
Fair Delivery of Decentralised Randomness Beacon

Runchao Han12 and Jiangshan Yu1

1 Monash University
2 CSIRO-Data61

me@runchao.rocks, jiangshan.yu@monash.edu

Abstract. The security of many protocols such as voting and blockchains
relies on a secure source of randomness. Decentralised Randomness Bea-
con (DRB) has been considered as a promising approach, where a set
of participants jointly generates a sequence of random outputs. While
the DRBs have been extensively studied, they failed to capture the ad-
vantage that some participants learn random outputs earlier than other
participants. In time-sensitive protocols whose execution depends on the
randomness from a DRB, such an advantage allows the adversary to be-
have adaptively according to random outputs, compromising the fairness
and/or security in these protocols.
In this paper, we formalise a new property, delivery-fairness, to quan-
tify the advantage. In particular, we distinguish two aspects of delivery-
fairness, namely length-advantage, i.e., how many random outputs an ad-
versary can learn earlier than correct participants, and time-advantage,
i.e., how much time an adversary can learn a given random output ear-
lier than correct participants. In addition, we prove the lower bound
of delivery-fairness showing optimal guarantee. We further analyse the
delivery-fairness guarantee of state-of-the-art DRBs and discuss insights,
which, we show through case studies, could help improve delivery-fairness
of existing systems to its optimal.

1 Introduction

Decentralised Randomness Beacon (DRB) is a protocol where a set of partic-
ipants jointly generates a sequence of random outputs. It has been a promis-
ing approach to provide secure randomness to other protocols and applications.
There have been emerging DRB proposals [6, 22, 29, 41] and deployed DRB sys-
tems [3,5], and DRBs have been used by many high-financial-stake applications
such as blockchains [21,30,33,35], lotteries [11], games [14,17], and non-fungible
tokens (NFTs) [1, 4].

Applications have two common approaches to use a DRB, namely 1) by using
a random output at a certain height which the DRB has not reached yet, and
2) by using a random output produced near a certain time in the future. For ex-
ample, Polygon Hermez [13] and Celo [2] used the 697500-th random output [10]
and the random output produced near 29/10/2021 9am UTC [12] of Drand [6]
for their zkSNARK trusted setup, respectively.

Existing DRBs are designed with three main security properties in consid-
eration, namely consistency, liveness and unpredictability [22, 29]. Consistency
states that all correct participants (who generate random outputs) share the
same view on a unique ledger, i.e., sequence of random outputs. Liveness states
that all correct participants produce random outputs no slower than a certain
rate. Unpredictability states that no participant can distinguish a future random
output from a uniformly sampled random string of the same length.

However, existing adversary models and security properties do not cover the
unfair case resulted by the difference in the timing of learning a random output.
In particular, when a random output is generated, the first “creator”, or “ob-
server”, learns its value earlier than others. Such an advantage is not desired in
practice. In time-sensitive protocols whose execution depends on the randomness
from a DRB, the advantage allows an adversary to behave adaptively according
to random outputs, compromising the fairness and/or security in these proto-
cols. In the above example of zkSNARK trusted setup, if the adversary learns the
random output before the trusted setup starts, then Hermez’s and Celo’s trusted
setup will be insecure against an adaptive adversary [10,15,25]. Another example
is the on-chain lottery which determines the winner out of all players by using
random outputs from a DRB. If the adversary learns the random output before
the lottery starts, then it learns whether it will win the lottery in advance, and
thus can decide whether to participate in the lottery according to its outcome.

1.1 Related works

A systematic and formal study on the advantage of learning random outputs
faster in DRB is still missing. Existing DRB models only focus on certain attacks
leading to certain aspects in this advantage [22, 30]. Related security properties
in other primitives do not cover this advantage, as they either concern eventual
delivery without quantifying the advantage [27], or concern the advantage among
correct participants excluding Byzantine participants [28,37–39].

Related properties in DRBs. Previous research either informally studies
such advantage, or formally studies certain attacks leading to this advantage.
Ouroboros Praos [30] states that a DRB is leaky if the leader can learn the ran-
dom output in the next epoch. However, the “leaky” definition is embedded in
the ideal functionality of DRB rather than stated separately, disallowing specific
analysis.

RandPiper [22] combines the “leaky” property into the unpredictability prop-
erty, yielding d-unpredictability. It states that in the beginning of an epoch, the
adversary can learn at most d future random outputs in advance. However, d-
unpredictability only captures length-advantage, i.e., how many random outputs
the adversary can learn earlier than correct participants, but not time-advantage,
i.e., how much time the adversary can learn a given random output earlier than
correct participants. In addition, RandPiper only studies d-unpredictability un-
der the private beacon attack where the adversary solely samples random out-
puts, neglecting other possible attacks on delivery-fairness.

2

SPURT [29] defines the “nearly simultaneous beacon output” as a part of the
unpredictability property. It states that all correct participants learn a random
output within a constant time after the adversary learns it. The “nearly simulta-
neous” notion only captures the time-advantage but not the length-advantage. It
also falls short of quantifying the time-advantage only asymptotically, and thus
does not support concrete analysis.
Guaranteed output delivery and fairness in Multiparty Computation.
Guaranteed output delivery (GOD) and fairness are properties of multiparty
computation (MPC) protocols, where participants jointly compute a function of
their inputs securely under a subset of corrupted participants. GOD specifies
that corrupted participants cannot prevent the correct participants from receiv-
ing the function’s output. Fairness specifies that corrupted participants should
receive the function’s output if and only if correct participants receive it. GOD
and fairness are equivalent when broadcast channels are accessible [27], which
is our setting. However, these two properties are usually analysed under dis-
crete time models which only concern eventual delivery, and thus do not allow
quantitative analysis.
Consistent length in Blockchain. Blockchain protocols allow participants
to jointly maintain a blockchain. The consistent length property [28, 37–39] of
blockchain protocols specify that if a correct participant’s blockchain is of length
ℓ at time t, then any correct participant’s blockchain at time t+ψ is of length
at least ℓ. Blockchains trivially satisfy the property in synchronous networks, as
a correct participant will send its chain to other correct participants within the
synchronous latency ∆.

Adapting the consistent length property from blockchain protocols to DRBs
suffers from two limitations. First, it only considers the advantage between cor-
rect participants rather than the advantage of an adversary. In particular, the
adversary may grow its blockchain faster than correct participants, while with-
holding its blockchain. This makes it a liveness property rather than a security
property. Second, it only concerns the time advantage, i.e., how much time the
adversary learns blocks earlier than correct participants, but does not concern
how many blocks the adversary can learn earlier than correct participants.

1.2 Our contributions

In this paper, we initiate the study of delivery-fairness, a new security property
capturing the advantage that some participants learn random outputs earlier
than other participants in DRBs. We formalise delivery-fairness, prove its lower
bound, and analyse the delivery-fairness guarantee of state-of-the-art DRBs, in-
cluding Drand [6], HydRand [41], GRandPiper [22] and SPURT [29]. Through
the analysis, we identify attacks on delivery-fairness and obtain several insights
for improving delivery-fairness. The insights allow us to suggest lock-step vari-
ants for HydRand and SPURT with better delivery-fairness (where SPURT
achieves the optimal value), without affecting system models or security prop-
erties. Table 1 summarises our results.

3

Table 1: Summary of evaluation results under synchronous networks.

Protocol No DKG Fault tolerance
Comm. compl. Latency Delivery-fairness¶

Best Worst Best Worst ω ψ

Existing
work

Drand [6] ✗ n=2f+1 O(n2) O(n2) δ ∆ ∆
δ
−1 ∆−δ

Lock-step Drand [7] ✗ n=2f+1 O(n2) O(n2) ∆ ∆ 1 ∆−δ

HydRand [41] ✓ n=3f+1 O(n2) O(n3)† 3δ 3∆ ∆
3δ
+f (3f+1)∆−δ

GRandPiper [22] ✓ n=2f+1 O(n2) O(n2) 11∆ 11∆ f+1 (11f+1)∆−δ

SPURT [29] ✓ n=3f+1 O(n2) O(n2) 7δ (f+7)∆∗ ∆
7δ

∆−δ

This
paper

Lock-step HydRand ✓ n=3f+1 O(n2) O(n3)† 3∆ 3∆ f+1 (3f+1)∆−δ

Lock-step SPURT ✓ n=3f+1 O(n2) O(n2) 7∆ (f+7)∆∗ 1 ∆−δ

¶ In (ω,ψ)-delivery-fairness (Definition 5), the delivery-fairness is better when ω and ψ are smaller.
When ω = 1 and ψ = ∆− δ, the delivery-fairness is optimal, where δ and ∆ are the actual network
latency and the latency upper bound, respectively. In practice, δ<<∆.
† In the worst case, the adversary does not reveal its committed secrets for f consecutive epochs. In the
next epoch, the correct leader needs to broadcast f O(n)-size recovery certificates to all participants,
leading to O(n3) communication complexity.
∗ In the worst case, the adversary controls f consecutive leaders and aborts these f consecutive epochs
before a correct epoch with 7∆, leading to (f+7)∆ worst-case latency.

Delivery-fairness and its lower bound. We base our study on existing DRB
models [22, 29, 31]. As specified in §2, we consider a fixed set of n participants
and an adversary who can corrupt up to f of them, where f is protocol-specific.
The network is synchronous, where messages are delivered in at least the actual
network latency δ and at most a known upper bound ∆. Participants jointly
execute the DRB protocol to agree on a unique ledger containing a sequence
of random outputs securing three properties, namely consistency, liveness and
unpredictability.

Atop the DRB model, we provide the first formal definition of delivery-
fairness in §3. The delivery-fairness concerns two aspects of advantage, namely
the length-advantage, i.e., how many random outputs an adversary can learn
earlier than correct participants, and the time-advantage, i.e., how much time
an adversary can learn a given random output earlier than correct participants.

Definition 1 (Delivery-fairness, informal; formalised in Definition 5).
A DRB protocol satisfies (ω,ψ)-delivery-fairness if the following holds for any
two participants (pi,pj) and any time t, except for negligible probability:
– ω-length-advantage: at time t, pi’s ledger pruning the last ω random outputs

precedes or is equal to pj’s ledger; and
– ψ-time-advantage: pi’s ledger at time t precedes or is equal to pj’s ledger at

time t+ψ.

When ω and ψ are smaller, the length-advantage and time-advantage of
any participant over the other participants are smaller, thus the DRB provides
stronger delivery-fairness guarantee. We stress that delivery-fairness is achiev-
able in synchronous networks, where messages are delivered in at least the actual
network latency δ and at most a known upper bound ∆. Otherwise, the adver-
sary can arbitrarily delay messages in asynchronous networks or the asynchrony

4

period in partially synchronous networks, increasing ω and ψ to values that are
impractical.

We then prove the lower bound of delivery-fairness in synchronous networks,
where ω and ψ are at least 1 and ∆−δ, respectively. The intuition behind the
proof is that, if the time difference of learning a random output between any two
participants is smaller than ∆−δ, then the group of Byzantine participants can
produce valid random outputs without communicating with correct participants,
contradicting to unpredictability or consistency.

Theorem 1 (Delivery-fairness lower bound, informal; formalised in The-
orem 2). There does not exist a secure DRB protocol that achieves (ω,ψ)-
delivery fairness with ω<1 or ψ<∆−δ under synchronous networks.

Analysis of delivery-fairness of existing DRBs. With the formalisation, we
analyse the delivery-fairness of state-of-the-art DRB protocols, namely Drand [6],
HydRand [41], GRandPiper [22] and SPURT [29], in §4. Table 1 summarises the
results. Through the analysis, we identify attacks on delivery-fairness and ob-
tain several insights for improving delivery-fairness. Specifically, we identify a
new attack called latency manipulation attack that can weaken the delivery-
fairness in the original versions of Drand, HydRand and SPURT. This attack
is rooted in their non-lock-step design that participants can make progress once
receiving sufficient messages, without the need of waiting for a fixed time pe-
riod. Following this observation, we suggest lock-step variants for HydRand and
SPURT that resist against the latency manipulation attack and thus achieve
the better delivery-fairness (where SPURT achieves the optimal value), without
affecting system models or security properties. In addition, a previously known
unpredictability-focused attack, which we call private beacon attack, can also
weaken the delivery-fairness of HydRand and GRandPiper. The private beacon
attack is rooted in their design that the epoch leader solely samples the entropy
for the random output. To resist against the attack, the entropy should instead
be sampled by a group of at least f+1 participants, where f is the number of
Byzantine participants.

Implications of our results. Our analysis suggests that fair delivery of ran-
dom outputs is a practical concern for DRB-dependent protocols and applica-
tions, in terms of both deployment environment and latency. First, when the
security or fairness of a protocol depends on the delivery-fairness of its underly-
ing DRB, then it has to be deployed under a synchronous network where practical
delivery-fairness is achievable. Second, DRB-dependent protocols require a ran-
dom output to be “future enough” such that it remains unknown to everyone at a
given time. Our defined delivery-fairness quantifies the minimum waiting time of
a future random output, affecting the latency of the DRB-dependent protocols.

5

2 Model

2.1 System model

Participants. We consider a fixed number of n participants. Each participant
pk∈ [pn] generates a pair of secret key and public key (skk,pkk), and is uniquely
identified by its public key in the system. We assume each participant has the
knowledge of other participants’ public keys.
Adversary. We consider a static adversary A. In the beginning of the protocol,
A can corrupt at most f participants, where f is a corruption parameter sub-
jected to the protocol design. After that, A cannot change the set of corrupted
participants or corrupt more participants. A fully controls corrupted partici-
pants, including observing the participant’s internal state and controlling its
messages and outputs, without any latency. A can read all messages between
participants, but cannot modify or drop messages sent by correct participants.
We also refer to a corrupted participant as Byzantine participant. We assume
A is probabilistically polynomial-time (PPT), and thus cannot break standard
cryptographic primitives.
Network model. We assume synchronous networks: A can decide to deliver
any message in at least the actual network delay δ and at most a known upper
bound ∆. In practice, δ<<∆.

We will conduct analysis assuming synchronous networks for all DRBs, al-
though some of them can work in relaxed network models. The reason is that
the delivery-fairness is a concrete measure and is meaningful only in synchronous
networks. Otherwise, in asynchronous networks or the asynchrony period in par-
tially synchronous networks, the adversary can arbitrarily delay messages to
increase its advantage, leading to impractical delivery-fairness guarantee. Conse-
quently, applications that require time-sensitive random outputs will be insecure
or unfair. Thus, when the application scenarios demand a delivery-fair DRB, the
application and DRB have to be deployed in synchronous networks.

2.2 Components of DRBs

The set of n participants continuously execute the DRB protocol Π to produce a
sequence of random outputs. Specifically, participants jointly produce and agree
on a ledger formed as a sequence of blocks. Each agreed block has to meet a
verification predicate. Each block deterministically derives a random output,
which can be extracted via a random output extraction function. The verifica-
tion predicate and random output extraction function are accessible to anyone
inside and outside the system, and their instantiation depends on the concrete
protocol design.
Ledger. A ledger T is formed as a sequence of blocks. Let T [e] be the e-th block
in the ledger T . Let |T | be the length of ledger T . Let T [p :q] be the ledger from
p-th block to (q−1)-th block of ledger T . Parameter p and q can be set empty,
indicating the beginning and the end of the ledger, respectively. Let T ⌈ℓ=T [:−ℓ]

6

be the ledger from pruning the last ℓ blocks of ledger T . We denote a ledger T
is a prefix of or equals to another ledger T ′ as T ⪯T ′.
Epoch. DRBs are executed in epochs. In each epoch, participants are expected
to produce and agree on a new block. The time period of an epoch can be fixed
by the protocol design, or be variant depending on Byzantine behaviours and/or
actual network delay. In leader-based DRBs, in each epoch, a leader is elected
to drive the protocol execution. In some leader-based DRBs (e.g., SPURT [29]),
a Byzantine epoch leader can abort the protocol, so that no block is produced
in that epoch.
Verification predicate. To be agreed, a block has to meet the verification
predicate FV (·). In FV (κ,T,B)→ {0,1}, given security parameter κ, ledger T
and block B as input, outputs 1 if B is a valid successor block of T . A ledger T
is valid in κ if for all ℓ∈ [|T |−1], FV (κ,T [:ℓ],T [ℓ])=1. Let T ti be participant pi’s
longest valid ledger at time t.
Random output extraction function. Each block contains a random out-
put, which can be extracted by the random output extraction function FR(·). In
FR(κ,T)→Re, given security parameter κ and a ledger T of length |T |=(e−1)
as input, FR(κ,T) can derive a random output Re. That is, every block Be is
associated with a random output Re.

2.3 Security properties of DRBs

A DRB protocol Π should satisfy the following properties, namely consistency,
liveness, and unpredictability.
Consistency. Consistency ensures that correct participants agree on a unique
ledger, and thus a unique sequence of random outputs. The consistency defini-
tion follows the common prefix property in blockchain protocols [32], where the
ledgers of any two correct participants are same except for the last ℓ blocks.

Definition 2 (ℓ-consistency, from [32]). For any κ, there exists a negligible
function negl(·) such that the following holds except for probability negl(κ). For
any two correct participants pi and pj (i=j is possible) at time t,

(T ti)⌈ℓ⪯T tj ∨(T tj)⌈ℓ⪯T ti

Liveness. Liveness ensures that correct participants produce new random out-
puts at an admissible rate. The liveness definition follows the chain growth prop-
erty in blockchain protocols [34], where for any period of t time a correct par-
ticipant’s ledger grows at least τ blocks.

Definition 3 ((t,τ)-liveness, from [34]). For any κ, there exists a negligible
function negl(·) such that the following holds except for probability negl(κ). For
any correct participant pi and time t′≥ t,

|T t
′

i |−|T t
′−t

i |≥ t·τ

7

Unpredictability. Each random output should be unpredictable: given an
agreed ledger, the adversary cannot predict the next random output before it is
produced. If the adversary can predict future random outputs, then it may take
advantage in randomness-based applications. The unpredictability definition fol-
lows the paradigm that without protocol transcripts from correct participants,
no adversary can distinguish between a future random output of the DRB and
a randomly sampled string of the same length [29,31].

Definition 4 (Unpredictability, from [29]). A DRB protocol Π is unpre-
dictable if for every κ, there exists a negligible function negl(·) such that the
following holds. Assuming all participants have agreed on a ledger of e consec-
utive random outputs R1,...,Re. For any future random output Re′ where e′>e
and any probabilistic polynomial-time (PPT) adversary A, if A does not have the
knowledge of protocol transcripts associated with Re′ from correct participants,
then

|Pr[A(Re′)=1]−Pr[A(r)=1]|≤negl(κ)

, where r is a randomly sampled κ-bit string, and A(x)→{0,1} outputs 1 if A
guesses x to be the random output in epoch e′ and otherwise 0.

2.4 Performance metrics

DRBs concern two performance metrics, namely communication complexity and
latency.

Communication complexity. Communication complexity is the total amount
of communication required to complete a protocol [43]. In DRBs, the communi-
cation complexity is quantified as the amount of bits transferred among partici-
pants for generating a random output. A protocol may have different communi-
cation complexity in the best-case and worst-case executions.

Latency. Latency is the time required to complete a protocol. In the context of
DRBs, the latency is quantified as the time participants take to generate a ran-
dom output. Similarly, a protocol may have different latencies in the best-case
and worst-case executions.

3 Delivery-fairness property

In this section, we formally define the delivery-fairness property. The delivery-
fairness concerns two aspects of the advantage: length-advantage and time-advantage.
Length-advantage concerns how many random outputs the adversary can learn
earlier than correct participants. Time-advantage concerns how much time the
adversary can learn a random output earlier than correct participants. We also
prove the lower bound of the delivery-fairness, representing the optimal guaran-
tee.

8

3.1 Defining delivery-fairness

We define delivery-fairness through two strawman definitions that are intuitive
but incomplete. We begin with the fairness notion in multiparty computation
(MPC) protocols that, if the adversary receives the output, then correct partic-
ipants eventually receive the output [40]. We then generalise the fairness notion
to the continuous time model, making it consistent with the DRB settings.
Attempt #1: Time advantage. We first consider relaxing the round-based
fairness definition to the continuous time model by introducing a time parame-
ter ψ. Namely, if a participant learns a random output at time t, then all other
participants learn this random output no later than time t+ψ. However, this
definition fails to capture that the adversary may learn more than one random
outputs in advance than correct participants.
Attempt #2: Length and time advantage. We then consider capturing
both length and time advantage. Let ω be the length parameter and ψ be the
time advantage parameter. A DRB protocol satisfies (ω,ψ)-delivery-fairness if
for any two participants pi,pj : 1) pi’s ledger is longer than pj ’s ledger by no
more than ω random outputs, and 2) pj ’s ledger at time t+ψ is no shorter than
pi’s ledger at time t.

However, the definition does not specify whether the last ω random outputs
of pj at time t+ψ should be identical to the last ω random outputs of pi at time
t or not. If not, then this contradicts to the consistency property.
Final definition: Length and time advantage with consistency. We
then add the consistency guarantee to the definition in attempt #2, leading to
our final definition. Specifically, delivery-fairness concerns the adversary’s length
advantage and time advantage, parameterised by ω and ψ, respectively. The ω-
length-advantage states that the longest valid ledger pruning the last ω blocks
is a prefix of the valid ledger in any participant’s view at any time. The ψ-time-
advantage states that the shortest valid ledger at time t should “catch up with”
all participants’ ledgers at time t after the time period of ψ. When ω and ψ are
smaller, the DRB provides stronger delivery-fairness guarantee.

Definition 5 ((ω,ψ)-Delivery-Fairness). A DRB protocol Π satisfies (ω,ψ)-
delivery-fairness if for every κ, there exists a negligible function negl(·) such
that the following holds for any two participants pi,pj and any time t except for
probability negl(κ):
– ω-length-advantage: (T ti)⌈ω⪯T tj
– ψ-time-advantage: T ti ⪯T

t+ψ
j

3.2 Lower bound of delivery-fairness

We prove that (1,∆−δ)-delivery-fairness is the optimal delivery-fairness guar-
antee. Specifically, we prove the following theorem.

Theorem 2 (Delivery-fairness lower bound of DRB). There does not ex-
ist a DRB protocol that simultaneously satisfies the following in synchronous
networks:

9

– consistency, liveness and unpredictability as in §2; and
– (ω,ψ)-delivery fairness with ω<1 or ψ<∆−δ

Proof. Assuming such a DRB protocol exists. Assuming at time t, all partici-
pants have agreed on a ledger of e consecutive random outputs R1,...,Re, and
start producing Re+1. A sets the latency among correct participants to be ∆, the
latency of messages from any corrupted participant to any correct participant
to be ∆, and the latency of messages from any correct participant to any cor-
rupted participant to be δ. By unpredictability, without messages from correct
participants, corrupted participants cannot learn the value of Re+1. Thus, the
fastest possible way for corrupted participants to learn a random output is to
get messages from correct participants, which is at least t+δ. Given the latency
set by A, a correct participant receives messages only at t+∆.

By the assumption that the time-advantage between correct and corrupted
participants is smaller than ∆−δ, correct participants learn the random output
Re+1 before t+∆. Thus, a correct participant has to learn the random output
R′
e+1 that satisfies the verification predicate. If R′

e+1 =Re+1, then this means
that a participant can solely produce random outputs without interacting with
the other participants. Thus, f corrupted participants can also produce random
outputs without interacting with the other correct participants, contradicting to
the unpredictability property. If R′

e+1 ̸=Re+1, then this means that f corrupted
participants can produce valid random outputs conflicted with those from the
other participants, contradicting to the consistency property.

4 Delivery-fairness analysis of existing DRBs

In this section, we provide the delivery-fairness analysis of state-of-the-art DRB
protocols, namely Drand [6], HydRand [41], GRandPiper [22] and SPURT [29].
Table 1 summarises the results. Appendix B provides the full specifications and
analysis of the DRBs.

4.1 Drand

Summary of design. Drand a DRB protocol based on the BLS threshold sig-
nature [24]. It allows a threshold number of participants in a group to jointly sign
a message, where the signature is publicly verifiable. Appendix A.1 summarises
the syntax of BLS threshold signature.

In Drand design, participants perform a distributed key generation (DKG) to
generate secret keys, and agree on an initial signature σ0. Then, for each epoch
e, participants jointly generate a BLS threshold signature σe over e and the last
epoch’s BLS signature σe−1 (or σ0 at the first epoch). An epoch’s random output
Re is the calculated as H(σe), where H(·) is a hash function. Drand requires a
DKG due to the usage of threshold signature, and achieves the fault tolerance
capacity of n=2f+1. Appendix B.1 provides the full specification of Drand.

10

In the beginning of the DRB protocol, the adversary A does the follows.
1. A chooses n−2f correct participants.
2. A sets the latency of messages among f corrupted participants and n−2f

correct participants to be δ.
3. A sets the latency of messages from, to and among the other f correct

participants to be ∆.

Fig. 1: Latency manipulation attack on leaderless DRBs.

f

1

f

Correct participantsCorrupted participants
Latency

=

Broadcast signature shares

Fig. 2: The latency manipulation attack on the non-lock-step Drand ΠDrand with
∆ = 3δ. The adversary A chooses n − 2f = 1 correct participant, sets the latency
among f corrupted participants and the chosen correct participant (above the brown
horizontal line) to be δ, and sets the latency from, to, and among other f correct
participants (below the brown horizontal line) to be ∆. During the first ∆, participants
above and below the brown horizontal line learn ∆

δ
+ 1 = 4 and 2 random outputs,

respectively, leading to length-advantage degree ω=4−2=2. Note that in real-world
networks, ∆>>δ and ω could be much larger than in this example. For each of these
random outputs, participants above the brown line learn it earlier than those below
the brown line by ∆−δ, leading to time-advantage degree ψ=∆−δ.

Drand has two variants, namely the non-lock-step ΠDrand specified in the doc-
umentation [8] and the lock-step ΠLS

Drand in the actual implementation [7]. Com-
pared to ΠDrand, ΠLS

Drand requires participants to wait for a time period during
the phase of broadcasting signatures for each epoch e. In synchronous networks,
the time period is at least ∆. In Drand’s implementation ΠLS

Drand [7], the default
time period (named DefaultBeaconPeriod) is 60 seconds.

Latency manipulation attack. We identify a new attack latency manipula-
tion attack that can increase the adversary’s advantage of delivery-fairness in
the non-lock-step ΠDrand. The latency manipulation attack only requires the ad-
versary to manipulate the latency among participants (subjected to the network
model), and does not require equivocating or withholding messages. Thus, the
attack is unaccountable and does not affect other security properties or perfor-
mance metrics.

Figure 1 presents the latency manipulation attack on leaderless DRBs, e.g.,
Drand. Figure 2 depicts an example latency manipulation attack on the non-lock-
step Drand ΠDrand. The adversary A follows the protocol with n−2f (which is 1
in Drand) correct participants while delaying all messages from and to the other

11

f

1

f

Latency

=

Correct participantsCorrupted participants Broadcast signature shares

Fig. 3: Example of the latency manipulation attack on the lock-step Drand ΠLS
Drand

with ∆=3δ. While corrupted participants will enter the next epoch immediately after
learning a random output, correct participants will stay in every epoch for ∆, even
learning the random output of this epoch in advance (i.e., δ since the beginning of the
epoch). Consequently, A can only gain (1,∆−δ)-delivery-fairness.

f correct participants. During the first ∆ under latency manipulation attack,
A and n−2f correct participants learn a random output for every δ, while the
other f correct participants learn a random output only at the end of this ∆.
Delivery-fairness of non-lock-step Drand. At the end of this ∆, A and
n−2f correct participants have learned ∆

δ +1 random outputs, while the other f
correct participants only learn two random outputs, leading to length-advantage
degree ω= ∆

δ −1. In real-world networks, ∆>>δ, which leads to large value of
ω. For each of these random outputs (except for the first one), A and n−2f cor-
rect participants learn it earlier than the other f correct participants by ∆−δ,
leading to time-advantage degree ψ=∆−δ. Therefore, the non-lock-step Drand
ΠDrand achieves (ω,ψ)-delivery-fairness where ω= ∆

δ −1 and ψ=∆−δ.
Delivery-fairness of lock-step Drand. We analyse the delivery-fairness
guarantee of ΠLS

Drand, and show that ΠLS
Drand achieves optimal (1,∆−δ)-delivery-

fairness. The improvement compared to the non-lock-step ΠDrand is due to the
lock-step design, where correct participants will wait for ∆ before entering the
next epoch and broadcasting signature shares, even learning the random output
of this epoch in advance, as depicted in Figure 3. Appendix B.1 provides the full
analysis.
Gained insights. Through the analysis, we obtain an insight on improving the
delivery-fairness. Namely, the lock-step execution is necessary to bound the ad-
versary’s length-advantage to 1. Otherwise, without the lock-step execution, the
latency manipulation attack can always allow the adversary to grow its ledger
faster than correct participants within a ∆, and thus increase its advantage in
length and time.

4.2 HydRand and GRandPiper

We analyse the delivery-fairness of HydRand [41] and GRandPiper [22], two
DRB protocols based on the rotating leader paradigm and PVSS. We observe
that a previously known unpredictability-focused attack, which we call private
beacon attack, weakens the delivery-fairness of HydRand and GrandPiper. The

12

attack is rooted in their design is that the entropy of a random output is solely
provided by the epoch leader. To resist against the attack, the entropy should
instead be provided by a group of at least f+1 participants.

Summary of HydRand. HydRand is a DRB protocol based on leader elec-
tion, accumulator and publicly verifiable secret sharing (PVSS) [26, 42]. Leader
election allows a group of participants to elect a leader for every epoch. Accumu-
lator [20] allows to compress a set of values into a short accumulation value, and
prove the inclusion of each value given the accumulation value and a short wit-
ness. PVSS [26,42] allows one to distribute a secret with a group of participants,
in which a threshold number of participants can collaboratively reconstruct the
secret. Their syntaxes are summarised in Appendix A.2-A.4.

In HydRand design, participants employ the round-robin leader election to
elect a leader for every epoch. In each epoch, the leader solely samples a random
input, generates the commitment of this random input, uses PVSS to generate
secret shares for this random input, and use the accumulator to generate an accu-
mulation value for these secret shares. Then, the leader broadcasts the commit-
ment, a secret share, and the accumulation value to each participant. Meanwhile,
the leader can choose whether to reveal its last random input, which, together
with the last f random outputs, determines this epoch’s random output. If the
leader is Byzantine and does not reveal it, then all participants reconstruct the
last random input via broadcasting secret shares. HydRand does not require dis-
tributed key generation and achieves the fault tolerance capacity of n=3f+1.
Appendix B.2 provides the full specification of HydRand.

The original HydRand protocol ΠHydRand in the paper [41] and implementa-
tion [9] is non-lock-step. We also study its lock-step variant ΠLS

HydRand that resists
against the latency manipulation attacks and achieves better delivery-fairness.

In the beginning of the DRB protocol, the adversary A does the follows.
1. A chooses n−2f correct participants.
2. A sets the latency of messages among f corrupted participants and n−2f

correct participants to be δ.
3. A sets the latency of messages from, to and among the other f correct

participants to be ∆.
4. Upon a new random output Re, A calculates the next leader le+1 based on

ΠLE. If le+1 is the participant with δ latency, then keep running the attack,
otherwise stop the attack.

Fig. 4: Latency manipulation attack on leader-based DRBs. Extra specification
compared to the latency manipulation attack on leaderless DRBs is labelled in blue.

Latency manipulation attack on leader-based DRBs. Recall that the la-
tency manipulation attack on leaderless DRBs (e.g., Drand) allows the adversary
A to learn random outputs faster than f correct participants with ∆ latency,

13

Block generated by a
correct participant

Block generated by a
corrupted participant

Adversary's view

Correct
participants' view

Current
epoch

Fig. 5: Example of a private beacon attack on the lock-step HydRand ΠLS
HydRand. Assum-

ing at the current epoch e=6, the leader l6 is a corrupted participant. Leader l6 reveals
its committed secret and calculates the current random output R6, which determines
the next epoch’s leader l7, and so on. When l6, l7 and l8 are all corrupted participants,
the adversary A can learn R7 and R8 when epoch e=6, weakening the delivery-fairness.

within a time period of ∆. However, the latency manipulation attack in leader-
based DRBs faces a different scenario: during this∆, if one of these f correct par-
ticipants becomes the leader in an epoch, then A cannot learn any new random
output until this leader reaches this epoch. Consequently, A has to stop the at-
tack, leading to less advantage compared to the attack in leaderless protocols like
Drand. Figure 4 presents the latency manipulation attack on leader-based DRBs.
Private beacon attack. Bhat et al. [22] observes an attack on the unpre-
dictability of HydRand and GRandPiper. This attack, which we call private
beacon attack, can also weaken the delivery-fairness of HydRand (including both
ΠHydRand and ΠLS

HydRand) and GRandPiper. In this attack, the adversary grows
its own ledger to learn random outputs earlier than correct participants. As Hy-
dRand allows the epoch leader to solely sample the entropy, the epoch leader can
learn the random output instantly without communicating with others. When
c consecutive leaders are corrupted, the adversary can learn c future random
outputs. With round-robin leader election used in HydRand, GRandPiper and
SPURT, c is at most f , as analysed in Appendix A.2. Same as the latency
manipulation attack, the private beacon attack does not require equivocating
or withholding messages, and thus remains unaccountable. The private beacon
attack is presented in Figure 6 and depicted in Figure 5.

While following the DRB protocol, the adversary A does the follows.
1. Upon a new random output Re, A calculates the next leader le+1 based on

ΠLE.
2. If the next leader le+1 is a Byzantine participant, A follows the protocol to

sample the random output Re+1 locally and repeats step 1.

Fig. 6: Private beacon attack on DRBs.

Delivery-fairness of non-lock-step HydRand. Both the latency manip-
ulation attack and the private beacon attack can be applied to the non-lock-

14

step ΠHydRand. Under both attacks, the non-lock-step Hydrand ΠHydRand achieves
(ω,ψ)-delivery-fairness where ω = ∆

3δ +f and ψ = (3f +1)∆− δ. Appendix B.2
provides the full analysis.
Delivery-fairness of lock-step HydRand. The lock-step execution rules
out the latency manipulation attack. Under the private beacon attack, the lock-
step HydRand ΠLS

HydRand achieves (ω,ψ)-delivery-fairness where ω = f + 1 and
ψ=(3f+1)∆−δ. Appendix B.2 provides the full analysis.
Summary of GRandPiper. GRandPiper is a DRB based on leader elec-
tion, Byzantine broadcast and publicly verifiable secret sharing (PVSS). Byzan-
tine broadcast ΠBB allows a designated broadcaster broadcasts a value to a
group of participants, such that all correct participants will commit the same
value. If the broadcaster is correct, then all correct participants will commit the
broadcasted value. Appendix A.5 provides its definition. GRandPiper employs
a Byzantine broadcast protocol with O(n2) communication complexity and la-
tency tBB=11∆.

GRandPiper [22] follows the HydRand’s approach with three major modifi-
cations. First, GRandPiper enforces participants to recover the secret random
input committed by the leader, without allowing the leader to reveal it by itself.
Second, GRandPiper replaces the Acknowledge and Vote-confirm phase in Hy-
dRand with an explicit Byzantine broadcast protocol ΠBB. Note that the Byzan-
tine broadcast and the round-robin leader election constitute a SMR protocol, as
described in the RandPiper paper. Third, GRandPiper formalises the Hydrand’s
idea of separating the process of committing and revealing random inputs as a
queue-based mechanism, where each participant buffers previously committed
secret values and pops one value to reconstruct for each epoch. GRandPiper
does not require distributed key generation and achieves the fault tolerance ca-
pacity of n=2f+1. Appendix B.3 provides the full specification of GRandPiper.
Delivery-fairness of GRandPiper. GRandPiper is lock-step and thus rules
out the latency manipulation attack. Under the private beacon attack, GRand-
Piper achieves (ω,ψ)-delivery-fairness where ω = f +1 and ψ = (11f +1)∆− δ.
Appendix B.3 provides the full analysis.
Gained insights. In HydRand and GRandPiper, the entropy of a random out-
put is provided by a sole leader. In this case, the adversary can always launch
the private beacon attack as long as the leader is Byzantine. To mitigate the
private beacon attack, the protocol should prevent the adversary from control-
ling the entropy for a random output. To this end, the entropy should instead be
provided by a group of at least f+1 participants rather than a single participant.

4.3 SPURT

Summary of design. SPURT is a DRB based on leader election, Byzan-
tine broadcast, and a specialised PVSS protocol Πuniform

PVSS . The used Byzantine
broadcast protocol a variant of HotStuff [44] with best-case latency of 4δ and
worst-case latency tBB=4∆. Appendix A.4 summarises the differences between
Πuniform

PVSS and the traditional ΠPVSS.

15

In the SPURT design, each participant samples a random input, uses PVSS
to generate secret shares, encrypted secret shares and inclusion proofs of this
random input, and sends all encrypted shares and inclusion proofs to the leader
elected via a round-robin leader election. Then, the leader homomorphically ag-
gregates all received commitments and inclusion proofs column-wise, and trig-
gers a Byzantine broadcast over the aggregated encrypted shares and inclusion
proofs, such that all participants agree on the entropy for the random output.
After Byzantine broadcast, each participant decrypts one of the encrypted shares
and broadcasts the decrypted share, such that all participants can reconstruct
the secret from received decrypted shares. SPURT [29] does not require dis-
tributed key generation and achieves the fault tolerance capacity of n=3f+1.
Appendix B.4 provides the full specification of SPURT.

The original SPURT protocol ΠSPURT in the paper [29] and implementa-
tion [16] is non-lock-step. We also study its lock-step variant ΠLS

SPURT that resists
against the latency manipulation attacks and achieves optimal delivery-fairness.

Delivery-fairness of non-lock-step SPURT. SPURT resists against the
private beacon attack, as the entropy of a random output is jointly provided by
f+1 participants. However, similar to HydRand, the non-lock-step ΠSPURT does
not resist against the latency manipulation attack in Figure 4. Specifically, A
sets the latency among its corrupted participants and n−2f=f+1 correct par-
ticipants as δ, while the latency from, to and among the rest correct participant
as ∆. Recall that SPURT achieves the 7δ best-case latency and 7∆ worst-case
latency. Similar to non-lock-step HydRand ΠHydRand, after a ∆ of the latency ma-
nipulation attack, A and f+1 correct participants learn ∆

7δ+1 random outputs,
while the rest correct participant only knows a single random output, leading to
∆
7δ length-advantage and ∆−δ time-advantage. Thus, the non-lock-step ΠSPURT

achieves (ω,ψ)-delivery-fairness with ω= ∆
7δ and ψ=∆−δ.

Delivery-fairness of lock-step SPURT. We then analyse the delivery-
fairness guarantee of ΠLS

SPURT, and show that ΠLS
SPURT achieves the optimal (1,∆−

δ)-delivery-fairness. Appendix B.4 provides the full analysis.

5 Conclusion

In this paper, we have introduced and formalised a new property, named delivery-
fairness, for DRB protocols. We proved the lower bound for delivery-fairness,
and analysed the delivery-fairness guarantee of state-of-the-art DRB protocols.
The analysis reveals insights on ensuring and improving the delivery-fairness
guarantee. In particular, when delivery-fairness is necessary for DRB-dependent
applications, then the DRB has to be deployed under synchronous networks, oth-
erwise the adversary can arbitrarily delay messages to weaken delivery-fairness
during the asynchronous period. In addition, in order to achieve delivery-fairness,
the DRB has to follow the lock-step execution to rule out latency manipulation
attacks, and allows at least f +1 nodes to sample the entropy to rule out the
private beacon attacks.

16

References

1. 16 Ways to Create Dynamic Non-Fungible Tokens (NFT) Using Chainlink Oracles,
https://blog.chain.link/create-dynamic-nfts-using-chainlink-oracles/

2. Celo: Mobile-First DeFi Platform for Fast, Secure, and Stable Digital Payments
https://celo.org/

3. Chainlink VRF, https://docs.chain.link/docs/chainlink-vrf/
4. CryptOrchids: NFT plants that must be watered weekly, https://cryptorchids.

io/
5. Distributed Randomness Beacon | Cloudflare, https://www.cloudflare.com/

leagueofentropy/
6. Drand - Distributed Randomness Beacon. https://drand.love/
7. Drand: A Distributed Randomness Beacon Daemon - Go implementation https:

//github.com/drand/drand
8. Drand Specification https://drand.love/docs/specification
9. HydRand: Python implementation of the HydRand protocol https://github.com/

PhilippSchindler/HydRand
10. Join Hermez Trusted Setup Phase 2 Ceremony! https://blog.hermez.io/

hermez-trusted-setup-phase-2/
11. PancakeSwap Lottery, https://pancakeswap.finance/lottery
12. Phase 2 setup random beacon of Celo https://github.com/celo-org/

celo-bls-snark-rs/issues/227
13. Polygon Hermez https://hermez.io/
14. PolyRoll: Decentralized Games, https://polyroll.org/
15. Reinforcing the Security of the Sapling MPC https://electriccoin.co/blog/

reinforcing-the-security-of-the-sapling-mpc/
16. SPURT implementation, forked from HydRand https://github.com/

sourav1547/HydRand
17. The Economic Impact of Random Rewards in

Blockchain Video Games, https://blog.chain.link/
the-economic-impact-of-random-rewards-in-blockchain-video-games/

18. Abraham, I., Nayak, K., Ren, L., Xiang, Z.: Byzantine agreement, broadcast and
state machine replication with near-optimal good-case latency (2020)

19. Abraham, I., Nayak, K., Ren, L., Xiang, Z.: Good-case latency of byzantine
broadcast: a complete categorization. arXiv preprint arXiv:2102.07240 (2021)

20. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: International conference on the theory and applications
of cryptographic techniques. pp. 480–494. Springer (1997)

21. Benet, J., Greco, N.: Filecoin: A decentralized storage network. Protocol Labs pp.
1–36 (2018)

22. Bhat, A., Shrestha, N., Luo, Z., Kate, A., Nayak, K.: Randpiper–reconfiguration-
friendly random beacons with quadratic communication. In: Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security. pp.
3502–3524 (2021)

23. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: International Workshop on
Public Key Cryptography. pp. 31–46. Springer (2003)

24. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing.
In: International conference on the theory and application of cryptology and
information security. pp. 514–532. Springer (2001)

17

https://blog.chain.link/create-dynamic-nfts-using-chainlink-oracles/
https://celo.org/
https://docs.chain.link/docs/chainlink-vrf/
https://cryptorchids.io/
https://cryptorchids.io/
https://www.cloudflare.com/leagueofentropy/
https://www.cloudflare.com/leagueofentropy/
https://drand.love/
https://github.com/drand/drand
https://github.com/drand/drand
https://drand.love/docs/specification
https://github.com/PhilippSchindler/HydRand
https://github.com/PhilippSchindler/HydRand
https://blog.hermez.io/hermez-trusted-setup-phase-2/
https://blog.hermez.io/hermez-trusted-setup-phase-2/
https://pancakeswap.finance/lottery
https://github.com/celo-org/celo-bls-snark-rs/issues/227
https://github.com/celo-org/celo-bls-snark-rs/issues/227
https://hermez.io/
https://polyroll.org/
https://electriccoin.co/blog/reinforcing-the-security-of-the-sapling-mpc/
https://electriccoin.co/blog/reinforcing-the-security-of-the-sapling-mpc/
https://github.com/sourav1547/HydRand
https://github.com/sourav1547/HydRand
https://blog.chain.link/the-economic-impact-of-random-rewards-in-blockchain-video-games/
https://blog.chain.link/the-economic-impact-of-random-rewards-in-blockchain-video-games/

25. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-snark
parameters in the random beacon model. Cryptology ePrint Archive (2017)

26. Cascudo, I., David, B.: SCRAPE: Scalable randomness attested by public entities.
In: International Conference on Applied Cryptography and Network Security. pp.
537–556. Springer (2017)

27. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure
multiparty computation. Journal of Cryptology 30(4), 1157–1186 (2017)

28. Daian, P., Pass, R., Shi, E.: Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In: International Conference on
Financial Cryptography and Data Security. pp. 23–41. Springer (2019)

29. Das, S., Krishnan, V., Isaac, I.M., Ren, L.: Spurt: Scalable distributed randomness
beacon with transparent setup. In: 2022 IEEE Symposium on Security and
Privacy (SP). pp. 1380–1395. IEEE (2022)

30. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp.
66–98. Springer (2018)

31. Galindo, D., Liu, J., Ordean, M., Wong, J.M.: Fully distributed verifiable random
functions and their application to decentralised random beacons. In: European
Symposium on Security and Privacy (2021)

32. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 281–310. Springer (2015)

33. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series,
consensus system. arXiv preprint arXiv:1805.04548 (2018)

34. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
IACR Cryptol. ePrint Arch. 2015, 1019 (2015)

35. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably
secure proof-of-stake blockchain protocol. In: Annual International Cryptology
Conference. pp. 357–388. Springer (2017)

36. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols
for byzantine broadcast and agreement. In: 34th International Symposium on
Distributed Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik (2020)

37. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 643–673. Springer (2017)

38. Pass, R., Shi, E.: Hybrid consensus: Efficient consensus in the permissionless
model. In: 31st International Symposium on Distributed Computing (DISC 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

39. Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirma-
tion. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 3–33. Springer (2018)

40. Pass, R., Shi, E., Tramer, F.: Formal abstractions for attested execution secure
processors. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 260–289. Springer (2017)

41. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: HydRand: Efficient Continu-
ous Distributed Randomness. In: 2020 IEEE Symposium on Security and Privacy
(SP). pp. 32–48

18

42. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its
application to electronic voting. In: Annual International Cryptology Conference.
pp. 148–164. Springer (1999)

43. Yao, A.C.C.: Some complexity questions related to distributive computing
(preliminary report). In: Proceedings of the eleventh annual ACM symposium on
Theory of computing. pp. 209–213 (1979)

44. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft
consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing. pp. 347–356 (2019)

A Primitives

A.1 BLS threshold signature

BLS threshold signature [23] is a threshold version of the BLS signature [24].
A (k,n)-BLS signature allows any k out of n participants to jointly sign a mes-
sage. It requires a distributed key generation (DKG) protocol, where the set of
n participants take security parameter κ and threshold k≤n as input, then each
participant pi receives a unique secret key ski and an identical public key pk.
The BLS threshold signature ΠBLS consists of the following functions.
– Sign(ski,m)→σi: On input secret key ski and message m, outputs signature

share σi.
– Aggregate(#»σ)→{σ,⊥}: On input k different signature shares #»σ , outputs a sig-

nature σ if every signature share σi∈ #»σ is correctly signed by ski otherwise ⊥.
– Verify(pk,m,σ)→{0,1}: On input public key pk, message m and signature σ,

outputs 1 if σ is aggregated from k different correct signature shares otherwise
0.
Threshold BLS signature is unique: for any two subsets (#»σ ,

»

σ′) of k dif-
ferent signature shares in {σi}i∈[n] on a messagem,ΠBLS.Aggregate(

#»σ)=ΠBLS.Aggregate(
»

σ′).

A.2 Leader election

Leader election protocolΠLE allows participants to elect a leader for every epoch.
Specifically, given the set of participants and the agreed ledger (recording histor-
ical random outputs and leaders) in epoch e−1 as input, ΠLE outputs a leader
le for epoch e. Let X(ΠLE,n,f,c) be the event that c consecutive leaders are
corrupted in ΠLE.

HydRand and RandPiper employ a round-robin leader election protocolΠRR
LE ,

where a leader is elected from all participants excluding last f leaders and mis-
behaving leaders randomly with the last random output. Specifically, assum-
ing the current epoch is e. Let Llast ← {le−f , ... , le−1} be the last f leaders.
Let Lw be the set of participants that are removed due to misbehaviours. Let
Le←{l0,...,lw−1}=[pn]\(Llast

⋃
Lw) be the set of candidate leaders of epoch e

ordered canonically. The leader le of epoch e is le← l(Re−1 modw).

Existing analysis [22] has proven that Pr[X(ΠRR
LE ,n,f,c)]=

(fc)
(n−f)c . The best,

average, and worst values of c are 0, 2, and f , respectively.

19

Lemma 1 (from [22]). Assuming a DRB with n participants, in which f par-
ticipants are corrupted by the adversary A. Under the round-robin leader elec-
tion ΠRR

LE , assuming no participant is removed due to misbehavior, the probability
Pr[X(ΠRR

LE ,n,f,c)] that c consecutive leaders are corrupted is

Pr[X(ΠRR
LE ,n,f,c)]=

(
f
c

)
(n−f)c

Proof. Let L be the vector of c leaders in the last c epochs. For c consecutive
epochs, the total number of different outcomes of L is (n−f)c. Recall in ΠRR

LE

that a participant cannot be the leader in epoch e if it was once a leader in
the last f epochs (e− f,...,e− 1). As the system only consists of f Byzantine
participants, X(ΠRR

LE ,n,f,c) is possible only when c ≤ f . Among the (n− f)c
outcomes of L,

(
f
c

)
outcomes lead to X(ΠRR

LE ,n,f,c). Therefore, the probability

Pr[X(ΠRR
LE ,n,f,c)] that X(ΠRR

LE ,n,f,c) happens is Pr[X(ΠRR
LE ,n,f,c)]=

(fc)
(n−f)c .

A.3 Accumulator

Accumulator [20] allows to compress a set D of values into a short accumulation
value z. For each value di∈D, there is a short witness wi proving that di is one
of the values accumulated into z. An accumulator ΠAcc consists of the following
algorithms:
– Setup(κ,n)→k: On input parameter κ and accumulation threshold n, outputs

accumulation key k. Note that n is the upper bound on the total number of
values that can be securely accumulated.

– Eval(k,D)→ z: On input key k and a set D of values, outputs accumulation
value z.

– CreateWit(k,z,di,D)→{wi,⊥}: On input key k, accumulation value z, value
di, outputs witness wi if di∈D otherwise ⊥.

– Verify(k,z,di,wi)→{0,1}: On input key k, accumulation value z for D, value
di and witness wi, outputs 1 if di∈D otherwise 0.

A.4 Publicly verifiable secret sharing

A (k,n)-Public Verifiable Secret Sharing (PVSS) [26,42] allows one to distribute
a secret with n parties, in which any k parties can collaboratively reconstruct
the secret. A PVSS scheme ΠPVSS consists of the following algorithms:
– Gen(κ)→(sk,pk): on input security parameter κ, outputs key pair (sk,pk).
– Encrypt(pki,si)→ci: on input public key pki and share si, outputs encrypted

share ci.
– Decrypt(ski,ci)→ si: on input secret key ski and encrypted share ci, outputs

share si. It holds that si=Decrypt(ski,Encrypt(pki,si)).
– Share({pki}i∈[n], k, s) → (#»s , #»c , #»π): on public keys {pki}i∈[n], threshold k,

and secret s, outputs shares #»s = {si}i∈n, encrypted shares #»c = {ci}i∈n =
{Encrypt(pki,si)}i∈n, and proofs #»π={πi}i∈n.

20

– Verify(ci,πi)→{0,1}: on input encrypted share ci and proof πi, outputs 1 if
ci is encrypted from a certain valid share otherwise 0. Note that the proof πi
does not reveal which share is associated with ci.

– Recon(#»s)→s: on input a set #»s of k valid shares, outputs secret s.

SPURT employs a specialised PVSS protocol Πuniform
PVSS . ΠBB is a variant

of HotStuff [44] with best-case latency of 4δ and worst-case latency tBB =
4∆.Πuniform

PVSS differs from the traditionalΠPVSS in three aspects. First,Πuniform
PVSS .Recon(·)

outputs e(hs0,h1) rather than secret s itself, where e(·) is a bilinear pairing func-
tion and (h0,h1) are public parameters. Second, an encrypted share in Πuniform

PVSS

consists of two elements (vi,ci). Last, proof πi in Πuniform
PVSS .Share(·)/Verify(·) is

omitted in certain scenarios for better performance. To keep notations consis-
tent, we denote (vi,ci) in Πuniform

PVSS as a single element ci, and explicitly include
πi in Πuniform

PVSS .Verify(·).

A.5 Byzantine broadcast

In Byzantine broadcast ΠBB, a designated broadcaster in a set of n participants
broadcasts a value m to other participants such that the following holds [18,19,
36]:

– Agreement: If two correct participants commit values v and v′ respectively,
then v=v′.

– Termination: All correct participants eventually commit a value.
– Validity: If the designated broadcaster is correct, then all correct participants

commit m.

By executing the leader election and allowing the leader to launch a Byzan-
tine broadcast protocol for each epoch, one can yield a state machine replication
(SMR) protocol. In SMR, participants commit client requests as a linearisable
ledger (aka log) with two guarantees, namely consistency that every two correct
participants commit the same value at the same ledger position and liveness
that every client request is eventually committed by all correct participants [18].

B Full specification and analysis

B.1 Drand

Specification. Figure 7 outlines the specification of ΠDrand and ΠLS
Drand from

the perspective of participant pi in epoch e.

Delivery-fairness of lock-step Drand. We analyse the delivery-fairness
guarantee of ΠLS

Drand, and show that ΠLS
Drand achieves optimal (1,∆−δ)-delivery-

fairness.

Lemma 2 (ΠLS
Drand epoch execution). In ΠLS

Drand, at the end of every epoch e,
i.e., t=e·∆, for any two participants (pi,pj), T ti =T tj .

21

1. (Setup) All participants jointly complete the one-time setup as follows.
(a) All participants participate in the DKG protocol with security param-

eter κ and threshold k = f + 1 as input, so that each participant pi
obtains the public key pk and a secret key ski.

(b) All participants agree on the initial unique signature σ0.
2. (Broadcast signature) Upon the signature σe−1 in epoch e − 1 from

others or itself, participant pi does the following.
(a) pi executes ΠBLS.Verify(pk, H((e − 1)∥σe−2), σe−1) to verify whether

σe−1 is valid.
(b) pi executes σe

i ←ΠBLS.Sign(ski,H(e∥σe−1)) to generate signature share
σe
i .

(c) pi broadcasts σe
i .

(d) pi sets a timer ∆.
3. (Generate random output) Upon timer ∆ expires and receiving at

least f+1 different signature shares in epoch e−1, participant pi does the
following.
(a) pi executes σe ← ΠBLS.Aggregate({σe

i }) to obtain the aggregated
signature σe.

(b) pi broadcasts σe.
(c) pi calculates the random output Re←H(σe).

Fig. 7: Specification of Drand ΠDrand. Extra specification of its lock-step variant ΠLS
Drand

is labelled in blue.

Proof. The proof is by induction: given the base case where all participants
start executing the protocol, assuming an induction hypothesis holds at the end
of epoch e−1, we prove the induction step that the hypothesis holds at the end
of epoch e. The proof implies that the induction hypothesis holds at the end of
every epoch.

– Bese case: At time t=0, for any two participants (pi,pj), T 0
i =T 0

j .
– Induction hypothesis: At time t=(e−1)∆, for any two participants (pi,pj),
T ti =T tj .

– Proof goal: At time t=e·∆, for any two participants (pi,pj), T ti =T tj .

The induction step is as follows. After (e− 1) ·∆, n− f participants sign
(e∥σe−1) and broadcast their signatures to each other. No later than t=(e−1)·
∆+∆<e·∆, n−f participants will receive n−f signatures and can reconstruct
σe, which leads to T ti =T tj and thus closes the induction proof.

Lemma 3 (ΠLS
Drand length-advantage). ΠLS

Drand achieves 1-length-advantage.
That is, for every κ, there exists a negligible function negl(·) such that the fol-
lowing holds except for probability negl(κ). For any two participants (pi,pj) and
any time t, (T ti)⌈1⪯T tj .

Proof. By Lemma 2, at the end of every epoch e, i.e., t = e ·∆, for any two
participants (pi,pj), T ti =T tj . Therefore, for any t∈((e−1)·∆,e·∆], participants
only differ in σe, leading to 1-length-advantage.

22

Lemma 4 (ΠLS
Drand time-advantage). ΠLS

Drand achieves (∆−δ)-time-advantage.
That is, for every κ, there exists a negligible function negl(·) such that the fol-
lowing holds except for probability negl(κ). For any two participants (pi,pj) and
any time t, T ti ⪯T

t+∆−δ
j .

Proof. By Lemma 2, at the end of every epoch e, i.e., t = e ·∆, for any two
participants (pi,pj), T ti =T tj . Starting from time t,the adversary A will learn the
next random output no earlier than t+ δ, while correct participants will learn
the next random output no later than t+∆, leading to (∆−δ)-time-advantage.

Theorem 3 (ΠLS
Drand delivery-fairness). ΠLS

Drand achieves (ω,ψ)-delivery-fairness
where ω=1 and ψ=∆−δ.

Proof. By Lemma 3-4, this theorem holds.

B.2 HydRand

Specification. Figure 8 outlines the specification of ΠHydRand and ΠLS
HydRand

from the perspective of participant pi in epoch e.
Delivery-fairness of non-lock-step HydRand. We provide the formal delivery-
fairness analysis for non-lock-step Drand ΠHydRand below.

Lemma 5 (ΠHydRand length-advantage). ΠHydRand achieves (∆3δ + f)-length-
advantage. That is, for every κ, there exists a negligible function negl(·) such
that the following holds except for probability negl(κ). For any two participants
(pi,pj) and any time t, (T ti)⌈

∆
3δ+f ⪯T tj .

Proof. Recall that ΠHydRand has 3δ best-case and 3∆ worst-case latency. After
a ∆ of the latency manipulation attack, A and f+1 correct participants learn
at most ∆

3δ +1 random outputs when all leaders during this ∆ belong to them.
Meanwhile, the rest correct participant only knows the first random output. This
gives A the length-advantage of ∆

3δ . In addition, A can launch the private beacon
attack over its latest block in order to obtains additional length-advantage of c,
which is at most f . In total, A obtains the length-advantage degree ω= ∆

3δ+f .

Lemma 6 (ΠHydRand time-advantage). ΠHydRand achieves ((3f + 1)∆ − δ)-
time-advantage. That is, for every κ, there exists a negligible function negl(·) such
that the following holds except for probability negl(κ). For any two participants
(pi,pj) and any time t, T ti ⪯T

t+(3f+1)∆−δ
j .

Proof. Similar to analysis of ΠDrand, A can obtain ∆ − δ time-advantage in
ΠHydRand via the latency manipulation attack. Since generating a random out-
put takes at most 3∆, A can obtain 3c∆ time-advantage via the private bea-
con attack, where c is at most f . In total, A obtains time-advantage degree
ψ=(3f+1)∆−δ.

Theorem 4 (ΠHydRand delivery-fairness). ΠHydRand achieves (ω,ψ)-delivery-
fairness where ω= ∆

3δ+f and ψ=(3f+1)∆−δ.

23

Proof. By Lemma 5-6, this theorem holds.

Delivery-fairness of lock-step HydRand. We provide the formal delivery-
fairness analysis for lock-step Drand ΠLS

HydRand below.

Lemma 7 (ΠLS
HydRand length-advantage). ΠLS

HydRand achieves (f + 1)-length-
advantage. That is, for every κ, there exists a negligible function negl(·) such
that the following holds except for probability negl(κ). For any two participants
(pi,pj) and any time t, (T ti)⌈f+1⪯T tj .

Proof. AssumingA does not corrupt the leader le in the current epoch e. In epoch
e, A can launch the latency manipulation attack, so that it learns Re earlier than
correct participants. In addition, A can corrupt c future leaders le+1,...,le+c and
learn further c random outputs Re+1,...,Re+c with probability Pr[X(ΠLE,n,f,c)],
where c is at most f . Therefore, A achieves (f+1)-length-advantage.

Lemma 8 (ΠLS
HydRand time-advantage). ΠLS

HydRand achieves ((3f + 1)∆ − δ)-
time-advantage. That is, for every κ, there exists a negligible function negl(·) such
that the following holds except for probability negl(κ). For any two participants
(pi,pj) and any time t, T ti ⪯T

t+(3f+1)∆−δ
j .

Proof. Assuming when epoch e starts at time t, A does not corrupt the leader
le. A directs corrupted participants to follow the protocol while launching the
latency manipulation attack, so that after three consecutive message transfers,
A learns Re at time t+3δ and the other correct participants learn Re at time
t +∆ + 2δ. In addition, the leader can corrupt further c consecutive leaders
le+1, ... , le+c and learns further c random outputs Re+1, ... ,Re+c with proba-
bility Pr[X(ΠLE,n,f,c)], where c is at most f . Meanwhile, the correct partici-
pants learn Re+c only at t+∆+2δ+3c ·∆. Therefore, the time advantage is
(t+∆+2δ+3f ·∆)−(t+3δ)=(3f+1)∆−δ.

Theorem 5 (ΠLS
HydRand delivery-fairness). ΠLS

HydRand achieves (ω,ψ)-delivery-
fairness where ω=f+1 and ψ=(3f+1)∆−δ.

Proof. By Lemma 7-8, this theorem holds.

B.3 GRandPiper

Specification. Figure 9 outlines the specification of ΠGRandPiper from the per-
spective of participant pi in epoch e.
Delivery-fairness of GRandPiper. We provide the formal delivery-fairness
analysis for GRandPiper ΠGRandPiper below.

Lemma 9 (ΠGRandPiper length-advantage). ΠGRandPiper achieves (f+1)-length-
advantage. That is, for every κ, there exists a negligible function negl(·) such that
the following holds except for probability negl(κ). For any two participants (pi,pj)
and any time t, (T ti)⌈f+1⪯T tj .

24

Proof. The proof is identical to that of Lemma 7.

Lemma 10 (ΠGRandPiper time-advantage). ΠGRandPiper achieves ((11f+1)∆−
δ)-time-advantage. That is, for every κ, there exists a negligible function negl(·)
such that the following holds except for probability negl(κ). For any two partici-
pants (pi,pj) and any time t, T ti ⪯T

(11f+1)∆−δ
j .

Proof. By Lemma 9, for every epoch e, i.e., at time t = e · tBB + δ, the adver-
sary learns the (e+ c)-th random output with probability Pr[X(ΠLE,n,f, c)],
where c is at most f . Meanwhile, correct participants will learn the (e+ f)-
th random output after c epochs plus a ∆ in the DRB routine, i.e., at time
t=(e+f) ·tBB+∆. This leads to (f ·tBB+∆−δ)-time-advantage. As tBB=11∆,
f ·tBB+∆−δ=(11f+1)∆−δ.

Theorem 6 (ΠGRandPiper delivery-fairness). ΠGRandPiper achieves (ω,ψ)-delivery-
fairness where ω=f+1 and ψ=(11f+1)∆−δ.

Proof. By Lemma 9-10, this theorem holds.

B.4 SPURT

Specification. Figure 10 outlines the specification of ΠSPURT and ΠLS
SPURT from

the perspective of participant pi in epoch e.
Delivery-fairnes of lock-step SPURT. We then analyse the delivery-fairness
guarantee of ΠLS

SPURT, and show that ΠLS
SPURT achieves the optimal (1,∆− δ)-

delivery-fairness.

Lemma 11 (ΠLS
SPURT epoch execution). In ΠLS

SPURT, at the end of every epoch
e, i.e., t=e·(3∆+tBB), for any two participants (pi,pj), T ti =T tj .

Proof. The proof is identical to that of Lemma 2.

Lemma 12 (ΠLS
SPURT length-advantage). ΠLS

SPURT achieves 1-length-advantage.
That is, for any κ, there exists a negligible function negl(·) such that the follow-
ing holds except for probability negl(κ). For any two participants (pi,pj) and any
time t, (T ti)⌈1⪯T tj .

Proof. The proof is identical to that of Lemma 9, except that the adversary
does not learn c extra random outputs via the private beacon attack compared
to correct participants.

Lemma 13 (ΠLS
SPURT time-advantage). ΠLS

SPURT achieves (∆−δ)-time-advantage.
That is, for every κ, there exists a negligible function negl(·) such that the fol-
lowing holds except for probability negl(κ). For any two participants (pi,pj) and
any time t, T ti ⪯T

∆−δ
j .

Proof. The proof is identical to that of Lemma 10, except that the adversary
does not learn c extra random outputs via the private beacon attack compared
to correct participants.

25

Theorem 7 (ΠLS
SPURT delivery-fairness). ΠLS

Drand achieves (ω,ψ)-delivery-fairness
where ω=1 and ψ=∆−δ.

Proof. By Lemma 12-13, this theorem holds.

26

1. (Propose) Upon a new random output Re−1, participants execute as
follows.
(a) Participants execute ΠLE to determine the leader le.
(b) Leader le chooses a new secret s, obtains shares, encrypted shares and

share proofs (#»s , #»c , #»π) ← ΠPVSS.Share({pki}i∈[n], f + 1, s), obtains the
accumulation value z of #»c via z ← ΠAcc.Eval(k,

#»c), and obtains all
witnesses #»w via wi←ΠAcc.CreateWit(k,z,ci,

#»c) for every i∈ [n].
(c) Leader le constructs a block Be and broadcasts Be. Be includes 1)

information of epoch e: (e, #»c , #»π , #»w, z), 2) information of epoch e−:
(e−, s−,H(Be−), CC(B−

e)), and 3) information of in-between epochs
k∈(e−,e): {(Rk,RC(k))}k∈(e−,e), where e− is the last epoch where the
leader honestly reveals its secret, CC(Be−) ia a collection of ≥ f +1
signatures on Be− , Rk is the recovered secret and RC(k) ia a collection
of ≥f+1 signatures on Bk.

(d) All participants set a timer ∆.
2. (Acknowledge) Upon receiving a valid block Be {before/and} ∆ expires,

participant pi executes as follows.
(a) pi broadcasts an ACKNOWLEDGE message containing H(Be) and

(e,Re, s
−, Be− ,H(Be−), {Rk}k∈(e−,e), z) signed by le, and set a new

timer ∆.
(b) Otherwise, if ∆ expires and no valid block Be is received, participant

pi moves to the vote-recover phase and sets a new timer ∆.
3. (Vote-confirm) Upon receiving ≥2f+1 ACKNOWLEDGE messages on a valid

block Be {before/and} ∆ expires, participant pi executes as follows.
(a) pi broadcasts a CONFIRM message containing H(Be), and sets a new

timer ∆.
(b) Upon receiving ≥ f + 1 CONFIRM messages {before/and} ∆ expires

(which is guaranteed), pi commits Be, calculates random output
Re←H(Re−1∥s−), and starts a new epoch.

(c) Otherwise, if ∆ expires and < 2f+1 ACKNOWLEDGE messages on a valid
block Be are received, pi moves to the vote-recover phase and sets a
new timer ∆.

4. (Vote-recover) If there exists a phase where the condition does not meet
after the timer expires, participant pi moves to the vote-recover phase to
recover the secret s− committed in B−

e jointly with others. Specifically,
(a) pi obtains the decrypted share s−i via ΠPVSS.Decrypt(ski, c

−
i) and

broadcasts RECOVER message (s−i ,c
−
i ,π

−
i ,w

−
i ,Re−1).

(b) Upon receiving ≥ f + 1 RECOVER messages {before/and} ∆ expires
(which is guaranteed), pi recovers the secret s− ← ΠPVSS.Recon(

»

s−)

(where
»

s− is the ≥ f +1 shares in RECOVER messages), and calculates
random output Re←H(Re−1∥s−).

Fig. 8: Specification of HydRand ΠHydRand. Extra specification of its lock-step variant
ΠLS

HydRand is labelled in blue.

27

1. (SMR routine) Upon timere−1 = tBB ends, all participants execute as
follows.
(a) Leader election. Participants calculate the leader based on the

round-robin approach same as HydRand. All participants set a new
timere= tBB.

(b) Block proposal. If elected as leader, leader le chooses a random value
se, executes (#»s , #»c , #»π)←ΠPVSS.Share({pki}i∈[n],f +1,s), creates block
Be = (#»c , #»π), and triggers the Byzantine broadcast protocol ΠBA over
Be. Each ΠBA instance terminates in at most f epochs.

(c) Block agreement. Upon agreeing on block B−
e sent by leader le− for

epoch e−, participant pi pushes B−
e into queue Q(le−).

(d) Blame. Upon timere ends, if no block is proposed in epoch e−t, then
remove le−t from future proposals.

2. (DRB routine) Upon timere−1 ends, participant pi executes as follows.
(a) pi pops the committed block Be− =(

»

c−,
»

π−) from queue Q(le−).
(b) pi decrypts its share s−i ←ΠPVSS.Decrypt(ski,c

−
i) and broadcasts s−i .

(c) Upon f + 1 valid shares in
»

s−, Participant pi reconstructs
se− ← ΠPVSS.Recon(

»

s−), and calculates the random output
Re−←H(se− ,Re−−1,...,Re−−t).

Fig. 9: Specification of GRandPiper ΠGRandPiper.

28

1. (Commitment) Upon reconstructing Re−1, every participant pi executes
as follows.
(a) pi executes (#»si,

#»ci,
»πi)←Πuniform

PVSS .Share({pkj}j∈[n],f,s).
(b) pi sends tuple (#»ci,

»πi) to leader le.
(c) Set a timer ∆.

2. (Aggregation) Upon receiving f + 1 tuples and ∆ expires, leader le
executes as follows.
(a) le homomorphically aggregates them as (ĉ, π̂) = {(ĉi, π̂i)}i∈[n] =
{(Π c̄i,Ππ̄i)}i∈[n], where (c̄i,π̄i) is the i-th column of f+1 encrypted
shares and proofs, respectively.

(b) le computes the digest h←H(I∥ĉ) where I is the set of f+1 indices.
3. (Agreement) Leader le executes as follows.

(a) For each participant pi, le sends (e,h,I,ĉ,c̄i,π̄i) to pi.
(b) le triggers ΠBB over h with all participants.
(c) Set a timer tBB.

4. (Reconstruction) Upon deciding on h and tBB expires, participant pi
executes as follows.
(a) pi decrypts the aggregated share ŝi ← Πuniform

PVSS .Decrypt(ski, ĉi), and
broadcasts ŝi. Set a timer ∆.

(b) Upon receiving f + 1 such decrypted shares ŝ and ∆ expires, pi
homomorphically aggregates them to s←

∑
ŝ, calculates the beacon

output Re←e(hs
0,h1) via pairing, and broadcasts Re. Set a timer ∆.

(c) Upon receiving f+1 Re messages and ∆ expires, pi decides on Re.

Fig. 10: Specification of SPURT ΠSPURT. Extra specification of its lock-step variant
ΠLS

SPURT is labelled in blue.

29

	Introduction
	Related works
	Our contributions

	Model
	System model
	Components of DRBs
	Security properties of DRBs
	Performance metrics

	Delivery-fairness property
	Defining delivery-fairness
	Lower bound of delivery-fairness

	Delivery-fairness analysis of existing DRBs
	Drand
	HydRand and GRandPiper
	SPURT

	Conclusion
	Primitives
	BLS threshold signature
	Leader election
	Accumulator
	Publicly verifiable secret sharing
	Byzantine broadcast

	Full specification and analysis
	Drand
	HydRand
	GRandPiper
	SPURT

