Box TA 3 2 2 3 2 3 3 2 5 3 4 3 2 2 3 2

CHES CTF 2018
CGAN-SCA (ref: ASCADr) 36 24 22 20 51 19 21 36 34 18 25 23 24 22 22 19
CGAN-SCA (ref: ASCADf) 19 39 27 30 19 14 22 25 32 15 29 30 33 18 27 18
CGAN-SCA (ref: DPAv4.2) 91 47 36 115 159 200 73 138 858 56 136 50 557 78 124 52
Black-Box DL x 471 367 77 668 1327 304 1216 1369 957 83 662 x 459 413 380

ESHARD-AES128
CGAN-SCA (ref: ASCADr) 556 1105 312 224 709 257 396 206 967 385 244 272 309 294 292 299
CGAN-SCA (ref: ASCADf) 491 1248 528 357 1539 532 641 493 622 552 373 513 732 406 454 572
CGAN-SCA (ref: DPAv4.2) 1353 x x 1242 x x x 1051 x 1787 1643 x x x x x
White-Box DL 640 1546 875 727 x 774 799 667 x 846 487 745 1162 649 818 1037
Black-Box DL 758 748 625 616 1957 950 536 700 x 769 846 479 1527 769 572 462
White-Box TA 67 81 97 89 110 75 123 107 152 100 100 89 127 87 111 111

Table 7: Search success for MLP-based profiling attack with random hyperpa-
rameter search. The percentage indicates the number of successful MLP models
out of 100, and it is averaged for all target key bytes.

Target
Method CGAN-SCA CGAN-SCA CGAN-SCA White-Box Black-Box

(ref: ASCADr) (ref: ASCADf) (ref: DPAv4.2) DL DL
ASCADr NA 72.80% 90.47% 99.88% 8.92%
ASCADf 64.22% NA 68.25% 70.58% 9.24%
DPAv4.2 65.07% 62.16% NA 63.68% 0.74%

CHES CTF 2018 61.10% 99.55% 33.15% NA 12.14%
ESHARD-AES128 94.56% 54.48% 10.17% 63.68% 35.60%

ble to attacks following white-box assumptions.9 Only for ESHARD, and when
DPAv4.2 is used as a reference, we see that white-box attacks still substantially
outperform our attacks. We mostly attribute this to the larger difference in im-
plementations/devices, which we discuss in more depth in Section 8.

Table 7 shows the search success from the hyperparameter search part of
DL-based profiling attack methods. The search success indicates the percent-
age of times a profiling model has reached the guessing entropy of 1 with less
than 2 000 attack traces. The percentages are the average of all target key bytes.
CGAN-SCA and WBDL present similar performances and are significantly su-
perior to black-box DL. This finding is impressive if we remember that CGAN-

9 While it seems likely that CHES_CTF 2018 results are competitive with white-box
attacks, we cannot verify this as mask values are not available.
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SCA is a black-box (i.e., non-worst case) profiling approach. The results from
Table 7 corroborate what was already shown in [33]: spending significant effort
on hyperparameter search process eventually results in a high-performing deep
neural network against first-order masking in AES implementations. However,
what matters in this table is the search success, which informs more about the
chances of finding a good group of hyperparameters and training settings. Al-
though black-box DL-based profiling attacks result in successful attacks with (in
some cases) very few required attack traces, the search success with CGAN-SCA
framework and white-box DL approaches are significantly higher. For instance,
when ASCADr is set as a reference and DPAv4.2 is set as a target, the search
success for a black-box DL is 0.74%, while for CGAN-SCA is 65.07%. For the
case when ASCADf is the reference and CHES CTF 2018 is the target, the
search success increases from 12.14% for a black-box approach to 99.55% with
our CGAN-SCA framework. This justifies the need for feature selection (in the
case of white-box) or feature extraction (in the case of CGAN-SCA framework)
to speed up security evaluations. Since our proposed solution is also black-box,
it becomes very attractive for efficiently assessing the security of masked imple-
mentations.

8 Discussion

Profiling attack results presented in this paper are aligned with the state-of-the-
art for the evaluated datasets (see [33] for the ASCAD, CHES CTF 2018, and
DPAv4.2 datasets. To the authors’ knowledge, there are no published ESHARD-
AES128 dataset results for profiling attacks). Such results were possible due to
the following extra ingredients in a security assessment process:
1. Using a (white-box) reference dataset. The CGAN-SCA structure re-

quires a reference device with similar implementation specifications to the
target one. This paper shows that reference and target datasets can be gath-
ered from different devices, cryptographic designs (with at least the same
cryptographic algorithm with a similar masking scheme), varying source
codes, and different acquisition setups. For some experimental examples,
reference and target datasets also come from different side-channel types
(e.g., power and electromagnetic analysis). Together with the availability of
a reference implementation, it should also be possible to implement feature
selection from this same implementation. This paper assumes that secret
masks from the reference implementation are known to compute feature se-
lection.

2. The employment of a generative model for feature extraction from
target side-channel measurements. As specified in Section 3.2, the CGAN-
SCA framework can implement feature extraction from a target dataset, and
a reference dataset is used as an adversarial dataset. We are aware that this
whole process increases the complexity of the analysis because a CGAN ar-
chitecture (i.e., generator and discriminator neural networks) needs to be
trained before applying a profiling attack on the extracted features from the
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target dataset. However, our experimental analysis demonstrated that when
an efficient CGAN architecture is found, and the extracted features contain
high SNR levels concerning the leakage of intermediate variable (e.g., masks
and masked S-Box outputs), defining a profiling model becomes relatively
easy. Therefore, in practice, the efforts to find an efficient profiling model
(see [33] where the authors performed very costly hyperparameter tuning
processes) are transferred to defining an efficient CGAN architecture.

3. Hyperparameter tuning for generator and discriminator models.
An efficient CGAN architecture requires some carefully tuned generator and
discriminator models. Overall, this is the only time-consuming part of the
proposed CGAN-SCA framework. However, this whole process brings clear
benefits, as a feature extraction process from raw side-channel measurements
becomes possible without assuming any knowledge about low-level counter-
measure details and secret randomness.

Our results present three broad categories of ’similar’ implementations, allowing
us to give some takeaways on how similar the reference implementation must be:

1. ASCAD(f/r) vs. ASCAD(f/r): The reference device and implementa-
tion are the exact same. This scenario can occur when an attacker/evaluator
has access to the source code of an implementation but cannot alter this
implementation on the target device. In such a scenario, the attacker/evalu-
ator could utilize an instrumented version of the source to create a reference
dataset. Our results in Section 4 show that the inclusion of this reference im-
plementation results in significantly improved attack results over Black-Box
DL attacks, and the results are competitive with White-Box approaches.

2. ASCAD(f/r) vs. DPAv4.2: The reference and target devices are similar in
that both are 8-bit micro-controllers with RISC-based micro-architectures.
The measurements for these targets are in different side-channel domains
(EM for ASCAD vs Power for DPA). Both implementations incorporate
Boolean masking-based countermeasures, although the specifics of the imple-
mentations differ somewhat. For DPAv4.2, an RSM-based masking scheme
is employed, which results in 16 possible mask values, while for both AS-
CAD versions, we have 256 possible mask values. Results here still showcase
strong improvements over Black-Box DL, especially when DPAv4.2 is the
target, but the attacks are somewhat less efficient than White-Box attacks.

3. (ASCAD/DPA) vs. (CHES_CTF/ESHARD): We target 32-bit mi-
crocontrollers with ARM micro-architectures while using 8-bit AVR micro-
controllers as the reference. The implementations are broadly similar in
that these are all software AES implementations protected with first-order
Boolean masking. As we see in Table 6, the attacks against both CHES_CTF
and ESHARD are better than the Black-Box DL attacks when ASCAD is
used as the reference, while the results are similar to (CHES_CTF), or worse
than(ESHARD) Black-Box attacks when DPA is used as the reference. Ad-
ditionally, we see that for ESHARD, the performance of white-Box attacks
is still significantly better than that of our CGAN-SCA setups.
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In ideal cases where the reference implementation only differs in terms of
allowing the knowledge of mask values,10 we see that results are competitive
with White-Box attacks. The device model and architecture similarity are more
important than countermeasure implementation for other settings. While our
results do not allow for strong requirements on the reference implementation,
overall, the necessary ’similarity’ to improve over Black-Box attacks is not ex-
tremely stringent. In some of the tested settings where the devices differ in
terms of micro-architecture and implementation, we still see improvements over
Black-Box attacks although the performance in these cases is worse than their
white-box counterparts. In addition, it is more important to ensure the devices
are similar in terms of, e.g., micro-architecture or bus size, over specific counter-
measure implementation details (i.e., RSM vs. Bolean masking).

9 Conclusions and Future Work

This paper proposes a novel CGAN-based framework to automatically extract
features from a target dataset when the adversarial dataset comes from a sim-
ilar, open, and fully controlled implementation. Our solution differs from con-
ventional CGAN architectures from the literature: the generator receives real
(target) traces instead of noise, and it is not conditioned with label class, al-
lowing it to extract features from an unlabeled attack set. By applying our
framework to five publicly available masked AES datasets, we obtain profiling
attack results that significantly surpass the state-of-the-art black-box security
assessment and rival the performance of worst-case (white-box) security evalua-
tions. The proposed CGAN-SCA framework can precisely extract features from
high-order leakages by mimicking the feature distribution present in a reference
dataset. Our method makes hyperparameter tuning in a deep learning-based pro-
filing attack almost negligible, similar to white-box deep learning-based security
evaluations.

For future work, we plan to investigate the effectiveness of CGAN architec-
tures to extract features from high-order masking schemes. Moreover, we plan
to implement more complex generator and discriminator models, such as CNN-
based architectures, which could extract features from desynchronized datasets.
More complex CGAN structures could potentially reduce some of our frame-
work’s limitations, such as using a reference dataset with a minimum acceptable
SNR level regarding the n secret shares. A way to define a cost-efficient early
stopping metric during CGAN training could also be an interesting research
direction. Finally, we plan to explore whether the proposed structure can be
adapted to non-profiling settings.
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A Additional Results from Section 4

A.1 ASCADf as the Reference Dataset

Table 8 lists the best-found CGAN architectures when ASCADf is set as the
reference dataset and ASCADr, DPAv4.2, ESHARD-AES128, and CHES CTF
2018 are set as target datasets.

Table 8: Best CGAN hyperparameter for different target datasets when ASCADf
is a reference dataset.

Generator Network
Hyperparameter ASCADr DPAv4.2 ESHARD-AES128 CHES CTF 2018
Dense layers 3 2 2 4
Neurons 200-200-100 300-100 500-400 100-100-100-100
Activation Function leakyrelu linear selu linear

Discriminator Network
Hyperparameter ASCADr DPAv4.2 ESHARD-AES128 CHES CTF 2018
Dense layers Embedding 2 2 1 2
Neurons Embedding 200 200 500 200
Dense layers Dropout 1 2 1 1
Neurons Dropout 200 100 200 200
Dropout Rate 0.6 0.8 0.7 0.5
Activation Function leakyrelu leakyrelu leakyrelu leakyrelu

Similar to ASCADr, the ASCADf dataset provides side-channel measure-
ments with high SNR levels with respect to high-order secret shares. Thus, in
this case, the generator can also extract high-SNR features from target datasets,
as shown in Figure 9. Again, the SNR values are always an average over the
results obtained from all target key bytes. Note how the CGAN model converges
relatively quickly during the CGAN training process when ESHARD-AES128 is
set as the target dataset.

The evolution of the SNR values from Figure 9 indicates that our hyperpa-
rameter search process also finds efficient CGAN architectures when ASCADf
is considered as the reference. Some CGAN models require more epochs to con-
verge due to the specific hyperparameters that were selected as the best models.
Therefore, we concluded with this analysis that it is important to train the
CGAN longer (i.e., from 100 to 200 epochs) to increase the chances of finding
satisfactory results.

https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
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(a) ASCADr (b) DPAv4.2 (c) ESHARD-AES128

Fig. 9: Performance of CGAN architecture against different target datasets,
Xtarget, when ASCADf is the reference dataset.

A.2 DPAv4.2 as the Reference Dataset

Next, the DPAV4.2 dataset is taken as the reference dataset for the CGAN-
SCA framework. After running a random hyperparameter search for each target
dataset, we select the best CGAN hyperparameters, as listed in Table 9.

Table 9: Best CGAN hyperparameter for different target datasets when DPAV4.2
is a reference dataset.

Generator Network
Hyperparameter ASCADr ASCADf ESHARD-AES128 CHES CTF 2018
Dense layers 1 2 2 1
Neurons 100 500-100-100-100 400-300 100
Activation Function elu linear selu linear

Discriminator Network
Hyperparameter ASCADr ASCADf ESHARD-AES128 CHES CTF 2018
Dense layers Embedding 1 1 1 1
Neurons Embedding 500 200 500 500
Dense layers Dropout 1 1 1 1
Neurons Dropout 100 100 500 500
Dropout Rate 0.6 0.7 0.6 0.8
Activation Function leakyrelu leakyrelu leakyrelu leakyrelu

Results provided in Figure 10 show that taking DPAv4.2 as the reference
dataset also allows us to extract high SNR features from Xtarget when ASCADr,
ASCADf, and ESHARD-AES128 are set as target datasets. It is also interesting
to realize how the CGAN-based architecture converges relatively quickly for all
target datasets, providing evidence that our proposed framework may not be
very time-consuming.
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(a) ASCADr. (b) ASCADf. (c) ESHARD-AES128

Fig. 10: Performance of CGAN architecture against different target datasets,
Xtarget, when DPAv4.2 is the reference dataset.

B Varying the Number of Features Nf

We analyze the performance of the CGAN-SCA framework for varying sizes
of the feature space. We explore two scenarios: (1) ASCADr vs. DPAv42, in
which the reference dataset (ASCADr) shows higher SNR peaks, with respect
to the processing of two secret shares, than the target dataset (DPAv42) and
(2) ESHARD-AES128 vs. ASCADf, in which the reference dataset (ESHARD-
AES128) presents lower SNR peaks compared to the target dataset (ASCADf).

The CGAN architectures for this analysis come from the best-found mod-
els from Section 4.2 when ASCADr is the reference and DPAv4.2 is the target
dataset. When ESHARD-AES128 is the reference dataset, we use a 4-layer MLP
with 100 neurons in the first three layers and Nf in its last layer with linear or
identity activation function. For the discriminator, we set one embedding dense
layer and one dropout dense layer with 100 neurons. Subsequently, the attacks
are performed with an MLP with 4 hidden layers with 100 neurons, the Adam
optimizer with a learning rate of 0.001, using the elu activation function. We
train this MLP for 50 epochs with a batch size of 400. We take the best results
out of 10 CGAN training runs.

In Figure 11a, we can see that reducing the size of the latent space from 100
does not significantly harm the attack performance when Xref has higher SNR
levels than Xtarget. When we consider lower Nf , the generator still seems to pro-
duce fref that contains the same amount of information as in cases with higher
Nf . In cases where we consider Nf higher than 100 and lower SNR features are
included in fref , the framework’s performance is significantly degraded, which
is the case when ASCADr is set as reference and DPAv4.2 as target dataset.

In Figure 11b, we can see that for much lower SNR fref , the performance
can suffer for low Nf . We attribute this to the leakages included in fref being
insufficient for effectively comparing leakages to Yref to classify whether the
features are real. Another observation from Figure 11b is that successful attacks
are possible with Nf higher than 100. This is because ASCADf is a relatively easy
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dataset to attack, which mitigates the downsides of adding non-leaky features
to fref .

These results indicate that when the SNR levels in fref are sufficient, the
feature dimensions need to be set to a number that is not too large. Intuitively,
we want to limit the number of lower SNR features included in fref and gener-
ate a ’cleaner’ set of reference features. This way, the generator learns only to
include leaky features and does not also need to mimic noisy features. Further-
more, reducing Nf too far can result in the discriminator being unable to utilize
leakages in fref . This effect does not seem to be present when the SNR levels of
the fref are higher, but careful consideration is required here.

(a) ASCADr vs. DPAv4.2 (b) ESHARD-AES128 vs. ASCADf

Fig. 11: Training results for different Nf . The SNR levels represent the maximum
SNR value obtained from ftarget with respect to each of the two processed secret
shares.

C Simulations as the Reference Dataset

In this section, we assess whether the real reference implementation can be re-
placed by a simulation. As the only aspects of the reference implementation that
are relevant for the training of our framework are the leaky features fref , it is
relatively straightforward to implement basic simulations, as we only need to
simulate leaky features for each secret share. We simulate using various leak-
age models to test whether simulations are a suitable replacement for an actual
reference implementation.

C.1 Simulation Setup

In our tests, we always use Nf = 100, and we generate 200 000 simulated ref-
erence traces. The Gaussian noise that is added to the implementations is kept
relatively low, and we additionally vary the level of noise for each feature. Specifi-
cally, for the i-th feature in fref , we have Zi

1 = N (0, Zi
2), where Zi

2 = U(0.15, 0.5)
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(here N and U are the normal and uniform distributions respectively). This setup
was based on some preliminary testing to allow for the CGAN models to actually
learn, which was difficult for more basic simulations with the same level of noise
for each feature.

To obtain a realistic view of the efficacy of replacing an actual reference
implementation with simulations, we test various leakage models. In all of the
below cases we simply simulate a first-order Boolean masked implementation by
generating two random values S1, S2 ∈ Z256

11. The labels are then generated by
Yref = S1 ⊕ S2. We include leakages for S1 in the first 50 features of fref and
leakages for S2 in the last 50. Below, we define how we generate the 50 features
for a single share. Here, bj(S) is the j-th bit of share S, and fi is the i-th (or
(i+ 50)-th) feature in fref .

– Hamming weight (HW): fi =
∑8

j=1 bj(S) + Zi
1

– Most Significant Bit (MSB): fi = b1(S) + Zi
1

– Least Significant Bit (LSB): fi = b8(S) + Zi
1

– Bit: fi = bj(S) + Zi
1 where j = i×8

50 mod 8. i.e., bit 1 is leaked in the first
6 features, bit 2 in the second 6, etc.

– Real: fi =
∑

j∈bitsi
bj(S) + Zi

1, where bitsi is a list of 3-8 random integers
between 1 and 8 representing the bits of the share to leak for fi, i.e., for
each feature we leak the Hamming weight of 3-8 randomly selected bits of
the share.

– 4Bit: fi =
∑4

j=1 bj(S) + Zi
1 for i < 25 and fi =

∑8
j=5 bj(S) + Zi

2 for i ≥ 25
i.e., we leak the Hamming weight of the 4 most significant bits of the share
S in the first 25 features of the trace, and the Hamming weight of the 4 least
significant bits in the second 25 features.

C.2 Simulation Results

The hyperparameters of the CGAN models are tuned independently for each
dataset/simulation pair over 100 training runs using the ranges and selection
criteria described in Section 4.2. The subsequent attacks follow the CGAN-SCA
attack setup described in Section 7, comprising a hyperparameter search of 100
models, using the ranges from Table 4.

In Table 10, the results for each tested scenario can be seen. Overall, we
see that reasonable attacks can be achieved using a simulated reference dataset,
which indicates the powerful capacity of the CGAN-SCA structure as a feature
extraction process. Especially for DPAv4.2, CHES CTF 2018, and ASCADf, the
attack results are similar to those given in Section 7 using real reference datasets.
For the ESHARD-AES128 dataset, we see that the attacks are significantly worse
than in Section 7. However, it seems likely that tuning the simulation parameters
for this specific case will allow better attack performance as the simulations with
the used parameters resemble the ASCAD and DPAv4.2 targets much more
11 For DPAv4.2 S1 ∈ {3, 12, 53, 58, 80, 95, 102, 105, 150, 153, 160, 175, 197, 202, 243, 252}

to simulate the RSM masking scheme used in this implementation.
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closely in terms of SNR levels. We chose not to fine-tune simulations for each
individual target to simplify experiments and to highlight the difference between
an optimized simulation (ASCADf, DPAv4.2) vs. a non-optimized simulation
(ESHARD-AES128).

Overall, simulating reference targets is clearly possible. However, construct-
ing suitable simulations is non-trivial and dependent on the characteristics of
the target device. Notably, in our experiments, we could easily create simula-
tions with similar noise levels to (some of) the target implementations as we had
access to the secret shares and could, therefore, determine the levels of leakage
present in the targets. This knowledge is not available for real targets in the
black-box setting. While the parameters for the simulation could be included
in the random hyperparameter searches in a less informed setting, this would
significantly increase the search space, making it harder to find good configura-
tions. As such, including a real reference target (naturally) simplifies the attack
process for the CGAN framework.

HW Bit MSB LSB Real 4BIT
DPAv4.2 x 6 148 7 9 16
ASCADf 468 1 6 6 1 4

CHES CTF 2018 x 20 40 32 21 79
ESHARD-AES128 1924 856 x 1973 x x

Table 10: Number of traces to reach GE=1 for various simulated leakage models.

D Unprotected Target

To verify the framework can also work for unprotected targets, we mount attacks
against ASCADr where we assume masks are known (we label with Sbox(pi ⊕
ki) ⊕ ri). We simulate the reference here, with the Bit leakage model from Ap-
pendix C. Note that we use 50 features here as there is only 1 relevant share.
The architectures we use are the architectures found with ASCADf as reference
and ASCADr as target. In this setup, the target key-byte can be retrieved in 1
trace.
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