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Abstract. Isogeny-based cryptography is one of the candidates for post-
quantum cryptography. In 2023, Kani’s theorem breaks an isogeny-based
scheme SIDH, which was considered a promising post-quantum scheme.
Though Kani’s theorem damaged isogeny-based cryptography, some re-
searchers have been trying to dig into the applications of this theorem.
A FESTA trapdoor function is an isogeny-based trapdoor function that
is one trial to apply Kani’s theorem to cryptography.

This paper claims that there is an adaptive attack for a FESTA-based
scheme if this scheme does not check the correctness of the input ma-
trix. Our attack cannot be adapted to IND-CCA PKE schemes named
FESTA proposed in the FESTA original paper so far. In this paper, we
provide an adaptive attack for a FESTA trapdoor function using a spe-
cific oracle, and it reveals the secret key of the function. This oracle may
be constructed if the FESTA trapdoor function is used in the wrong way
(i.e., without the checking process of the input matrix). As an example,
we explain that our attack can be adapted to a possible PKE scheme
based on a FESTA trapdoor function in the wrong way.

Keywords: Isogeny-based cryptography · FESTA · Kani’s theorem ·
adaptive attack

1 Introduction

Public key cryptography is an important technology for the security of our infor-
mation society. For example, we use RSA [19] and Elliptic Curve Cryptography
[14,12] to prevent the leakage of our crucial information. However, Shor showed
that quantum computers may be able to break these cryptosystems in polyno-
mial time [21]. Therefore, we need to construct novel cryptosystems to resist
the attacks via quantum computers. We call such cryptography post-quantum
cryptography (PQC).

Isogeny-based cryptography is one of the candidates for post-quantum cryp-
tography. Isogeny-based cryptography attracts interest from some cryptogra-
phers due to its compactness and mathematical structures. Indeed, SIKE [1],
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which is an isogeny-based key encapsulation scheme based on SIDH [10], re-
mained as an alternative candidate in the 4th round of the NIST PQC stan-
dardization process [17].

In 2022, some studies break SIDH and cryptosystems related to SIDH [3,13,20].
These studies use Kani’s theorem [11] that describes the relationship between
an isogeny diagram of elliptic curves and an isogeny of abelian varieties of di-
mension 2. Although CSIDH (an isogeny-based key exchange scheme) [4] and
SQISign (an isogeny-based digital signature scheme) [6] and some other schemes
have not been broken by these attacks, it caused some damages for isogeny-based
cryptography.

On the other hand, Kani’s theorem leads to some novel isogeny-based schemes.
In 2023, Dartois, Leroux, Robert, and Wesolowski proposed a novel isogeny-
based digital signature SQISignHD [5]. This new signature is based on Kani’s
theorem and is more compact than SQISign. Moreover, Basso, Maino, and Pope
proposed a novel isogeny-based trapdoor function and a public key encryption
(PKE) scheme based on this trapdoor function FESTA (Fast Encryption from
Supersingular Torsion Attacks) [2]. FESTA is also based on Kani’s theorem and
is expected to lead to a next-generation isogeny-based PKE scheme instead of
SIDH. To dig the applications of these new schemes and to analyze their security
are important tasks for isogeny-based cryptography.

1.1 Contribution

In this paper, we show that there is an adaptive attack if a FESTA trapdoor
function is used in the wrong way. There are several studies of adaptive attacks
for SIDH (e.g., [8,7]). We construct a similar attack for a FESTA trapdoor
function and related schemes when the function is used in the wrong way.

As a part of the input of a FESTA trapdoor function, we use a 2× 2 regular
matrix belonging to a fixed set Mb. We usually check whether this 2×2 matrix is
taken from the setMb when computing the inverse map of the trapdoor function.
We show that we can construct a specific oracle O for a possible scheme not
checking the inclusivity of this matrix, and an adversary can reveal the secret
key of the FESTA trapdoor functions by using this oracle.

Note that FESTA is not threatened by our attack directly because we check
the correctness of the ciphertexts in its description process.

2 Preliminaries

In this section, we introduce some mathematical concepts and facts.

2.1 Abelian varieties and isogenies

This subsection provides some knowledge about abelian varieties and isogenies.
Refer to [16] and [22] for more detail.
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Let k be a field. We denote the characteristic of k by ch(k). Let A be an
abelian variety over k with an isomorphism φ : A → Â, where Â is the dual
abelian variety of A. We call the pair (A,φ) a principally polarised abelian variety
over k. In this paper, we often omit the polarisation φ and represent (A,φ) by
A. An elliptic curve is a principally polarised abelian variety of dimension 1.
Let d be an integer. The d-torsion subgroup of A is a subgroup of A defined as
{P ∈ A | dP = 0}. We denote this group by A[d]. If d is coprime to ch(k), then
it holds that

A[d] ∼= (Z/dZ)2 dimA.

Suppose that ch(k) = p for a prime number p. Let E be an elliptic curve. If it
holds that E[p] = {0}, we call E a supersingular elliptic curve. If a principally

polarised abelian variety A satisfies, as an abelian variety, A ∼=
∏dimA

i=1 Ei for
supersingular elliptic curves E1, . . . , EdimA, we call A a superspecial principally
polarised abelian variety.

Let A and B be principally polarised abelian varieties. An isogeny ϕ : A → B
is a morphism between A and B such that ϕ is surjective, ϕ is a group morphism,
and the kernel of ϕ is a finite subgroup of A. Let G be a finite subgroup of A.
There is a separable isogeny ϕ : A → B with kerϕ = G. Moreover, the image
variety B is unique up to isomorphism. We denote by A/G a representative of
the isomorphism class of B. If A is of dimension 1 or 2, there are well-known
algorithms to compute an isogeny A → A/G from given A and G (e.g., [24] and

[23]). For an isogeny ϕ : A → B, there is an isogeny ϕ̂ satisfying ϕ̂ ◦ ϕ = deg ϕ

and ϕ ◦ ϕ̂ = deg ϕ. We call ϕ̂ the dual isogeny of ϕ.

2.2 Kani’s theorem

In this subsection, we introduce Kani’s theorem provided in [11]. Kani’s theorem
describes the relationship between an isogeny of products of two elliptic curves
and an isogeny diamond of elliptic curves.

Definition 1 (Isogeny diamond). Let E0 be an elliptic curve. Let G1 and
G2 be finite subgroups of E0 such that gcd(#G1,#G2) = 1. Then, there is the
following commutative diagram:

E0
ϕ1 //

ϕ2

��

E0/G1

[ϕ1]∗ϕ2

��
E0/G2

[ϕ2]∗ϕ1// E0/⟨G1, G2⟩

Here, an isogeny ϕ1 (resp. an isogeny ϕ2) is a separable isogeny with kerϕ1 = G1

(resp. kerϕ2 = G2), and an isogeny [ϕ2]∗ϕ1 (resp. an isogeny [ϕ1]∗ϕ2) is a sep-
arable isogeny with ker [ϕ2]∗ϕ1 = ϕ2(G1) (resp. ker [ϕ1]∗ϕ2 = ϕ1(G2)) satisfying
([ϕ2]∗ϕ1) ◦ ϕ2 = ([ϕ1]∗ϕ2) ◦ ϕ1. We call this diagram an isogeny diamond.
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Theorem 1 (Kani’s theorem [11]). Suppose that there is an isogeny dia-
mond:

E0
ϕ1 //

ϕ2

��

E1

[ϕ1]∗ϕ2

��
E2

[ϕ2]∗ϕ1// E3

Then, there is an isogeny Φ : E2 × E1 → E0 × E3 defined as

Φ =

(
ϕ̂2 −ϕ̂1

[ϕ2]∗ϕ1 [ϕ1]∗ϕ2

)
with kerΦ = ⟨(deg ϕ1P, ϕ1 ◦ ϕ̂2(P )) | P ∈ E2[deg ϕ1 + deg ϕ2]⟩.

3 FESTA trapdoor function

This section introduces an overview of a FESTA trapdoor function [2].

3.1 Construction

The following diagram shows the outline of a FESTA trapdoor function. The
public parameter is E0 and (Pb, Qb), where E0 is a supersingular elliptic curve
and (Pb, Qb) is a basis of E0[2

b]. The symbols A and B represent 2×2 matrices.

E0

ϕA

((
ϕA,1 //

ϕ1

{{

ẼA

ϕA,2 // EA
ϕ2

��

(
Pb

Qb

) (
RA

SA

)
= A

(
ϕA(Pb)
ϕA(Qb)

)
E1 E2(

R1

S1

)
= B

(
ϕ1(Pb)
ϕ1(Qb)

)
[ϕ1◦ϕ̂A,1]∗(ϕ2◦ϕA,2) ..

(
R2

S2

)
= B

(
ϕ2(RA)
ϕ2(SA)

)
[ϕ2◦ϕA,2]∗(ϕ1◦ϕ̂A,1)qqE

We first provide a brief explanation. Notations are the same as in the above
diagram. To set up the trapdoor function, we compute ẼA, EA, and (RA, SA).
Here, a matrix A belongs to a set Mb that is defined as a commutative subgroup
of the general linear group GL2(Z/2bZ). For example, we can use the set of
regular circulant matrices for Mb. Let EA, RA, SA be published. We define a
function fEA,RA,SA

as

fEA,RA,SA
(B, ϕ1, ϕ2) = (E1, (R1, S1), E2, (R2, S2)).

Let (A, ϕA,1, ϕA,2) be a secret key. We call fEA,RA,SA
a FESTA trapdoor func-

tion. One who knows the secret key can compute the inverse map of the function
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as follows. Note that AB = BA. By using Kani’s theorem and the matrix A, we
can compute an isogeny E1 ×E2 → ẼA ×E, and we can get ϕ1 and ϕ2. Finally,
using ϕ1 and solving the Discrete Logarithm Problem via the Pohlig-Hellman
algorithm [18], we can detect the matrix B.

We explain more details of a FESTA trapdoor function:

Public parameter: Let λ be a security parameter. Let d1, d2, dA,1, dA,2,m1,m2

be odd integers such that they are pairwise coprime, d1, d2, (dA,1dA,2) > 22λ,
and there is an integer b with b > 3λ satisfying

m2
1dA,1d1 +m2

2dA,2d2 = 2b.

Define a prime p as p = 2bd1d2(dA,1dA,2)sff − 1, where f is a small positive
integer and (dA,1dA,2)sf is the square-free part of dA,1dA,2. Let E0 be a
supersingular elliptic curve over Fp2 whose j-invariant is not 1728 or 0. Let
(Pb, Qb) be a basis of E0[2

b]. Define Mb as a commutative subgroup of
GL2(Z/2bZ).

Public key: We compute a dA,1-isogeny ϕA,1 : E0 → ẼA and a dA,2-isogeny

ϕA,2 : ẼA → EA. Denote ϕA,2 ◦ϕA,1 by ϕA. Take a random matrix A in Mb.
We compute (

RA

SA

)
= A

(
ϕA(Pb)
ϕA(Qb).

)
Finally, publish (EA, RA, SA) as a public key, and keep (A, ϕA,1, ϕA,2) as a
secret.

FESTA trapdoor function: Let ϕ1 be a d1-isogeny mapping from E0 to E1,
and ϕ2 be a d2-isogeny mapping from EA to E2. Let B be a matrix in Mb.
Compute (R1, S1) and (R2, S2) such that(

R1

S1

)
= B

(
ϕ1(Pb)
ϕ2(Qb)

)
,

(
R2

S2

)
= B

(
ϕ2(RA)
ϕ2(SA)

)
.

Output (E1, (R1, S1), E2, (R2, S2)).
Inverse map: We first compute t(R′

2, S
′
2) = A−1 · t(R2, S2). Since AB = BA,

it holds that (
R′

2

S′
2

)
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
.

Therefore, from Kani’s theorem, the group

⟨(m2dA,2d2R1,m1d1R
′
2), (m2dA,2d2S1,m1d1S

′
2)⟩

is the kernel of the (2b, 2b)-isogeny Φ : E1 × E2 → ẼA × E defined as

Φ =

(
m1ϕA,1 ◦ ϕ̂1 −m2ϕ̂A,2 ◦ ϕ̂2

m2[ϕ1 ◦ ϕ̂A,1]∗(ϕ2 ◦ ϕA,2) m1[ϕ2 ◦ ϕA,2]∗(ϕ1 ◦ ϕ̂A,1)

)
.

Since, the integers m1dA,1 and m2dA,2 are coprime to d1 and d2 respectively,
we have

kerϕ1 = ϕ̂A,1◦(m1ϕA,1◦ϕ̂1)(E1[d1]), kerϕ2 = ϕA,2◦(−m1ϕ̂A,2◦ϕ̂2)(E2[d2]).
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Hence, we can get ϕ1 and ϕ2 by computing the images of E1[d1]× {0} and
{0}×E2[d2] under Φ. If the image of Φ is not a product of two elliptic curves,

we output ⊥. Finally, we compute (ϕ̂1(R1), ϕ̂1(S1)) and find a matrix B such
that (

ϕ̂1(R1)

ϕ̂1(S1)

)
= d1B

(
Pb

Qb

)
by the Pohlig-Hellman algorithm. If B ̸∈ Mb, we output ⊥. If B ∈ Mb, we
output (B, ϕ1, ϕ2).

3.2 Example for PKE based on a FESTA trapdoor function

This subsection introduces one easy public key encryption scheme based on a
FESTA trapdoor function. This example relates to our attack model. See [2] for
more secure and concrete PKE schemes based on the functions.

All notations are the same as in the previous subsection. Bob (sender) tries
to send a message to Alice (recipient).

Public parameters: Take the same parameters as those of the FESTA trap-
door function. In addition, take one basis (P,Q) of E0[d1].

Public key: Alice computes ϕA and (RA, SA), and publishes (EA, RA, SA).
She keeps (A, ϕA,1, ϕA,2) as a secret.

Encryption: Bob takes a plaintext µ from Z/d1Z. He computes an isogeny
ϕ1 with kerϕ1 = ⟨P + µQ⟩. He takes ϕ2 and B at random. He computes
fEA,RA,SA

(B, ϕ1, ϕ2) and sends it to Alice as a ciphertext.
Decryption: Alice detects ϕ1 by computing the inverse map of fEA,RA,SA

. It
provides a plaintext µ.

4 Attack model

In this section, we explain the attack model that we consider. We use the FESTA
notation (the same notation in Section 3).

The goal of the adversary is to reveal the secret key of the FESTA trapdoor
function fEA,RA,SA

(i.e., ϕA,1, ϕA,2, and A).

4.1 Oracles for the attack

Let (P1, Q1) be a basis of E1[2
b], and (P2, Q2) be a basis of E2[2

b]. We assume
that the adversary can access the following oracle O′:

O′(E1, (P1, Q1), E2, (P2, Q2)) =

{
1 (if (E1 × E2)/G ∼= ẼA × E)

0 (otherwise)
,

where
G = ⟨(m2dA,2d2P1,m1d1P

′
2), (m2dA,2d2Q1,m1d1Q

′
2)⟩
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for t(P ′
2, Q

′
2) = A−1 · t(P2, Q2).

There are some situations of attacks related to this assumption. For example,
we can consider an attack for a public key encryption scheme in Section 3.2 under
the following setting:

1. The recipient does not compute B in the decryption process.
2. The adversary has access to a decryption oracle.

The adversary takes a ciphertext corresponding to (E1, (P1, Q1), E2, (P2, Q2))
and sends it to the decryption oracle. If the decryption oracle returns a plaintext
µ, the adversary knows (E1 × E2)/G ∼= ẼA × E, and if it fails to output the
correct plaintext µ or refuses the encryption, it knows the ciphertext is incorrect.
Therefore, we can construct the oracle O′ from the decryption oracle.

From the Kani’s theorem, the kernel of the (2b, 2b)-isogeny E1×E2 → ẼA×E

is ⟨(m2dA,2d2P,m1ϕ2 ◦ ϕA ◦ ϕ̂1(P )) | P ∈ E1[2
b]⟩. Since the number of isomor-

phism classes of superspecial abelian varieties is ≈ p3 if p ≥ 7 (see [9, Theorem
3.3]), we can define the oracle O′′ that is heuristically equivalent to O′ as follows:

O′′(E1, (P1, Q1), E2, (P2, Q2)) =

1

(
if

(
P ′
2

Q′
2

)
=

1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
P1

Q1

))
0 (otherwise)

,

where t(P ′
2, Q

′
2) = A−1 · t(P2, Q2).

Furthermore, we can make the oracle O′′ simpler by the following proposition.

Proposition 1. Let O′′ be the oracle defined as above, and ϕ1 : E0 → E1 and
ϕ2 : EA → E2 be isogenies of degree d1 and d2, respectively. Define P1 = ϕ1(Pb),
Q1 = ϕ1(Qb), P2 = ϕ2(PA), and Q2 = ϕ2(QA). Then for any matrices B,B′ ∈
GL2(Z/2bZ),

O′′(E1, (P1, Q1)
tB′, E2, (P2, Q2)

tB′′) = 1

if and only if AB′ = B′′A.

Proof. By the definition, O′′(E1, (P1, Q1)
tB′, E2, (P2, Q2)

tB′′) = 1 if and only if

A−1B′′
(
P2

Q2

)
=

1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1B

′
(
P1

Q1

)
.

The latter equation is equivalent to

A−1B′′Aϕ2 ◦ ϕA

(
Pb

Qb

)
= B′ϕ2 ◦ ϕA

(
Pb

Qb

)
.

Since (ϕ2◦ϕA(Pb), ϕ2◦ϕA(Qb)) is a basis of E2[2
b], the last equation is equivalent

to AB′ = B′′A.

By the above proposition, we obtain an oracle that returns whether AB′ =
B′′A or not. We denote this by O. We assume that the adversary can access the
oracle O.
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Remark 1. One may think that we can counter our attack model by using the
Weil pairing. Note that we have

e2b(B
′ · t(ϕ1(Pb), ϕ1(Qb))) = e2b(Pb, Qb)

deg ϕ1 detB′
,

e2b(B
′′ · t(ϕ2(RA), ϕ2(SA)) = e2b(Pb, Qb)

deg ϕ2 deg ϕA detA detB′′

for the Weil pairing e2b . Therefore, a simple strategy of the countermeasure is
to check whether

e2b(P1, Q1)
deg ϕ2 deg ϕA detA = e2b(P2, Q2)

deg ϕ1 ,

and stop the process if the above equation does not hold. This strategy, however,
does not work to counter our attack model. It is because if AB′ = B′′A, then
it holds that detB′ = detB′′. Therefore, the process always proceeds if the
adversary takes (B′,B′′) satisfying AB′ = B′′A, and the adversary can know
AB′ ̸= B′′A if the process stops.

4.2 Settings

We use the same notation as in Section 3. We assume that b > 3.
We consider the two cases for Mb. The first one is that Mb is the group of

regular circulant matrices over Z/2bZ. I.e.,

Mb =

{(
α β
β α

) ∣∣∣∣ α, β ∈ Z/2bZ, α2 − β2 ∈ (Z/2bZ)×
}
.

The second one is that Mb is the group of regular diagonal matrices over Z/2bZ.
I.e.,

Mb =

{(
α 0
0 β

) ∣∣∣∣ α, β ∈ (Z/2bZ)×
}
.

Put A as

A =

(
γ δ
δ γ

)
or A =

(
γ 0
0 δ

)
.

By using the Weil pairing for (Pb, Qb) and (PA, QA), we can detect detA. If C
is a matrix in Mb with detC = detA−1, then O(CB′,B′′C) = 1 if and only if
(AC)B′ = B′′(AC). Therefore, we can assume that detA = 1 since detAC = 1.

Let γ0, . . . , γb−1, δ0, . . . , δb−1 be values in {0, 1} such that

γ = γ02
0 + γ12

1 + · · ·+ γb−12
b−1,

δ = δ02
0 + δ12

1 + · · ·+ δb−12
b−1.

By Robert’s attack [20], detecting A or −A reveals the secret key of the FESTA
trapdoor function; therefore, it suffices to detect values

γ0, . . . , γb−1, δ0, . . . , δb−1

to attack the FESTA trapdoor functions. Thus, we assume that the adversary
tries to detect these values instead of the secret key.



The wrong use of a FESTA trapdoor function leads to an adaptive attack 9

Remark 2. If we know A, we obtain the secret key by generating a random
ciphertext and decrypting it. Therefore, in the FESTA setting, we do not need
Robert’s attack. The reason why we adopt Robert’s attack is that we may need
it in more general cases (e.g., IS-CUBE [15]).

5 Strategies

In this section, we provide our adaptive attack for a FESTA trapdoor function.

5.1 Circulant matrices

We first explain the case that we use circulant matrices. I.e.,

A ∈
{(

α β
β α

) ∣∣∣∣ α, β ∈ Z/2bZ, α2 − β2 = 1

}
.

From the definition of A, it suffices to find γ and δ for detecting A.

Let ε1, ε2 be elements in Z/2bZ such that B +

(
ε1 0
ε2 0

)
is regular for some

B ∈ Mb (i.e., at least one of ε1 and ε2 is even). Then we have

A

(
B+

(
ε1 0
ε2 0

))
=

(
B+

(
0 0
ε2 ε1

))
A if and only if ε1γ + ε2δ = 0.

Therefore, by our oracle O, we can determine whether ε1γ + ε2δ = 0 for any
ε1, ε2 ∈ Z/2bZ such that at least one of ε1 and ε2 is even. We denote an oracle
checking ε1γ + ε2δ = 0 by Ocoeff(ε1, ε2).

At first, the adversary determines (γ0, δ0). Note that γ0 ̸= δ0 since γ
2−δ2 = 1.

Since 2b−1γ = 2b−1γ0, the adversary obtains γ0 by checking Ocoeff(2
b−1, 0).

Without loss of generality, we can assume γ0 = 1 because we can swap γ and δ

by multiplying

(
0 1
1 0

)
to B′ and B′′ from left and right, respectively.

We next discuss how to determine (γ1, δ1). In fact, we do not need to find the
“correct” value of γ1. Robert’s attack also works if the adversary detects (−γ,−δ)
instead of (γ, δ). Therefore, we can assume γ1 = 0 since γ0 = 1. Note that we
assume that b > 3. We have (γ(1))2 − (δ(1))2 ≡ 1 (mod 23) since γ2 − δ2 = 1.
Therefore, it holds that δ1 = 0.

We denote
∑k

i=0 γi2
i by γ(k) and use the same notation for δ. For detecting

A, we define the following two procedures:

1. GetDeltak : Require γ(k−2) and δ(k−1) with k ∈ [2, b− 1], and ensure δk,

2. GetGammak : Require γ(k−1) and δ(k−1) with k ∈ [2, b− 2], and ensure γk.

The details of these procedures are as follows:
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GetDeltak: Let γ′ be an integer such that γ′γ(k−2) ≡ 1 (mod 2k−1). Note that
δ(k−1) ≡ 0 (mod 22). Therefore, it holds that

δ(k−1)γ′2b−k−1γ − 2b−k−1δ

= 2b−k−1δ(k−1)γ′γ(k−2) + 2b−2δ(k−1)γ′(γk−1 + 2γk)− 2b−k−1δ(k−1) − 2b−1δk

= − 2b−1δk.

Hence, Ocoeff(δ
(k−1)γ′2b−k−1,−2b−k−1) returns TRUE if and only if δk = 0.

GetGammak: Note that δ + δ(k−1) ≡ 0 (mod 22) and k ≤ b− 2. We have

γ2 − (δ(k−1))2 = 1 + δ2 − (δ(k−1))2

= 1 + (δ + δ(k−1))

b−1∑
i=k

δi2
i ≡ 1 (mod 2k+2).

Therefore, the adversary knows γ2 mod 2k+2 by computing 1 + (δ(k−1))2

mod 2k+2. This value is determined by γ(k−1) and γk. In particular, it holds
that

γ2 =

(
γ(k−1) + 2k

b−1∑
i=k

γi2
i−k−1

)2

≡ (γ(k−1))2 + γk2
k+1 (mod 2k+2)

since k ≥ 2. Hence, the adversary can find γk.

By using the above two procedures, the adversary can detectA. The following
is the outline of our strategy for determining A.

1. Find γ0 from checking Ocoeff(2
b−1, 0). We can assume γ0 = 1 by swapping γ

and δ.
2. Set γ1 = δ1 = 0.
3. For k = 2, . . . , b− 2:

(a) Determine δk by GetDeltak.
(b) Determine γk by GetGammak.

4. Determine δb−1 by GetDeltab−1.
5. For γb−1 ∈ {0, 1}, check the correctness of A by Robert’s attack. If the

attack succeeded then output A.

From the above steps, the adversary can know the matrix A in b− 1 queries
to the oracle O.

Remark 3. As noted in Section 4, we need to assume that the recipient does not
compute B in the decryption process. Indeed, the incorrect input

B+ 2b−k−1

(
δ(k−1)γ′ 0

−1 0

)
,

which appears in GetDeltak, does not belong to Mb.
It is future work to research the existence of an adaptive attack even if Alice

checks whether B ∈ Mb.
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5.2 Diagonal matrices

We explain the case that we use diagonal matrices. I.e.,

A ∈
{(

α 0
0 β

) ∣∣∣∣ α, β ∈ Z/2bZ, αβ = 1

}
.

Let ε1, ε2 be elements in Z/2bZ. Then, for any diagonal matrix B, we have

A

(
B+

(
0 0
ε2 0

))
=

(
B+

(
0 0
ε1 0

))
A if and only if ε1γ = ε2δ.

Therefore, by our oracle O, we can determine whether ε1γ
2 − ε2 = 0 for any

ε1, ε2 ∈ Z/2bZ. We denote an oracle checking ε1γ
2 − ε2 = 0 by Ocoeff(ε1, ε2).

From the definition of A, it suffices to find γ to recover A. It is clear that
γ0 = 1. Since Robert’s attack also works if the adversary detects −γ instead of
γ, we can assume γ1 = 0 without loss of generality.

We denote
∑k

i=0 γi2
i by γ(k). For detecting A, we define the following pro-

cedure:

– GetGammak : Require γ(k−1) with k ∈ [2, b− 2], and ensure γk.

GetGammak: Since γ + γ(k−1) ≡ 2 (mod 22), we have

2b−k−2γ2 − 2b−k−2(γ(k−1))2 = 2b−2(γk + γk+12)(γ + γ(k−1)) = γk2
b−1.

Therefore, the output of Ocoeff(2
b−k−2, 2b−k−2(γ(k−1))2) is TRUE if and only

if γk = 0. Hence, the adversary can obtain γk.

By using the above procedure, the adversary can obtain the target matrix
A. The following is the whole outline of our attack.

1. Set γ0 = 1 and γ1 = 0.
2. For k = 2, . . . , b− 2, determine γk by GetGammak.
3. For γb−1 ∈ {0, 1}, check the correctness of A by Robert’s attack. If the

attack succeeded then output A.

From the above steps, the adversary can know the matrix A in b− 3 queries
to the oracle O.

6 Conclusion

We showed that an adaptive attack might be considered if a FESTA trapdoor
function was used in the wrong way. This attack reveals its secret key.

For our attack, we need an oracle that judges whether a correct (2b, 2b)-
isogeny can be calculated in the process of computing the inverse map of the
FESTA trapdoor function from a given input. As an example, we showed that
this oracle could be constructed under a specific PKE scheme that used a FESTA
trapdoor function in the wrong way (i.e., the recipient does not check in the
decryption process whether the sender’s matrix B belongs to the fixed group
Mb).

The IND-CCA secure PKE scheme named FESTA proposed in [2] is not
attacked by our adaptive attack so far.
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