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Abstract

The analysis of real-life incidents has revealed that state-level efforts are made to camouflage the intentional flaws in the mathe-
matical layer of an S-Box to exploit the information-theoretic properties, i.e., Kuznyechik. To extract and investigate the common
features in the backdoored S-Box(es), this research thoroughly examines them from the perspective of 24 cryptanalytic attack vec-
tors available in the open literature. We have debunked the earlier claims by the backdoor engineers that their designs are stealthy
against statistical distinguishers. A backdoored architecture fulfils the notions of randomness but lacks the strength to resist sophis-
ticated cryptanalytic attacks. Our analysis has revealed that during the backdoor insertion phase, a malicious designer compromises
vital cryptographic properties, prominently the algebraic degree, differential trails, avalanche characteristics and leaving the open
ground for hybrid attacks. It is observed that these mappings attain the upper bound of BCT, FBCT and DLCT, thus paving the way

for hybrid attacks with high probability.
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1. Introduction

For millennia the famous Ceaser Cipher remained unbreak-

able. Al-Kindi exploited the natural language redundancies by
observing the frequency distribution of alphabets in monoal-
phabetic ciphers. Claude Shannon coined the idea of confu-
sion and diffusion to mitigate the risk of language redundancies
[1, 2]. Lucifer [3], and DES [4] are engineered by the team of
cryptographers at IBM on the principles devised in [1, 2]. With
time matured and well-designed modern-day block ciphers are
implemented and deployed worldwide [5, 6, 7, 8, 9]. Consid-
ering the importance of an S-Box as a nonlinear component,
cryptographers put their best efforts into the design phase for
mandated security [10, 11]. The ciphertext does not reveal any
information about the plaintext, and the statistical distinguisher
observes no pattern. Cryptanalysts tried to develop the lat-
est attacks for exploiting the nonlinear properties of S-Box(es)
[12, 13]. These attacks helped the cryptographic community in
refining the design process [14].
The cracking of a well-designed cryptosystem is infeasible in
polynomial time for adversaries. To defy the mandated secu-
rity, the hostile agencies force the designers to blanket inten-
tional weaknesses. The academia has pointed out the possibil-
ity of cryptographic abuses via subliminal channels in earlier
manuscripts [15, 16]. Adam Yung proposed the initial drafts on
bugging the asymmetric cryptographic implementations via the
SETUP framework in [17, 18]. Interestingly, the kleptographic
attacks only work in a black box evaluation model.
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Vincent Rijmen and Preneel formally constructed the design-
level trapdoors in a block cipher by hiding highly linear proba-
bilistic relationships in the S-Box [19]. The proposed trapdoor
was impractical due to the mighty lookup tables and unearthed
in [20]. KG Paterson pioneered the construction of a design-
level backdoor in DES-like cryptosystems on the principles of
imprimitive group actions [21]. Harpes extended the linear at-
tack suggested in [13] to the partitioning cryptanalysis by ex-
ploiting the nontrivial partitions. The authors claimed that the
partitions could be used to construct the structural backdoors
in iterative ciphers. Filiol questioned the security of AES-like
designs in the Black Hat Europe ! and challenged the research
community to uncover the combinatorial backdoor in the Back-
doored Encryption Algorithm (BEA-1), claimed to be resistant
against distinguishing statistical attacks [22, 23]. The Council
for European Professional Informatics Societies (CEPIS) has
unanimously declared that access to strong encryption algo-
rithms for secure communication is a fundamental right of Eu-
ropean citizens, and undermining the security of communica-
tion systems for lawful access is unacceptable. Edward Snow-
den has shown that hostile agencies influence the cryptographic
standardisation process in real-world politics. The examples are
not limited to the widespread deployment of the bugged Clipper
chip by the Clinton administration [24], NIST Dual EC-DRBG
backed by NSA [25] and Kuznyechick by the Russian govern-
ment [26]. Russian cryptographers insisted that the S-Box in
Kuznyechik belonged to a random family during the ISO stan-
dardisation event. Leo Perrin raised serious concerns about the
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S-Box engineering by proving that the permutation follows a
stringent mathematical design philosophy [27, 28, 29]. The de-
sign layer maliciousness is not limited to the confidentiality-
achieving algorithms; the variants of standardised hashing al-
gorithms seem to be the victimised candidates [30, 31].

Our Contribution: The open literature on the design level
backdoors in cryptographic algorithms is minimal. To our knowl-
edge, the detailed cryptographic analysis of backdoored struc-
tures proposed by Bannier and Paterson from the perspective
of hybrid cryptanalytic attacks does not exist. In this research,
we identified the common artefacts in these backdoored struc-
tures per the well-established (24) cryptographic evaluation pa-
rameters and established where things go wrong in these per-
mutations resulting in compromised vital properties. We have
grouped the well-known attacks into six cryptographic profiles
(1. Differential, 2. Linear, 3. Avalanche, 4. Side Channel,
5. Hybrid, and 6. Algebraic) to conclude the evaluation effec-
tively. This research is the first of its kind to evaluate compro-
mised permutations from a deep mathematical and cryptana-
lytic lens, paving the way for cipher designers to avoid minimal
errors in the S-Box engineering phase.

Paper Organization: This article comprises seven sections.
Section 2 shed some light on the basic definitions, terminolo-
gies and S-Box engineering. Section 3 highlights the proposed
methodology for effectively acquiring results. Section 4 chalk
out the philosophy of cryptographic profiling of the substitution
layer. Section 5 articulates the obtained results and analysis.
The mitigation and defensive strategies are drafted in section 7.
In the end, section 8 concludes the article.

2. Preliminaries

The non-trivial subspaces U and W of vector space V over
I} partitions the vector space into distinctive cosests. For any
two positive integers (m,n > 2), an S-Box S : FY — [, is a
vectorial boolean function. Whereas m = n, S is a bijection and
a surjection for m > n. For a vector x = (xg, X1 ..., X,) € IF’z’,
the Hamming weight w(x) = Y., x;,V x; = 1, is the sum of
I’s in the vector. Let F,, be the set of all boolean functions with
n variables. For every f € ¥,, w(f) € [0,2"], f is said to be
balanced iff w(f) = 2! 2. S is considered balanced if for
every A € F7, the bias of A - S(x) is zero. The polarity of f(x)

is represented by f(x) = (—=1)/®. The Walsh co-efficient of
Sat (@,v) € Fy x Fyis Ws(9,v) = ,emp(~1)"S@*. The
derivative of S in the direction of # is denoted by Dy = S(x) ®
Sxa9).

2.1. S-Box Engineering

S-Box is pivotal in securing a symmetric primitive; there-
fore, utmost care is taken in the design phase. The genera-
tion of S-Box is categorised into three classes, i.e., Mathemat-
ical Designs [32, 33, 34, 35, 9, 36], Random Generation [37,
38, 39, 40] and Heuristic-Based techniques [41, 42, 43]. The
mathematical design ensures a stringent cryptographic profile,

2 A function with w(f) =0 mod 2" is constant

i.e., differential, linear and avalanche characteristics. Nyberg
proved that the directional derivative of nonlinear permutations
constructed on the principle of an inversion over Galois Fields
has four unique solutions [44]. Moreover, she argued that the
constructions proposed in [45] have a significant distance from
the set of all affine functions. Sometimes the wrong choices of
mathematical primitives for constructing a cryptographic per-
mutation turned out to be disastrous [46, 47]. The permutation
generated by a random phenomenon is not encouraged due to
the weak cryptographic profile. Conor et al. outlined the distri-
bution of differentials and bounded the higher probability in the
Difference Difference Distribution Table (DDT) of a bijective
mapping [48, 49]. Their study establishes that expecting a dif-
ferentially 4 uniform cryptographic profile from randomly gen-
erated permutations is infeasible in polynomial time 3. In the
heuristic-based design process, a designer specifies a particular
expected cryptographic profile and generates random mappings
till the desired candidate is found. These types of constructions
are used in ANUBIS, Skipjack and Kalyna.

2.2. Some Insights on the Backdoored S-Box(es)

For a vector space V over IF7, the corresponding non-trivial
subspaces U, W partitions the vector space. Let F}/U and
IF% /W be the non-empty quotient spaces. There exists a trans-
formation S : F/U + F/W, or simply for every u € U,
w € W, x,y € [}, the relation S(x®u) = ydw holds true. These
types of transformations can be found in the work of Harpes
[50], KG Paterson [21], and Bannier [51]. In addition, we have
not analyzed the hidden sum-based backdoors in our research
[52].

3. Proposed Methodology

For the practical analysis and comparison of backdoored S-
Box layer in ciphers proposed by Bannier and KG Paterson, we
have picked the S-Box(es) from the well-known designs (DES),
APN and optimal classes. The main goal of this study is to
deeply analyse the backdoored nonlinear layer in the construc-
tions available in open literature from the dimensions of 23 dif-
ferent cryptanalytic parameters. For precise compilation, the
similar cryptanalytic vectors are grouped into six unique cryp-
tographic profiles 1. Differential, 2. Linear, 3. Avalanche char-
acteristics, 4. Side Channel Analysis, 5. Hybrid attacks, and
6. Algebraic profile. We have studied the behaviour of mali-
cious construction with respect to the above-mentioned profiles
and bench-marked with the known designs, i.e., DES, APN and
Optimal constructions.

4. Cryptographic Profiling of S-Boxes

Cryptanalytic attacks are modelled to assess the strengths
and weaknesses of the substitution layer. The designer assumes
that the bricklayer transformation in the underlying algorithm

3The probability that the directional derivative of a random permutation will
have 4 unique solutions at maximum is P = 271339330



is highly nonlinear and does not belong to the affine group.
An S-Box with a higher Differential Branch Number (DBN)
and lesser solutions of the directional derivative guarantees im-
munity against the differential cryptanlysis. A thorough analy-
sis is mandatory to penetrate the nonlinear transformations for
extracting meaningful information. The evaluation vectors are
grouped in unique cryptographic profiles to avoid complex jar-
gon and messy things in a 25-dimensional complex parametric
table. Each profile is the abstract representation of similar at-
tack parameters clustered together in subsequent sub-sections.
A fine-grained mathematical design follows a stringent cryp-
tographic profile with nominal (null) deviations from the ideal
profile.

4.1. Differential Profile

Four decades ago, Adi Shamir and Brickell questioned the
security of the S-Box layer in DES [53, 54]. Biham and Shamir
studied the propagation of fixed plaintext differences in DES for
key recovery via differential cryptanalysis (DC) [55]. The prac-
ticality of DC remained infeasible against DES, but it has set a
benchmark for S-Box engineering and changed the way cryp-
tosystems are imagined, designed and evaluated. The compe-
tition(s)/standardisation of symmetric cryptographic primitives
remained focused on the heuristics of DC. It exploits the irreg-
ular differential probabilities of an S-Box. Cryptographic per-
mutations with uniform differential probabilities (perfect non-
linear) exist in a Utopian world; however, the concept of Al-
most Perfect Nonlinear (APN) can also be realised as an al-
ternative [56, 57]. The existence of APN for n — bits such
that (n mod 2 = 0 and n # 6) is an open research problem.
Nyberg invented the differentially 4-uniform permutations with
optimal cryptographic bounds [44]. Seberry et al. [58] com-
mented on the reasons for the weaknesses in the DES S-Box
layer against DC. Furthermore, she argued that the lower dif-
ferential uniformity does not guarantee the security of a Feistel
structure alone, and the frequency of non-zero entries in the
first column of DDT also matters. In [59], the authors defined
‘Robustness’ to assess block ciphers with surjective S-Box as a
nonlinear composition layer. The AES designers introduced the
notion of differential branch number (DBN) for evaluating the
diffusion properties of cryptographic permutation against DC
[5]. With time it has evolved, and more sophisticated versions
have been published as high-order differential attacks [60, 61].
Tezcan et al. suggested that the fixed derivatives in the com-
ponent function lead to undisturbed bits, paving the path for
Truncated and Improbable differential attacks [62, 63]. Rijmen
et al. interpreted the distribution of differential probabilities
of an S-Box when Xor is used as the key addition layer [64].
The study focused on the distribution of differentials in ran-
dom and non-random mappings. Hawkes et al. [49] demon-
strated the differential probabilities in the presence of modular
addition or multiplication as the key mixing mechanism. In
[65], authors introduced the terminology of Modular Differen-
tial Profile (MDP). They claimed that the MDP unearths the
intentional weaknesses, which remained impossible in the pres-
ence of DDT.

Definition 4.1. An S-Box is deferentially d-uniform (0 = 0
mod 2), if for all A¥ € FY\ 0, x € ) and Av € ] in a
2™ x 2" Difference Distribution Table (DDT), 9 is the maximum
number of solutions for Eqn 1.

#ALAv) ={S() @S (x® AY) = Av}

d= max #AD A Q)

AIEFL™ Avel?

DDT’s largest coefficient is upper bounded by 2", and the lower
bound is 2, which is only possible for APN.

Definition 4.2. An m X n S-Box is differential ‘R Robust, if for
0 # 0, and the frequency ¢ # 0 of non-zero entries in the DDT
for AY # 0 and Av = 0.

4

0
9“§=(1—ﬁ)(1—ﬁ) 2

R is bounded by 1 — 515 and (1 — 57) X (1 — ) for an n — bit

bijective and m X n surjective mappings respectively.

Definition 4.3. The percentage of impossible differentials in
the DDT table of an m x n S-Box is denoted by

{xIS (x) & S (x ® AY) = 0}

2m+n

Q5% =

Ve A9 eFT  (3)

Definition 4.4. Let w(?), and w(v) be the hamming weights
of the non-zero vectors @ and v in 7, the differential branch
number (DBN) of S is denoted by [%] > By(S) > 1

Ba(S) = min{w(@ & v) + (S @) &S ()} “

Definition 4.5. Foe every two elements ¢, v € Z X ZJ, a trans-
formation is said to be modular differential uniform Y if the
equation 5 is satisfied for the maximum number of occurrences.

M), =lx: S (x+9)—S(x) mod 2" = v}

YTs= max Np(M%
ST gsoczivezs (M.

)

4.2. Linearity Profile

To suppress the linear relationships in a block cipher Shan-
non inked the idea of confusion and diffusion. Confusion is
achieved by bricklayer transformation in SPN [5], and incom-
patible group operations in Add-Rotate-XOR (ARX) architec-
tures [73]. The designer aims to construct cryptographic permu-
tations with high Non-Linearity (N £) [45]. The attacker abuses
the nonlinear layer by finding statistically good linear approxi-
mations for key recovery. In contrast to DC, Matsui [13] shat-
tered DES by exploiting approximation of the boolean function
with high Linear probability (£LP). Zajac et al. claimed that the
linear probabilities in Linear Approximation Table (LAT) must
be reconsidered as Modular Linear Probability (MLP) in the
presence of modular addition as a key mixing step [65]. In [74],
he also questioned the vulnerable arrangement of S-Box(es) in
the confusion layer. Rijmen et al. introduced the notion of Lin-
ear Branch Number(LBN) for a better assessment of the diffu-
sion layer [5]. For better safeguarding against linear attacks, the



DES-SO | 16 | 0316 | 12 | 2 |37 | 20.52 | DES-SI | 16 | 0363 | 11 2 ]33] 2138
DES [4] DES-S2 | 16 | 0316 | 11 2 | 37]2031 | DES-S3 | 16 | 0.469 | 11 2 | 24| 3144
DES-S4 | 16 | 0387 | 15 2 | 312343 | DES-S5 | 16 | 0363 | 11 2 |33 1953
DES-S6 | 16 | 0340 | 13 2 |35] 227 | DES-S7| 16| 0328 | 10 | 2 |36 2285
APN (66, 44] A-SO | 2 5 2 AST | 2 5 2
AS2Z 2y g 4 2 | stae | AL 2] d 2 - | 5146
(67, 68, 69] A-S4 | 2 4 2 : A-S5 | 2 4 2 :
[70, 71] A-S6 | 2 4 2 - - - - - -
. SO Z 5 2 6211 | SI g g 2 62.11
Optimal [72] 2| 4| L 4| 2 | et | s34 5|5 | 2 | |5859
S4 4 4 2 5859 | S5 4 4 2 58.59
S6 4 4 2 5859 | S7 4 5 2 58.59
KG-SO | 24 | 02246 | 12 1T |41 | 2988 | KG-SI | 24 | 02637 | 16 1 |37 3095
KG-Paterson [21] | KG-S2 | 24 | 02832 | 12 1 | 353046 | KG-S3 | 24 | 02441 | 16 1 |39 2832
KG-S4 | 24 | 02441 | 11 1 |39 3291 | KG-S5 | 24 | 03223 | 18 2| 31| 3047
KG-S6 | 24 | 02930 | 14 1 | 343174 | KG-S7 | 24| 02246 | 16 | 2 |41 31.15
. B4S0 | 4 S|4 2 6210 | B4SI | 6 S|4 2 63.28
Bannier [51] Bas2 | g |72 6 2 " | 6757 | Bas3 |10 ' 72 4 2 " | 7071
B5-S0 32|, _,4| 8 2 88.67 | B5-S1 | 2 5 2 5146
Bannier [51] B5-S2 | 12 6 2 - 16933 | B5-S3 [32]1-2%]| 4 2 - | 8867
B5-S4 | 12 5 2 69.33 | B5-S5 | - - -
. B6-S0 | 16 S| 6 2 7893 | B6SI |16 | 1-275] 6 2 69.99
Bannier [51] B6s2 | 14| 172 8 2 T 7121 - - - - -

Table 1: Differential Profile

designer prefers to use components with good diffusion proper-
ties, i.e., Maximum Distance Separable (MDS) matrix [75]. To
better understand cryptographic permutations, Hendrik identi-
fied the idea of linear structures [76] and explained more elab-
orately in [77, 78]. Ideally, an optimal S-Box must have a large
distance to the set of all affine functions, lower linear probabil-
ity, higher LBN, lower MLP and does not inherit linear struc-
tures.

Definition 4.6. For all the ¢, v # 0 € F} X [/, the equation 6
approximates the m X n S-Box S with non-zero probability.

m—1 n—1
LATs(8,v) "éf#{x x e Fy. i o1 = EP sl v[i]}
i=0 i=0

LPS) Ko« max LAT (0, v)
9,v#
(6)

Definition 4.7. Let ‘A, be the set of all affine boolean functions
with n variables and 8B, contains the component functions of
S. Non-linearity measures the minimum hamming distance be-
tween all the functions in B,, and A,,. NL can be expressed in
terms of Walsh coefficients as,

NLES)=2"" - 1

max _ |Ws (@, v)| (N
2 9eFi\0,veF,

According to the SCV bounds, for n = 0 mod 2, equation 7 is
bounded by 27! =231 and 2! =27 forn=1 mod 2.

Definition 4.8. For all &, v # 0 € F}' X7, such that Wy (4, v) #
0, the linear branch number (LBN) of § is denoted by

Bi(S) = WI(I]];I};& o 0@ + ()} ®)

s U,y
LBN of S is bounded by m — 1 > B)(S) > 2.

Definition 4.9. For all &,v € F;\0 x I}, equation 9 approxi-
mates S with respect to modulo 2" group operations.

LS

oy = XS —9®x—v=0 mod 2"} )

Definition 4.10. For an m X n transformation, v € I is said to
be a linear structure if w(S(x) ® S(x®v)) = 0 mod 2™ holds
for all x € F7'.

Frs=#01 ) SW@S(x®@y) =0 mod 2",V veFy) (10)

xel)

¥ rs is upper and lower bounded by 2"*" and zero respectively
4

4.3. Avalanche Characteristics Profile

A block cipher designed on Shannon’s fundamental philos-
ophy of confusion and diffusion should not leak statistically
significant information about the processed plaintext. Kam and
Davida asserted that in an SPN architecture, the output from the

47‘23 = 2™ corresponds to an affine or linear function



DES-SO | 0281 | 14 | 0 10 2 | DES-SI | 0250 | 16 | 0 11 2

DES [4] DES-S2 | 0250 | 16 | 0 10 2 | DES-S3 | 0250 | 16 | 9 10 2

DES-S4 | 0312 | 16 | 0 10 2 | DES-S5|0250| 18 | 0 9 2

DES-S6 | 0281 | 14 | 0 10 2 | DES-S7[0250| 16 | 0 9 2

ASO 0125 12 | © 5 2 AST | 0.125| 12 | 31 5 2

APN[66, 44] A-S2 | 0187 | 10 | 0 5 2 A-S3 | 0187 | 10 | 0 5 2

[67, 68, 69] A-S4 | 0125 | 12 | 31 5 2 A-S5 | 0125 | 12 | 31 5 2

(70, 71] A-S6 | 0125 | 12 | 31 5 2 ; - ; ; - ;

SO 0250 | 4 9 6 2 ST 0250 | 4 9 3 2

. S2 10250 | 4 9 5 2 S3 | 0250 | 4 0 5 2

Optimal [72] S4 | 0250 | 4 0 6 2 S5 | 0250 | 4 0 5 2

S6 |0250| 4 0 5 2 s7 0250 | 4 0 6 2

KG-S0 | 0250 | 16 | 21 8 2 | KG-SI | 0250 | 16 | 21 8 2

KG-Paterson [21] | KG-S2 | 0250 | 16 | 21 9 2 | KG-83 | 0250 | 16 | 21 | 10 2

KG-S4 | 0250 | 16 | 21 10 2 | KG-S5 | 0250 | 16 | 21 9 2

KG-S6 | 0250 | 16 | 21 9 2 | KG-s7 | 0250 | 16 | 21 8 2

Banmier [51] B4-S0 | 0375 | 2 i i 2 B4S1 | 0375 | 2 5 7 2

B4-S2 | 0375 | 2 6 5 2 B4-S3 | 0500 | 0 19 5 2

B5-S0 | 0500 | O | 289 | 5 2 B5S1 | 0.125 | 12 | 31 6 2

Bannier [51] B5-S2 | 0250 | 8 | 49 5 2 B5-S3 | 0500 | 0 | 289 | 6 2

B5-S4 | 0250 | 8 | 49 6 2 B5-S5 - ; ;

Bannier [51] B6-SO | 0500 | 0 | 189 | 6 2 B6-SI | 0437 | 4 2 6 2
B6-S2 | 0250 | 16 | 105 | 7 2 - - ; ; -

Table 2: Linearity Profile

substitution layer must be influenced by all the input bits [11].
Fiestel informally conceptualised the notion of the avalanche in
SPN designs for gauging the statistical randomness more elab-
orately [79]. The avalanche characteristics ensure that a sin-
gle bit change in the plaintext yields in flipping almost half
of the ciphertext bits. Webster combined the notions of com-
pleteness and avalanche characteristics of an S-Box in Strict
Avalanche Criterion (SAC) for a more precise statistical assess-
ment. Bit Independence Criteria (BIC) is measured to corre-
late the avalanche vectors and understand the single-bit change
propagation in the substitution layer [10]. Zhang et al. con-
cluded that SAC alone is insufficient for the cryptographic eval-
uation of boolean functions [80]. The authors combined the
Absolute Indicator (AI) and Sum of Square Indicator (SOSI)
in the Global Avalanche Criteria (GAC) to fill this gap. Ide-
ally, a good permutation ensures a good avalanche profile by
satisfying the notions of SAC with low relative error, BIC close
to zero, lower Al and SOSI coeflicients. Avalanche character-
istics profiles with higher values advocate a permutation with
weak diffusion properties.

Definition 4.11. For every ## € I} such that w(:}) = 1, the

function f € ¥, satisfies the first order SAC iff ), fA(x) . f(x @
N =0, Vxe ]Fg, the SAC error is denoted by

2 x w(f(x) ® f(x® 1))
2n

SAC error is bounded by 100 > £ > 0.

es% = - 1)x 100

(11)

Definition 4.12. For every x, € [} such that w({}) # 0, the

change in x by ¥ is represented by x @ J. Let A - S(x) be the
coordinate function and A - S(x® ) be the associated avalanche
vector. Bit Independence Criteria (BIC) is the maximum corre-
lation coefficient g between the coordinate vectors and the set
of all avalanche vectors.

BIC = max

(12)
2,9€F;,w(A),w(d)#

O(go(/l -S(x), - S(x@ 1))

BIC isbounded by 1 > BIC > 0

Definition 4.13. Let Af(d)) = X (-1)/@02) yx e F} be
the autocorrelation function. The absolute indicator of is the
maximum autocorrelation of f for all & € [}

max

Af =
IEF, w(@)#0

IA ()] 13)
Definition 4.14. The sum of square indicator of a transforma-
tion is the sum of squares of all non-zero autocorrelation coef-
ficients

3= (A

el

SOSI is bounded by 2% > J > 2273

(14)

4.4. Algebraic Profile

Every system in the universe can be represented in multi-set
mathematical equations. The polynomial time solution of the

53 =2% and J = 22" depicts an affine and bent function respectively



DES-S0 75 48 | 0.466667 | 36736 | DES-S1 | 87.5 | 56 | 0.522223 | 25984
DES [4] DES-S2 75 48 | 0.396825 | 24064 | DES-S3 | 100 64 | 1.000000 | 40960
DES-S4 | 62.5 | 40 | 0.454545 | 47104 | DES-S5 | 62.5 | 48 | 0.509175 | 19456
DES-S6 75 48 | 0.466667 | 34048 | DES-S7 75 48 | 0.544705 | 32128
A-SO 25 8 | 0.333333 | 2048 A-S1 100 32 | 1.000000 | 2048
APN [67, 68] A-S2 25 8 | 0.333333 | 2048 A-S3 25 8 | 0.333333 | 2048
[66, 44, 69] A-S4 100 32 | 1.00000 | 2048 A-S5 100 32 | 1.00000 | 2048
[70,71] A-S6 100 32 | 1.00000 | 2048 - - - -
SO 100 16 | 0.57735 1024 S1 100 16 | 1.00000 | 1024
Optimal [72] S2 100 16 | 0.57735 1024 S3 50 8 0.57735 640
S4 50 8 0.57735 640 S5 50 8 0.57735 640
S6 50 8 0.57735 640 S7 50 8 0.57735 640
KG-SO0 100 64 0.6000 | 65536 | KG-S1 100 64 | 0.600000 | 65536
KG-Paterson [21] KG-S2 100 64 | 0.600000 | 65536 | KG-S3 100 64 | 1.000000 | 65536
KG-54 100 64 1.0000 | 65536 | KG-S5 100 64 | 0.447214 | 65536
KG-S6 100 64 | 0.447214 | 65536 | KG-S7 100 64 | 0.492063 | 65536
Bannier [S1] B4-S0 100 16 | 0.500000 | 1408 B4-S1 100 16 | 1.00000 | 1408
B4-S2 50 16 | 0.577350 | 1408 B4-S3 100 16 | 0.77459 | 4096
B5-S0 100 32 | 1.00000 | 32768 | B5-S1 100 32 | 1.00000 | 2048
Bannier [51] B5-S2 100 32 | 1.00000 | 8192 B5-S3 100 32 | 1.000000 | 32768
B5-S4 100 32 | 1.00000 | 8192 - - - - -
Bannier [51] B6-S0 100 64 | 0.387298 | 65536 | B6-S1 100 64 | 1.00000 | 65536
B6-S2 100 64 | 1.000000 | 65536 - - - - -

Table 3: Avalanche Characteristics Profile

system of equations gives the correct information about the na-
ture of the underlying architecture. A symmetric cryptosystem
is an interpretation of nonlinear boolean equations evaluated by
the degree of the system. Ideally, the system of equations for
a symmetric cryptosystem must not be solvable in polynomial
time. An S-Box is a combination of boolean functions com-
prised of coordinate and component functions. The algebraic
degree of the boolean function is the hamming weight of the
highest exponent in equation 15. A boolean function is con-
sidered constant if no algebraic term is active in the algebraic
normal form (ANF) [81]. The number of terms in the ANF
must be higher to resist interpolation attacks [82, 83]. Ideally,
the frequency of affine and quadratic equations must be zero to
thwart linear structures in the cryptographic permutations.

Definition 4.15. A multivariate boolean function f with n vari-
ables can be represented in a unique Algebraic Normal Form
(ANF) as

f@hanJ=§)%U1xﬂ» @r €Fo,r=(r1,....1)

relf) i=1
15)
The algebraic degree (shortened version degree) d of f is the
highest exponent w(r) such that w(r) # 0 and ¢, # 0.

Definition 4.16. For an m x n S-Box with m variables and 2"*!
component functions, the degree of every function lies in the
range (0,--- ,m). The algebraic spectrum of vectorial mapping
is a multiset with a population of degrees.

#ow(r)=d, 3d €0, --- ,m)} (16)

Definition 4.17. The number of non-zero terms in equation 15
is represented by

sz(thr(nxf], or €Fy,r=(r1,...,1) (A7)

relfy i=1

Definition 4.18. A function g; € g is a non-trivial annihilator
of fif f+«g; =0,VYg; #0,1+ f. Algebraic Immunity (Al) of f
is the minimum degree in g.

4.5. Side Channel Profile

In the early 90s, Paul Kocher hinted that insecure crypto-
graphic implementations substantially threaten the cyber ecosys-
tem. Secure implementation of cryptographic primitives is equally
crucial as the security of the primitive itself. Timing and power
patterns are leaked during the execution of unprotected crypto-
graphic implementation leading to timing and power analysis
attacks [84, 85]. With time these attacks evolved, and more so-
phisticated versions came out in the wild [86, 87, 88]. Sylvain
et al. introduced the concept of Differential Power Analysis
(DPA) Signal to Noise Ratio (SNR) for the quantification of
DPA attacks on block ciphers [89]. The authors noted that an
unprotected implementation is not the only root cause of DPA
attacks; the choice of S-Box parameters also plays a significant
role in the overall leakage. Prouff defined the Transparency Or-
der (TO) by extending the concept of DPA SNR to assess power
leakages in a multi-bit DPA using the hamming weight model
[90]. The main purpose of TO is to select optimal s-boxes



DES-S0 4 4:1,5:14 | 29| 2 | DES-SI 4 43,512 |20 3
DES [4] DES-S2 4 4:1,5:14 | 25| 3 | DES-S3 3 3:1,46,58 | 13| 2
DES-S4 4 4:1,514 | 26| 2 | DES-s5 5 515 20| 3
DES-S6 5 515 18| 3 | DES-S7 4 41,514 |24 3
A-SO 3 331 11| 2 | AsSI 2 231 I )
APN [66, 44] A-S2 4 4:31 1l 2| As3 4 4:31 1| 2
[67, 68, 69] A-S4 2 2:31 50 2 | A5 2 2:31 4| 2
[70, 71] A-S6 2 2:31 51 2 - ; ; - -
SO 2 23,312 | 3| 2 S1 2 23.3:12 | 3| 2
. 2 2 23,312 | 3| 2 S3 3 3:15 5] 2
Optimal [72] S4 3 3:15 4| 2 S5 3 3:15 4| 2
S6 3 3:15 4| 2 s7 3 315 4| 2
KG-S0 2 2:1,32,412 | 6 | 2 | KG-SI 2 2:1,32,412 | 5 | 2
KG-Paterson 211 | KG-52 2 2:1,32,412 | 6 | 2 | KG-S3 2 2:1,32,412 | 4 | 2
KG-S4 2 2:1,32,412 | 5 | 2 | KG-S5 2 21,322,412 | 5 | 2
KG-S6 2 2:1,32,412 | 4 | 2 | KG-87 2 2:1,32,412 | 6 | 2
Bannier [51] B4-S0 2 21,314 | 6 | 2 | B4SI 2 21,314 | 4 | 2
B4-S2 3 3:15 5| 2 | B4S3 1 101,222,312 | 3 | 1
Bannier [51] B3-S0 1 13,228 | 3 | 1 | B5S1 2 231 )
B5-S2 2 27,424 | 7| 2 | B5-S3 1 133,228 | 1| 1

B5-S4 2 27,424 | 7| 2 ; ; ; ;
Banier [51] B6-S0 1 13,560 | 1 | 1 | B6-SI 5 563 24| 2
B6-S2 2 2:7,48,548 | 4 | 2 ; ; ; -

Table 4: Algebraic Profile

based on their algebraic profile to design cryptographic algo-
rithms. Research suggests that s-box(es) with the same cryp-
tographic profile shows different leakage profiles against DPA
attacks. The right trade-off between traditional cryptanalysis
(differential and linear profile) and a DPA attack is still an open
problem.

Definition 4.19. Let S be an m X n mapping, such that ¢ X v #
0 € [P xIF; and associated Walsh coefficient Wy (4, v), the DPA-
SNR can be measured as

n22m

V(o (5, Ws@.9)")

DPA-SNR = (18)

DPA-SNR of an n — bit affine function is +/n. For a balanced
mapping, equation 18 is bounded by 27 > DPA — SNR > 1.

Definition 4.20. For an m X n S-Box, for all v € IF’zl and a €
IF2\O, let Wp,5(0, v) be the Walsh coefficient of S in the direc-
tion of « at point (0, v). For a constant precharge logic ¢ € [},
the transparency order of § is calculated as

4.6. Hybrid Attacks

The Differential and linear attacks were the game changers
for designing and analysing symmetric primitives. Langford
et al. proposed that both attacks can be mounted concurrently
(Differential-Linear Cryptanalysis - DLC) with lower complex-
ity [91]. The DLC distinguisher assumes that a cipher is halved
into independent parts as E; and E;, such that the execution of
the former by selecting chosen text pairs with higher differential
characteristics coincides with the best linear approximations in
E;. The improved results on Serpent and IDEA [92, 93] and
further improvements can be found in [94, 95]. Dunkelman pa-
rameterised the DLC attack by defining the Differential Linear
Connectivity Table (DLCT) to evaluate S-Box [96]. DLCT of
mxn S-Box is 2" x2" table, and the largest entry in the DLCT is
upper bounded by 2"!. The low coefficient ascertains the best
resistance of the underlying substitution layer against the at-
tack. Boomerang attack debunked the philosophy that securing
a primitive against DC by eliminating high probability charac-
teristics in iterated ciphers is sufficient [97]. The Boomerang
Connectivity Table (BCT) was introduced to precisely assess
an S-Box against the boomerang attack [98]. The largest entry
in BCT is bounded by 2", and the higher coefficients showcase
the weakened resistance. The results presented were subjected

1 '
Ts =max||n—2- w(@)| - Yo om Z Z (=1)""Wp,s(0,v)| | o the bijective substitution layer only. Boukerrou identified the

9T
2 acky” | veFs
w(v)=1

19)

Transparency order is bounded by n > 75 > 0

research gap and devised an algorithm to revisit the BCT notion
for the surjective transformation layer as Fiestel-BCT [99]. The
hybrid profile of a suitable substitution layer is accorded with
lower values of DLCT, BCT and FBCT matrices.

Definition 4.21. Consider an input x € [, fixed input differ-



DES-SO | 3.611010 | 2.063492 | DES-S1 4.503024 | 2.063492
DES [4] DES-S2 | 3.855841 2.063492 | DES-S3 | 4.148504 | 2.063492
DES-S4 | 3.688899 | 2.063492 | DES-S5 3.083666 | 2.063492
DES-S6 | 4.661485 2.063492 | DES-S7 | 4.218889 | 2.063492
A-SO 3.24422 4.7096 A-S1 3.380617 4.8387
APN [67, 68] A-S2 3.53550 4.67740 A-S3 3.53550 4.67740
[66, 44, 69] A-S4 3.38060 4.83871 A-S5 3.38060 4.83710
[70, 71] A-S6 3.7139 4.83710 - - -
SO 2.94580 3.46660 S1 2.68530 3.53333
Optimal [72] S2 2.68530 3.600000 S3 2.68530 3.53333
S4 3.108115 3.46670 S5 3.108115 3.46670
S6 3.108115 3.46670 S7 2.80560 3.53333
KG-SO0 4.624828 | 2.063492 | KG-S1 4.643048 | 2.063492
KG-Paterson [21] KG-S2 3313794 | 2.063492 | KG-S3 4.718143 | 2.063492
KG-S4 4.624828 | 2.063492 | KG-S5 3.340733 | 2.063492
KG-S6 3.268115 2.063492 | KG-S7 4.737493 | 2.063492
Bannier [51] B4-S0 3.10855 3.4667 B4-S1 3.10855 3.6667
B4-S2 2.68530 3.4667 B4-S3 1.70500 3.35000
B5-S0 3.015113 4.25806 B5-S1 2917300 | 4.838170
Bannier [51] B5-S2 3.77543 4.596774 | B5-S3 3.015113 4.00000
B5-54 2.73274 4.43548 - - -
Bannier [51] B6-S0 3.6300 490794 | B6-S1 4.07084 5.186508
B6-S2 3.677974 522222 - - -

Table 5: Side Channel Analysis

ence A € [ and output mask y € FJ, the DLCT of S-Box
is

DLCTs(A,y)=l{x:y-Sx)®y-Sx®A) =0} - 21 (20)

For A,y # 0, DLCT uniformity is the maximum number of
occurrences for which equation 20 holds and is upper bounded
by 2" 1.

Definition 4.22. Let S be an n — bit bijection and S~! be the
inverse permutation, then for all x, Ad, Vv € F%, Boomerang
Connectivity Table a 2" x 2" matrix. BCT uniformity is the
highest frequency for which equation 21 is satisfied.

BCT (A, Vv) =
#{x [STTSeV) @S (S (xeAY) @ V) = Aﬁ} 1)

Definition 4.23. FBCT of an S-Box is the double derivative of
x in the direction of Ad, Vv € ]Fg X IF‘E"

FBCT s (A, Vv) = 22)

#{erFg | S(x)GBS(xeBAﬂ)@S(xeBVv)EBS(xeBAﬁeBVv)=0=

FBCT s uniformity is analogous to the differential uniformity
and upper bounded by 2". Ideally, a permutation resistant to the
boomerang cryptanlysis has null solutions for equation 22 for
every A @ Vv # 0 € F) x 7.

5. Discussion and Analysis

A malicious designer claims to inject a cryptographic weak-
ness in the cipher’s nonlinear layer without disturbing the statis-
tical properties. And the backdoor goes undetected by a statis-
tical distinguisher in polynomial time. We argue that whenever
a change in any system is introduced, it changes its direction
from the ideal conditions to accommodate the uncertainty. Af-
ter a thorough cryptographic analysis of the malicious trans-
formations and bench-marking them with the widely accepted
constructions, we have debunked the earlier claims by the ma-
licious designers.

KG Paterson [21]: The robustness to differential cryptanal-
ysis R for 6 X 4 mappings is upper bounded by 0.908. The
engineered s-boxes listed as KG-0 to KG-7 show lower val-
ues of 0.2246 < R < 0.323 as compared to the DES 0.316 <
R < 0.469 in Table 1. The lower values pinpoint the significant
weakness against the DC. The combination of higher 0 = 24,
lower R and lower bounded DBN B4(S) = 1 is an open invi-
tation for differential distinguisher-based attacks. Interestingly,
the highest possible input differences in all these mappings are
A4, A8, AC with corresponding output differences Al, A2, A3.
For KG-0, A4 > Al with probability Pasea1 = &, A4 > A2
with Ppseono = 25 and A4 > A3 with Ppypz = &5, the de-
tails about the probability distribution of remaining mappings
can be found in Appendix-A. The study of modular differential
probability Ts does not provide significant information on the
hidden weaknesses in these mappings, thus strengthening the
idea that weaknesses in the F} remains undetected by the dis-



DES-SO | 24 - 24 DES-S1 20 - 28

DES-S2 | 20 - 20 DES-S3 | 32 - 48

DES [4] DES-S4 | 20 - 28 DES-S5 | 24 - 20
DES-S6 | 20 ; 28 DES-S7 | 24 - 28

A-SO 4 2 0 A-ST 16 2 0

APN [66, 44] A-S2 4 2 0 A-S3 4 2 0
[67, 68, 69] A-S4 16 2 0 A-S5 16 2 0
[70, 71] A-S6 16 2 0 - - - -
SO 8 16 8 S1 8 16 8

. 2 8 16 8 S3 4 6 4
Optimal [72] S4 4 10 4 S5 4 6 4
S6 4 8 4 s7 4 10 4

KG-S0 ) - 64 KG-S1 32 - 64

KG-S2 32 - 64 KG-S3 32 - 64

KG-Paterson [21] | 5 g4 32 - 64 KG-S5 32 - 64
KG-S6 32 - 64 KG-S7 32 - 64

Bannier [51] B4-50 8 16 8 B4-SI 8 16 8
B4-S2 4 16 4 B4-S3 8 16 8

Bannier [51] B3-S0 16 32 32 B35-SI 16 2 0
B5-S2 16 32 32 B5-S3 16 32 32

B5-S4 16 32 32 ; - - -
Bannier [51] B6-50 0 24 20 B6-S1 28 20 20
B6-S2 32 32 32 ; - - -

Table 6: Hybrid Attacks Profile

tinguisher based upon modular differences [65]. The modular
differences-based backdoor can be detected with the help of Y.
Similarly, the linear probabilities in table 2 show small devia-
tions compared to the DES. Due to ¥ s # 0, these mappings
contain intersectable linear structures responsible for partition-
ing the input space to the output space, making them vulnera-
ble to invariant subspace attacks and partitioning cryptanalysis
with high probability. Analogous to Ts, the modular-based lin-
ear approximation tool L( 9) does not extract significant infor-
mation on the intentional weaknesses in these mappings. Dis-
cussing the notions of completeness in table 3, it is important
to note that KG-0 to KG-7 fails to satisfy them, and the average
SAC error is g % = 100. The average absolute indicator meets
the upper bound, i.e., Ag = 2° and the sum of square indica-
tor coefficient I = 65536 is greater than J = 40960 for DES.
Higher BIC coefficients indicate that the avalanche vectors are
highly correlated and violate the basic philosophy of S-box en-
gineering. The algebraic analysis shows that the component
functions are quadratic. The degree 2 functions are responsible
for introducing the linear structures in an S-box [62]. In contrast
to DES, the side channel profile (Table 5) is not problematic
in these malicious constructions. Thanks to the hybrid attacks
evaluation tools proposed in [96, 98, 99], dissecting these map-
pings from the perspective of high-order differential cryptanal-
ysis, we have shown that the FBCT and DLCT coefficients are
attaining the upper bound in Table 6 cross-checked with Table
A.9 and A.8 in Appendix A. Ideally, to resist hybrid attacks, the
designer selects design primitives to suppress the coeflicients
in equation 20, 21 and 22. Interestingly, we exposed the hid-

den subspaces in these mappings when we searched the higher
coefficients and associated indexes in FBCT, DLCT and DDT

tables A.9, A.8 and A.7 in Appendix A. We conclude that the

hidden subspaces smooth the way for high-order differential at-

tacks.

Bannier [51]: Similar to Kenny’s mappings, Bannier engineered
4, 5 and 6-bit backdoored permutations with hidden subspaces.

Consequently, the cryptographic profiles highlight remarkable

patterns in respective evaluation tables. Looking into the 11%

non-zero differential coefficients of B5-S0 and B5-S3 in differ-

ential profile in table 1 and B.10, A1 — A6 with probability

Prtsas = 1, A4 — A2 with probability Prasar =1, A5 —> A4
with probability Pas,as = 1 and AB +— A8 with probabil-

ity PAB»—)AS = 1, Al18 — Al15 with probability PAISHAIS = 1,

A1C — A1D with probability Pajcaip = 1 respectively. The
unitary probabilities are solely responsible for potential weak-

nesses against the DC. Examining the higher linear probabili-

ties in table 2 and closely inspecting the indexes of maximum
probabilities in table B.14, they are synced with the hidden sub-

spaces. Analogous to Kenny’s mappings, s # 0, the compo-

nent functions of these constructions are filled with linear struc-

tures, resulting in linear independent vectors when intersected.

The independent linear vectors lead to preservable input and
output space partltions Consequently, the modular cryptana-
Iytic vectors L 9., and T remain silent on this vulnerability.

Inspecting the &g <% = 100 and unity BIC in table 3, the dissat-
isfaction of desired completeness properties is evident. These
findings are supported by the failure of global avalanche char-
acteristics (GAC) in the light of achieved upper bounded Ag



and J in table 3. The annoyance of avalanche characteristics is
closely linked with affine and quadratic equations in these per-
mutations ®. The investigation of the side channel profile in ta-
ble 5 depicts the weaknesses against DPA attacks. These inten-
tionally weakened permutations sprout a plethora of informa-
tion when inspected with hybrid cryptanalytic tools, i.e., DLCT,
BCT and FBCT in table 6. These mappings give the green sig-
nal for hybrid attacks due to the resultant upper bounded DLCT,
FBCT and BCT coefficients, 2"~! and 2", respectively. Reverse
engineering the indices with high BCT, FBCT, and DLCT co-
efficients in B.11, B.13 and B.12 connect us with the output
subspace if present in the S-Box. Equivalently, it is also true
that the information on of subspaces gives leverage to the ma-
licious designer to intelligently craft the datasets for attacking
the cipher with less complexity.

6. Data Availability

The verifiable detailed cryptographic analysis of the back-
doored mappings, along with the 4 — bit optimal constructions,
DES and APN, is uploaded and available to the open public via
accessible link 7.

7. Mitigation Techniques

The root cause of all the problems investigated in the weak-
ened mappings is the intentional existence of linear structures,
giving rise to the preservable linear subspaces and weakened
avalanche characteristics. If we closely inspect the lightweight
NIST competitors, the finalists are not free of the linear struc-
tures, but they don’t give rise to the preservable subspaces in
the respective ciphers. The main objective is to flush the de-
sign strategies responsible for the birth of linear structures, i.e.,
affine and quadratic equations. The utilization of highly non-
linear functions in the confusion layer without the existence
of preservable linear subspaces is an effective remedial mea-
sure. Furthermore, the mappings with good differential and lin-
ear profiles but depicting visible lines in the DCLT, FBCT and
BCT must be struck off without any reasonable doubt.

8. Conclusion

The realistic existence of design-level backdoors in crypto-
graphic algorithms can never be ignored. A malicious designer
embeds the mathematical weakness in an algorithm without
harming the integrity of known cryptanalytic evaluation param-
eters. However, we believe that whenever any abnormality is
introduced in a system, it shifts the direction to accommodate
the intentional change. From the detailed cryptographic analy-
sis, the changing behaviour of cryptographic evaluation vectors
is evident in the malicious mappings proposed by Kenny and

0B5-S1 is an APN while B4-S0, B5-S0, B5-S3 are affine permutations

"https://nustedupkO-my.sharepoint.com/:f:/g/personal/
sfahd_phdismcs_student_nust_edu_pk/EnfJdtEemA5Dj_
j61TitrlUBGbQVvHueMteRmRtnKkAD7g?e=sccgHX
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Bannier. Most mappings explored in this work tend to show
better resistance against linear and differential cryptanalysis.
The designer compromised the degree of component functions
to insert linear structures, further deteriorating the complete-
ness properties translated into weak avalanche characteristics
and highly correlated vectors. It is presumed that the security
claims pertaining to the conventional statistical cryptanalysis
made by the cryptographic engineer must not be considered
alone. The hidden weaknesses may come to light when anal-
ysed with a multifaceted lens. The analysis from multiple per-
spectives is mandatory for unwrapping the multilayered infor-
mation regarding intentional vulnerabilities. The backdoored
mappings are vulnerable to hybrid cryptanalytic attacks with
high probability. The evaluation tools for detecting the modular
layer backdoors remain ineffective in exposing the combinato-
rial backdoors in block ciphers, and vice versa.
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Appendix A. KG Paterson Mappings

The imprimitive permutations-based trapdoor 6 X 4 map-
pings suggested by Paterson can be accessed here [21]. For
clarity, these mappings are numbered from KG-0 to KG-7. The
detailed cryptographic profiling of the 8 proposed mappings is
accessible via the URL mentioned in section 6. For proof of
concept and visualisation of the cryptographic vulnerabilities
in these mappings, KG-0 has been elaborated in table A.7, A.8
and A.9.

Appendix B. Bannier Permutations

Bannier designed 4, 5 and 6-bit trapdoor bijections in his
dissertation [51]. The permutations numbered from B4-S0 to
B4-S3 represent a 4-bit family, while B5-SO to B5-S4 and B6-
S0 to B6-S2 belong to 5 and 6-bits, respectively. The extensive
cryptographic profile of the 12 backdoored mappings is acces-
sible via URL in the section 6. For a better understanding of the
DDT, FBCT, BCT DLCT, and LAT tables of B5-S0 are given in
table B.10, B.11, B.12, B.13, and B.14. The intersecting grey
lines with highlighted coefficients in the respective tables depict
the weakest links against the cryptanalytic attacks.
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Table A.8: KG-0 DLCT

Ad/Av |O 1 2 3 4 5 6 7 8§ 9 10
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Table A.9: KG-0 FBCT
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