
Non-Interactive Threshold BBS+ From
Pseudorandom Correlations

(Full Version)

Sebastian Faust1 , Carmit Hazay2 , David Kretzler1 , Leandro Rometsch3

, and Benjamin Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

3 Hamburg University of Technology, Germany
leandro.rometsch@tuhh.de

Abstract. The BBS+ signature scheme is one of the most prominent
solutions for realizing anonymous credentials. Its prominence is due to
properties like selective disclosure and efficient protocols for creating and
showing possession of credentials. Traditionally, a single credential issuer
produces BBS+ signatures, which poses significant risks due to a single
point of failure.
In this work, we address this threat via a novel t-out-of-n threshold
BBS+ protocol. Our protocol supports an arbitrary security threshold
t ≤ n and works in the so-called preprocessing setting. In this setting, we
achieve non-interactive signing in the online phase and sublinear com-
munication complexity in the number of signatures in the offline phase,
which, as we show in this work, are important features from a practical
point of view. As it stands today, none of the widely studied signature
schemes, such as threshold ECDSA and threshold Schnorr, achieve both
properties simultaneously. In this work, we make the observation that
presignatures can be directly computed from pseudorandom correlations
which allows servers to create signatures shares without additional cross-
server communication. Both our offline and online protocols are actively
secure in the Universal Composability model. Finally, we evaluate the
concrete efficiency of our protocol, including an implementation of the
online phase and the expansion algorithm of the pseudorandom correla-
tion generator (PCG) used during the offline phase. The online protocol
without network latency takes less than 14ms for t ≤ 30 and credentials
sizes up to 10. Further, our results indicate that the influence of t on
the online signing is insignificant, ≤ 6% for t ≤ 30, and the overhead of
the thresholdization occurs almost exclusively in the offline phase. Our
implementation of the PCG expansion shows that even for a commit-
tee size of 10 servers, each server can expand a correlation of up to 217

presignatures in less than 100 ms per presignature.

Keywords: Threshold Signature · BBS+ · Pseudorandom Correlation
Functions · Pseudorandom Correlation Generators

https://orcid.org/0000-0002-8625-4639
https://orcid.org/0000-0002-8951-5099
https://orcid.org/0000-0002-6556-6457
https://orcid.org/0009-0000-7244-9593
https://orcid.org/0000-0002-2798-7920

1 Introduction

Anonymous credentials schemes, as introduced by Chaum in 1985 [32] and sub-
sequently refined by a line of work [33, 53, 26, 27, 22, 24, 25, 10, 70], allow
an issuing party to create credentials for users, which then can prove individ-
ual attributes about themselves without revealing their identities. The essential
properties these schemes satisfy are unlinkability, ensuring that verifiers cannot
link two disclosures of credentials of the same identity, and selective disclosure,
allowing parties to decide which individual attributes of their credentials to dis-
close. The former makes anonymous credentials a useful privacy tool on the web,
allowing clients to authenticate themselves for access to web-based services while
preventing service providers from gathering information about the client’s usage
patterns. The latter makes anonymous credentials an essential building block
for self-sovereign identity frameworks, as it enables clients to not only take re-
sponsibility for storing their credentials but also to filter the disclosure of their
credentials.

The BBS+ signature scheme [5, 23, 64] named after the group signature
scheme of Boneh, Boyen, and Shacham [11] is one of the most prominent solu-
tions for realizing anonymous credential schemes. Abstractly speaking, a BBS+
signature over a set of attributes constitutes credentials, and the holder of such
credentials can prove possession of individual attributes using efficient zero-
knowledge protocols. BBS+ signatures are particularly suited for anonymous
credentials because of their appealing features, including the ability to sign an
array of attributes while keeping the signature size constant, efficient protocols
for blind signing, and efficient zero-knowledge proofs for selective disclosure of
signed attributes (without having to reveal the signature). The importance of
BBS+ is illustrated by the renewed attention in the research community [64, 40],
several industrial implementations [1, 54, 55], ongoing standardization efforts by
the W3C Verifiable Credentials Group and IETF [9, 52], and adaption in further
applications [5, 34, 20, 21, 23].

In traditional credential systems, the credential issuer who is in possession
of the signing key constitutes a single point of failure. A powerful and widely
adapted tool mitigating such a single point of failure is to distribute the crypto-
graphic task (e.g., [50, 43, 51, 41, 62, 30, 29, 46, 47, 3, 31, 35] and many more) via
so-called threshold cryptography. Here, the cryptographic key is shared among a
set of servers such that any subset of t servers can produce a signature, while
the underlying signature scheme remains secure even if up to t − 1 servers are
corrupted. The thresholdization of digital signature schemes comes with signif-
icant overhead in computation, communication, and round complexity. This is
particularly the case for randomized signature schemes, where a random secret
nonce has to be generated and used in combination with the shared secret key
by the set of servers. In the signing protocol, this nonce is then used together
with the shared key to produce the signature. Concretely, for BBS+ signing, we
require a distributed protocol to compute the exponentiation of the inverse of
the secret key added to the random nonce securely.

2

A straightforward approach to compute the inverse is based on the inversion
protocol by Bar-Ilan and Beaver [7] and requires server interaction. In order to
strengthen the protection against failure and corruption, we assess it as likely
for servers to be located in different jurisdictional and geographic regions. In
such a setting, any additional communication round involves a significant per-
formance overhead. Therefore, a threshold BBS+ scheme is desired to have a
non-interactive signing phase that enables servers to respond to signature re-
quests without any cross-server interaction.

A popular approach in secure distributed computation to cope with the high
complexities of protocols is to split the computation into an input-independent
offline and input-dependent online phase [37, 56, 65, 66]. The offline phase pro-
vides precomputation material, which in the context of a digital signature scheme
is called presignatures [42]. These presignatures are produced during idle times
of the system and facilitate an efficient online phase. In recent years, Boyle et
al. [14, 17, 18] put forth a novel concept to generate precomputation material.
The main advantage of this concept is the generation of precomputation mate-
rial with sublinear communication complexity in the amount of precomputation
material generated. Recently, this technique also attracted interest for use in
threshold signature protocols [3, 48]. The technique allows parties to precom-
pute values via a pseudorandom correlation generator (PCG) or a pseudoran-
dom correlation function (PCF). These primitives include an interactive setup
phase where short keys are generated and distributed. Then, in the evaluation
phase, every party locally evaluates on its key and a common input. The outputs
look pseudorandom but still satisfy some correlation, e.g., vector oblivious linear
evaluation (VOLE), oblivious transfer (OT), or multiplication triples.

In this work, we aim to design a threshold BBS+ signature scheme that
simultaneously provides a low-latency non-interactive online signing phase and
a proprocessing phase with sublinear communication complexity.

1.1 Contribution

We propose a novel t-out-of-n threshold BBS+ signature scheme in the offline-
online model with an arbitrary security threshold t ≤ n. The centerpiece of our
protocol is the design of specifically tailored presignatures that can be directly
instantiated from PCG or PCF evaluations and can be used by servers to create
signature shares without any additional cross-server communication. This way,
our scheme simultaneously provides a non-interactive online signing phase and
an offline phase with sublinear communication complexity in the number of sig-
natures. Even for the widely studied signature schemes ECDSA and Schnorr, no
threshold protocol exists that achieves both features simultaneously. Moreover,
we are the first to present a PCG/PCF-based protocol that supports t-out-of-n
threshold, while previous protocols support only n-out-of-n. We formally analyze
the active security of all our protocols in the Universal Composability framework
under static corruption.

We present two instantiations of the offline phase, one based on PCGs and
one based on PCFs. Conceptually, PCFs are better suited than PCGs for pre-

3

processing signatures as PCFs allow servers to compute presignatures only when
needed. In contrast, PCGs require the generation of a large batch of presigna-
tures at once that need to be stored on the server side. Nevertheless, existing
PCG constructions provide better efficiency than PCF constructions. Therefore,
we present protocols for both primitives. For the sake of presentation, we focus
on PCGs in the main body and present the a new definition of PCFs and the
PCF-based offline phase in the Appendix F-H.

Unlike prior work using silent preprocessing in the context of threshold sig-
natures [3], we use the PCG and PCF primitive in a black-box way, allowing
for a modular treatment. In this process, we identify several issues in using the
primitives in a black-box way, extend the definitional frameworks accordingly,
and prove the security of existing constructions under the adapted properties.

On a practical level, we provide an extensive evaluation of our protocol, in-
cluding an implementation and experimental evaluation of the online phase and
the seed expansion of the PCG-based offline phase. Since state-of-the-art PCF
constructions lack concrete efficiency, we focus our evaluation on the PCG-based
preprocessing. Given preprocessed presignatures, the total runtime of the online
signing protocol is below 13.486 ms plus one round trip time of the slowest
client-server connection for t ≤ 30 signers and message arrays of size k ≤ 10.
Our benchmarks show that the influence of the number of signers on the run-
time of the online protocol is minimal; increasing the number of signers from
2 to 30 increases the runtime by just 1.13% − 6.02% (for message array sizes
between 2 and 50). Further, our results show that the cost of thresholdization
occurs almost exclusively in the offline phase; a threshold signature on a single
message array takes 7.286 ms in our protocol, while a non-threshold signature,
including verification of the received signature, takes 6.971 ms; ignoring network
delays which are the same in both settings. Our implementation of the PCG
seed expansion shows that batches of up to 217 presignatures can be expanded
with less than 100 ms per presignature for n ≤ 10.

1.2 Technical Overview

BBS+ Signatures. The BBS+ signature scheme was first described by Au et
al. [5] as a modification of the Boneh, Boyen, and Shacham group signature
scheme [11]. Recently, Tessaro and Zhu [64] showed how to reduce the size of
BBS+ signatures by one group element. In this paper, we follow the improved
scheme by Tessaro and Zhu [64] and discuss how to adapt our protocol to the
legacy scheme of Au et al. [5] in Appendix B.

Let G1,G2, and GT be groups of prime order p with generators g1 ∈ G1 and
g2 ∈ G2 and let map e : G1×G2 → GT be a bilinear pairing. A BBS+ signature

on a message array {mℓ}ℓ∈[k] is a tuple (A, e) with A = (g1 ·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e for a

random nonce e ∈R Zp, secret key x ∈ Zp and a set of random elements {hℓ}ℓ∈[k]

in G1. To verify under public key gx2 , check if e(A, gx2 · ge2) = e(g1 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2)

(see Appendix A for a formal description).

4

Distributed Inverse Calculation. The main difficulty in thresholdizing the BBS+
signature algorithm comes from the signing operation requiring the computation
of the inverse of x+ e without leaking x. This non-linear operation is expensive
to be computed in a distributed way. Similar challenges are known from other
signature schemes relying on exponentiation (or a scalar multiplication in addi-
tive notion) of the inverse of secret values, e.g., ECDSA [6, 29, 3, 69, 13]. The

typical approach (cf. [7]) to compute M
1
y for a group element M and a secret

shared y is to separately open B = Ma and δ = a ·y for a freshly shared random

a. The desired result can be reconstructed by computing M
1
y = B

1
δ .

Since δ is the product of two secret shared values, it still is a non-linear
operation requiring interaction between the parties. Nevertheless, as δ is inde-
pendent of the actual message, several such values can be precomputed in an
offline phase. As explained next, a similar, yet more involved, approach can
be applied to the BBS+ protocol, allowing an efficient, non-interactive online
signing based on correlated precomputation material.

The Threshold BBS+ Online Protocol. We describe a simplified, n-out-of-n ver-
sion of our threshold BBS+ protocol. Assume a BBS+ secret key x, elements
{hℓ}ℓ∈[k] in G1, a random blinding factor a ∈ Zp and n servers, each having
access to a preprocessed pair (ai, βi) ∈ Z2

p, in the following called presignatures,
such that

∑
ℓ∈[n] βℓ = a · x for a =

∑
ℓ∈[n] aℓ.

To sign a message array m = {mℓ}ℓ∈[k], each server first obtains the random
nonce e via a call to a random oracle H, i.e., e = H(sid||ssid||m||[n]), where sid
and ssid are identifiers for the signing session such that the nonce is fresh for
each signing request. Then, each server computes Ai := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ)ai and

δi = βi + ai · e and outputs a partial signature σi := (Ai, δi). This allows the
receiver of the partial signatures to reconstruct δ and compute

A = (
∏
i∈[n]

Ai)
1
δ = ((g1 ·

∏
ℓ∈[k]

hmℓ

ℓ)a)
1

a(x+e)

such that the tuple (A, e) constitutes a valid BBS+ signature [64]. Each signature
requires a new preprocessed pair to prevent straightforward forgeries.

The specialized layout of our presignatures allows us to realize a non-interactive
signing procedure. In contrast, using plain multiplication triples, as often done
in multiparty computation protocols [8, 37], would require one additional round
of communication. Further, our online protocol provides active security at a low
cost. This is achieved by verifying the received signatures and works since the
presignatures are created securely.

The Preprocessing Protocol. The presignatures required by our online phase
consist of two values. Each party Pi obtains a share ai of a random value a and
a share βi of the product β = a·x. Since a and x are both secret shared values, we
can write β = (a1+. . .+an)·(x1+. . .+xn) = a1x1+. . .+a1xn+. . .+anx1+. . .+
anxn, i.e. β is the sum of all cross products. While each party Pi can compute the
cross product aixi on its own, party Pi must communicate with Pj to compute

5

the cross products aixj and ajxi. Importantly, while the share ai must be a
fresh random value for each presignature, the secret key share xi is fixed for all
presignatures. This fact allows us to obtain additive shares of the cross products
via vector oblivious linear evaluation (VOLE) correlations. A VOLE correlation
is a two-party correlation, in which party P1 gets a tuple of two random values
(a, u) and party P2 gets a tuple (s, v), where s is fixed for all correlation tuples
and v is random. Moreover, the tuples satisfy the correlation a · s = u+ v. Using
VOLE correlations, where the fixed s is set to be the secret key share xi, parties
Pi and Pj obtain additive shares uj,i, vj,i of the cross product ajxi. The same
applies for the cross product aixj . After obtaining additive shares of all cross
products, every party Pi calculates βi by summing up the additive shares and
the cross product aixi.

An appealing choice for instantiating the preprocessing protocol is to use
pseudorandom correlation generators (PCG) or functions (PCF), as they enable
the efficient generation of correlated random tuples. More precisely, PCGs and
PCFs allow two parties to expand short seeds to fresh correlated random tuples
locally. While the distributed generation of the seeds requires more involved
protocols and typically relies on general-purpose multiparty computation, the
seed size and the communication complexity of the generating protocols are
sublinear in the size of the expanded correlated tuples [14, 17]. Using PCG or
PCF constructions, we can efficiently compute VOLE correlations [14, 17, 18,
19, 36, 57, 15]. Note that the ai value must be the same for all cross terms, so
we require the VOLE PCG/PCF to provide the reusability feature. This allows
party Pi to use the same input value ai in all VOLE correlations for the cross
terms aixj with j ̸= i.

Using PCGs/PCFs in a Black-Box Way. Pseudorandom correlation generators
(PCGs) and pseudorandom correlation functions (PCFs) are introduced in [14]
and [18]. Concrete constructions of both primitives for simple correlations, such
as VOLE, are presented in a line of work including [14, 17, 16, 19, 18, 36, 57].
In our work, we aim to deal with PCGs/PCFs in a black-box way such that we
can instantiate our protocols with arbitrary constructions as long as they fulfill
our requirements. These requirements include supporting VOLE correlations,
supporting the active security setting, and providing the opportunity to reuse
inputs, as emphasized above. A first step towards black-box usage of PCGs was
taken by [17]. This work defines an ideal functionality for correlated randomness,
which they show can be instantiated by PCGs. However, the definition does not
support reusing inputs to PCGs.

In contrast to the simulation-based approach taken by [16], [17] and [18]
present game-based notions that lay the foundation of the resuability property
for PCGs and PCFs. However, their definitions consider passive security only
and are unsuitable for black-box usage. Therefore, we introduce new game-based
notions called reusable PCG and reusable PCF, which capture the active security
setting and permit black-box use.

Identical to prior definitions of PCGs and PCFs, our primitives consist of
a key generation Gen and an expansion algorithm Expand or evaluation algo-

6

rithm Eval. The reusability feature allows both parties to specify an input to
the key generation, which is used to derive the correlation tuples. Additionally,
our reusable primitives must satisfy four properties. Three of these properties
are stated by [17] and [18], two of which we slightly modified. Our new insight
is the requirement of the key indistinguishability property, which we specifically
introduce to cover malicious parties. The key indistinguishability property states
that the adversary cannot learn information about the honest party’s input to
the key generation, even if the corrupted party chooses its input arbitrarily. This
property makes our notion suitable for the active security setting. We state and
prove that existing PCG and PCF constructions fulfill our new definition.

The t-out-of-n Setting. So far, we discussed a setting where n-out-of-n servers
must contribute to the signature creation. However, in many use cases, we need
to support the more flexible t-out-of-n setting with t ≤ n. In this setting, the
secret key material is distributed to n servers, but only t must contribute to the
signing protocol. A threshold t ≤ n improves the flexibility and robustness of
the signing process, as not all servers must be online.

The typical approach in the t-out-of-n setting is to share the secret key
material using Shamir’s secret sharing [61] instead of an additive sharing as
done above. While additive shares are reconstructed by summation, Shamir-style
shares must be aggregated using Lagrange interpolation, either on the client or
server side. In this work, we reconstruct on the server side due to technical details
of our precomputation protocols. Note that prior threshold signature schemes
leveraging PCF/PCGs (e.g., [3, 48]) only support an n-out-of-n setting.

On a technical level, the challenge for client-side reconstruction is due to
VOLE correlations providing us with two-party additive sharings of multiplica-
tions, e.g., ui,j + vi,j = aixj . The additive shares ui,j and vi,j are sufficient for
the n-out-of-n setting (see above). However, it is unclear how VOLE outputs
can be transformed into Shamir sharings of a · x so that a client can reconstruct
in a t-out-of-n setting.

We, therefore, incorporate a share conversion mechanism from Shamir-style
shared key material into additively shared presignatures on the server side. Our
mechanism consists of the servers applying the corresponding Lagrange inter-
polation directly to the outputs of the VOLE correlation. More precisely, as
described above, each party Pi gets additive shares of the cross terms aixj and
ajxi for every other party Pj , where xℓ denotes the Shamir-style key share of
Pℓ. Let ui,j be the additive share of aixj , then party Pi multiplies the required
Lagrange coefficient Lj,T to this share and Li,T to vj,i, where T is the set of t
signers. The client provides the set of servers as part of the signing request to
enable the servers to compute the interpolation.

While the secret key is shared using Shamir’s secret sharing, we can define
the random blinding factor a as the additive sharing of all t involved signers,
i.e., a =

∑
ℓ∈T aℓ. Since there is at least one honest signer in T , a is still random

and unknown to the adversary.

7

1.3 Related Work

Most related to our work are the works by Gennaro et al. [44] and Doerner et
al. [40], proposing threshold protocols for the BBS+ signing algorithm. While
[44] focuses on a group signature scheme with threshold issuance based on the
BBS signatures, their techniques can be directly applied to BBS+. [40] presents a
threshold anonymous credential scheme based on BBS+. Both schemes compute
the inverse using classical techniques of Bar-Ilan and Beaver [7]. Moreover, they
realize the multiplication of two secret shared values by multiplying each pair
of shares. While [44] uses a two-round multiplication protocol based on an ad-
ditively homomorphic encryption scheme, [40] integrates a two-round OT-based
multiplier. Although the OT-based multiplier requires a one-time setup, both
schemes do not use precomputed values per signing request. This is in contrast
to our scheme but at the cost of requiring several rounds of communication dur-
ing the signing. Parts of their protocols are independent of the message that will
be signed; thus, in principle, these steps can be moved to a presigning phase. In
this case, the signing phase is non-interactive, but on the downside, the commu-
nication complexity of the presigning phase has linear complexity. In contrast,
our protocol achieves both a non-interactive online phase and an offline phase
with sublinear complexity. In addition, both works [44, 40] consider a security
model tailored to the BBS+ signature scheme while we show security with re-
spect to a more generic threshold signature ideal functionality.

Wong et al. [68] presented another threshold BBS+ signature scheme. How-
ever, their work focuses on providing strong robustness using a linearly homo-
morphic encryption scheme with threshold decryption. The cost of achieving this
property is a four-round protocol.

Another anonymous credential scheme with threshold issuance, called Co-
conut, is proposed by Sonnino et al. [63] and analyzed and improved by Rial
and Piotrowska [60]. Their scheme is based on the Pointcheval-Sanders (PS)
signature scheme, which allows them to have a non-interactive issuance phase
without coordination or precomputation. We emphasize that the PS signature
scheme is less popular than BBS+ and not subject to standardization efforts.
The security of PS and Coconut is based on a modified variant of the LRSW
assumption introduced in [59]. This assumption is interactive in contrast to the
q-Strong Diffie-Hellman assumption on which the security of BBS+ is based.
While PS and Coconut also support multi-attribute credentials, the secret and
public key size increases linearly in the number of attributes. In BBS+, the key
size is constant. Further, PS and, therefore, the Coconut scheme relies on Type-3
pairings, while our scheme can be instantiated with any pairing type. The secu-
rity of Coconut was not shown under concurrent composition while our scheme
is analyzed in the Universal Composability framework.

Like our work, [3] and [48] leverage pseudorandom correlations for threshold
signatures. [3] presents an ECDSA scheme, while [48] focuses on Schnorr signa-
tures. [3] constructs a tailored PCG generating ECDSA- presignatures while our
scheme uses existing VOLE PCGs/PCFs in a black-box way. Further, in contrast
to our work, [3] presents an n-out-of-n protocol without a flexible threshold. [48]

8

introduces the new notion of a discrete log PCF and constructs a two-party
protocol based on this primitive. In contrast to our work, [48] captures only
the 2-out-of-2 setting. Both schemes [3, 48] require additional per-presignature
communication. Depending on the phase this communication is assigned to, the
schemes either have linear communication in the offline phase or require two
rounds of communication in the online phase.

2 Preliminaries

Throughout this work, we denote the security parameter by λ ∈ N, the set
{1, . . . , k} as [k], the set {0, 1, . . . , k} as [0..k], the number of parties by n and a
specific party by Pi. The set of indices of corrupted parties is denoted by C ⊊ [n]
and honest parties are denoted by H = [n] \ C. We denote vectors of elements
via bold letters, e.g., a, and the i-th element of a vector a by a[i].

We model our protocol in the Universal Composability (UC) framework by
Canetti [28]. We refer to Appendix C for a brief introduction to UC. In our
constructions, we denote by Z the UC environment and use sid and ssid to denote
session and subsession identifier. We consider a malicious adversary statically
corrupting up to t− 1 parties and the synchronous communication model.

We make use of a bilinear mapping following the definition of [12, 11]. A
bilinear mapping is described by three cyclic groups (G1,G2,GT) of prime order
p, generators g1 ∈ G1, g2 ∈ G2, and a pairing e : G1 × G → GT . We call e
a bilinear map iff it can be computed efficiently, e(ua, vb) = e(u, v)ab for all
(u, v, a, b) ∈ G1 × G2 × Zp × Zp, and e(g1, g2) ̸= 1 for all generators g1 and g2.
We refer to [12] for a more formal specification.

3 Reusable Pseudorandom Correlation Generators

In this section we introduce our definition of reusable PCGs, extending the
definition of programmable PCGs from [17] and [19]. We argue why existing
constructions for PCGs with minor modifications satisfy our new definition in
Appendix E. The extended definitional framework for PCFs, constructions, and
the PCF-based instantiation of the precomputation are stated in Appendix F-H.

In a nutshell, pseudorandom correlation generators allow two parties to gen-
erate a large amount of correlated randomness from short seeds. They are useful
in many two- and multiparty protocols in the offline-online-model [37, 56, 65, 66].
Examples for frequently used correlations are vector oblivious linear evaluations,
oblivious transfer and multiplication triples.

Our modifications and extensions of the definitions of [16] and [19] reflect the
challenges we faced when using PCGs as black-box primitives in our threshold
BBS+ protocol. We present our definition and highlight these challenges and
changes in the following. We note that Boyle et al. [17] presents an ideal func-
tionality for corruptible, correlated randomness which can be instantiated by
PCGs. While this notion allows to abstract from concrete PCG constructions,
their ideal functionality does not cover the reusability feature required in our

9

setting. Therefore, we present a suitable definition extending the game-based
definitions of [16] and [19].

3.1 Definition

As mentioned above, a PCF/PCG realizes a target correlation Y. For some cor-
relations, like VOLE, parts of the correlation outputs are fixed over all outputs.
In the example of VOLE, where the correlation is v = as+ u over some ring R,
the s value is fixed for all tuples.

Additionally, in a multiparty setting, we like PCG/PCF constructions that
allow parties to obtain the same values for parts of the correlation output in
multiple instances. Concretely, assume party Pi evaluates one VOLE PCG/PCF
instance with party Pj and one with party Pk. Pi evaluates the PCG/PCF to
(ai,j , ui,j) for the first instance and (ai,k, ui,k) for the second instance. Here, we
want to give party Pi the opportunity to get ai,j = ai,k when applied on the
same input. This property is necessary to construct multiparty correlations from
two-party PCG/PCF instances.

To formally model the abovementioned properties, we define a target corre-
lation as a tuple of probabilistic algorithms (Setup,Y), where Setup takes two
inputs and creates a master key mk. These inputs enable fixing parts of the cor-
relation, e.g., the fixed value s in VOLE correlations, and obtaining the same
values over multiple instances, e.g., by reusing the values s in multiple VOLE
correlations. Algorithm Y uses the master key to sample correlation outputs.

Finally, we follow [16, 19] and require a target correlation to be reverse-
sampleable to facilitate a suitable definition of PCGs. In contrast to [17, 19],
our definition of a target correlation explicitly considers the reusability of values
over multiple invocations.

Definition 1 (Reverse-sampleable target correlation with setup). Let
ℓ0(λ), ℓ1(λ) ≤ poly(λ) be output length functions. Let (Setup,Y) be a tuple of
probabilistic algorithms, such that Setup on input 1λ and two parameters ρ0, ρ1
returns a master key mk; algorithm Y on input 1λ and mk returns a pair of

outputs (y
(i)
0 , y

(i)
1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ).

We say that the tuple (Setup,Y) defines a reverse-sampleable target correla-
tion with setup if there exists a probabilistic polynomial time algorithm RSample

that takes as input 1λ,mk, σ ∈ {0, 1}, y(i)σ ∈ {0, 1}ℓσ(λ) and outputs y
(i)
1−σ ∈

{0, 1}ℓ1−σ(λ), such that for all σ ∈ {0, 1}, for all mk,mk′ in the range of Setup
for arbitrary but fixed input ρσ the following distributions are statistically close:

{(y0, y1)|(y0, y1)
$← Y(1λ,mk)}

{(y0, y1)|(y′0, y′1)
$← Y(1λ,mk′),

yσ ← y′σ, y1−σ ← RSample(1λ,mk, σ, yσ)}.

Given the definition of a reverse-sampleable correlation with setup, we define
our primitive called reusable PCG (rPCG).

10

The security properties in the original notion of programmable PCGs assumes
randomly selected seeds that are inserted into the key generation. This reflects
a passive or semi-honest setting in which the adversary cannot deviate from the
protocol description such that the seeds are indeed random. We are interested in
the active security setting, where an adversary can insert arbitrary seeds into the
key generation. Therefore, we adapted the pseudorandom Y-correlated outputs
and the security property. Additionally, we introduced a key indistinguishability
property. This property is helpful in security proofs of protocols where we want
to use PCGs in a black-box way. In particular, it allows us to switch from fake
to real PCG seeds/keys and show indistinguishability between two hybrids via
a reduction to the property. Next, we formally propose the notion of rPCG.

Definition 2 (Reusable pseudorandom correlation generator (rPCG)).
Let (Setup,Y) be a reverse-sampleable correlation with setup which has output
length functions ℓ0(λ), ℓ1(λ), let λ ≤ η(λ) ≤ poly(λ) be the sample size function.
Let (PCG.Genp,PCG.Expand) be a pair of algorithms with the following syntax:

– PCG.Genp(1
λ, ρ0, ρ1) is a probabilistic polynomial-time algorithm that on in-

put the security parameter 1λ and reusable inputs ρ0, ρ1 outputs a pair of
keys (k0, k1).

– PCG.Expand(σ, kσ) is a deterministic polynomial-time algorithm that on in-
put σ ∈ {0, 1} and key kσ outputs yσ ∈ {0, 1}ℓσ(λ)×η(λ), i.e. an array of size
η(λ) with elements being bit-strings of length ℓσ(λ).

We say (PCG.Genp,PCG.Expand) is a reusable pseudorandom correlation
generator (rPCG) for (Setup,Y), if the following conditions hold:

– Programmability. There exist public efficiently computable functions ϕ0, ϕ1,
such that for all ρ0, ρ1 ∈ {0, 1}∗

Pr


(k0, k1)

$← PCG.Genp(1
λ, ρ0, ρ1)

(x0, z0)← PCG.Expand(0, k0),

(x1, z1)← PCG.Expand(1, k1)

:
x0 = ϕ0(ρ0)

x1 = ϕ1(ρ1)

 ≥ 1− negl(λ).

– Pseudorandom Y-correlated outputs. For every non-uniform adversary
A of size poly(λ) it holds that∣∣∣∣Pr[Exppr-gA (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exppr-gA (λ) is as defined in Figure 1.
– Security. For each σ ∈ {0, 1} and non-uniform adversary A of size poly(λ),

it holds that ∣∣∣∣Pr[Expsec-gA,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Expsec-gA,σ (λ) is as defined in Figure 1.

11

– Key indistinguishability. For any σ ∈ {0, 1} and non-uniform adversary
A = (A0,A1), it holds

Pr[Expkey-ind-gA,σ (λ) = 1] ≤ 1

2
+ negl(λ)

for all sufficiently large λ, where Expkey-ind-gA,σ is as defined in Figure 1.

Exppr-gA (λ) :

b
$← {0, 1}, N ← η(λ), (ρ0, ρ1)← A0(1

λ)

mk
$← Setup(1λ, ρ0, ρ1)

(k0, k1)
$← PCG.Genp(1

λ, ρ0, ρ1)

if b = 0 then (y0,y1)
$← Y(1λ,mk)

else yσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}
b′ ← A1(1

λ,y0,y1), return b′ = b

Expkey-ind-gA,σ (λ) :

b
$← {0, 1}, ρσ ← A0(1

λ)

ρ
(0)
1−σ, ρ

(1)
1−σ

$← {0, 1}∗, ρ1−σ ← ρ
(b)
1−σ

(k0, k1)← PCG.Genp(1
λ, ρ0, ρ1)

b′ ← A1(1
λ, kσ, ρ

(0)
1−σ) return b′ = b

Expsec-gA,σ (λ) :

b
$← {0, 1}, N ← η(λ), (ρ0, ρ1)← A0(1

λ)

mk
$← Setup(1λ, ρ0, ρ1), (k0, k1)

$← PCG.Genp(1
λ, ρ0, ρ1)

yσ
$← PCG.Expand(σ, kσ)

if b = 0 then (y1−σ)← PCG.Expand(1− σ, k1−σ)

else y1−σ ← RSample(1λ,mk, σ,yσ)

b′ ← A1(1
λ,y0,y1), return b′ = b

Fig. 1: Security games for reusable PCGs.

3.2 Correlations

Our VOLE correlation of size N over a finite field F is given by z1 = x0 ·x1+z0,
where z1,x0, z0 ∈ FN

p and x1 is a fixed scalar in Fp. Moreover, we require x0

being computed by a pseudorandom generator (PRG). We formally define the
reverse-sampleable target correlation with setup (SetupVOLE,YVOLE) of size N
over field Fp as

mk = (ρ, x1)← SetupVOLE(1
λ, ρ, x1) ,

((F (ρ), z0), (x1, z1))← YVOLE(1
λ,mk) such that

z0
$← FN

p and z1 = F0(ρ0) · x1 + z0 ,

12

where F being a PRG. The reverse-sampling algorithm is defined such that
(x1, F (ρ) · x1 + z0) ← RSampleVOLE(1

λ,mk, 0, (F (ρ), z0)) and (F (ρ), z1 − F (ρ) ·
x1)← RSampleVOLE(1

λ,mk, 1, (x1, z1)).
We state a PCG construction realizing this definition of a VOLE correlation

in Appendix E.

4 Threshold Online Protocol

In this section, we present our threshold BBS+ protocol. This protocol yields a
signing phase without interaction between the signers and a flexible threshold
parameter t.

We show the security of our protocol against a malicious adversary stati-
cally corrupting up to t − 1 parties in the UC framework. We show that our
scheme implements a modification of the generic ideal functionality for thresh-
old signature schemes introduced by Canetti et al. [29]. We deliberately chose
the generic threshold signature functionality by Canetti et al. [29] over a spe-
cific BBS+ functionality such as the one used in [40]. Proving security under a
generic threshold functionality enables our threshold BBS+ protocol to be used
whenever a threshold signature scheme is required (e.g., for the construction of a
more complex protocol such as an anonymous credential system). We present the
ideal functionality and discuss the changes with respect to the original version
in Appendix I.

Our protocol uses precomputation to accelerate online signing and requires
a random oracle. An intuitive description of the random oracle usage and the
precomputation used is given in Section 1.2. We formally model the random
oracle and the precomputation by describing our protocol in a hybrid model
where parties can access a global random oracle functionality H and a hybrid
preprocessing functionality FPrep. Using a hybrid model allows us to abstract
from the concrete instantiation of the preprocessing functionality. We present
concrete instantiations of FPrep in Section 5 and Appendix H.

4.1 Global Random Oracle Functionality

We follow the formalism of Canetti et al. [29] to model a global random oracle
in the UC framework. This model constitutes an abstraction of a hash function
that is used within and outside of the analyzed system. We refer the reader to
[29] and references within for further discussions.

Functionality H

Parameter: Output domain Zp.
Upon receiving (query, x) from party P , do:
– If a tuple (x, a) is stored, then output (answer, a) to P .
– Else, sample a← Zp and store (x, a).

Output (answer, a) to P .

13

4.2 Ideal Preprocessing Functionality

The preprocessing functionality consists of two phases. First, the Initialization
phase samples a private/public key pair. Second, the Tuple phase provides cor-
related tuples upon request. In the second phase, the output values of the honest
parties are reverse sampled, given the corrupted parties’ outputs. To explicitly
model the Tuple phase as non-interactive, we require the simulator to specify
a function Tuple during the Initialization. This function defines the corrupted
parties’ output values in the Tuple phase and is computed first to reverse sample
the honest parties’ outputs.

Functionality FPrep

The functionality FPrep interacts with parties P1, . . . , Pn and ideal-world ad-
versary S. The functionality is parameterized by a threshold parameter t.
During the initialization, S provides a tuple function Tuple(·, ·, ·)→ Z2

p.
Initialization. Upon receiving (init, sid) from all parties,

1. Sample the secret key sk
$← Zp.

2. Send pk = (gsk2) to S. Upon receiving (ok,Tuple(·, ·, ·)) from S, send pk to
every honest party.

Tuple. On input (tuple, sid, ssid, T) from party Pi where i ∈ T , T ⊆ [n] of
size t do:
– If (ssid, T , {(aℓ, βℓ)}ℓ∈T) is stored, send (ai, βi) to Pi.

Else, compute (aj , βj) ← Tuple(ssid, T , j) for every corrupted party Pj

where j ∈ C ∩ T . Next, sample a
$← Zp and tuples (aj , βj) over Zp for

j ∈ H ∩ T such that ∑
ℓ∈T

aℓ = a
∑
ℓ∈T

βℓ = a · sk (1)

Store (sid, ssid, T , {(aℓ, βℓ)}ℓ∈T) and send (sid, ssid, ai, βi) to honest Pi.
Abort. On input (abort, sid) from S, send abort to all honest parties and
halt.

4.3 Online Signing Protocol

Next, we formally state our threshold BBS+ protocol. We refer the reader to
the technical overview in Section 1.2 for a high-level description of our proto-
col. Further, we discuss extensions for anonymous credentials systems and blind
signing in Appendix D.

Construction 1: πTBBS+

We describe the protocol from the perspective of an honest party Pi.
Public Parameters. Number of parties n, maximal number of signatures
N , size of message arrays k, security threshold t, a bilinear mapping tu-

14

ple (G1,G2,GT , p, g1, g2, e) and randomly sampled G1 elements {hℓ}ℓ∈[k]. Let
Verifypk(·, ·) be the BBS+ verification algorithmas defined in Appendix A.
KeyGen.
– Upon receiving (keygen, sid) from Z, send (init, sid) to FPrep and receive pk in

return.
– Upon receiving (pubkey, sid) from Z output (pubkey, sid,Verifypk(·, ·)).
Sign. Upon receiving (sign, sid, ssid ∈ [N], T ,m = {mℓ}ℓ∈[k]) from Z with Pi ∈ T
and no tuple (sid, ssid, ·) is stored, perform the following steps:
1. Send (tuple, sid, ssid, T) to FPrep and receive tuple (sid, ssid, ai, βi).
2. Store (sid, ssid,m), send (query, sid||ssid||m||T) to H and receive (answer, e).

Then, send (sid, ssid, T , Ai := (g1 ·
∏

ℓ∈[k] h
mℓ
ℓ)ai , δi := βi + ai · e) to each party

Pj ∈ T .
3. Once (sid, ssid, T , Aj , δj) is received from every party Pj ∈ T \ {Pi},

(a) Send (query, sid||ssid||m||T) to H and receive (answer, e). Next, compute

ϵ =
(∑

ℓ∈T δℓ
)−1

and A = (Πℓ∈T Aℓ)
ϵ.

(b) If Verifypk(m, (A, e)) = 1, set out = σ = (A, e). Otherwise, set out = abort.
Then, output (sig, sid, ssid, T ,m, out).

Verify. Upon receiving (verify, sid,m = {mℓ}ℓ∈[k], σ,Verifypk′(·, ·)) from Z output
(verified, sid,m, σ,Verifypk′(m, σ)).

Remark. While we simplified our UC model to capture the scenario where every
signer obtains the final signature, we expect real-world scenarios to have a dedi-
cated client which is the only party to obtain the signature. In the latter case, the
signers send the partial signature in Step 2 only to the client and Steps 3a and
3b are performed by the client. We stress that in both cases the communication
follows a request-response pattern which is the minimum for MPC protocols.
Moreover, note that the (tuple, ·, ·, ·)-call to FPrep does not involve additional
communication when being instantiated based on PCGs or PCFs as done in this
work. Using such an instantiation, the (tuple, ·, ·, ·)-call is realized by local eval-
uation of the PCF or local expansion of the PCG so that no interaction between
the parties is needed.

Theorem 1. Assuming the strong unforgeability of BBS+, protocol πTBBS+ UC-
realizes Ftsig in the (FPrep,H)-hybrid model in the presence of malicious adver-
saries controlling up to t− 1 parties.

The proof is given in Appendix J.

5 PCG-based Threshold Preprocessing Protocol

We state our threshold BBS+ signing protocol in Section 4 in a FPrep-hybrid
model. Now, we present an instantiation of the FPrep functionality using pseu-
dorandom correlation generators (PCGs). Our πPCG

Prep protocol builds solely on
PCGs for VOLE correlations. The resulting protocol consists of an interactive
Initialization and a non-interactive Tuple phase, consisting only of the retrieval
of stored PCG tuples and additional local computation.

15

Our preprocessing protocol consists of four steps: the first three are part of
the Initialization phase, and the fourth one builds the Tuple phase. First, the
parties set up a secret and corresponding public key. For the BBS+ signature
scheme, the public key is pk = gx2 , while the secret key is sk = x, which is secret-
shared using Shamir’s secret sharing. This procedure constitutes a standard
distributed key generation protocol for a DLOG-based cryptosystem. Therefore,
we abstract from the concrete instantiation of this protocol and model the key
generation as a hybrid functionality FKG. Second, the parties set up the keys
for the PCG instances. The protocol uses two-party PCGs, meaning each pair
of parties sets up required instances. We model the PCG key generation as a
hybrid functionality FPCG

Setup. Third, every party expands the local seeds to the
required VOLE correlations and store them in their storage. The fourth step
constitutes the Tuple phase and is executed by every party in the signer set T of
a signing request. In this phase party Pi generates (ai, βi), where the values fulfill
correlation (1). For a signing request with ssid, Pi uses the ssid-th component
of the previously expanded correlation vector a as ai. Note that the ai values
constitute an additive secret sharing of a value a (cf. (1)). Then,

∑
ℓ∈T βℓ = a ·sk

can be rewritten as a ·sk =
∑

ℓ∈T aℓ ·
∑

j∈T Lj,T ·skj =
∑

ℓ∈T
∑

j∈T aℓ ·skj ·Lj,T .
Recall that the skj values constitute a Shamir sharing of sk so that we need
to integrate LaGrange coefficients for interpolation. The multiplication aℓskj is
equal to the additive shares of a VOLE correlation, i.e., c1 − c0 = aℓskj . For
ℓ ̸= j, the parties obtain these additive shares via the stored VOLE correlations
that were expanded in the third step. Note that the parties use again the ssid-th
component of the vectors to get consistent values. Finally, party Pi applies the
appropriate LaGrange coefficients to the output of its PCG expansion and adds
ai · ski ·Li,T to get an additive sharing of a · sk. Note that while the value a is a
fresh random values for each signing request, sk is fixed. Therefore, the parties
can use VOLE correlations to compute ask.

Note that party Pi uses PCG instances for computing additive shares of
aiskj and aiskℓ for two different parties Pj and Pℓ. Since ai must be the same
for both products, we use reusable PCGs so parties can fix ai over multiple
PCG instances. Based on these two requirements, our protocol relies on reusable
PCGs defined in Section 3.

Key Generation Functionality. We abstract from the concrete instantiation of
the key generation. Therefore, we state a very simple key generation function-
ality for discrete logarithm-based cryptosystems similar to the functionality of
[67]. The functionality describes a standard distributed key generation for dis-
crete logarithm-based cryptosystems and can be realized by [45, 67] or the key
generation phase of [29] or [40].

Functionality FKG

The functionality is parameterized by the order of the group from which the
secret key is sampled p, a generator for the group of the public key g2, and a

16

threshold parameter t. The key generation functionality interacts with parties
P1, . . . , Pn and ideal-world adversary S.
Key Generation. Upon receiving (keygen, sid) from every party Pi and
(corruptedShares, sid, {skj}j∈C) from S:
1. Sample random polynomial F ∈ Zp[X] of degree t−1 such that F (j) = skj

for every j ∈ C.
2. Set sk = F (0), pk = gsk2 , skℓ = F (ℓ) and pkℓ = gskℓ2 for ℓ ∈ [n].
3. Send (sid, ski, pk, {pkℓ}ℓ∈[n]) to every party Pi.

Setup Functionality. The setup functionality gets random values, secret key
shares, and partial public keys as input from every party. Then, it first checks if
the secret key shares and the partial public keys match and next generates the
PCG keys using the random values. Finally, it returns the generated PCG keys
to the parties.

In order to provide modularity, we abstract from concrete instantiation by
specifying this functionality. Nevertheless, FSetup can be instantiated using general-
purpose MPC or tailored protocols similar to distributed seed generation proto-
cols from prior work [19, 3]. We leave a formal specification of a tailored protocol
as future work.

Functionality FPCG
Setup

Let PCGVOLE.Genp be an rPCG for VOLE correlations. The setup functionality
interacts with parties P1, . . . , Pn.

Setup. Upon receiving (setup, sid, ρ
(i)
a , ski, {pk(i)ℓ }ℓ∈[n]) from every party Pi:

1. Check if gskℓ2 = pk
(i)
ℓ for every ℓ, i ∈ [n]. If the check fails, send abort to all

parties.

Else, compute (kVOLE
i,j,0 , kVOLE

i,j,1) ← PCGVOLE.Genp(1
λ, ρ

(i)
a , skj) for each tuple

(Pk, Pj) with k, j ∈ [n], k ̸= j.
2. Send keys (sid, {kVOLE

i,j,0 , kVOLE
j,i,1 }j∈[n]\i) to party Pi for i ∈ [n].

PCG-based Preprocessing Protocol. In this section, we formally present our PCG-
based preprocessing protocol in the (FKG,FPCG

Setup)-hybrid model.

Construction 2: πPCG
Prep

Let (PCGVOLE.Genp,PCGVOLE.Expand) be an rPCG for VOLE correlations.
We describe the protocol from the perspective of Pi.
Initialization. Upon receiving input (init, sid), do:
1. Send (keygen, sid) to FKG.

2. Upon receiving (sid, ski, pk, {pk(i)ℓ }ℓ∈[n]) from FKG, sample ρ
(i)
a ∈ {0, 1}λ and send

(setup, sid, ρ
(i)
a , ski, {pk(i)ℓ }ℓ∈[n]) to FPCG

Setup.

3. Upon receiving (sid, {kVOLE
i,j,0 , k

VOLE
j,i,1 }j ̸=i) from FPCG

Setup, compute and store for every
j ∈ [N] \ {i}:

17

(a) (ai, c
VOLE
i,j,0) = PCGVOLE.Expand(0, k

VOLE
i,j,0),

(b) (ski, c
VOLE
j,i,1) = PCGVOLE.Expand(1, k

VOLE
j,i,0),

4. Output pk.
Tuple. Upon receiving input (tuple, sid, ssid, T), compute:
5. Let ai = ai[ssid], c

VOLE
(i,j,0) = cVOLE

(i,j,0)[ssid], c
VOLE
(j,i,1) = cVOLE

(j,i,1)[ssid] for j ∈ T \ {i}.
6. Compute βi = ai · Li,T · ski +

∑
j∈T \{i}

(
Li,T · cVOLE

j,i,1 − Lj,T · cVOLE
i,j,0

)
7. Output (sid, ssid, ai, βi).

Theorem 2. Let PCGVOLE be an rPCG for VOLE correlations. Then, proto-
col πPCG

Prep UC-realizes FPrep in the (FKG,FPCG
Setup)-hybrid model in the presence of

malicious adversaries controlling up to t− 1 parties.

We state our simulator, a proof sketch and the full indistinguishability proof
in Appendix K, L, and M.

6 Evaluation

This section presents the evaluation of the online and the offline phase of our
protocol and compares it to related work. We refer the reader to Appendix N
for an evaluation of our threshold protocol based on the legacy BBS+ scheme
(cf. Appendix B).

6.1 Online, Signing Request-Dependent Phase

We evaluate the online, signing request-dependent phase by implementing the
protocol, running benchmarks, and reporting the runtime and the communica-
tion complexity. For comparison, we also implement and benchmark the non-
threshold BBS+ signing algorithm. We open-source our prototype implementa-
tion to foster future research in this area.1

Implementation and Experimental Setup. Our implementation and benchmarks
of the online phase are written in Rust (compiled using rustc 1.68.2 (9eb3afe9e))
and based on the BLS12 381 curve.2 Note, since the BLS12 381 curve defines an
elliptic curve, we use the additive group notation in the following. This differs
from the multiplicative group notation used in the protocol description. Our
code, including the benchmarks and rudimentary tests, comprises 1,400 lines.

For our benchmarks, we split the protocol into four phases: Adapt (Steps 6
of protocol πPCG

Prep), Sign (Step 2 of πTBBS+), Reconstruct (Step 3a of πTBBS+)
and Verify (Step 3b of πTBBS+). Adapt and Sign are executed by the servers.
Reconstruct and Verify are executed by the client. Together, these phases cover
the whole online signing protocol. The runtime of our protocol is influenced by
the security threshold t and the message array size k. We perform benchmarks

1 https://github.com/AppliedCryptoGroup/NI-Threshold-BBS-Plus-Code
2 We have used [4] for all curve operations.

18

https://github.com/AppliedCryptoGroup/NI-Threshold-BBS-Plus-Code

10 20 30
0

200

400

t

[µs]

(a) Adapt (Server).

10 30 50
0

5

10

15

k

[ms]

(b) Sign (Server).

10 20 30
0

100

200

300

t

[µs]

(c) Reconstruct (Client).

10 30 50
0

10

20

k

[ms]

(d) Verify (Client).

10 20 30
0

5

10

t

[ms]

k = 1 k = 2

k = 5 k = 10

(e) Total.

Fig. 2: The runtime of individual protocol phases (a)-(d) and the total online
protocol (e). The Adapt phase, describing Steps 6 of protocol πPCG

Prep , and the
Reconstruct phase, describing Step 3a of πTBBS+, depend on security threshold
t. The Sign phase, describing Step 2 of πTBBS+, and the signature verification,
describing Step 3b of πTBBS+, depend on the message array size k.

for 2 ≤ t ≤ 30 and 1 ≤ k ≤ 50. The range for parameter t is chosen to provide
comparability with [40] and we deem k ≤ 50 a realistic setting for the use-cases of
credential certificates. Moreover, both ranges illustrate the trend for increasing
parameters. The influence of the total number of servers n is insignificant to
non-existent. Our benchmarks do not account for network latency, which heavily
depends on the location of clients and servers. Network latency, in our protocol,
incurs the same overhead as in the non-threshold setting. It can be incorporated
by adding the round-trip time of messages up to 2KB over the client’s (slowest)
server connection to the total runtime. As the online phase of our protocol is
non-interactive, we benchmark servers and clients individually. We execute all
benchmarks on a single machine with a 14-core Intel Xeon Gold 5120 CPU @
2.20GHz processor and 64GB of RAM. We repeat each benchmark 100 times to
account for statistical deviations and report the average. For comparability, we
report the runtime of basic arithmetic operations in Table 1 in Appendix O.

19

Experimental Results. We report the results of our benchmarks in Figure 2.
These results reflect our expectations as outlined in the following. The Adapt
phase transforming PCF/PCG outputs to signing request-dependent presigna-
tures involves only field operations and is much faster than the other phases for
small t. The runtime increases for larger t due to the computation of LaGrange
coefficient which scales quadratically with the number of signers. The Sign phase
requires the servers to compute k + 1 scalar multiplications in G1, each taking
100 times more time than the slowest field operation (cf. Appendix O). The
Reconstruct phase involves a single G1 scalar multiplication and less expensive
hashing and field operations. The Verify phase requires the client to compute
two pairing operations, a single scalar multiplication in G2, k scalar multipli-
cations G1, and multiple additions in G1 and G2. The pairing operations and
the scalar multiplication in G2 are responsible for the constant costs visible in
the graph. The scalar multiplications in G1 cause the linear increase. The in-
fluence of G1 and G2 additions is insignificant because they take at most 1.4%
of scalar multiplication in G1. The Total runtime mainly depends on the size
of the signed message array, k, due to the scalar multiplications in the signing
and verification step. The number of signers, t, has only a minor influence on
the online runtime; increasing the number of signers from 2 to 30 increases the
runtime by 1.13% − 6.02%. Consequently, the online protocol can essentially
support any number of servers as long as the preprocessing, which is expected
to scale worse, can be instantiated efficiently for the number of servers and the
storage complexity of the generated preprocessing material does not exceed the
servers’ capacities (cf. Section 6.2).

To measure the overhead of thresholdization, we compare the runtime of our
online protocol to the runtime of signature creation in the non-threshold setting
in Figure 3. The overhead of our online protocol mainly consists of a single
scalar multiplication in G1, assuming that clients also verify received signatures
in the non-threshold setting. This observation reflects our protocol pushing all
the overhead of the distributed signing to the offline phase.

10 20 30 40 50
0

20

40

k

[ms] Threshold (t = 10)

Plain incl. verification

Plain excl. verification

Fig. 3: The total runtime of our online protocol compared to plain, non-threshold
signing with and without signature verification in dependence of k. The number
of signers t is insignificant (cf. Figure 2e).

20

Communication Complexity. The client has to send one signing request of size
(k·⌈log p⌉)+(t·⌈log n⌉) bits to each of the t selected servers. By deriving the signer
set via a random oracle, we can reduce the size of the request to (k ·⌈log p⌉). Each
selected server has to send a partial signature of size (⌈log p⌉+ |G1|). In case of
the BLS12 381 curve, ⌈log p⌉ equals 381 bits whereas |G1| equals 762 bits. Parties
can also encode G1 elements with 381 bits by only sending the x-coordinate of
the curve point and requiring the sender to compute the y-coordinate itself.

Note that our UC functionality models a scenario where every signer obtains
the final signature. Therefore, the partial signatures are sent to all other signers.
However, by incorporating a dedicated client into the model, the signers can send
the partial signatures only to the client. While we expect this to be sufficient for
real-life settings, it makes the model messier. We emphasize that this request-
response behavior is the minimum interaction for distributed protocols. As there
is no interaction between the servers, this setting is referred to as non-interactive
in the literature [29, 3].

6.2 Offline, Signing Request-Independent Phase

In this section, we provide the evaluation of the offline, signing request-independent
phase. We focus on the PCG-based precomputation as PCFs lack efficient in-
stantiations. We implement the seed expansion of the PCGs (Step 3 of protocol
πPCG
Prep), run benchmarks and report the runtime. We further compute the storage

complexity of the computed correlations.

Remark. While we focus the following evaluation on the protocol presented in
this paper, we have also conducted evaluations of the original version of the
BBS+ protocol, i.e., one without the optimization introduced by [64] that in-
cludes an additional s value into the signature. To this end, we instantiate the
PCG in the offline phase based on the Ring-LPN assumption, with which we can-
not only generate VOLE correlations but also oblivious linear evaluation (OLE)
correlations required for the adapted version of our protocol.

Parameters. In the following, we denote the security parameter by λ, the number
of servers by n, the security threshold by t, the size of the signed message arrays
by k, the number of generated precomputation tuples by N , the order of the
elliptic curve’s groups G1 and G2 by p and assume PCGs based on the Ring LPN
problem with static leakage and security parameters c and τ , i.e., the Rc-LPNp,τ

assumption.3 This assumption is common to state-of-the-art PCG instantiations
for OLE correlations [19].

Experimental setup. Our implementation4 and benchmarks are written in Go.
Our code, including the benchmarks and rudimentary tests, comprises 5 450
lines. We compiled our code using go 1.21.3. Again, we execute all benchmarks

3 For 128-bit security and N = 220, [19] reports (c, τ) ∈ {(2, 76), (4, 16), (8, 5)}.
4 https://github.com/leandro-ro/Threshold-BBS-Plus-PCG

21

https://github.com/leandro-ro/Threshold-BBS-Plus-PCG

on machines with a 14-core Intel Xeon Gold 5120 CPU @ 2.20GHz processor and
64GB of RAM. Due to the complexity of the benchmarks and the high amount
of repetition within a single protocol run, we execute the benchmarks for each
choice of parameters just once.

The runtime of the seed expansion is influenced by the number of parties
n, the number of generated precomputation tuples N and the Module Ring
LPN security parameters (c, τ). For security parameters we fix c = 4 and τ = 16
which corresponds to 128-bit security [19]. We compute over a cyclotomic ring as
proposed by [19] and fix the prime p to be the order of the BLS12 381 curve. Our
tests have shown that this choice of parameters yields the best performance of the
possible choices for the same security level. For the number of parties, we consider
2 ≤ n ≤ 10.5 Further, we consider both the t-out-of-n setting and the n-out-of-
n setting as the latter has tremendous potential for optimization as discussed
below. For the number of generated triples, we consider N ∈ [211, . . . , 217].

Our benchmarks cover the seed expansion phase of the required PCGs (Step 3
of πPCG

Prep). As our PCG instantiations compute over a ring, they also return ring
elements each representing an array of N field elements. For example, for a batch
of N VOLE correlations a ·b = c+d (a, c,d ∈ ZN

p , b ∈ Zp), the PCG returns one
field element b and three degree-N polynomials A,C,D such that A · b = C+D.
By choosing the ring appropriately (cf. [19]), each polynomial can be split into
N independent VOLE correlations over Zp. This step does not need to happen
in a batch but can be done individually. We report the computation time of the
PCG seed expansion, yielding the ring elements, and the time to split a single
VOLE correlation over Zp from a ring element, separately.

n-out-of-n vs. t-out-of-n. The runtime of the seed expansion strongly depends
on whether we consider a t-out-of-n or a n-out-of-n setting. To understand this
dependency, recall the basic concepts of PCGs (cf. PCG constructions in Ap-
pendix E). Parties first compute the desired correlation with sparse polynomials
as input values. Then, they expand these preliminary sparse correlations to dense
randomized correlations by applying an LPN-based randomization. In our proto-
col specification, parties do this for each individual VOLE-correlation and then
combine the randomized correlations to get the final precomputation tuples.
However, in a real implementation parties can first combine the sparse corre-
lations and then apply the LPN-based randomization, effectively reducing the
amount of randomization operations. In the t-out-of-n setting, the signer set is
only known during the online phase, i.e., after the randomization step. As the
combination itself largely depends on the signer set, parties can only perform
the combination steps that are independent of the set. In the n-out-of-n setting,
the signer set is already known during the offline phase, i.e., every party has
to sign. Parties can therefore perform combinations before randomization. More
precisely, in the n-out-of-n setting, each party has to perform two randomizations
and split two polynomials, while in the t-out-of-n setting each party performs
1 + 2 · (n− 1) randomizations and splits just as many polynomials.

5 The only prior work implementing the seed expansion [3] is restricted to n ∈ {2, 3}.

22

Experimental results. In Figure 4 and Figure 5, we display the computation time
per signature of the PCG expansion in the n-out-of-n setting and the t-out-of-
n setting. The computation time per signature increases superlinear with the
number of signatures (note that the x-axis has a logarithmic scale) and linear
with the number of parties n. The superlinear increase is due to the fact that the
seed expansion requires multiplication of degree-N polynomials. We perform the
multiplication via the Fast Fourier Transformation which scales superlinear with
the degree of the polynomial. Both graphs show that the runtime increases with
the number N . Nevertheless, as the correlations are expanded from small keys,
a large batch size N still benefits from the sublinear communication complexity
in N of a distributed seed generation.

We further benchmarked the computation time to extract one of N field el-
ements from a degree-N polynomial. The results range from 0.1ms for N = 211

to 1.6ms for N = 217 . This step essentially represents a polynomial evalua-
tion executed via the Horner’s method which explains the linear increase in the
computation time.

11 15 20
0

5

10

log2(N)

[ms] n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3
n = 2

Fig. 4: Computation time in ms per signature of the seed expansion of all required
PCGs in the n-out-of-n setting for different committee sizes (n ∈ {2, . . . , 10})
dependent on the number of generated precomputation tuples N .

Storage complexity. When instantiating the precomputation with PCGs, servers
must evaluate all of the PCGs’ outputs at once. The resulting precomputation
material occupies

log p ·N · (1 + 2 · (n− 1))

bits of storage. In [3], the authors report N = 94 019 as a reasonable parameter
for a PCG-based setup protocol. In [19], the authors base their analysis on
N = 220 = 1048 576. To efficiently apply Fast Fourier Transformation algorithms
during the seed expansion, it is necessary to choose N such that it divides p− 1.

23

Figure 6 reports the storage complexity depending on the number of servers n
for different N . Note that the dependency on the number of servers n stems from
the fact that we support any threshold t ≤ n. In a n-out-of-n settings, servers
execute Step 6 of πPCG

Prep during the preprocessing, and hence, only store log p ·2N
bits of preprocessing material.

11 15 20
0

50

100

log2(N)

[ms]
n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3

Fig. 5: Computation time in ms per signature of the seed expansion of all required
PCGs in the t-out-of-n setting for different committee sizes (n ∈ {2, . . . , 10})
dependent on the number of generated precomputation tuples N .

5 10 15 20 25 30
0

1

2

3

n

[GB] N = 1048 576

N = 94 019

Fig. 6: Storage complexity of the precomputation material required for N ∈
{94 019, 1 048 576} signatures depending on the number of servers n.

6.3 Comparison to [40]

Independently of our work, [40] presented the first t-out-of-n threshold protocol
for the legacy BBS+ scheme. This protocol incorporates a lightweight setup in-
dependent of the number of generated signatures but requires an interactive sign-

24

10 20 30
0

10

20

t

[ms] Us

[40]

(a) LAN.

10 20 30
0

200

400

t

[ms] Us

[40]

(b) WAN.

Fig. 7: Runtime of the signing protocol of [40] compared to the network adjusted
runtime of our signing protocol in the LAN and WAN setting.

ing protocol. In contrast, our scheme offers a trade-off that provides an efficient,
non-interactive online phase at the cost of a more complex offline phase. This
trade-off aims to minimize the time it takes to answer a signing request. To show
that our online phase’s efficiency indeed benefits from the costly preprocessing,
we compare our online signing phase to their interactive signing protocol.6 We
stress that the advantage of our online phase comes at the cost of a significantly
more complex offline phase. However, our online phase is independent of the con-
crete instantiation of the offline phase. In particular, less memory-consuming but
more communication-intensive instantiations, e.g., based on oblivious transfer or
somewhat homomorphic encryption, are also possible.

As our implementation, their implementation is in Rust and based on the
BLS12 381 curve. When comparing the benchmarking machines, G1 and G2

scalar multiplications are 15 − 25% faster on our machine, while signature ver-
ifications are 20% faster on their machine. Although not explicitly stated, the
numbers strongly indicate the choice k = 1 in [40]; the reported runtime of non-
threshold BBS+ signing is slightly larger than three G1 scalar multiplications.
Due to the interactivity of their protocol, their benchmarks incorporate network
delays for different settings (LAN, WAN). We add network delays to our results
to compare our benchmarks to theirs. All machines used in their evaluation are
Google Cloud c2d-standard-4 instances. In the LAN setting, all instances are
located at the us-east1-c zone. [38] reports a LAN latency of 0.146 ms for this
zone. We add a delay of 0.3 ms to our results. In the WAN setting, the first 12
instances in their benchmarks are located in the US, while other machines are
in Europe or the US. According to [49], we add 100 ms to our results for t < 13
and 150 ms for t ≥ 13.

In Figure 7, we compare the runtime, including latency, of our online signing
protocol to the runtimes reported in [40] for the LAN and the WAN setting.
The graphs show that our protocol outperforms the one of [40] in both settings
for every number of servers. The only exception is the runtime for t = 2 in

6 We thank the authors of [40] for sharing concrete numbers of their evaluation.

25

the WAN setting. This exception seems caused by an unusually low connection
latency between the first two servers and the client in [40]. The overhead of [40]
is mainly caused by the two additional rounds of cross-server interaction. This
overhead rises with the number of servers as each server has to communicate
with each other servers and is especially severe in the WAN setting.

Due to the high efficiency and non-interactivity of our online phase, our
protocol is more suited for settings where servers have a sufficiently long setup
interval and storage capacities to deal with the complexity of the preprocessing
phase. On the other hand, the protocol of [40] is more suited for use cases with
more lightweight servers, especially in a LAN environment where the network
delay of the additional communication is less significant.

Acknowledgments. The first, third, and fifth authors were supported by the
German Research Foundation (DFG) CRC 1119 CROSSING (project S7), by
the German Federal Ministry of Education and Research and the Hessen State
Ministry for Higher Education, Research and the Arts within their joint support
of the National Research Center for Applied Cybersecurity ATHENE, by the
European Research Council (ERC) under the European Union’s Horizon 2020
and Horizon Europe research and innovation programs (grant CRYPTOLAYER-
101044770), and by the Hessen Agentur, LOEWE-Förderrichtlinie 3, 1376/22-81.
The second author was partially supported by the Algorand Centres of Excel-
lence programme managed by Algorand Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the Algorand Foundation and
the United States-Israel Binational Science Foundation (BSF) through Grant
No. 2020277.

References

1. Github - trinsic-id/bbs. https://github.com/trinsic-id/bbs. (Accessed on
10/14/2024).

2. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures.
In CRYPTO, 2000.

3. Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlomovits.
Low-bandwidth threshold ECDSA via pseudorandom correlation generators. In
IEEE SP, 2022.

4. Algorand. BLS12-381 Rust crate. https://github.com/algorand/pairing-plus.
(Accessed on 10/14/2024).

5. Man Ho Au, Willy Susilo, Yi Mu, and Sherman S. M. Chow. Constant-size dynamic
k -times anonymous authentication. IEEE Syst. J., 2013.

6. Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A survey of
ECDSA threshold signing. IACR Cryptol. ePrint Arch., 2020.

7. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In PODC, 1989.

8. Donald Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO, 1991.

26

https://github.com/trinsic-id/bbs
https://github.com/algorand/pairing-plus

9. Greg Bernstein and Manu Sporny. Data integrity bbs cryptosuites v1.0. https:

//w3c.github.io/vc-di-bbs/, April 2024. (Accessed on 10/14/2024).
10. Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. Updatable

anonymous credentials and applications to incentive systems. In CCS, 2019.
11. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In

CRYPTO, 2004.
12. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil

pairing. In CRYPTO, 2001.
13. Alexandre Bouez and Kalpana Singh. One round threshold ECDSA without roll

call. In CT-RSA, 2023.
14. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector

OLE. In CCS, 2018.
15. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch,

and Peter Scholl. Correlated pseudorandomness from expand-accumulate codes.
In CRYPTO, 2022.

16. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive
secure computation. In CCS, 2019.

17. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient pseudorandom correlation generators: Silent OT extension and
more. In CRYPTO, 2019.

18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Correlated pseudorandom functions from variable-density LPN. In FOCS,
2020.

19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient pseudorandom correlation generators from ring-lpn. In CRYPTO,
2020.

20. Ernie Brickell and Jiangtao Li. A pairing-based DAA scheme further reducing
TPM resources. In TRUST, 2010.

21. Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing for
hardware authentication and attestation. Int. J. Inf. Priv. Secur. Integr., 2011.

22. Jan Camenisch. Anonymous credentials: Opportunities and challenges. In SEC,
2006.

23. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation using
the strong diffie hellman assumption revisited. In TRUST, 2016.

24. Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions and prac-
tical constructions. In ASIACRYPT, 2015.

25. Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen, Gregory
Neven, and Michael Østergaard Pedersen. Formal treatment of privacy-enhancing
credential systems. In SAC, 2015.

26. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In EUROCRYPT,
2001.

27. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In CRYPTO, 2004.

28. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, 2001.

29. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. UC non-interactive, proactive, threshold ECDSA with identifiable aborts.
In CCS, 2020.

27

https://w3c.github.io/vc-di-bbs/
https://w3c.github.io/vc-di-bbs/

30. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and
Ida Tucker. Bandwidth-efficient threshold EC-DSA. In PKC, 2020.

31. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Threshold linearly ho-
momorphic encryption on Z/2kZ. In ASIACRYPT, 2022.

32. David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM, 1985.

33. Lidong Chen. Access with pseudonyms. In Cryptography: Policy and Algorithms,
1995.

34. Liqun Chen. A DAA scheme requiring less TPM resources. In Information Security
and Cryptology, 2009.

35. Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Practical schnorr
threshold signatures without the algebraic group model. In CRYPTO, 2023.

36. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE
and oblivious transfer from hardness of decoding structured LDPC codes. In
CRYPTO, 2021.

37. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In CRYPTO, 2012.

38. Rick Jones Derek Phanekham. How much is google cloud latency (gcp)
between regions? https://cloud.google.com/blog/products/networking/

using-netperf-and-ping-to-measure-network-latency, June 2020. (Accessed
on 10/14/2024).

39. Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenticated gar-
bling from simple correlations. In CRYPTO, 2022.

40. Jack Doerner, Yash Kondi, Eysa Lee, abhi shelat, and LakYah Tyner. Threshold
bbs+ signatures for distributed anonymous credential issuance. In IEEE SP, 2023.

41. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA
from ECDSA assumptions: The multiparty case. In SP, 2019.

42. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signa-
tures. J. Cryptol., 1996.

43. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with
fast trustless setup. In CCS, 2018.

44. Rosario Gennaro, Steven Goldfeder, and Bertrand Ithurburn. Fully distributed
group signatures, 2019.

45. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. In EUROCRYPT,
1999.

46. Chelsea Komlo and Ian Goldberg. FROST: flexible round-optimized schnorr
threshold signatures. In SAC, 2020.

47. Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. Re-
fresh when you wake up: Proactive threshold wallets with offline devices. In SP,
2021.

48. Yashvanth Kondi, Claudio Orlandi, and Lawrence Roy. Two-round stateless de-
terministic two-party schnorr signatures from pseudorandom correlation functions.
In CRYPTO, 2023.

49. Chandan Kumar. How much is google cloud latency (gcp) between regions?
https://geekflare.com/google-cloud-latency/, March 2022. (Accessed on
10/14/2024).

50. Yehuda Lindell. Fast secure two-party ECDSA signing. In CRYPTO, 2017.
51. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical dis-

tributed key generation and applications to cryptocurrency custody. In CCS, 2018.

28

https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://geekflare.com/google-cloud-latency/

52. Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder. The BBS
Signature Scheme. Internet-Draft draft-irtf-cfrg-bbs-signatures-02, Internet Engi-
neering Task Force, March 2023. (Work in Progress).

53. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In SAC, 1999.

54. MATTR. mattrglobal/bbs-signatures: An implementation of bbs+ signa-
tures for node and browser environments. https://github.com/mattrglobal/

bbs-signatures. (Accessed on 10/14/2024).
55. Microsoft. microsoft/bbs-node-reference: Typescript/node reference implemen-

tation of bbs signature. https://github.com/microsoft/bbs-node-reference.
(Accessed on 10/14/2024).

56. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In
CRYPTO, 2012.

57. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homo-
morphic secret sharing and public-key silent OT. In EUROCRYPT, 2021.

58. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO, 1991.

59. David Pointcheval and Olivier Sanders. Short randomizable signatures. In CT-
RSA, 2016.

60. Alfredo Rial and Ania M. Piotrowska. Security analysis of coconut, an attribute-
based credential scheme with threshold issuance. IACR Cryptol. ePrint Arch.,
2022.

61. Adi Shamir. How to share a secret. Commun. ACM, 1979.
62. Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve based

protocol. In IMA, 2019.
63. Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and George

Danezis. Coconut: Threshold issuance selective disclosure credentials with appli-
cations to distributed ledgers. In NDSS, 2019.

64. Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In EUROCRYPT,
2023.

65. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and
efficient maliciously secure two-party computation. In CCS, 2017.

66. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty
computation. In CCS, 2017.

67. Douglas Wikström. Universally composable DKG with linear number of exponen-
tiations. In SCN, 2004.

68. Harry W. H. Wong, Jack P. K. Ma, and Sherman S. M. Chow. Secure multiparty
computation of threshold signatures made more efficient. In NDSS, 2024.

69. Harry W. H. Wong, Jack P. K. Ma, Hoover H. F. Yin, and Sherman S. M. Chow.
Real threshold ECDSA. In NDSS, 2023.

70. Zuoxia Yu, Man Ho Au, and Rupeng Yang. Accountable anonymous credentials.
In Advances in Cyber Security: Principles, Techniques, and Applications. 2019.

29

https://github.com/mattrglobal/bbs-signatures
https://github.com/mattrglobal/bbs-signatures
https://github.com/microsoft/bbs-node-reference

Appendix:

Non-Interactive Threshold BBS+ From
Pseudorandom Correlations

A The BBS+ Signature Scheme

We present the BBS+ signature scheme as proposed by Tessaro and Zhu [64].
Their version is an improved variant of the original BBS+ signature scheme as
described by Au et al. [5]. For the sake of completeness, we present the version
of Au et al. in Appendix B

Let k be the size of the message arrays, G = (G1,G2,GT , p, g1, g2, e) be a
bilinear mapping tuple and {hℓ}ℓ∈[0..k] be random elements of G1. The BBS+
signature scheme is defined as follows:

– KeyGen(λ): Sample x
$← Z∗

p, compute y = gx2 , and output (pk, sk) = (y, x).

– Signsk({mℓ}ℓ∈[k] ∈ Zk
p): Sample e

$← Zp, compute A := (g1 ·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e

and output σ = (A, e).
– Verifypk({mℓ}ℓ∈[k] ∈ Zk

p, σ): Output 1 iff e(A, y · ge2) = e(g1 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2)

The BBS+ signature scheme is proven strong unforgeable under the q-strong
Diffie Hellman (SDH) assumption for pairings of type 1, 2, and 3 [64]. Intuitively,
strong unforgeability states that the attacker is not possible to come up with
a forgery even for messages that have been signed before. We refer to [64] for
further details.

B The BBS+ Signature Scheme by Au et al. [5]

In this section, we describe the BBS+ signature scheme as originally defined by
Au et al. [5]. Moreover, we describe the implications on our online and offline
protocol.

Let G1,G2, and GT be groups of prime order p with generators g1 ∈ G1 and
g2 ∈ G2 and let map e : G1 ×G2 → GT be a bilinear paring. A BBS+ signature
according to the definition of [5], which we call a legacy BBS+ signature in
the following, on a message array {mℓ}ℓ∈[k] is a tuple (A, e, s) with A = (g1 ·
hs
0 ·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e for random nonces e, s ∈R Zp, secret key x ∈ Zp and a set

of random elements {hℓ}ℓ∈[0..k] in G1. To verify under public key gx2 , check if
e(A, gx2 · ge2) = e(g1 · hs

0 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2). In contrast to the optimized BBS+

scheme of [64], the legacy BBS+ signature has the additional s value. While
originally used to prove the security of the scheme, [64] shows how to prove
security without the additional nonce s, resulting in an optimized version.

Based on the legacy version of the BBS+ signature scheme, our online and
offline protocols must be adapted. In particular, we adapt the definitions of
presignatures, which are generated by the offline phase and consumed by the

30

online phase. We describe the idea on the example of an n-out-of-n threshold
protocol.

Assume a BBS+ secret key x, elements {hℓ}ℓ∈[0..k] in G1, a random blind-
ing factor a ∈ Zp and n servers, each having access to a preprocessed tuple
(ai, si, βi, αi) ∈ Z4

p, in the following called presignatures, such that∑
i∈[n]

βi = a · x,
∑
i∈[n]

αi = a · s

for a =
∑
i∈[n]

ai, s =
∑
i∈[n]

si.
(2)

To sign a message array {mℓ}ℓ∈[k], each server first gets e from the random
oracle, then it computes Ai := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ)ai · hαi
0 and outputs a partial

signature σi := (Ai, δi := βi + ai · e, si). This allows the receiver of the partial
signatures to reconstruct δ and s and compute

A = (
∏
i∈[n]

Ai)
1
δ = ((g1 ·

∏
ℓ∈[k]

hmℓ

ℓ)a · has
0)

1
a(x+e)

so that the tuple (A, e, s) constitutes a valid BBS+ signature.

During the offline phase for the legacy BBS+ scheme, the parties must ad-
ditionally compute shares of α, which is the product of two secret shared values
a and s. Recall that we use VOLE correlations to compute shares of the prod-
uct of a · x. We use VOLE correlations, since the secret key x is constant over
all presignatures. In contrast, the nonce s must be random for each presigna-
ture. Therefore, we use OLE correlations instead VOLE correlations. Using OLE
correlations follows the same approach as using VOLE correlations.

We describe reusable PCG and PCF constructions for OLE correlations in
Appendix E and G and evaluate our threshold protocol for the legacy BBS+
scheme in Appendix N.

C Universal Composability Framework ([28])

We formally model and prove the security of our protocols in the Universal
Composability framework (UC). The framework was introduced by Canetti in
2001 [28] to analyze the security of protocols formally. The universal composabil-
ity property guarantees the security of a protocol holds even under concurrent
composition. We give a brief intuition and defer the reader to [28] for all details.

Like simulation-based proofs, the framework differentiates between real-world
and ideal-world execution. The real-world execution consists of n parties P1, . . . , Pn

executing protocol π, an adversary A, and an environment Z. All parties are ini-
tialized with security parameter λ and a random tape, and Z runs on some advice
string z. In this work, we consider only static corruption, where the adversary
corrupts parties at the onset of the execution. After corruption, the adversary

31

may instruct the corrupted parties to deviate arbitrarily from the protocol spec-
ification. The environment provides inputs to the parties, instructs them to con-
tinue the execution of π, and receives outputs from the parties. Additionally, Z
can interact with the adversary.

The real-world execution finishes when Z stops activating parties and outputs
a decision bit. We denote the output of the real-world execution by REALπ,A,Z(λ, z).

The ideal-world execution consists of n dummy parties, an ideal functionality
F , an ideal adversary S, and an environment Z. The dummy parties forward
messages between Z and F , and S may corrupt dummy parties and act on their
behalf in the following execution. S can also interact with F directly according
to the specification of F . Additionally, Z and S may interact. The goal of S is
to simulate a real-world execution such that the environment cannot tell apart if
it is running in the real or ideal world. Therefore, S is also called the simulator.

Again, the ideal-world execution ends when Z outputs a decision bit. We
denote the output of the ideal-world execution by IDEALF,S,Z(λ, z).

Intuitively, a protocol is secure in the UC framework if the environment can-
not distinguish between real-world and ideal-world execution. Formally, protocol
π UC-realizes F if for every probabilistic polynomial-time (PPT) adversary A
there exists a PPT simulator S such that for every PPT environment Z

{REALπ,A,Z(1
λ, z)}λ∈N,z∈{0,1}∗ = {IDEALF,S,Z(1

λ, z)}λ∈N,z∈{0,1}∗ .

D Anonymous Credentials and Blind Signing

Our online protocol defined in Section 4.3 describes a threshold variant of the
BBS+ signature scheme. Since anonymous credentials are one prominent appli-
cation of BBS+ signatures, we elaborate on this application in the following.

BBS+ signatures can be used to design anonymous credential schemes as
follows. To receive a credential, a client sends a signing request to the servers
in the form of a message array, which contains its public and private creden-
tial information. Public parts of the credentials are sent in clear, while private
information is blinded. The client can add zero-knowledge proofs that blinded
messages satisfy some predicate. These proofs enable the issuing servers to en-
force a signing policy even though they blindly sign parts of the messages. Given
a credential, clients can prove in zero-knowledge that their credential fulfills
certain predicates without leaking their signature.

Our scheme must be extended by a blind-signing property to realize the
described blueprint. Precisely, we require a property called partially blind sig-
natures [2]. This property prevents the issuer from learning private information
about the message to be signed.

To transform our scheme into a partially blind signature scheme, we fol-
low the approach of [5]. Let {mℓ}ℓ∈[k] be the set of messages representing the
client’s credential information. Without loss of generality, we assume that mk is
the public part. In order to blind its messages, the client computes a Pedersen

32

commitment [58] on the private messages: C = hs′

0 ·
∏

ℓ∈[k−1] h
mℓ

ℓ for a random

s′ and a zero-knowledge proof π that C is well-formed, i.e., that the client knows
(s′, {mℓ}ℓ∈[k−1]). The client sends (T , C, π,mk) and potential zero-knowledge
proofs for signing policy enforcement to the servers. Each server Pi for i ∈ T
replies with (Ai = (g1 ·C · hmk

k)ai , δi). While creating the responses, the servers
compute the nonce e = H(ssid||C||T), i.e., in contrast to our online protocol
presented in Section 4.3, the servers take the commitment instead of the set
of messages as input to the random oracle. This approach in combination with
a random value s′ in the commitment ensures that the server does not learn
any information about the messages. Note that the client can perform the same
random oracle evaluation and upon receiving the server responses, the client
computes A as before and outputs a valid signature (A, e). Due to the random
nonce s′ of the Pedersen commitment, the final signature represents a signature
on the message array (s′,m1, . . . ,mk).

As the blinding mechanism and the resulting signatures are equivalent in the
non-threshold BBS+ setting, we can use existing zero-knowledge proofs for policy
enforcement and credential usage from the non-threshold setting [5, 23, 64].

E Reusable PCG Constructions

In this section, we present a construction of reusable PCGs for VOLE correla-
tions according to the definitions provided in Section 3 together with the re-
quired building blocks and security assumptions. Since our threshold protocol
for the legacy BBS+ signature scheme additionally requires OLE correlations
(cf. Appendix B), we also present a construction for this type of correlations.
The constructions are derived from the one of [19].

Notation Let R be a ring. For two column vectors u = (u1, . . . , ut) ∈ Rt and
v = (v1, . . . , vt) ∈ Rt, we define the outer sum u ⊞ v be the vector (ui +

vj)i,j∈[t] ∈ Rt2 . Similar, we define the outer product (or tensor product) u⊗v to

be (ui · vj)i,j∈[t] ∈ Rt2 . The inner product of two t-size vectors ⟨u,v⟩ is defined
as
(∑

i∈[t] ui · vi
)
∈ R.

Ring Module LPN Assumption The following definition of the Module Ring LPN
assumption introduced by [19] is taken almost verbatim from the original [19,
Definition 3.2] but adapted to our notation.

Definition 3. Module-LPN

Let c ≥ 2 be an integer, let R = Zp/F (X) for a prime p and degree-N polyno-
mial F (X) ∈ Zp[X] and let τ ∈ N be an integer. Further, let HWR,τ denote the
distribution of “sparse polynomials” over R obtained by sampling τ noise posi-
tions α ← [N]τ and τ payloads β ← (Z∗

p)
τ uniformly at random and outputting

e(X) :=
∑

i∈[τ] β[i] · Xα[i]−1. Then, for R = R(λ),m = m(λ), τ = τ(λ), we

33

say the Rc-LPNR,m,τ problem is hard if for every nonuniform polynomial-time
distinguisher A, it holds that

|Pr[A({(a(i), ⟨a(i), e⟩+ f (i))}i∈[m]) = 1]

−Pr[A({(a(i), u(i))}i∈[m]) = 1]| ≤ negl(λ)

where the probabilities are taken over a(1), . . . ,a(m) ← Rc−1, u(1), . . . , u(m) ←
R, e← HWc−1

R,τ , f
(1), . . . , f (m) ← HWR,τ .

Distributed Sum of Point Functions (DSPF) We use distributed sum of func-
tions. The definition is taken partially verbatim from [19, 3] but adapted to our
notation.

Definition 4 (Distributed Sum of Point Functions). Let G be an Abelian
group, N, τ be positive integers, fα,β : [N] → G be a sum of τ point functions,
parametrized for α ∈ [N]τ and β ∈ Gτ , such that fα,β(x) = 0+

∑
(i∈[τ] s.t. α[i]=x) β[i].

A 2-party distributed sum of point functions (DSPF) with domain [N], codomain
G, and weight τ is a pair of PPT algorithms (DSPF.Gen,DSPF.Eval) with the
following syntax.

– DSPF.Gen takes as input the security parameter 1λ and a description of the
sum of point functions fα,β, specifically, the special positions α ∈ [N]τ and
the non-zero elements β ∈ Gτ . The output is two keys (K0,K1).

– DSPF.Eval takes as input a DPF key Kσ, index σ ∈ {0, 1} and a value
x ∈ [N], outputting an additive share vσ of fα,β(x).

A DSPF should satisfy the following properties:

– Correctness. For every set of special positions α ∈ [N]τ , set of non-zero
elements β ∈ Gτ and element x ∈ [N], we have that

Pr[v0 + v1 = fα,β(x)|(K0,K1)← DSPF.Gen(1λ, α, β),

vσ ← DSPF.Eval(Kσ, σ, x) for σ ∈ {0, 1}] = 1

– Security. There exists a PPT simulator S such that, for every corrupted
party σ ∈ {0, 1}, set of special positions α ∈ [N]τ and set of non-zero el-
ements β ∈ Gτ , the output of S(1λ, σ) is computationally indistinguishable
from

{Kσ|(K0,K1)← DSPF.Gen(1λ, α, β)}

We denote the execution of DSPF.Eval(Kσ, σ, x) for every x ∈ [N], i.e. the
evaluation over the whole domain [N], by DSPF.FullEval(Kσ, σ).

34

OLE correlation. Analogously to the formal definition of a VOLE correlation
given in Section 3.2, we formally define an OLE correlation. Our OLE corre-
lation of size N over a finite field Fp is given by z1 = x0 · x1 + z0, where
x0,x1, z0, z1 ∈ FN

p . Moreover, we require x0 and x1 being computed by a pseu-
dorandom generator (PRG). Formally, we define the reverse-sampleable target
correlation with setup (SetupOLE,YOLE) of size N over a field Fp as

mk = (ρ0, ρ1)← SetupOLE(1
λ, ρ0, ρ1) ,

((F0(ρ0), z0), (F1(ρ1), z1))← YOLE(1
λ,mk) such that

z0
$← FN

p and z1 = F0(ρ0) · F1(ρ1) + z0 ,

(3)

where F0, F1 being pseudorandom generators (PRG). Note that while the Setup
algorithm for our OLE and VOLE correlation essentially is the identity func-
tion, the algorithm might be more complex for other correlations. The reverse-
sampling algorithm is defined such that

(F1(ρ1), F0(ρ0) · F1(ρ1) + z0)← RSampleOLE(1
λ,mk, 0, (F0(ρ0), z0)) and

(F0(ρ0), z1 − F0(ρ0) · F1(ρ1))← RSampleOLE(1
λ,mk, 1, (F1(ρ1), z1)).

PCG constructions. The OLE construction is derived from [19, Fig. 1]. How-
ever, we extend it by the reusability feature by deriving the sparse polynomials
normally sampled in PCG.Gen by applying a random oracle on seeds provided
as input to the programmable key generation PCG.Genp.

Construction 3: Reusable PCG for YR
OLE

Let λ be the security parameter, τ = τ(λ) be the noise weight, c ≥ 2 the compression
factor, p = p(λ) a modulus, N = N(λ) a degree, and Rp = Zp[X]/F (X) be a
ring for a degree-N F (X) ∈ Zp[X]. Further, let (DSPF.Gen,DSPF.Eval) be a FSS
scheme for sums of τ2-point functions with domain [2N] and range Zp. Finally, let
H : {0, 1}λ → ([N]τ × (Z∗

p)
τ)c be a random oracle.

Correlation: The target correlation YR
OLE over ring Rp is defined as

mk = (ρ0, ρ1)← SetupROLE(1
λ, ρ0, ρ1)

((x0, z0), (x1, z1))← YR
OLE(1

λ,mk) such that

x0 = F0(ρ0), x1 = F1(ρ1), z0
$← Rp, z1 = x0 · x1 − z0

(xσ, x0 · x1 − zσ)← RSampleROLE(1
λ,mk, σ, (xσ, zσ)) where

x0 = F0(ρ0),x1 = F1(ρ1)

with F0 and F1 being PRGs. As proposed by [19], Rp can be constructed to be
isomorphic to N copies of Zp. This allows the direct transformation of one OLE
over Rp into N independent OLEs over Zp.
Public Input: Random Rc − LPN polynomials a2, . . . ac ∈ Rp, defining the vector
a = (1, a2, . . . , ac).
PCG.Genp(1

λ, ρ0, ρ1):

35

1. Compute {(αi
σ, β

i
σ)}i∈[c] ← H(ρσ) for σ ∈ {0, 1} where each αi

σ ∈ [N]τ and each
βi
σ ∈ (Z∗

p)
τ .

2. For i, j ∈ [c], sample FSS keys (K
(i,j)
0 ,K

(i,j)
1)

$← DSPF.Gen(1λ, αi
0⊞αj

1, β
i
0⊗βj

1).

3. For σ ∈ {0, 1}, define kσ = ({(αi
σ, β

i
σ)}i∈[c], {K(i,j)

σ }i,j∈[c]).
4. Output (k0, k1).

PCG.Expand(σ, kσ):

5. Parse kσ as ({(αi
σ, β

i
σ)}i∈[c], {K(i,j)

σ }i,j∈[c]).
6. For i ∈ [c], define (over Zp) the degree < N polynomial:

eiσ(X) =
∑
k∈[τ]

βi
σ[k] ·Xαi

σ [k]

and compose all eiσ (for i ∈ [c]) to a length-c vector eσ.

7. For i, j ∈ [c], compute u
i+c(j−1)
σ ← DSPF.FullEval(σ,K

(i,j)
σ) and view this as a

degree < 2N polynomial. Compose all ui
σ (for i ∈ [c2]) to a length-c2 vector vσ

mod F (X).
8. Compute xσ = ⟨a, eσ⟩ mod F (X) and zσ = ⟨a⊗ a,vσ⟩ mod F (X).
9. Output (xσ, zσ).

From the previous construction, we derive a VOLE construction in a straight-
forward way.

Construction 4: Reusable PCG for YR
VOLE

Let λ be the security parameter, τ = τ(λ) be the noise weight, c ≥ 2 the compression
factor, p = p(λ) a modulus, N = N(λ) a degree, and Rp = Zp[X]/F (X) be a
ring for a degree-N F (X) ∈ Zp[X]. Further, let (DSPF.Gen,DSPF.Eval) be a FSS
scheme for sums of τ point functions with domain [N] and range Zp. Finally, let
H : {0, 1}λ → ([N]τ × (Z∗

p)
τ)c be a random oracle.

Correlation: The target correlation YR
VOLE over ring Rp is defined as

mk = (ρ, x)← SetupROLE(1
λ, ρ, x)

((y, z0), (x, z1))← YR
OLE(1

λ,mk) such that

y = F (ρ), z0
$← Rp, z1 = x · y − z0

(x, x · F (ρ)− z0)← RSampleRVOLE(1
λ,mk, 0, (F (ρ), z0))

(F (ρ), x · y − z1)← RSampleRVOLE(1
λ,mk, 1, (x, z1))

with F being a PRG. As proposed by [19], Rp can be constructed to be isomorphic
to N copies of Zp. This allows the direct transformation of one VOLE over Rp into
N independent VOLEs over Zp.
Public Input: Random Rc − LPN polynomials a2, . . . ac ∈ Rp, defining the vector
a = (1, a2, . . . , ac).
PCG.Genp(1

λ, ρ0, ρ1):

1. Parse ρ1 as x and compute {(αi, βi)}i∈[c] ← H(ρ0) where x ∈ Z∗
p, each αi ∈ [N]τ

and each βi ∈ (Z∗
p)

τ .

36

2. For i ∈ [c], sample FSS keys (Ki
0,K

j
1)

$← DSPF.Gen(1λ, αi, x · βi).
3. For σ ∈ {0, 1}, define kσ = (ρσ, {Ki

σ}i∈[c]).
4. Output (k0, k1).

PCG.Expand(σ, kσ):

5. If σ = 0, parse k0 as (ρ0, {Ki
0}i∈[c]) and compute {(αi, βi)}i∈[c] ← H(ρ0) where

each αi ∈ [N]τ and each βi ∈ (Z∗
p)

τ . Then, for i ∈ [c], define (over Zp) the
degree < N polynomial:

ei(X) =
∑
k∈[τ]

βi[k] ·Xαi[k]

and compose all ei (for i ∈ [c]) to a length-c vector e.
6. If σ = 1, parse k1 as (x, {Ki

1}i∈[c]).
7. For i ∈ [c], compute ui

σ ← DSPF.FullEval(σ,Ki
σ) and view the result as a de-

gree < N polynomial. Compose all ui
σ (for i ∈ [c]) to a length-c vector vσ

mod F (X).
8. Compute zσ = ⟨a,vσ⟩ mod F (X).
9. If

– σ = 0, compute y = ⟨a, e⟩ mod F (X) and output (y, z0)
– σ = 1, output (x, z1).

Security. We state the following Theorems:

Theorem 3. Assume the Rc-LPNRp,1,τ assumption holds and that DSPF is a
secure instantiation of a distributed sum of point functions. Then, Construction 3
is a secure reusable PCG for OLE correlations over Rp in the random oracle
model.

Theorem 4. Assume the Rc-LPNRp,1,τ assumption holds and that DSPF is a
secure instantiation of a distributed sum of point functions. Then, Construction 4
is a secure reusable PCG for VOLE correlations over Rp in the random oracle
model.

In the following, we provide a proof sketch for Theorem 3. A proof sketch for
Theorem 4 follows in a straight-forward way.

Proof. To show that Construction 3 is a secure reusable PCG, we need to show
programmability, pseudorandom Y-correlated outputs, security and key indis-
tinguishability.

Programmability can be shown, by defining ϕσ as a function, that first
computes {(αi

σ, β
i
σ)}i∈[c] ← H(ρσ), expands these to eσ ∈ Rc

p as done in the
PCG.Expand algorithm, and then outputs ⟨a, eσ⟩.

Pseudorandom Y-correlated outputs can be shown via a sequence of games.
First, we replace the PRG Fσ in Y by ϕσ. As the random oracle ensures that the
secrets e∗∗ are sampled uniformly at random, indistinguishability can be shown
via a reduction to the Rc-LPNRp,1,τ assumption. Next, we skip the DSPF key

37

generation and full evaluation during the expansion. Instead, we directly sample
z0 ∈R Rp and define z1 = x0 · x1 − z0. Here, indistinguishability can be shown
analogously to the correctness proof in [19]. Note that in the previous game for
every i, j ∈ [c], it holds that

ei0(X) · ej1(X) =
∑

k,l∈[τ]

βi
0[k] · β

j
1[l] ·Xαi

0[k]·α
j
1[l].

Therefore, parties can obtain an additive sharing of this product by fully evalu-

ating the (i, j)-th DSPF instance. It follows that u
i+c(j−1)
0 + u

i+c(j−1)
1 = ei0(X) ·

ej1(X), and hence, v = e0 ⊗ e1. This observation yields the following relation of
the outputs:

z0 + z1 = ⟨a⊗ a,v0 + v1⟩ = ⟨a⊗ a, e0 + e1⟩
= ⟨a, e0⟩ · ⟨a, e1⟩ = x0 · x1

As the correlation of (x0, x1, z0, z1) is the same in both games, the computation
of x0 and x1 remains untouched, and the DSPF implies that each zσ is indi-
vidually pseudorandom, both games are computationally indistinguishable. In
the resulting game, the challenger executes the exact same steps independent
of the coin b. Therefore, it follows that any adversary wins the final game with
probability exactly 1

2 which implies that any adversary wins the original security
game with probability at most 1

2 + negl.

As RSampleROLE executes the same steps as the forward sampling YR
OLE, se-

curity can be shown analogously to the pseudorandom Y-correlated outputs
property.

Key indistinguishability follows from the security property of the DSPF scheme
via a sequence of game hops. We replace one by one the DSPF-keys in kσ with
ones produced by the DSPF-simulator. Indistinguishability between games can
be proven via reductions to the security property of the DSPF scheme. Finally,
we remove in one more game the PCG key generation and the assignment of
ρ1−σ as both steps become redundant. The final game is completely indepen-
dent of the choice of b such that the success probability of A is exactly 1

2 which
shows that the success probability of A in the initial game is at most 1

2 +negl(λ).

F Reusable Pseudorandom Correlation Function

On a high level, a pseudorandom correlation function (PCF) allows two parties to
generate a large amount of correlated randomness from short seeds. PCF extends
the notion of a pseudorandom correlation generator (PCG) in a similar way as
a pseudorandom function extends a pseudorandom generator. While a PCG
generates a large batch of correlated randomness during one-time expansion, a
PCF allows the creation of correlation samples on the fly.

A PCF consists of two algorithms, Gen and Eval. The Gen algorithm computes
a pair of short keys distributed to two parties. Then, each party can locally

38

evaluate the Eval algorithm using its key and public input to generate an output
of the target correlation. One example of such a correlation is the oblivious linear
evaluation (OLE) correlation, defined by a pair of random values (y0, y1) where
y0 = (a, u) and y1 = (s, v) such that v = as+ u. Other meaningful correlations
are oblivious transfer (OT) and multiplication triples.

PCFs are helpful in two- and multi-party protocols, where parties first set
up correlated randomness and then use this data to speed up the computation
[39, 3, 48].

This section presents our definition of reusable PCFs, extending the defini-
tion of programmable PCFs from [18]. Furthermore, we state constructions of
reusable PCFs and argue why they satisfy our new definition in Appendix G.

Our modifications and extensions of the definition [18] reflect the challenges
we faced when using PCFs as black-box primitives in our threshold BBS+ pro-
tocol. We present our definition and highlight these challenges and changes in
the following.

F.1 Definition

Similar to PCGs, PCFs realize a target correlation Y. While PCFs output single
correlation outputs instead of a bunch of correlation as PCGs, we need to slightly
adapt the definition of a target correlation. We emphasize the modification in
the following.

We formally define a target correlation as a tuple of probabilistic algorithms
(Setup,Y), where Setup takes two inputs and creates a master key mk. These
inputs enable fixing parts of the correlation, e.g., the fixed value s. Algorithm Y
uses the master key and an index i to sample correlation outputs. The index i
helps to sample the same value if one of the Setup inputs is identical for multiple
invocations. The input i is not necessary for correlations for PCGs since the
output of PCG expansion is a bunch of correlation. For PCFs, the output of the
evaluation is a single correlation tuple. Thus, we need the index i to sample the
same value if one of the Setup inputs is identical for multiple PCF invocations.

Definition 5 (Reverse-sampleable and indexable target correlation with
setup). Let ℓ0(λ), ℓ1(λ) ≤ poly(λ) be output length functions. Let (Setup,Y) be
a tuple of probabilistic algorithms, such that Setup on input 1λ and two param-
eters ρ0, ρ1 returns a master key mk; algorithm Y on input 1λ, mk, and index i

returns a pair of outputs (y
(i)
0 , y

(i)
1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ).

We say that the tuple (Setup,Y) defines a reverse-sampleable and indexable
target correlation with setup if there exists a probabilistic polynomial time algo-

rithm RSample that takes as input 1λ,mk, σ ∈ {0, 1}, y(i)σ ∈ {0, 1}ℓσ(λ) and i, and

outputs y
(i)
1−σ ∈ {0, 1}ℓ1−σ(λ), such that for all σ ∈ {0, 1}, for all mk,mk′ in the

range of Setup for arbitrary but fixed input ρσ, and all i ∈ {0, 1}∗ the following

39

distributions are statistically close:

{(y(i)0 , y
(i)
1)|(y(i)0 , y

(i)
1)

$← Y(1λ,mk, i)}

{(y(i)0 , y
(i)
1)|(y′(i)0 , y

′(i)
1)

$← Y(1λ,mk′, i),

y(i)σ ← y′(i)σ , y
(i)
1−σ ← RSample(1λ,mk, σ, yσ, i)}.

Given the definition of a reverse-sampleable and indexable correlation with
setup, we define our primitive called strong reusable PCF (srPCF). Our defini-
tion builds on the definition of a strong PCF of Boyle et al. [18] and extends
it by a reusability feature. Note that [18] presents a separate definition of this
reusability feature for PCFs, but this property also affects the other properties of
a PCF. Therefore, we merge these definitions. Additionally, the reusability defi-
nition of Boyle et al. works only for the semi-honest setting, while our definition
covers malicious adversaries. The crucial point to cover malicious adversaries is
to allow the corrupted party to choose an arbitrary value as its input to the key
generation. Our definitions give this power to the adversary, while the definitions
of Boyle et al. use randomly chosen inputs.

A PCF must fulfill two properties. First, the pseudorandomness property
intuitively states that the joint outputs of the Eval algorithm are computationally
indistinguishable from outputs of the correlation Y. Second, the security property
intuitively guarantees that the PCF output of party P1−σ is indistinguishable
from a reverse-sampled value. Indistinguishability holds even if the adversary
corrupts party Pσ and learns its key. Hence, this property provides security
against an insider.

Similarly to the notions of weak and strong PRFs, there exist the notions
of weak and strong PCFs. For a weak PCF, we consider the Eval algorithm
to be executed on randomly chosen inputs, while for a strong PCF, we consider
arbitrarily chosen inputs. Boyle et al. [18] showed a generic transformation from a
weak to a strong PCF using a hash function modeled as a programmable random
oracle. In Appendix G, we present constructions for weak srPCFs, which then
yield strong srPCFs based on the transformation of Boyle et al.

A PCF needs to meet two additional requirements to satisfy the reusabil-
ity features. First, an adversary cannot learn any information about the other
party’s input used for the key generation from its own key. This is modeled by
the key indistinguishability property and the corresponding game in Figure 10.
In the game, the challenger samples two random values and uses one for the key
generation. Then, given the corrupted party’s key and the random values, the
adversary has to identify which of the two random value was used. Second, two
efficiently computable functions must exist to compute the reusable parts of the
correlation from the setup input and the public evaluation input. Formally, we
state the definition of a strong reusable PCF next.

Definition 6 (Strong reusable pseudorandom correlation function (sr-
PCF)). Let (Setup,Y) be a reverse-sampleable and indexable correlation with
setup which has output length functions ℓ0(λ), ℓ1(λ), and let λ ≤ η(λ) ≤ poly(λ)

40

be an input length function. Let (PCF.Gen,PCF.Eval) be a pair of algorithms with
the following syntax:

– PCF.Gen(1λ, ρ0, ρ1) is a probabilistic polynomial-time algorithm that on input
the security parameter 1λ and reusable inputs ρ0, ρ1 outputs a pair of keys
(k0, k1).

– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input
σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}η(λ) outputs a value yσ ∈
{0, 1}ℓσ(λ).

We say (PCF.Gen,PCF.Eval) is a strong reusable pseudorandom correlation func-
tion (srPCF) for (Setup,Y), if the following conditions hold:

– Strong pseudorandom Y-correlated outputs. For every non-uniform
adversary A of size poly(λ) asking at most poly(λ) queries to the oracle
Ob(·), it holds ∣∣∣∣Pr[Exps-prA (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exps-prA (λ) is as defined in Figure 8.
– Strong security. For each σ ∈ {0, 1} and non-uniform adversary A of size

poly(λ) asking at most poly(λ) queries to oracle Ob(·), it holds∣∣∣∣Pr[Exps-secA,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exps-secA,σ (λ) is as defined in Figure 9.
– Programmability. There exist public efficiently computable functions f0, f1,

such that for all x ∈ {0, 1}η(λ) and all ρ0, ρ1 ∈ {0, 1}∗

Pr


(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

(a, c)← PCF.Eval(0, k0, x),

(b, d)← PCF.Eval(1, k1, x)

:
a = f0(ρ0, x)

b = f1(ρ1, x)

 ≥ 1− negl(λ).

– Key indistinguishability. For any σ ∈ {0, 1} and non-uniform adversary
A = (A0,A1), it holds

Pr[Expkey-indA,σ (λ) = 1] ≤ 1

2
+ negl(λ)

for all sufficiently large λ, where Expkey-indA,σ is as defined in Figure 10.

F.2 Correlations

Here, we state the correlations required for our PCF-based precomputation pro-
tocol (cf. Appendix H). As these correlations differ slightly from the correlations
required by our PCG-based offline phase (cf. Section 5), we state them in the

41

Exps-prA (λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)
Q = ∅
b

$← {0, 1}
b′ ← AOb(·)

1 (1λ)
if b = b′return 1
else return 0

O0(x) :

if (x, y0, y1) ∈ Q :
return (y0, y1)

else :

(y0, y1)← Y(1λ,mk, x)

Q = Q∪ {(x, y0, y1)}
return (y0, y1)

O1(x) :

for σ ∈ {0, 1} :
yσ ← PCF.Eval(σ, kσ, x)

return (y0, y1)

Fig. 8: Strong pseudorandom Y-correlated outputs of a PCF.

Exps-secA,σ(λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

b
$← {0, 1}

b′ ← AOb(·)
1 (1λ, σ, kσ)

if b = b′return 1
else return 0

O0(x) :

y1−σ ← PCF.Eval(1− σ, k1−σ, x)

return y1−σ

O1(x) :

yσ ← PCF.Eval(σ, kσ, x)

y1−σ ← RSample(1λ,mk, σ, yσ, x)

return y1−σ

Fig. 9: Strong security of a PCF.

following for completeness. Note that our protocol for the optimized BBS+ sig-
nature scheme requires only VOLE correlations. In contrast, our protocol for
the legacy BBS+ signature scheme (cf. Appendix B) additionally requires OLE
correlations. Therefore, we present definitions for both of them in the following.
Our OLE correlation over ring R is given by c1 = ab+ c0, where a, b, c0, c1 ∈ R.
Moreover, we require a and b being computed by a weak pseudorandom func-
tion (PRF). Formally, we define the reverse-sampleable and indexable target
correlation with setup (SetupOLE,YOLE) over ring R as

(k, k′)← SetupOLE(1
λ, k, k′) ,

((Fk(i), u), (Fk′(i), v))← YOLE(1
λ, (k, k′), i) such that

v = Fk(i) · Fk′(i) + u ,

42

Expkey-indA,σ (λ) :

b
$← {0, 1}

ρ
(0)
1−σ, ρ

(1)
1−σ

$← {0, 1}∗

ρ1−σ ← ρ
(b)
1−σ

ρσ ← A0(1
λ)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

b′ ← A1(1
λ, kσ, ρ

(0)
1−σ, ρ

(1)
1−σ)

if b′ = b return 1
else return 0

Fig. 10: Key Indistinguishability of a reusable PCF.

where u
$← R, u ∈ R and F being a (PRF) with key k, k′. Note that while

the Setup algorithm for our OLE and VOLE correlation essentially is the iden-
tity function, the algorithm might be more complex for other correlations. The
reverse-sampling algorithm is defined such that (Fk′(i), Fk(i) · Fk′(i) + u) ←
RSampleOLE(1

λ, (k, k′), 0, (Fk(i), u), i) and (Fk(i), v − Fk(i) · Fk′(i)) ←
RSampleOLE(1

λ, (k, k′), 1, (Fk′(i), v), i).

Our VOLE correlation is the same as OLE but the value b is fixed over
multiple correlation samples, i.e., c⃗1 = a⃗b + c⃗0, where each correlation sample
contains one component of the vectors. We formally define the reverse-sampleable
and indexable target correlation with setup (SetupVOLE,YVOLE) over ring R as

(k, b)← SetupVOLE(1
λ, k, b) ,

((Fk(i), u), (b, v))← YVOLE(1
λ, (k, b), i) such that

v = Fk(i) · b+ u ,

where u
$← R, b, v ∈ R and F being a weak pseudorandom function (PRF) with

key k. Note that b is fixed over all correlation samples, while u and v are not.
The reverse-sampling algorithm is defined such that

(b, Fk(i) · b+ u)← RSampleVOLE(1
λ, (k, b), 0, (Fk(i), u), i) and

(Fk(i), v − Fk(i) · b)← RSampleVOLE(1
λ, (k, b), 1, (b, v), i).

We state PCF constructions realizing these definitions of OLE and VOLE
correlations in Appendix G. The VOLE PCF construction is taken from [18],
and the OLE PCF follows a straightforward adaptation of the VOLE PCF.

43

G Reusable PCF Constructions

This sections presents construction of reusable PCFs for VOLE and OLE corre-
lations as defined in Appendix F.2. We first present the reusable PCF for VOLE
and then for OLE.

The VOLE construction heavily builds on the constructions of [18], which
provides only weak PCF. However, Boyle et al. presented a generic transfor-
mation from weak to strong PCF using a programmable random oracle. This
transformation is also straightforwardly applicable to reusable PCFs. Therefore,
we state a weak reusable PCF in the following and emphasize that this construc-
tion can be extended to a strong reusable PCF in the programmable random
oracle model.

The following construction is taken from [18, Fig. 22]. It builds on a weak
PRF F and a function secret sharing for the multiplication of F with a scalar.

Construction 5: Reusable PCF for YVOLE

Let F = {Fk : {0, 1}η → R}k∈{0,1}λ be a weak PRF and FFS = (FFS.Gen,FFS.Eval)
an FSS scheme for {c·Fk}c∈R,k∈{0,1}λ with weak pseudorandom outputs. Let further

ρ0 ∈ {0, 1}λ, ρ1 ∈ R.
PCF.Genp(1

λ, ρ0, ρ1):

1. Set the weak PRF key k ← ρ0 and b← ρ1.
2. Sample a pair of FSS keys (KFFS

0 ,KFFS
1)← FFS.Gen(1λ, b · Fk).

3. Output the keys k0 = (KFFS
0 , k) and k1 = (KFFS

1 , b).

PCF.Eval(σ, kσ, x): On input a random x:

– If σ = 0:
1. Let c0 = −FFS.Eval(0,KFFS

0 , x).
2. Let a = Fk(x).
3. Output (a, c0).

– If σ = 1:
1. Let c1 = FFS.Eval(1,KFFS

1 , x).
2. Output (b, c1).

Theorem 5. Let R = R(λ) be a finite commutative ring. Suppose there exists
an FSS scheme for scalar multiples of a family of weak pseudorandom functions
F = {Fk : {0, 1}η → R}k∈{0,1}λ . Then, there is a reusable PCF for the VOLE
correlation over R as defined in Appendix F.2, given by Construction 5.

Proof. Boyle et al. showed in their proof of [18, Theorem 5.3] that Construc-
tion 5 satisfies pseudorandom YVOLE-correlated outputs and security. Although
we slightly adapted our definition to consider reusable inputs, their argument
still holds. Further, it is easy to see that programmability holds for functions
f0(ρ0, x) = Fρ0

(x) and f1(ρ1, x) = ρ1. Finally, key indistinguishability follows
from the secrecy property of the FSS scheme. The secrecy property states that
for every function f of the function family, there exists a simulator S(1λ) such

44

that the output of S is indistinguishable from the FSS keys generated correctly
using the FFS.Gen-algorithm.

To briefly sketch the proof of key indistinguishability, we define a hybrid
experiment, where inside the PCF key generation, we use S to simulate FSS keys.
These simulated FSS keys are used inside the PCF key, which is given to A1.
We can show via a reduction to the FSS secrecy that the original Expkey-ind game
is indistinguishable from the hybrid experiment. For the hybrid experiment, it
is easy to see that the adversary can only guess bit b′ since the simulated PCF

key is independent of ρ
(0)
1−σ, ρ

(1)
1−σ and hence also independent of b. It follows that

Pr[Expkey-indA,σ (λ) = 1] ≤ 1
2 + negl(λ).

The construction of the reusable PCF for OLE correlations follows the same
blueprint as our PCF construction for VOLE.

The following construction is generically based on a weak PRF and function
secret sharing (FSS) for products of two weak PRFs.

Construction 6: Reusable PCF for YOLE

Let F = {Fk : {0, 1}η → R}k∈{0,1}λ be a weak PRF and FFS = (FFS.Gen,FFS.Eval)
an FSS scheme for {Fk0 · Fk1}k0,k1∈{0,1}λ with weak pseudorandom outputs. Let

further ρ0, ρ1 ∈ {0, 1}λ.
PCF.Genp(1

λ, ρ0, ρ1):

1. Set the weak PRF keys k ← ρ0 and k′ ← ρ1.
2. Sample a pair of FSS keys (KFFS

0 ,KFFS
1)← FFS.Gen(1λ, FkFk′).

3. Output the keys k0 = (KFFS
0 , k) and k1 = (KFFS

1 , k′).

PCF.Eval(σ, kσ, x): On input a random x:

– If σ = 0:
1. Let c0 = −FFS.Eval(0,KFFS

0 , x).
2. Let a = Fk(x).
3. Output (a, c0).

– If σ = 1:
1. Let c1 = FFS.Eval(1,KFFS

1 , x).
2. Let b = Fk′(x).
3. Output (b, c1).

Theorem 6. Let R = R(λ) be a finite commutative ring. Suppose there exists
an FSS scheme for multiplications of two elements of a family of weak pseudo-
random functions F = {Fk : {0, 1}η → R}k∈{0,1}λ . Then, there is a reusable
PCF for the OLE correlation over R, given by Construction 6.

We omit the proof as it follows the same arguments as the proof of Theorem 5.

H PCF-based Threshold Preprocessing Protocol

In this section, we state the PCF-based instantiation of FPrep. As it is conceptu-
ally very similar to the PCG-based instantiation in Section 5, we omit a detailed

45

description and intuition here. We refer the reader to Section 5 for an intuition
and a detailed description.

Our protocol πPCF
Prep builds on reusable PCFs for VOLE correlations. As ssid,

which is used to evaluate the PCFs, is provided by the environment, we require
strong reusable PCFs.

H.1 Setup Functionality

The setup functionality is identical to FPCG
Setup just that the functionality generates

PCF keys instead of PCG keys. For the sake of completeness, we formally state
FPCF

Setup next.

Functionality FPCF
Setup

Let (PCFVOLE.Gen,PCFVOLE.Eval) be an srPCF for VOLE correlations. The
setup functionality interacts with parties P1, . . . , Pn and ideal-world adversary
S.
Setup:

Upon receiving (setup, sid, ρ
(i)
a , ski, {pk(i)ℓ }ℓ∈[n]) from every party Pi send

(setup) to S and do:

1. Check if gskℓ2 = pk
(i)
ℓ for every ℓ, i ∈ [n]. If the check fails, send abort to all

parties and S.
Else, compute for every pair of parties (Pi, Pj):

(kVOLE
i,j,0 , kVOLE

i,j,1)← PCFVOLE.Gen(1
λ, ρ(i)a , skj) .

2. Send keys (sid, {kVOLE
i,j,0 , kVOLE

j,i,1 }j ̸=i) to every party Pi.

H.2 PCF-based Preprocessing Protocol

In this section, we formally present our PCF-based preprocessing protocol in the
(FKG,FSetup)-hybrid model.

Construction 7: πPCF
Prep

Let (PCFVOLE.Gen,PCFVOLE.Eval) be an srPCF for VOLE correlations.
We describe the protocol from the perspective of Pi.
Initialization. Upon receiving input (init, sid), do:

1. Send (keygen, sid) to FKG.

2. Upon receiving (sid, ski, pk, {pk(i)ℓ }ℓ∈[n]) from FKG, sample ρ
(i)
a ∈ {0, 1}λ and send

(setup, sid, ρ
(i)
a , ski, {pk(i)ℓ }ℓ∈[n]) to FSetup.

3. Upon receiving (sid, {kVOLE
i,j,0 , k

VOLE
j,i,1 }j ̸=i) from FSetup, output pk.

Tuple. Upon receiving input (tuple, sid, ssid, T), compute:

4. for j ∈ T \ {i}:

46

(a) (ai, c
VOLE
i,j,0) = PCFVOLE.Eval(0, k

VOLE
i,j,0 , ssid),

(b) (ski, c
VOLE
j,i,1) = PCFVOLE.Eval(1, k

VOLE
j,i,1 , ssid),

5. βi = ai · Li,T ski +
∑

j∈T \{i}
(
Li,T cVOLE

j,i,1 − Lj,T cVOLE
i,j,0

)
Finally, output (sid, ssid, ai, βi).

Theorem 7. Let PCFVOLE be an srPCF for VOLE correlations as defined in
Appendix F.2. Then, protocol πPCF

Prep UC-realizes FPrep in the (FKG,FSetup)-hybrid
model in the presence of malicious adversaries controlling up to t− 1 parties.

The proof works analogously to the proof of Theorem 2, which is presented
in Appendix M. Therefore, we omit the proof of Theorem 7 for the sake of
conciseness.

I Ideal Threshold Signature Functionality

In this section, we state our ideal threshold functionality Ftsig on which we base
our security analysis of the online protocol (cf. Theorem 1). The functionality
is presented in the universal composability (UC) framework and we refer the
reader to Appendix C for a brief introduction into the UC framework and its
notation. Ftsig is a modification of the functionality proposed by Canetti et
al. [29]. First, we allow the parties to specify a set of signers T during the signing
request. This allows us to account for a flexible threshold of signers instead
of requiring all n parties to sign. Second, we model the signed message as an
array of messages. This change accounts for signature schemes allowing signing
k messages simultaneously, such as BBS+. Third, we remove the identifiability
property, the key-refresh, and the corruption/decorruption interface. The key-
refresh and the corruption/decorruption interface are not required in our scenario
as we consider a static adversary in contrast to the mobile adversary in [29].
Fourth, we allow every party to sign only one message per ssid. Finally, at the
end of the signing phase, honest parties might output abort instead of a valid
signature. This modification is due to our protocol not providing robustness or
identifiable abort.

Next, we state the full formal description of our threshold signature func-
tionality Ftsig.

Functionality Ftsig

The functionality is parameterized by a threshold parameter t. We denote a
set of t parties by T . For a specific session id sid, the sub-procedures Signing
and Verification can only be executed once a tuple (sid,V) is recorded.
Key-generation.

1. Upon receiving (keygen, sid) from some party Pi, interpret sid = (. . . ,P),
where P = (P1, . . . , Pn).
– If Pi ∈ P, send to S and record (keygen, sid, i).

47

– Otherwise ignore the message.
2. Once (keygen, sid, i) is recorded for all Pi ∈ P, send (pubkey, sid) to the

adversary S and do:
(a) Upon receiving (pubkey, sid,V) from S, record (sid,V).
(b) Upon receiving (pubkey, sid) from Pi ∈ P, output (pubkey, sid,V) if it

is recorded. Else ignore the message.

Signing.

1. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk)) with T ⊆ P, from
Pi ∈ T and no tuple (sign, sid, ssid, ·, ·, i) is stored, send to S and record
(sign, sid, ssid, T ,m, i).

2. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk), i) from S, record
(sign, sid, ssid, T ,m, i) if Pi ∈ C. Else ignore the message.

3. Once (sign, sid, ssid, T ,m, i) is recorded for all Pi ∈ T , send
(sign, sid, ssid, T ,m) to the adversary S.

4. Upon receiving (sig, sid, ssid, T ,m, σ, I) from S, where I ⊆ T \ C, do:
– If there exists a record (sid,m, σ, 0), output an error.
– Else, record (sid,m, σ,V(m, σ)), send (sig, sid, ssid, T ,m, σ) to all

Pi ∈ T \ (C ∪I) and send (sig, sid, ssid, T ,m, abort) to all Pi ∈ T ∩I.

Verification.

Upon receiving (verify, sid,m = (m1, . . . ,mk), σ,V ′) from a party Q,
send the tuple (verify, sid,m, σ,V ′) to S and do:
– If V ′ = V and a tuple (sid,m, σ, β′) is recorded, then set β = β′.
– Else, if V ′ = V and less than t parties in P are corrupted, set β = 0

and record (sid,m, σ, 0).
– Else, set β = V ′(m, σ).

Output (verified, sid,m, σ, β) to Q.

J Proof of Theorem 1

This section presents the proof of our online protocol, i.e., Theorem 1.

Proof. We construct a simulator S that interacts with the environment and the
ideal functionality Ftsig. Since the security statement for UC requires that for
every real-world adversary A, there is a simulator S, we allow S to execute A in-
ternally. In the internal execution of A, S acts as the environment and the honest
parties. In particular, S forwards all messages between its environment and A.
The adversary A creates messages for the corrupted parties. These messages are
sent to S in the internal execution. Note that this scenario also covers dummy
adversaries, which just forward messages received from the environment. An out-
put of S indistinguishable from the output of A in the real-world execution is
created by simulating a protocol transcript towards A that is indistinguishable

48

from the real-world execution and outputting whatever A outputs in the simu-
lated execution. Since the protocol πTBBS+ is executed in the (FPrep,H)-hybrid
model, S impersonates the hybrid functionality FPrep and the global random
oracle functionality H in the internal execution.

We start with presenting our simulator S.

Simulator S

Oracle Queries.
Upon receiving (query, x) from P , do:

– If a tuple (x, a) is stored, then output (answer, a) to P .
– Else, sample a← Zp and store (x, a).

Output (answer, a) to P .

KeyGen.

1. Upon receiving (init, sid) from corrupted party Pj , send (keygen, sid) on
behalf of Pj to Ftsig.

2. Upon receiving (pubkey, sid) from Ftsig simulate the initialization phase

of FPrep to get pk. In particular, sample sk
$← Zp and send pk = gsk2 to A.

3. Upon receiving (ok,Tuple(·, ·, ·)) from A, send (pubkey, sid,Verifypk(·, ·))
to Ftsig.

Sign.

1. Upon receiving (sign, sid, ssid, T ,m = {mℓ}ℓ∈[k], i) from Ftsig for hon-
est party Pi, simulate the tuple phase of FPrep to get (ai, βi) for Pi

and simulate the random oracle H call to get (answer, e) on input
(query, sid||ssid||m||T). Then, compute (Ai := (g1·

∏
ℓ∈[k] h

mℓ

ℓ)ai ·hαi
0 , δi :=

βi + ai · e) and send it to the corrupted parties in T in the internal exe-
cution.

2. Upon receiving (sign, sid, ssid, T ,m) from Z to corrupted party Pj , send
message to Pj in the internal execution an do:
(a) Upon receiving (tuple, sid, ssid, T) on behalf of FPrep from corrupted

party Pj with j ∈ T return (aj , βj)← Tuple(ssid, T , j) to Pj .

(b) Forward (sign, sid, ssid, T ,m, j) to Ftsig and define an empty set Îj =
∅ of honest parties that received signature shares from corrupted party
Pj .

(c) Upon receiving (sid, ssid, T ,m, A′
j,i, β

′
j,i) from Pj to honest party Pi

in the internal execution, add Pi to Îj .
3. Upon receiving (sign, sid, ssid, T ,m) from Ftsig, do:

– Use tuple (aj , βj) and random oracle output (answer, e) on input
(query, sid||ssid||m||T) to compute honestly generated (Aj , βj) for
Pj ∈ T ∩ C. Compute honestly generated signature σ = (A, e) as
honest parties do using (Aℓ, βℓ) for Pℓ ∈ T .

– For each honest party Pi recompute signature σi obtained by Pi as
honest parties do by using A′

j,i, β
′
j,i for Pj ∈ T ∩ C.

49

– We define set I of honest parties that obtained no or an invalid signa-
ture. First set, I = (T \ C) \ (

⋂
j∈T ∩C Îj), i.e., add all honest parties

to I that did not receive signature shares from all corrupted par-
ties in T . Next, compute I = I ∪ {i : σi ̸= σ}, i.e., add all honest
parties that obtained a signature different to the honestly generated
signature. If there exists σi ̸= σ such that Verifypk(m, σi) = 1 and
(sig, sid, ssid, ·,m, σi, ·) was not sent to Ftsig before, output fail and
stop the execution.

– Finally, send (sig, sid, ssid, T ,m, σ, I) to Ftsig.

Verify. Upon receiving (verify, sid,m, σ,Verifypk′(·, ·)) from Ftsig check if

– Verifypk′(·, ·) = Verifypk(·, ·) ,
– (sig, sid, ssid, ·,m, σ, ·) was not sent to Ftsig before
– Verifypk(m, σ) = 1.

If the checks hold, output fail and stop the execution.

Lemma 1. If simulator S does not outputs fail, protocol πTBBS+ UC-realizes
Ftsig in the (FPrep,H)-hybrid model in the presence of malicious adversaries con-
trolling up to t− 1 parties.

Proof. If the simulator S does not outputs fail, it behaves precisely as the
honest parties in real-world execution. Therefore, the simulation is perfect, and
no environment can distinguish between the real and ideal worlds.

Lemma 2. Assuming the strong unforgeability of BBS+, the probability that S
outputs fail is negligible.

Proof. We show Lemma 2 via contradiction. Given a real-world adversaryA such
that simulator S outputs fail with non-negligible probability, we construct an
attacker B against the strong unforgeability (SUF) of BBS+ with non-negligible
success probability. B simulates the protocol execution towards A like S except
the following aspects:

1. During the simulation of the initialization phase of FPrep, instead of sampling

sk
$← Zp and computing pk = gsk2 , B returns pk∗ obtained from the SUF-

challenger. Since the SUF-challenger samples the key exactly as the simulator
S, this step of the simulations is indistinguishable towards A.

2. During the simulation of oracle queries, upon receiving (query, x := sid||ssid||m||T)
from P and no tuple (x, a) is stored, do the following:
– Request the signing oracle of the SUF-game on message m to obtain

signature σ = (A, e). Store the tuple (sig− req, sid, ssid,m, T , σ) and
return (answer, e) to P .

3. During the Sign phase, upon receiving (sign, sid, ssid, T ,m, i) from Ftsig for
honest party Pi, the computation of signature shares of the honest parties
is modified as follows:

50

– If (sig− req, sid, ssid,m, T , σ) is stored, forward σ to Ftsig on receiving
(sign, sid, ssid, T ,m) from Ftsig.

– If not tuple (sig− req, sid, ssid,m, T , ·) is stored, request the signing or-
acle of the SUF-game and program the random oracle as in step 2. For-
ward the obtained signature to Ftsig on receiving (sign, sid, ssid, T ,m)
from Ftsig

– Compute (aj , βj) ← Tuple(ssid, T , j) and (Aj , δj) according to the pro-
tocol specification for every corrupted party Pj ∈ T ∩ C.

– Sample random index k
$← T \ C.

– For all honest parties except Pk sample random signature share, i.e.,

∀Pi ∈ (T \ C) \ {Pk} : (Ai, δi)
$← (G1,Zp).

– For Pk sample random δk
$← Zp and compute

Ak =
A

∑
ℓ∈T δℓ∏

ℓ∈T \{k} Aℓ
.

Now, we must show two aspects. First, we show that the view of the adversary
in the reduction is indistinguishable to the adversary’s view in the ideal world.
Second, we show that a successful adversary yields a valid attacker against the
SUF game.

In order to show the first aspect, we argue that the changes in the reduction
do not modify the distribution of the adversary’s view. The first change is the
sampling of the keys. Note that the public keys are both random elements in
G2 and are identically distributed. In the reduction, B does not know the secret
key but the secret key is also never required later. Next, note that the value e is
sampled at random by both, S, and B. This is due to the fact, that S samples it
random during the simulation of the random oracle queries, and B obtains the
value from the signing oracle of the SUF-game. In this game, the signing oracle
samples the e value at random as well. During the signing phase, δi is the sum of
βi, which is a share of a · sk, and ai · e. Although e is public, the ai share, which
is also part of a, works as a random mask. Therefore, δi is distributed randomly
in the simulation by S and by B. Finally, the Ai values yield a valid signature in
B. Note that by programming the output of the oracle to the value e obtained
by the signing oracle, we ensure that the output of the random oracle query
on input sid||ssid||m||T is consistent with the signature obtained for the signing
request (sign, sid, ssid,m, T). Therefore, the simulation of the Sign phase of B
and S are indistinguishable to A.

Next, we show that a successful adversary yields a valid attacker against
the SUF game. Here, we use the fact that S outputs fail with non-negligible
probability either in the Sign or the Verify phase. As the interaction of B with
A is indistinguishable, B outputs fail with non-negligible probability as well.
Whenever B outputs fail, it forwards the pair (m∗, σ∗) obtained in the Sign or
Verify phase to the SUF-challenger.

It remains to show that B successfully wins the SUF-game. In order to be
a valid forgery, it must hold that (1) Verifypk∗(m

∗, σ∗) = 1 and (2) (m∗, σ∗)

51

was not returned by the signing oracle before. (1) is trivially true, since B only
outputs fail if this condition holds. For (2), we note that A has never seen σ∗

as output from Ftsig, since B checks that (sig, sid, ssid, ·,m∗, σ∗, ·) was not sent
to Ftsig before. However, it might happen that B obtained σ∗ as response to a
signing request for message m∗ without forwarding it the to Ftsig (this happens
if the environment does not instruct all parties in T to sign). Since the signing
oracle samples e at random from Zp, the probability that σ∗ was returned by the
signing oracle is ≤ q

p , where q is the number of oracle requests and p is the size
of the field. While q is a polynomial, p is exponential in the security parameter.
Thus, the probability that σ∗ hits an unseen response from the signing oracle is
negligible in the security parameter. It follows that (m∗, σ∗) is a valid forgery
and B wins the SUF-game.

Since this contradicts the strong unforgeability of BBS+, it follows that the
probability that S outputs fail is negligible.

Combining Lemma 1 and Lemma 2 concludes the proof of Theorem 1.

K Simulator for PCG-based Preprocessing

Here, we state our simulator for proving security of our PCG-based preprocess-
ing. Formally, the security is stated in Theorem 2. We provide a proof sketch
of our indistinguishability argument in Appendix L and state the full proof in
Appendix M.

Simulator for Preprocessing S

Without loss of generality, we assume the adversary corrupts parties
P1, . . . , Pt−1 and parties Pt, . . . , Pn are honest. S internally uses adversary
A.
Initialization.

1: • Upon receiving (keygen, sid) on behalf of FKG from corrupted party
Pj , send (init, sid) on behalf of corrupted Pj to FPrep. Then, wait to
receive (corruptedShares, sid, {skj}j∈C) from A.

2: • Upon receiving pk from FPrep, set pkj = g
skj
2 for j ∈ C and compute

pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

, where T := C ∪ {i}, for every

honest party Pi. Then, send (sid, skj , pk, {pkℓ}ℓ∈[n]) to every corrupted
party Pj .

• Upon receiving (setup, sid, ρ
(j)
a , sk′j , {pk

(j)
ℓ }ℓ∈[n]) on behalf of FPCG

Setup

from every corrupted party Pj , check that pk
(j)
ℓ = pkℓ and g

sk′j
2 = pkj

for j ∈ C and ℓ ∈ [n]. If any check fails, send (abort, sid) to FPrep.

Otherwise sample ρ
(i)
a and a dummy secret key share ŝki for every

honest party Pi and simulate the computation of FPCG
Setup (i.e., compute

all the PCG keys using the values received from the corrupted parties
and the values sampled for the honest parties).

52

3: • Send keys (sid, {kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 }ℓ ̸=j) to every corrupted party Pj .
• Send (ok,Tuple(·, ·, ·)) to FPrep, where Tuple(ssid, T , j) computes
(aj , βj) for corrupted party Pj exactly as Pj computes its tuple in
the protocol description.
First, expand for every ℓ ∈ T \ {j}:

(aj , c
VOLE
j,ℓ,0) = PCGVOLE.Expand(0, k

VOLE
j,ℓ,0) ,

(skj , c
VOLE
ℓ,j,1) = PCGVOLE.Expand(1, k

VOLE
ℓ,j,0) .

Next, set aj = aj [ssid], c
VOLE
(j,ℓ,0) = cVOLE

(j,ℓ,0)[ssid], and cVOLE
(ℓ,j,1) = cVOLE

(ℓ,j,1)[ssid]

for ℓ ∈ T \ {j} and compute

βj = aj · Lj,T skj +
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0

)
.

Tuple. Upon receiving (tuple, sid, ssid, T) from Z on behalf of corrupted
party Pj , forward message (tuple, sid, ssid, T) to A and output whatever A
outputs.

L Indistinguishability Proof Sketch of Theorem 2

We prove indistinguishability between the ideal-world execution and the real-
world execution via a sequence of hybrid experiments. We start with Hybrid0
which is the ideal-world execution and end up in Hybrid7 being identical to the
real-world execution. By showing indistinguishability between each subsequent
pair of hybrids, it follows that the ideal and real-world execution are indistin-
guishable. In particular, we show indistinguishability between the joint distribu-
tion of the adversary’s view and the outputs of the honest parties in Hybridi and
Hybridi+1 for i = 0, . . . , 6. In the following we sketch the proof outline and defer
the full proof to Appendix M.

Hybrid1: In this hybrid experiment, we inline the description of the simulator S,
the ideal functionality FPrep and the outputs of the honest parties. Since this is
only a syntactical change, the distribution is identical to the one of Hybrid0.
Hybrid2: Instead of sampling the secret key sk at random from Zp, we sample a
random polynomial F (x) ∈ Zp[X] of degree t− 1 such that F (j) = skj for every
j ∈ C. The secret key is then defined as sk = F (0).

Note that the adversary knows only t−1 shares of the polynomial which give
no information about sk. This is due to the information-theoretically secrecy
of Shamir’s secret sharing. It follows that Hybrid1 and Hybrid2 are perfectly
indistinguishable.

Hybrid3: In this hybrid, we change the way honest parties’ secret key shares are
defined. Instead of sampling random dummy key shares, we derive the key shares
from the polynomial introduced in the last hybrid. In more detail, the key share

53

of honest party Pi is computed as ski = F (i). This change effects the PCG key
generation as the dummy key share is replaced by ski for honest party Pi.

To show indistinguishability between Hybrid2 and Hybrid3, we reduce to the
key indistinguishability property of the PCGVOLE primitive. More specifically, we
introduce a sequence of intermediate hybrids where we only change the secret
key of a single honest party in each step.
Hybrid4: In this hybrid, we change the computation of the honest party Pi’s

public key share pki. Instead of interpolating pki it is defined as pki = gski2 . As
both ways are equivalent, Hybrid4 is perfectly indistinguishable from Hybrid3.
Hybrid5: In this hybrid, we make the sampling of the honest parties’ outputs
of the tuple phase explicit. To this end, we compute the tuple values in two
steps. First, we sample values for ai, then we compute βi. For sampling, we
distinguish between two cases. (1) For every pair of two honest parties (Pi, Pℓ)
the values are sampled from YVOLE. (2) For every pair of one honest party Pi

and one corrupted party Pj , we use the reverse-sampling algorithm of the VOLE
correlation to compute the correlation outputs of the honest party. We illustrate
the idea for ai and βi in the following.

After simulating the PCG key generation of FPCG
Setup, the experiment computes

once and stores for every i, ℓ ∈ ([N] \ C) with i ̸= ℓ:

((ai, c
VOLE
i,ℓ,0), ·) ∈ YVOLE(1

λ, (ρ(i)a , skℓ), [N]) ,

(·, (ski, cVOLE
ℓ,i,1)) ∈ YVOLE(1

λ, (ρ(ℓ)a , ski), [N]) ,

and for every i ∈ ([N] \ C), j ∈ ([N] ∩ C):

(ai, c
VOLE
i,j,0)← RSampleVOLE(1

λ, (ρ(i)a , skj), 0, (skj , c
VOLE
i,j,1), [N])

(ski, c
VOLE
j,i,1)← RSampleVOLE(1

λ, (ρ(j)a , ski), 1, (aj , c
VOLE
j,i,0), [N]) ,

where (aj , c
VOLE)
j,i,0) = PCGVOLE.Expand(0, k

VOLE
j,i,0) and

(skj , c
VOLE
i,j,1) = PCGVOLE.Expand(1, k

VOLE
i,j,1).

Then, during the tuple phase, for every j ∈ T \ {i} let ai = ai[ssid], c
VOLE
i,j,0 =

cVOLE
i,j,0 [ssid], and cVOLE

j,i,1 = cVOLE
j,i,1 [ssid] and compute

βi = ai · Li,T ski +
∑

ℓ∈T \{i}

(
Li,T c

VOLE
ℓ,i,1 − Lℓ,T c

VOLE
i,ℓ,0

)
.

A straightforward calculation shows that resulting tuple values satisfy corre-
lation (1). Note that the reverse-sampling and the correlation sampling outputs
uniform correlation outputs and hence the correlation is identically distributed
as in Hybrid4. It follows that the view of the environment is indistinguishable in
Hybrid4 and Hybrid5.
Hybrid6: Now, we replace the sampling of correlation outputs for calculating
honest parties’ tuples (cf. case (1) of previous hybrid) with the expansion of
the PCG keys, i.e., instead of using outputs of the YVOLE correlation, we run the
PCGVOLE expansions. For running the PCG expansions, we use the keys obtained
during the simulation of FPCG

Setup in step (2).

54

Indistinguishability between Hybrid5 and Hybrid6 can be shown via reductions
to the pseudorandom YVOLE-correlated output property of the PCGVOLE prim-
itive. More precisely, a series of intermediate hybrids can be introduce, where
in each hop only a single correlation output is replaced by the output of PCG
expansions.
Hybrid7: Finally, we replace the reverse-sampling in case (2) of Hybrid5 with the
PCG expansion. The indistinguishability between Hybrid6 and Hybrid7 can be
shown via a reduction to the security property of the rPCGs.

Hybrid7 is the real-world execution, which concludes the proof.

M Full Indistinguishability Proof of Theorem 2

In this section, we provide the full indistinguishability proof of Theorem 2. The
simulator is given in Appendix K.
Hybrid0: The initial experiment Hybrid0 denotes the ideal-world execution where
simulator S is interacting with the corrupted parties, ideal functionality FPrep

and internally runs real-world adversary A.
Hybrid1: In this hybrid, we inline the description of the simulator S, the ideal
functionality FPrep and the outputs of the honest parties. Since this is only a
syntactical change, the joint distribution of the adversary’s view and the output
of the honest parties is identical to the one of Hybrid0. We state Hybrid1 as the
starting point, and emphasize only on the changes in the following hybrids.

Hybrid1

Without loss of generality, we assume the adversary corrupts parties
P1, . . . , Pt−1 and parties Pt, . . . , Pn are honest. S internally uses adversary
A.
Initialization.

1: • Upon receiving (keygen, sid) on behalf of FKG from cor-
rupted party Pj , store (init, sid, Pj). Then, wait to receive
(corruptedShares, sid, {skj}j∈C) from A.

• Upon receiving (init, sid) from every honest party, sample the secret

key sk
$← Zp and set pk = gsk2 . Further, set pkj = g

skj
2 for j ∈ C and

compute pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

, where T := C ∪ {i},
for every honest party Pi.

2: • Send (sid, skj , pk, {pkℓ}ℓ∈[n]) to every corrupted party Pj .

• Upon receiving (setup, sid, ρ
(j)
a , sk′j , {pk

(j)
ℓ }ℓ∈[n]) on behalf of FPCG

Setup

from every corrupted party Pj , check that pk
(j)
ℓ = pkℓ and g

sk′j
2 = pkj

for j ∈ C and ℓ ∈ [n]. If any check fails, honest parties output abort.

Otherwise sample ρ
(i)
a and a dummy secret key share ŝki for every

honest party Pi and simulate the computation of FPCG
Setup (i.e., compute

all the PCG keys using the values received from the corrupted parties
and the values sampled for the honest parties).

55

3: • Send keys (sid, {kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 }ℓ ̸=j) to every corrupted party Pj .
• Store (ok,Tuple(·, ·, ·)), where Tuple(ssid, T , j) computes (aj , βj) for
corrupted party Pj exactly as Pj computes its tuple in the protocol
description.
First, expand for every ℓ ∈ T \ {j}:

(aj , c
VOLE
j,ℓ,0) = PCGVOLE.Expand(0, k

VOLE
j,ℓ,0) ,

(skj , c
VOLE
ℓ,j,1) = PCGVOLE.Expand(1, k

VOLE
ℓ,j,0) .

Next, set aj = aj [ssid], c
VOLE
(j,ℓ,0) = cVOLE

(j,ℓ,0)[ssid], and cVOLE
(ℓ,j,1) = cVOLE

(ℓ,j,1)[ssid]

for ℓ ∈ T \ {j} and compute

βj = aj · Lj,T skj +
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0

)
.

• The honest parties Pt, . . . , Pn output pk.

Tuple.

– Upon receiving (tuple, sid, ssid, T) from Z on behalf of corrupted party Pj ,
forward message (tuple, sid, ssid, T) to A and output whatever A outputs.

– Upon receiving (tuple, sid, ssid, T) from Z on behalf of honest party Pi,
if (sid, ssid, T , {(aℓ, βℓ)}ℓ∈T) is stored, output (sid, ssid, ai, βi). Otherwise,
compute (aj , βj ,) ← Tuple(ssid, T , j) for every corrupted party Pj where

j ∈ C ∩ T and sample a
$← Zp and tuples (ai, βi) over Zp for i ∈ H ∩ T

such that ∑
ℓ∈T

aℓ = a
∑
ℓ∈T

βℓ = a · sk

Store (sid, ssid, T , {(aℓ, βℓ)}ℓ∈T) and honest party Pi outputs
(sid, ssid, ai, βi).

Hybrid2: In this hybrid, we change the sampling of the secret key sk. Instead
of sampling sk in step 1 from Zp, we sample a random polynomial F ∈ Zp[X]
of degree t − 1 such that F (j) = skj for every j ∈ C. Further, we define sk =
F (0). Since the polynomial is of degree t − 1, t evaluation points are required
to fully determine F (x). As the adversary knows only t − 1 shares, it cannot
learn anything about sk. In detail, for every sk′ ∈ Zp there exists a t-th share
that defined the polynomial F (x) such that F (x) = sk′. It follows that the views
of the adversary are distributed identically and hence Hybrid2 and Hybrid3 are
perfectly indistinguishable.

Hybrid3: Next, we use the polynomial F (x) sampled in step 1 to determine the
honest parties’ secret key shares. In particular, for every honest party Pi the

56

experiment samples ski = F (i). The secret key shares {ski}i∈H are then used
for the simulation of FPCG

Setup instead of the dummy key shares. In particular,
the correctly sampled key shares of the honest parties are used as input to
PCGVOLE.Gen whenever a secret key share of the honest party is used. Since the
experiment does not use the dummy key shares at all after these changes, we
remove them completely. Note that the sampling of the honest parties’ key shares
and the generation of the PCG keys are exactly as in the real-world execution.

Indistinguishability between Hybrid2 and Hybrid3 can be shown via a series
of reductions to the key indistinguishability property of the VOLE PCG. We
briefly sketch the proof outline in the following. We define intermediate hybrids
Hybrid2,ℓ,k for ℓ ∈ {0, . . . , n − (t − 1)} and k ∈ [n], which only differ in the
honest parties’ key shares that are used in the generation of the VOLE PCG
keys. Recall that for every party Pℓ we generate a VOLE PCG for every other
party Pk, where Pℓ uses its secret key shares as input. We define Hybrid2,ℓ,k such
that the key shares derived from polynomial F (x) are used for the first ℓ honest
parties in all VOLE PCG instances and for the (ℓ + 1)-th honest party in the
VOLE PCG instances with the first k other parties. For all other VOLE PCG
instances, the dummy key shares are used for the honest parties’ key shares.

Note that Hybrid2,0,0 = Hybrid2 and Hybrid2,n−(t−1),n = Hybrid3. To show in-
distinguishability between Hybrid2,ℓ,k and Hybrid2,ℓ,k+1 for every ℓ ∈ {0, . . . , n−
(t − 1)}, we make a reduction to the key indistinguishability property of the
VOLE PCG. In particular, we construct an adversary Akey−ind from a distin-
guisher Dℓ which distinguishes between Hybrid2,ℓ,k and Hybrid2,ℓ,k+1. Upon re-

ceiving the shares of the corrupted parties in the hybrid execution, Akey−ind

forwards the key share of the k + 1-th corrupted party to the security game.
Then, the security game samples two possible key shares for the ℓ-th honest

party ρ
(0)
1 , ρ

(1)
1 , uses one of them in the VOLE PCG key generation and sends

the key k1 for the corrupted party and ρ
(0)
1 to Akey−ind. Next, Akey−ind continues

the simulation of hybrid Hybrid2,ℓ,k or Hybrid2,ℓ,k+1 by sampling the polynomial

F (x) using the corrupted key shares and ρ
(0)
1 . Since ρ

(0)
1 is a random value in

Zp, F (x) is also a random polynomial. Finally, Akey−ind uses k1 as the output of
the simulation of FSetup.

If k1 was sampled using ρ
(0)
1 , then the simulated experiment is identical to

Hybrid2,ℓ,k+1 and otherwise it is identical to Hybrid2,ℓ,k. It is easy to see that a
successful distinguisher between these two hybrids allows to easily win the key
indistinguishability game. Since we assume the VOLE PCG to satisfy the key
indistinguishability property, this leads to a contradiction. Thus, the two hybrids
are indistinguishable.

Hybrid4: In this hybrid, we derive the honest parties public key shares pki from
the secret key shares ski instead of interpolating them from pk and the corrupted
shares. More precisely, in Hybrid3 the public key share of honest party Pi was
computed as

pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

,

57

where T := C ∪ {i}. In Hybrid4 the public key share is instead computed as
pki = gski2 . We show that both definitions are equivalent.

To this end, note that sk =
∑

ℓ∈T Lℓ,T skℓ for every set T of size t, pk = gsk2
and pkj = g

skj
2 for j ∈ C. Using this equation we get for T = C ∪ {i}

pki =

(
pk

pk
L1,T
1 · . . . · pkL1,T

t−1

)1/Li,T

⇔ pki =

(
gsk2

g
L1,T sk1
2 · . . . · gL1,T skt−1

2

)1/Li,T

⇔ pki =

(
g
∑

ℓ∈T Lℓ,T skℓ
2

g
L1,T sk1
2 · . . . · gL1,T skt−1

2

)1/Li,T

⇔ pki =
(
g
Li,T ski
2

)1/Li,T

⇔ pki = gski2

As public key shares are equivalent in both hybrids, the view of the adversary
is identical distributed. Hence, Hybrid3 and Hybrid4 are perfectly indistinguish-
able.
Hybrid5: In this hybrid, we derive the sampling the honest parties’ outputs of
the tuple phase from correlation samples and reverse sampling. To this end, we
distinguish two cases. (1) For every pair of honest parties (Pi, Pℓ), the values
are sampled from YVOLE. (2) For every pair of one honest party Pi and one
corrupted party Pj , we take the output of Pj ’s PCG expansion and reverse-
sample the output of the honest party. More specifically, after simulating the
PCG key generation of FPCG

Setup, the experiment computes once and stores for
every i, ℓ ∈ ([N] \ C) with i ̸= ℓ:

((ai, c
VOLE
i,ℓ,0), ·) ∈ YVOLE(1

λ, (ρ(i)a , skℓ)), [N]) ,

(·, (ski, cVOLE
ℓ,i,1)) ∈ YVOLE(1

λ, (ρ(ℓ)a , ski), [N]) ,

and for every i ∈ ([N] \ C), j ∈ ([N] ∩ C):

(ai, c
VOLE
i,j,0)← RSampleVOLE(1

λ, (ρ(i)a , skj), 0, (skj , c
VOLE
i,j,1), [N])

(ski, c
VOLE
j,i,1)← RSampleVOLE(1

λ, (ρ(j)a , ski), 1, (aj , c
VOLE
j,i,0), [N]) ,

where

(aj , c
VOLE
j,i,0) = PCGVOLE.Expand(0, k

VOLE
j,i,0) ,

(skj , c
VOLE
i,j,1) = PCGVOLE.Expand(1, k

VOLE
i,j,1) ,

58

Then, during the tuple phase, for every j ∈ T \ {i} let ai = ai[ssid], c
VOLE
i,j,0 =

cVOLE
i,j,0 [ssid], and cVOLE

j,i,1 = cVOLE
j,i,1 [ssid], and compute according to the protocol

specification

βi = ai · Li,T ski +
∑

ℓ∈T \{i}

(
Li,T c

VOLE
ℓ,i,1 − Lℓ,T c

VOLE
i,ℓ,0

)
.

We show that the resulting tuple outputs satisfy the same correlation as
before. In particular, we show

∑
ℓ∈T δℓ = a · sk, where a =

∑
ℓ∈T aℓ.

∑
ℓ∈T

βℓ =
∑
ℓ∈T

aℓ · Lℓ,T skℓ +
∑

k∈T \{ℓ}

Lℓ,T c
VOLE
k,ℓ,1 − Lk,T c

VOLE
ℓ,k,0


=
∑
ℓ∈T

aℓ · Lℓ,T skℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

Lℓ,T c
VOLE
k,ℓ,1 − Lℓ,T c

VOLE
k,ℓ,0

=
∑
ℓ∈T

aℓ · Lℓ,T skℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

Lℓ,T akskℓ

=
∑
ℓ∈T

aℓ · Lℓ,T skℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

ak · Lℓ,T skℓ

=
∑
ℓ∈T

∑
k∈T

ak · Lℓ,T skℓ

=
∑
k∈T

∑
ℓ∈T

ak · Lℓ,T skℓ

=
∑
k∈T

ak
∑
ℓ∈T

Lℓ,T skℓ

= a · sk

As the tuple values of the honest parties still satisfy the same correlation
as in Hybrid4, Hybrid4 and Hybrid5 are indistinguishable. Note that the reverse-
sampling and the correlation sampling outputs uniform correlation outputs and
hence the correlation is identically distributed as in Hybrid4.
Hybrid6: In this hybrid, we replace the correlation sampling of values of a pair of
honest parties with PCG expansions (cf. case (1) of Hybrid5). For example, in-

stead of sampling ((ai, c
VOLE
i,ℓ,0), ·) ∈ YVOLE(1

λ, (ρ
(i)
a , skℓ), [N]), party Pi computes

(ai, c
VOLE
i,ℓ,0) = PCGVOLE.Expand(0, k

VOLE
i,ℓ,0). The same change is applied to all VOLE

correlations.
Indistinguishability can be shown via a series of reductions to the pseudo-

random YVOLE-correlated output property of the PCGs. In more detail, we con-
struct a sequence of hybrid experiments where only a single correlation sampling
is replaced by a PCG expansion. Then, in the reduction to the pseudorandom
correlated output property, in case the challenge bit is 0, the reduction simulates
the hybrid where the output is sampled from the correlation, and in case the
challenge bit is 1, the output is the PCG expansion. A distinguisher between

59

any pair of hybrid experiments in the sequence helps to construct a successful
adversary against the pseudorandom correlated output property. We conclude
that Hybrid5 and Hybrid6 are indistinguishable under the assumption of reusable
PCGs.
Hybrid7: Finally, we replace the reverse-sampling in case (2) of Hybrid5 with the
corresponding PCG expansion. For instance, instead of computing

(ai, c
VOLE
i,j,0)← RSampleVOLE(1

λ, (ρ(i)a , skj), 0, (skj , c
VOLE
i,j,1), [N])

the honest party computes

(ai, c
VOLE
i,j,0) = PCGVOLE.Expand(0, k

VOLE
i,j,0).

The same change is applied for all other reverse-sampling algorithms.
Analog to the indistinguishability between Hybrid5 and Hybrid6, we can show

indistinguishability between Hybrid6 and Hybrid7 via a sequence of hybrid exper-
iments. In each hybrid one reverse sampling is replaced by the PCG expansion.
Indistinguishability between adjacent hybrids is reduced to the security prop-
erty of the PCG. Since the only change between two adjacent hybrids is the fact
whether the correlation output of an honest party is reverse-sampled given the
output of a corrupted party or taken as the PCG expansion, it is easy to see
that a distinguisher between these hybrids can be used to construct a successful
adversary against the security property.

We end up in Hybrid7 where all correlation outputs and reverse-sampling
outputs are replaced by PCG expansions. As this hybrid does not use any reverse-
sampling anymore, we can get rid of the tuple function Tuple.

Now, Hybrid7 is identical to the real-world execution which concludes the
proof.

N Evaluation of the Legacy BBS+ Scheme

While we based our threshold BBS+ scheme on an optimized version of the
BBS+ protocol due to Tessaro and Zhu [64], which removes the s variable from
the signature, our scheme can be extended in a straight-forward way to thresh-
oldize the legacy BBS+ signature scheme (cf. Appendix B). The major difference
is that the legacy scheme requires OLE-correlations from the preprocessing. This
chapter repeats our evaluation presented in Section 6 for the thresholdized legacy
BBS+ signature scheme.

Online, signing request-dependent phase. For the online phase, we have imple-
mented the thresholdized legacy BBS+ signature scheme and executed bench-
marks. The scope of the implementation and the setup of our benchmarks re-
mains unchanged. The results of our benchmarks are reported in Figure 11. The
comparison to the legacy non-threshold BBS+ signature scheme is displayed
in Figure 12. The size of signing requests does not change. The size of partial
signatures sent by the servers increases to (2⌈log p⌉+ |G1|).

60

10 20 30
0

200

400

t

[µs]

(a) Adapt (Server).

10 30 50
0

5

10

15

k

[ms]

(b) Sign (Server).

10 20 30
0

100

200

300

t

[µs]

(c) Reconstruct (Client).

10 30 50
0

10

20

k

[ms]

(d) Verify (Client).

10 20 30
0

5

10

15

t

[ms]

k = 1 k = 2

k = 5 k = 10

(e) Total.

Fig. 11: The runtime of individual phases (a)-(d) and the total online protocol
(e) in the thresholdized legacy BBS+ protocol. The Adapt phase and the Recon-
struct phase depend on security threshold t. The Sign phase and the signature
verification depend on the message array size k.

10 20 30 40 50
0

20

40

k

[ms] Threshold (t = 10)

Plain incl. verification

Plain excl. verification

Fig. 12: The total runtime of the online phase of the PCG-based thresholdized
legacy BBS+ protocol in comparison to the non-threshold legacy BBS+ signing
algorithm with and without signature verification in dependence of the size of
the message array k. As depicted in Figure 11e, the influence of the number of
signers t is insignificant. We choose t = 10.

61

Offline, signing request-independent phase. For the offline phase, we extend our
implementation and benchmarks by a PCG for OLE correlations. The results
are displayed in Figure 13 and Figure 14. In the n-out-of-n setting, each party
performs four randomization and splits four polynomials. In the t-out-of-n set-
ting, each party performs 2 + 3 · (n− 1) randomizations and splits just as many
polynomials. The time to extract one of the N field elements from a degree-N
polynomial remains unchanged.

11 15 20
0

100

200

300

log2(N)

[ms] n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3
n = 2

Fig. 13: Computation time of the seed expansion of all required PCGs in the
PCG-based thresholdized legacy BBS+ protocol in the n-out-of-n setting for
different committee sizes (n ∈ {2, . . . , 10}) dependent on the number of gener-
ated precomputation tuples N .

11 15 20
0

200

400

log2(N)

[ms]
n = 10
n = 9
n = 8
n = 7
n = 6
n = 5
n = 4
n = 3

Fig. 14: Computation time of the seed expansion of all required PCGs in the
PCG-based thresholdized legacy BBS+ protocol in the t-out-of-n setting for dif-
ferent committee sizes (n ∈ {2, . . . , 10}) dependent on the number of generated
precomputation tuples N .

62

Storage complexity When instantiating the precomputation with PCGs, the ex-
panded precomputation material occupies

log p · (1 +N · (2 + 4 · (n− 1)))

bits of storage. We illustrate the complexity in Figure 15. In the n-out-of-n
setting, the storage complexity reduces to log p · 4N bits of storage.

5 10 15 20 25 30
0

2

4

n

[GB] N = 1048 576

N = 98 304

Fig. 15: Storage complexity of the preprocessing material in the PCG-based
thresholdized legacy BBS+ protocol required for N ∈ {98 304, 1 048 576} sig-
natures depending on the number of servers n.

O Benchmarks of Basic Arithmetic Performance

We report the runtime of basic arithmetic operations in Table 1. The presented
numbers might help the reader to assess the performance of system used for
benchmarking and provides details for comparisons.

Table 1: Runtime of basic arithmetic operations in the BLS12 381 curve on our
evaluation machine. The bit-size of the curve’s group order p is 255. The error
terms report standard deviation.

Operation Time

Zp addition 5.315 ns ±1.105 ns
Zp multiplication 34.311 ns ±1.752 ns
Zp inverse 2.907 µs ±90.82 ns
G1 addition 1.18 µs ±33.597 ns
G2 addition 3.971 µs ±113.992 ns
G1 scalar multiplication 297.86 µs ±13.59 µs
G2 scalar multiplication 1.024 ms ±0.054 µs
Pairing 2.638 ms ±57.258 µs

63

	Non-Interactive Threshold BBS+ From Pseudorandom Correlations

