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Abstract

Efficiently and securely removing encrypted redundant data with cross-user in the cloud
is challenging. Convergent Encryption (CE) is difficult to resist dictionary attacks for
its deterministic tag. Server-aided mechanism is against such attacks while it may exist
collusion. Focus on multimedia data, this paper proposes an efficient and secure fuzzy
deduplication system without any additional servers. We also propose a notion of pre-
verification of label consistency to compensate for the irreparable post-verification loss.
Compared with other fuzzy deduplication schemes, our work has apparent advantages in
deduplication efficiency and security based on a natural data set.
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1 Introduction

People use big data to describe and define the massive data generated in the information
age. This data enables applications such as video, audio, images, logs, health records, social
network interactions, scientific data, etc [20]. IBM has pointed out that the 2.5EB of data
created daily is also 90% of the data generated in the past two years [12]. In order to solve
the problem of duplicate data redundancy and reduce expensive storage waste, deduplication
technology was born, including the detection of near-duplicate images [10], the elimination of
similar or nearly identical audio and video, and other methods [12, 14]. The same or similar
files encrypted by different clients are uploaded as completely independent ciphertexts, so basic
or naive encryption applications can severely hinder near-duplicate data deduplication. This
conflicts with deduplication because comparing the ciphertexts encrypted by users with different
private keys is difficult. To address this challenge, some deduplication mechanisms have been
proposed, such as Convergent Encryption (CE) [4], Message Lock Encryption (MLE) [2] and
its variants [18].

Li et al.’s [7] proposed the first secure client-side similar image deduplication scheme for
cloud storage to efficiently reduce data redundancy in memory. However, this scheme relies
on a trusted third party, and the key sharing among groups does not apply to public cloud
storage platforms with a large number of users (such as Huawei Cloud). Chen et al.’s [3] also
proposed a similar secure image deduplication scheme based on group key sharing, although this
scheme can provide some security against external adversary attacks (such as server collusion
attacks). However, at the cost of compromising the privacy of group members, using such a
scheme makes it difficult to defend against social engineering attacks. For systems with multi-
user and cross-domain interaction, this data deduplication mechanism is embarrassing. Jiang
et al.’s [6] proposed a combination of FuzzyMLE and FuzzyPoW so that the cloud server can
safely deduplicate encrypted multimedia data within a certain distance (i.e. Hamming distance)
while reducing data overhead from client to server over the network. However, FuzzyMLE is
based on the auxiliary server to avoid a guessing attack in which these two servers may collude
for each other to leak data, and FuzzyPoW can indeed verify whether there is similar ciphertext
between clients, still, its shortcoming is that in the case that FuzzyPoW fails to pass. The server
cannot distinguish which client provided incorrect information, and cannot play a tracking role.
Our scheme uses a zero-knowledge proof label consistency pre-verification method to solve the
problem of FuzzyPoW.

Liu et al.’s [9] proposed a single server data deletion scheme for the first time. This scheme
relies on the strong collision nature of the short hash to resist the dictionary attack of the storage
server and calls similar users to recover the key by uploading users with the help of the cloud
storage server. In addition, it is very regrettable that the secure deduplication scheme of Liu
et al.’s is exact deduplication, which only applies to the exact same files. Takeshiaet al.’s [13]
aim to solve almost the same image deduplication problem, but their scheme cannot resist the
brute force attack by repeated queries from the server and the client. The deduplication of
fuzzy data based on a single server still has a long way to go.

These deduplication schemes up to date only achieve post-verification of label consistency
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(verify through the deduplication phase or the download phase). Although they can handle
the tag-matching problem, it can not make up for the loss after the integrity compromise.
Therefore, we propose a notion of pre-verification to check the label consistency in advance,
which effectively solving the irreversible loss problem in post-verification.

In general, we construct a fuzzy deduplication for the similar multimedia data with single
server to be against various attacks. Our contribution mainly includes the following 4 items,
and the comparison of the related deduplication schemes is listed in Table 1.

• We propose a fuzzy deduplication strategy for approximate data which fits multimedia
data. Our scheme does not depend on any additional servers to resist the brute-force
attacks. Therefore, it is not necessary to assume the server is honest.

• We propose a notion of pre-verification to avoid the difficulty of tracking malicious users for
schemes which are post-verification. As a result, our work compensates for the irreparable
loss of post-verification.

• We consider the underlying collusion attacks between the clients and the cloud server and
make use of a variable-length short hash technology to handle it.

• Our experimental results show that our scheme achieves high deduplication of fuzzy data
by comparing the similarity of tags. With a threshold of 1, our deduplication rate is
20.8% higher than that of Jiang et al.’s [6]

Test Group SS FD CR BFAR RAR TC CG
Jiang et al.’s [6] ×

√
×

√ √
×

√

chen et al.’s [3]
√

× ×
√

× × ×
Takeshita et al.’s [13]

√ √ √
×

√
×

√

Our’scheme
√ √ √ √ √ √ √

Table 1: Comparison of related programss

′√′ = Satisfied ′×′ = Unsatisfied SS = Single Server
FD = Fuzzy Deduplication CR = Collusion Resistance BFAR = Brute-Force Attacks Resistance
RAR = Replay Attacks Resistance TC = Tag Consistency CG = Cross Group

2 Preliminaries

In this section, we summarize the Hamming distance, perceptual hash [8], hash collision [9],
and zero-knowledge proof, which constitute the primary supporting knowledge of our system.

2.1 Hamming Distance and Threshold

Hamming Distance. Hamming distance is a common distance measurement method, which
is usually used to compare the distance between two characters. Let X = (x1, x2, ..., xn) and
Y = (y1, y2, ..., yn), then the Hamming distance between X and Y is as shown in the equation
(1):

H(X, Y) =

n∑
i=0

d(xi, yi) (1)
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Here, d(xi, yi) means that when the characters in each corresponding position of X and Y are
the same, they are equal to 0, and vice versa, they are equal to 1. For binary coded numbers,
the Hamming distance can be calculated by XOR operation, as shown in equation (2):

H(X, Y) =

n∑
i=0

d(xi ⊕ yi) (2)

Threshold. The threshold has a direct impact on the deduplication rate of the dedupli-
cation scheme. We set D to represent the threshold between Hamming distances to judge the
similarity of data, as shown below:

1)if d(X, Y) ≤ D ⇒ X and Y are recognized as similar strings.

2)if d(X, Y) = 0 ⇒ X and Y are recognized as identical strings.

3)if d(X, Y) > D ⇒ X and Y are recognized as dissimilar strings.

2.2 Perceptual Hashing

Perceptual Hashing. The Perceptual Hash function can be used to determine whether the
original data is similar. Perceptual Hash describes a type of hash value that can be compared,
which is a digital signature calculated based on multimedia content and features. Standard
Perceptual Hashing algorithms [17] are mainly divided into ahash , phash and dhash. Zauner
et al.’s pointed out that although the speed of phash is slightly slower than that of ashah and
dhash, the recognition effect is the best. Therefore, in order to achieve more effective image
feature matching, many deduplication systems select phash as the feature vector of massive
image data. A common phash processes images as follows:

1. Size reduction: To avoid the impact of image size on deduplication, we uniformly scale
the image to N× N (high frequency gives details, low frequency gives structure).

2. Adjust colour: Simplify the colour of the image and convert it to grayscale using the
following equation (3). Red (R), Green (G), Blue (B).

Gray = R× 0.299+ G× 0.587+ B× 0.114 (3)

3. Discrete cosine transform (DCT): DCT is a special Fourier transform that transforms a
picture from the pixel domain to the frequency domain.

4. Calculate DCT average value: calculate the average value of 64 reserved low frequencies.

5. Phash calculation: compare each DCT value with the average value. equation (4) e.g.,

if (DCT′value ≥ Avg) 7−→ Output 1

if (DCT′value < Avg) 7−→ Output 0
(4)

6. Hamming distance: Perform the XOR operation on the phash of the file to determine the
number of different characters in the corresponding position of the string.
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2.3 Hash Collisions

The hash function is an irreversible mapping from message space to image space and compresses
a any input length into a fixed output length. The hash function accepts a string X ∈ {0, 1}∗
as input and outputs a string H(x) ∈ {0, 1}n, where n is the length. Hash functions with
longer outputs are less collision-resistant, while hash functions with shorter outputs are more
collision-resistant.

We use a short hash to avoid guessing attacks and improve efficiency. We obtain phash

from the original data and select the fingerprints with odd (or even) serial numbers in phash

to reorganize into a new short phash. The assembly process is shown in Figure 1.

Image

Extract phash
phash =

n-bit︷ ︸︸ ︷
1 0 1 ... 0 0 1
1 2 3 ... n-2 n-1 n

Short phash

phash1 =

n/2-bit︷ ︸︸ ︷
0 1 ... 0 1
2 4 ... n-2 n

phash2 =

n/2-bit︷ ︸︸ ︷
1 1 ... 1 0
1 3 ... n-3 n-1

Figure 1: A hash of length n constructs a short hash

2.4 Zero-knowledge Proof

Zero-knowledge system is a cryptographic protocol. One side of the protocol is called the prover
(PR), and the other side of the protocol is the verifier (VE). In our paper, we use the zero-
knowledge proof of graph isomorphism to propose a verification method for the cloud server
to check whether the client’s tags are consistent or not, which realizes the pre-verification
and avoids the defect of irreparable losses caused by post-verification. In the proof of label
consistency, we need to prove that the image matches with the corresponding phash, therefore
we only need to prove that image (I) and phash (P) satisfy the relationship of I = φP, where
φ is the mapping relationship. The proof process is shown in Figure 2.

Prover

Prover (PR)

Verifier (VE)

Verifier
H =πI

Generate random bit values θ
θ ∈ {0, 1}

θ

β = π or πφ

if H ̸= βIθ
Reject

Figure 2: Zero-knowledge Proofs for Label Consistency

1. PR randomly generates a permutation π, calculates the graph H = πI, and then sends H
to VE.

2. VE generates a bit value θ ∈ {0, 1} and sends θ to PR.
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3. PR reacts differently according to θ. As shown in the equation (5)

if (θ = 1) ⇒ PR sends β = π

if (θ = 0) ⇒ PR sends β = πφ
(5)

4. VE calculation. As shown in the equation (6)

if (θ = 0)⇒ βIθ = πφP = πI = H

if (θ = 1) ⇒ βIθ = πI = H
(6)

By using the above method, it is realized that the cloud server verifies whether the image
provided by the client matches with phash.

3 Models and Design Goals

3.1 System Model

Unlike the server-aided schemes [6,13], our scheme does not rely on any additional servers (sin-
gle server only) to solve the brute-force guessing attacks. We adopt a client-side deduplication
strategy, in which the files are unnecessary to be uploaded if the duplicates are checked. There-
fore, our scheme comprises three kinds of roles: an uploading client, a cloud server, and parallel
client PCi = {PC1, PC2, ..., PCn}, where n is the number of clients that have stored data similar
to the uploading file. The system framework is shown in Figure 3, and each entity is described
as follows:

• Uploading Client (C): The uploading client is a user who needs to outsource its data to a
cloud server. The stored files should be encrypted for the data privacy. In order to save
storage and bandwidth, C would check the existence of the uploading file on the server(by
sending the file’s fingerprint). Duplicate files are not uploaded.

• Cloud Server (CS): The cloud server stores the client’s private data. In order to save
storage costs, it needs to deduplicate multimedia data such as pictures and videos. The
cloud server would strictly enforce instructions but may also try to guess client privacy
(honest but curious).

• Parallel Client (PCi): The parallel clients have stored data on CS. When C may hold
similar or identical images, PCi assists CS in completing the data ownership verification of
C. C is defined as a new PCi member if it passes, and a key for decrypting data is given.

3.2 Threat Model

In our scheme, none of the three entities is absolutely trustworthy, and we analyze the hazards
of each entity according to the characteristics of each entity, as shown below:

A malicious uploading client C attempts to launch a data ownership spoofing attack
using the file’s fingerprint. In addition, it may carry out a forgery attack, where C uses the
correct label to repeatedly check but uploads the forged ciphertext (inconsistent with the label)
to damage the integrity of other client files.
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Uploading client(C)

b.
fi
rs
t
up
lo
ad

a.upload preparation

d.deduplication

Parallel client(PCi)

d.deduplication

c.check

Cloud server (CS)

Figure 3: System model

An honest-but-curious cloud service CS faithfully executes storage instructions and
deduplication instructions, however it may also try to steal and understand the underlying
content of stored ciphertexts. We also consider that CS may collude with C or PCi to guess the
storage content, thereby stealing user data information.

A malicious parallel client PCi falsely reports information in the hash compared with C

resulting in duplicate data not being deduplicated, resulting in a waste of CS storage space. PCi
also may conspire with CS to steal C’s private information.

The probability of pairwise conspiracy among the three entities is low, but it does not
mean that it will not happen [15, 16], and it is difficult for ordinary users to detect whether
their privacy has been leaked (such as CS can guess the stored information without making it
public). The security of the above system needs to be improved.

3.3 Design Goals

We design the following security goals by analyzing the threat model in Section 3.2.

• Data privacy: Even if the data is transmitted in an unsafe channel and stolen by the
adversary, the adversary will never know the plaintext of the data without the decryption
key.

• Resistance to brute-force attacks: Even if the adversary obtains all the data plaintext, it
cannot guess the encrypted data stored on CS through the specific tag data.

• Anti-collusion attack: Even if two entities cooperate in exchanging communication pa-
rameters and other information, other valid private data information cannot be obtained.

• Tag consistency: Tag inconsistency will have a serious negative impact on subsequent
deduplication and download work. Therefore, we need to strictly check whether the C
uploaded data matches the tag.

• Track the adversary: Data security cannot be absolutely guaranteed in the security sys-
tem, but there must be a way to track the adversary after being attacked.

• Efficiency: The main goal of our scheme is to efficiently detect and delete duplicate data
while ensuring user privacy and security. We strive to achieve maximum efficiency in
deduplication while maintaining low overhead.
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4 Proposed Scheme

We present our scheme in this section. It includes 4 main stages in total: Upload Prepara-
tion, First Upload, Deduplication and Download. We illustrate the description of the required
symbols in table 2 below.

Notation Description
ID the identity of C
pkc the public key of C
skc the private key of C
kc Symmetric encryption key
IDi the identity of PCi
pkpci the public key of PCi
skpci the private key of PCi
pkci the public key of CS
skci the private key of CS
phc the image fingerprint from C

phci the image fingerprint from PCi
d(·) the Hamming distance calculation operation
D the threshold in deduplication

url the storage address of C
OutPut(·) short hash constructor
Enc(·) public-key encryption algorithm
E(·) symmetric encryption algorithm

Table 2: Notations used in the proposed scheme

4.1 Upload Preparation

As shown in Figure 4, the client must follow the steps below to determine whether its files need
to be deduplicated.

Client:

1. CS needs to check whether the I and P match, as shown in Figure 2. The verification is
passed, and the subsequent process is carried out.

2. C needs to extract phash from the image and convert the phash into phashi, as shown
in Figure 1 (For the convenience of CS to calculate similar fingerprints, C should select
phash1 or phash2 ).

3. C generates the public key pkc, secret key skc and id, obtains the public key pkci of the
cloud storage server and uses pkci to encrypt phashi.

4. C sends M1 to CS: M1 = Encpkci(id, phash1).

Cloud Service:

1. Generate a public key pkci and a secret key skci.

2. Accept M1 and decrypt M1 with skci.

8
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3. Perform a deduplication check. Confirm whether the uploaded image is an approximate
duplicate file, and determine whether to perform further deduplication operations.

• if d > D Execute First Upload .

• if d ≤ D Execute Deduplication.

Uploading Client (C)
Cloud Server (CS)

Uploading Client Cloud Server

Extract the phash and do POW

Creat (pkci, skci)

Creat (pkc, skc, id)

M1 = Encpkci(id, phash1)

M1 m1 = Deskci(M1)
Deduplication Cheak

d = d(phash1, phashpci)

If (d > D)

Execute(FirstUpload)

Else

Execute(Deduplication)

Figure 4: Upload Preparation

4.2 First Upload

If there are no duplicate files in CS, then C is asked to upload the image after the duplicate data
deletion check, as shown in Figure 5. The specific steps are as follows:

1. CS creates a public resource locator URL to store C′s encrypted file as URL = Encpkc(url).

2. C accepts URL and decrypts URL with skc .

3. C encrypts image (img) with kc and sends Ic to CS as Ic = Ekc (img).

4. CS accepts Ic and records {Ic, phashi, id}.

Uploading Client

Uploading Client (C)
Cloud Server (CS)

Cloud Server

URL
Creat a url for storing

the encrypted file of C

URL = Encpkc (url)
Deskc (URL)

Ic = Ekc (img)
Ic

Record {Ic, phashi, id}

Figure 5: First Upload
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4.3 Deduplication

When C enters the deduplication phase, it means that CSmay have stored an image similar to the
uploaded image, therefore it needs to interact with CS and PCi at this stage. Specifically, C needs
to perform a new round of phash value comparison with PCi, CS judges whether deduplication is
required based on the comparison between C and PCi. Finally, C will be confirmed as a parallel
client or upload files according to the above judgment. The process is shown in Figure 6, and
the detailed steps can be described as follows.

Step 1: CS determines that C may have similar or identical images with PCi
through Hamming distance.

After CS verifies the labelling consistency provided by C, accepts the short hash of C to match
with the short hash provided by PCi. After narrowing down the range of target customers who
may have similar or identical images, we need to make a comparison between C and PCi improved
short hash lengths, allowing for more precise comparisons. Therefore, we need a new round of
communication.

1. CS needs find PCi from the cloud database.

2. CS needs build an n′ bit OutPut function, n′ is the length of output phash

OutPut(n′, phash) n′ ∈ (n/2, n].

3. CS encrypts IDci and D′ with pkc, D
′ is the threshold for the current round of agreement

to determine whether the image is similar

IDi = Encpkc (IDci||D′).

4. CS encrypts IDc and D′ with pkpci

IDc = Encpkpci (IDc||D′).

5. CS sends IDi to C, and sends IDc to PCi.

Step 2: Communication between C and PCito determine whether the file of C is
similar to the file of PCi.

C and PCi use the output function to reconstruct their phash, and pass the phash to each
other use the Hamming distance and D′ to further judge whether the two files are similar. The
process is as follows.

1. C uses output function to regenerate phc
′

phc
′ = OutPut(n′, phc).

2. C encrypts phc
′ with pkpci and sends Encpkpci (phc

′) to PCi.

3. PCi uses output function to regenerate phci
′

phci
′ = OutPut(n′, phci).

4. PCi encrypts phci
′ with pkc and sends Encpkc (phci

′) to C.

10
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5. C and PCi calculate the Hamming distance d(∗) between phci
′ and phc

′, and judge whether
the two files are similar, as shown in Algorithm 1.

Algorithm 1 Algorithm for Judging File Similarity (First Round)

dl = d(phc
′, phci

′)
if dl > D′ then

Execute First Upload;
else

phc
′′ = OutPut(n, phc)

Encpkpci (phc
′′).

end

We emphasize the following 2 points:

• To avoid the collusion attack of CS and C (or PCi), the length of the phash constructed in
this round should be less than n. If the length of the current round of phash reaches n,
CS can obtain the complete phash of the image and use the dictionary attack to obtain
the clear text information of the image.

• The precondition for CS to perform the First Upload operation is that the feedbacks
from PCi and C to CS are both Execute First Upload. If the feedback from P and C is
inconsistent, CS is confident to suspect that there exists a malicious adversary.

Step 3: This communication will finally determine whether the image of C has
a similar image in CS.

C and PCi continue to exchange phash and then calculate the Hamming distance, respec-
tively. If the Hamming distance is lower than the threshold, we can think that C and PCi have
similar or identical files. The process is as follows.

1. C uses output function to regenerate phc
′′

phc
′′ = OutPut(n, phc).

2. C encrypts phc
′′ with pkpci and sends Encpkpci (phc

′′) to PCi.

3. PCi uses output function to regenerate phci
′′

phci
′′ = OutPut(n, phci).

4. PCi encrypts phci
′′ with pkc and sends Encpkc (phci

′′) to C.

5. C and PCi calculate the Hamming distance d(∗) between phci
′′ and phc

′′, and judge
whether the two files are simila, as shown in Algorithm 2.

Algorithm 2 Algorithm for Judging File Similarity (Second Round)

dl
′ = d(phc

′′, phci
′′)

if dl
′ > D then

Execute First Upload;
else

Execute Deduplication.
end

11
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6. If CS executes Deduplication, adds C into PCi .

7. C and PCi have passed the mutual authentication, and PCi will encrypt the kc and URL of
the decrypted image with pkc and send it to C.

We emphasize the following two points:

• The length of phash used for comparison here should be n. The longer the length of the
phash, the more accurate the comparison and the higher the deduplication rate.

• CS performs a deduplication operation on the image of C, which means that S and PCi
have similar or identical images. C will join PCi and play a role in assisting certification
in the deduplication work of CS in the future.

Uploading Client

Uploading Client ( C)

Cloud Server (CS)
Parallel Client (PCi)

Parallel ClientCloud Server

Find PCi from the cloud database

Build a n′ bit output function

OutPut(n′, phash) n′ ∈ (n/2, n]

IDi = Encpkc (IDci||D′)
IDc = Encpkpci (IDc||D′)

IDi
IDc

phc
′ = OutPut(n′, phc)

Encpkpci (phc
′)

Encpkpci (phc
′)

phci
′ = OutPut(n′, phci)

Encpkc (phci
′)

Encpkc (phci
′)dl = d(phc

′, phci
′)

If dl > D′

Execute FirstUpload

Else

phc
′′ = OutPut(n, phc)
Encpkpci (phc

′′)

Encpkpci (phc
′′)

dl = d(phc
′, phci

′)

If dl > D′

Execute FirstUpload

Else

phci
′′ = OutPut(n, phci)

Encpkc (phc
′′)

Encpkc (phc
′′)

dl
′ = d(phc

′′, phci
′′)

If dl
′ > D

Execute First Upload

Else

Execute Deduplication

dl = d(phc
′′, phci

′′)

If dl
′ > D

Execute First Upload

Else

Execute DeduplicationIf Execute Deduplication

Put C into PCi

Encpkc (kc, urli)
Save (kc, urli)

Figure 6: Deduplication

4.4 Download

Only client C has previously stored an image in CS can enter the download phase, andC has
saved (kc, urli). Therefore, C can directly find the image storage location through URL and use
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kc to decrypt the image. At this point, the whole download phase completes. The process is
described as follows.

1. C finds the information kc, url related to the restored image img.

2. C finds the storage address through url, and decrypts the img through kc. The decryption
formula is: img = Dekc (Ekc (img)).

5 Security Analysis

In this section, we extend the description to data confidentiality, collusion resistance, brute-force
attack resistance, label consistency, etc., and make a detailed analysis of the security peoperties
of our scheme.

5.1 Data Confidentiality

In our single server-based deduplication scheme, we particularly emphasize security. Data
outsourced to the cloud server for C cannot be known by CS and PCi, which do not own similar
files. Obviously, in our scheme, CS stores the {IDi, Encpkc , phashi } from C, and CS does
not have the key to decrypt img, so it does not have the conditions to decrypt img. Our
encryption method is public key encryption, and the pkc and skc designed in this method are
mathematically related. We have disclosed pkc to the public, but relying on pkc alone cannot
deduce skc (or we cannot crack skc in polynomial time). The only thing that can leak skpci in
the whole scheme is PCi, but once PCi leaks the skpci, it is equivalent to leaking its own private
information, so this situation will not happen. In our scheme, only legal users can know the
url, which effectively prevents adversaries from obtaining confidential data. For the security
discussion of stealing user data through phash, we will discuss it in detail in Section 5.4.

5.2 Brute-Force Attacks Resistance

In our scheme, brute force attacks are mainly manifested in two aspects: First, a brute force
attack obtains phash of img. Once the adversary obtains the original phash, it may pose a
threat to C or PCi. CS would record the phashi of C, but the phashi is a short hash (with strong
collision properties). Therefore, even if CS has img with all plaintext states, it cannot guess the
plaintext information of C through phashi. The adversary can also try to construct a phash

with length n, but the probability of successful collision is extremely low. Brute-Force Attacks
Resistance is mainly divided into offline guessing and online guessing.

1. Offline guessing: In our scheme, the phash length of the original data is 64 bits of binary
{0, 1}n(n = 64). The probability that a malicious adversary wants to guess the phase
directly offline and use brute force to crack it is P. Each bit has two choices, 64 bits in
total. Combined with P = (1/2)64, we think that the probability of successful guessing is
too low, so we can resist offline guessing attacks.

P = 1/2 ∗ 1/2 ∗ 1 ∗ ... ∗ 1/2 ∗ 1/2 ∗ 1/2︸ ︷︷ ︸
(64) bit

= (1/2)64

2. Online guessing: The adversary guesses during the mutual verification process between
PC and C. The phash

′

i in the verification process is 26 bits longer than the phashi
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stored in the CS, so the probability of correct guessing is U. In particular, the number
of communications between PC and C is limited, so the adversary cannot always guess.
Combined with U, we believe that the probability of successful online guessing is extremely
low, so it can resist online guessing attacks.

U = 1/2 ∗ 1/2 ∗ 1 ∗ ... ∗ 1/2 ∗ 1/2 ∗ 1/2︸ ︷︷ ︸
(26) bit

= (1/2)26

To sum up, our scheme can resist Brute-Force Attacks. In addition, brute force to obtain the
decrypted key has been discussed in Section 5.1.

5.3 Resistance to Replay Attacks

Replay attacks refer to an attacker sending a packet that has been received by a destination
host to deceive the system to obtain other users’ private information. In our scheme, assume
that the adversary obtains phashi in phase First Upload. The adversary can use phashi and CS

to communicate and enter the Deduplication stage smoothly, but in the Deduplication stage,
PCi and the adversary will perform mutual verification and calculate the Hamming distance
d(hashi, hashci). In this process, the length of phashi satisfies (n′ > n/2). There is no doubt
that (d > D), so PCi will not pass the verification of the opponent.

5.4 Collusion Resistance

As shown in Figure 3, we assume that any two of the three entities can collude, even if collusion
affects the entity’s reputation. Collusion can be divided into the following cases.

1. CS and C conspire to defraud PCi of private information. CS and C conspire means going
directly to the Deduplication stage. At this stage, the PCi will use its own phci and the
phashc of C to calculate the Hamming distance. C does not have the ability to provide
phash′c after changing the length, so the check will not pass. We also limit the number of
online communications of each entity to more effectively prevent information disclosure.

2. CS and PCi conspire to obtain the information of C. When CS deliberately lets C enter
the Deduplication stage so that PCi has the opportunity to steal phashC, then decrypt
the img of C through the dictionary. In our scheme, C and CS are verified simultaneously
for the first time. PCi does not provide the correct phashci. C executes the Hamming
distance calculation, and through (d > D), it will directly cancel the next communication
with PCi, record the ID of PCi, and regard this PCi as a malicious client.

3. C and PCi conspire. CS will perform label consistency verification on C in the Upload
Preparation phase. To pass the verification, C can only use the data of the accomplice
PCi, which means that PCi leaks its data to C. Therefore, we analyze that there will be
no collusion between C and PCi.

5.5 Tag Consistency

In our scheme, there are two places where tags can be verified as follows.
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1. The first verification method is shown in Figure 2. During this process, C proves the
consistency of img and phash to CS and also avoids the leakage of his own information.
This method of verifying label consistency in advance makes up for the defect of post-
verification (the loss is irreversible).

2. The second is in the mutual verification between C and PC. If the feedback results from
C and PC to CS are inconsistent, it means that there is a problem with one party. At this
time, CS only needs to check C and another PC′i, and according to the result of the second
check, it can be determined who has a problem with C or PCi (locating the adversary). CS
checks for messages M1 from C, messages M2 from PCi and messages M3 from PC′i, judgment
criteria are as follows.

if (M1 == M3) PCi lied

Else C lied

6 Experiment and Performance Analysis

6.1 Simulation Settings

We implement public-key encryption RSA [11, 19] to encrypt image fingerprints and symmetric
encryption AES to encrypt media data in our simulation. RSA security depends on the difficulty
of factorization of large integers. Our system is implemented on Windows 10 with a 2.30GH
i5-8300H and 8G RAM. The programming language we use is Python 3.90. Using the dataset
Microsoft Common Objects in Context(MS COCO) dataset.

The effective deletion of approximate duplicate data directly determines the future develop-
ment of our system. We selected 21844 non-repetitive images in the MS COCO dataset. These
images vary in pixel size and spatial size. In addition, to calculate the deduplication rate ϱp
as shown in equation (7). We add noise to these 21844 images, and the image is used as an
approximate image atfer adding noise.

ϱp = 1− ς/τ (7)

Here, ς is the simulated data that was blocked from being uploaded during the experiment,
and τ is the total number of uploaded files. During the experiment, we extracted the phash

length of 64 bits from img.

6.2 Simulation Results

Time spent on image feature extraction by perceptual hash (ahash, phash, dhash)
[1, 5]. Effect of different perceptual hash feature value extraction methods on
similarity.

We selected an image img1 with 219KB and 640 × 480 pixels, then the image was modified
by parameters: Brightening img2, Enlarge img3, Add contrast img4, Sharpen img5, Add colour
img6, and Rotate 45 degrees img7. We used ahash − phash − dhash to extract the feature
values of these images and recorded the time. The result is shown in Figure 7 (a). We use
(ahash, phash, dhash) methods to extract the eigenvalues of (img1 − img7), respectively. Com-
pare the similarity between the feature values of the modified image and the original image
(Threshold D ≤ 5). The result is shown in Figure 7 (b).
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Figure 7: Comparison of ahash, phash and dhash

Figure 7, shows that although phash takes longer to extract feature values than ahash

dhash, the similarity detection of phash is better than ahash dhash. The time spent by phash

does not exceed 0.03 seconds, which is acceptable to the client, so we use phash to extract
feature values later in the deduplication rate comparison.

Effects of various distortions on data deduplication.
There is no denying that any data may lose some messages during transmission. These

distorted data often do not affect the use but cause data redundancy. Considering this situation,
we tested the effects of salt and pepper noise, Gaussian noise, Poisson noise, and Motion blur
on data deduplication in simulation experiments. We sampled 21844 images on the MS COCO
dataset for testing and recorded the deduplication rate. Figure 8 9 records the impact of Salt
and pepper noise, Gaussian noise, Poisson noise and Motion blur on the deduplication rate ϱp.
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Figure 8: Salt and pepper noise and Gaussian noise compared with the original image
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Figure 9: Poisson noise and Motion blur compared with the original image

Relationship of thresholds to deduplication rate
In this simulation experiment, we modify the pixels of the whole image with various noises

to generate a series of redundant copies so as to explore an appropriate threshold value. We
set various thresholds (D ∈ [1, 6]) and designed the original phash as 64 bits. From Figure 10
(a) that as the threshold increases, the deduplication rate continues to rise. When D=5, the
redundant copy with noise can achieve a deletion effect of more than 95%.

Compared with the fuzzy deduplication scheme of Jiang et al.’s [6].
Both we and Jiang et al.’s [6] used the threshold value (D = 1, D = 2, D = 3) as variables

to compare the deduplication rate ϱp. We used 21844 images in the MS COCO dataset, and
Jiang took 22317 images modified by 1.5% in the CC WEB VIDEO dataset. We use motion
blur (distance = 4) to modify the image by 1.5%. With a similar number of datasets and equal
thresholds on both sides, our deduplication rate is significantly higher than that of Jiang et
al.’s [6]. The experimental results are shown in Figure 10 (b).

7 Conclusion and Discussion

This paper designs a fuzzy deduplication system for similar multimedia data without any ad-
ditional servers. The brute-force guessing attacks and collusion attacks are considered in this
work. In addition, we propose a notion of pre-verification to realize the pre-judgment of label
consistency and therefore it eliminates the irreparable loss of post-verification. In the upload
preparation stage, the client constructs the phash of the original data into a short hash of n/2
length and then performs the first data deduplication judgment. Therefore it reduces the range
of fuzzy data comparison and preliminarily determining whether the cloud platform retains
similar copies. In the deduplication phase, the upload client and the parallel client check for
each other. The verification passes the parallel client, and the uploading client shares the file
decryption key.

We have made a systematic analysis of the security of the scheme and designed several
experiments to show the deduplication effect of our scheme in real application scenarios. The
result shows that the scheme can effectively guarantee the confidentiality of data and complete
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Figure 10: Influence of threshold selection and interference factor on deduplication ratio (ϱp)

the deletion of redundant data. On the other hand, how to select a short hash with appropriate
length is a challenge. If the length is too short, the deduplication rate will decrease, but if the
length is too long, it is difficult to resist the guessing attack. We will leave the exploitation of
these open problems in our future work.
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