
MPC With Delayed Parties Over Star-Like Networks

Mariana Gama1 ID , Emad Heydari Beni1,2 ID , Emmanuela Orsini3 ID , Nigel P. Smart1,4 ID , and

Oliver Zajonc1 ID

1 COSIC, KU Leuven, Leuven, Belgium.
2 Nokia Bell Labs, Antwerp, Belgium.
3 Bocconi University, Milano, Italy.

4 Zama Inc., Paris, France.
mariana.botelhodagama@kuleuven.be, emad.heydari beni@nokia-bell-labs.com,

emmanuela.orsini@unibocconi.it, nigel.smart@kuleuven.be,
oliver.zajonc@esat.kuleuven.be

Abstract. This paper examines multi-party computation protocols in the presence of two major con-
straints commonly encountered in deployed systems. Firstly, we consider the situation where the parties
are connected not by direct point-to-point connections, but by a star-like topology with a few central
post-office style relays. Secondly, we consider MPC protocols with a strong honest majority (t≪ n/2)
in which we have stragglers (some parties are progressing slower than others). We model stragglers by
allowing the adversary to delay messages to and from some parties for a given length of time.
We first prove that having only a single honest relay is enough to ensure consensus of the messages sent
within a protocol; then, we show that special care must be taken to describe multiplication protocols in
the case of relays and stragglers; finally, we present an efficient honest-majority MPC protocol which can
be run ontop of the relays and which provides active-security with abort in the case of a strong honest
majority, even when run with stragglers. We back up our protocol presentation with both experimental
evaluations and simulations of the effect of the relays and delays on our protocol.

1

https://orcid.org/0000-0002-2759-043X
https://orcid.org/0000-0003-3352-6968
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0001-9714-928X

Table of Contents

MPC With Delayed Parties Over Star-Like Networks . 1

Mariana Gama ID , Emad Heydari Beni ID , Emmanuela Orsini ID , Nigel P. Smart ID

, and Oliver Zajonc ID

1 Introduction . 2

1.1 Our Contributions . 4

1.2 Other Related Work . 8

2 Preliminaries . 11

2.1 Communication and Security Model . 11

2.2 Shamir Secret Sharing . 12

2.3 Encryption . 14

2.4 Internal Additive Attacks . 15

2.5 Depth and Width of Randomized Arithmetic Circuits . 15

3 Relays and Delays . 16

3.1 A Single Relay . 16

3.2 Key Agreement . 18

3.3 Modelling Bounded Delays . 20

3.4 Implementing a Secure Robust Relay using Multiple Single Relay’s 22

4 MPC Building Blocks . 28

4.1 Functionalities FRand and FCoin . 31

4.2 Multiplication Protocols . 33

4.3 Instantiating FMult with Maurer’s protocol . 36

5 MPC Secure up to an (Internal) Additive Attack Using Secure Robust Relays 36

5.1 The δ-iaa MPC protocol in the FSecureRobustRelays-hybrid model 36

5.2 Modeling the State Size of the Relays . 39

6 Actively Secure MPC-with-Abort Using Secure Robust Relays . 42

6.1 Efficiency and Optimizations . 46

7 Experiments . 48

7.1 Networking Experiments . 49

Data Structures. 49

Experiments. 50

7.2 Multiplication . 53

References . 55

1 Introduction

Multi-Party Computation (MPC) allows a set of mutually distrusting parties to compute a function
of their joint private inputs, without revealing anything about the inputs bar what can be deduced
from any output of the function. MPC is now practical for a number of use-cases, it is becoming
increasingly deployed in special niche applications, and much research work is now focused on
extending the application space beyond these specific use-cases.

https://orcid.org/0000-0002-2759-043X
https://orcid.org/0000-0003-3352-6968
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0001-9714-928X

While MPC has been studied in a variety of different settings, most of the protocols are based
on strong assumptions, such as the existence of direct fast communication channels between each
pair of computing parties, fully synchronous communication channels and a static set of parties
which is progress through the protocol execution at the same speed.

Network topology. In almost all academic works, and almost all academic implementations of MPC,
the computing parties {P1, . . . ,Pn} are all connected with each other by dedicated connections,
thus if we have n parties, this requires n · (n − 1) uni-directional channels, often realised using
n·(n−1)/2 bi-directional TLS connections. However, in commercial applications this is not practical,
as it implies each commercial entity enables n− 1 external connections per MPC calculation. This
can be problematic, as a corporate network is often locked down to an extent that creating new
connections on new ports is frowned upon by the IT department.

One solution to this problem is to route all messages via a relay, so that communication operates
in a star-like pattern. Indeed, this was proposed by the company ZenGo in their white paper
describing the White-City protocol [Zen20]. This protocol proposes a number of such relays (aimed
to protect against adversarial behaviour) which maintain consistency via a consensus protocol
between them. Each relay R does not (necessarily) need to be one of the computing parties, it
simply acts as a message transmission conduit between Pi and Pj , for each pair (i, j). This means
that each party Pi only needs to maintain a single connection to the relay R. Communication can
be kept private from the relay by end-to-end encryption between Pi and Pj , and communication on
the links between Pi and R can be ensured to be authentic via the use of message authentication
codes. Other than being more practical, another advantage of having one (or more) relay node
is that this provides a business model for companies to supply MPC services to clients: the relay
node is providing the MPC service, for clients to connect to, and it can also act as a broker in
brokering relationships between parties who desire to compute some joint function on their input.
By charging for the usage of the relay node the companies can obtain revenue for providing the
service.

In this work, we propose a relay model similar to Amazon SQS (Simple Queue Service) where
messages are sent to a server and receivers retrieve and delete them. However, in our model, multiple
relays are utilized to ensure security guarantees, whereas Amazon uses multiple servers for quality-
of-service purposes in its highly distributed system. In this work, we use a similar approach, but the
relay model we envision is similar to the Amazon SQS (Simple Queue Service) provided by AWS.
In SQS, messages are sent to the SQS server by a sender, and then receivers poll the SQS server
to pick up their messages that they can delete afterwards. The SQS queues have retention policies,
meaning that if a message is not processed for a number of days, it will be removed. Amazon
SQS preserves the message even after the consumer processes it. Since SQS is a highly distributed
system, we cannot be confident that the receiver picked up the message successfully. Therefore,
it is the receiver itself that must tell SQS to remove the message from the queue after receiving
and processing it. Moreover, Amazon SQS persists several replicas of each message across the SQS
cluster on separate servers to offer redundancy and high availability. In our relay model, we will
follow a similar approach, For example, it could be that one of the replica servers keeps a message
replica that might be unreachable due to networking issues. Whilst this use of multiple servers by
Amazon is for quality-of-service reasons, in our work we utilize multiple relays in order to provide
security guarantees.

3

Dynamic Computation with Delays. In common with most secure protocols, one works (ideally)
in a Dolev-Yao model [DY81] in which the adversary is able to control the messages which are
sent between parties, for example by replacing, dropping or placing messages out-of-order. In a real
network, this is relatively hard for an adversary to do, thus most (practical) MPC work assumes
that if party Pi sends a message to party Pj then such a message will eventually get from the source
to the destination, and messages will be delivered in order. In a real computer network, such as the
internet, the latter is a valid assumption as the exact route taken by messages is often unknown
before the message is sent, and underlying network protocols provide the guarantee that messages
arrive in order. However, if the “network” has a single bottleneck of a relay R, then an adversary
who controls the relay can mount trivial attacks which break the assumption that a message will
always get through. In addition, modelling the system as synchronous, with a publicly known upper
bound (time-out) on message latency, in practice is either very difficult to achieve or can severely
impact communication speed, for example, if a large time-out upper bound is set so to ensure that
all the messages from all the parties are delivered.

1.1 Our Contributions

In this work, we consider both these aspects and define an MPC protocol in presence of relay nodes
which ensures some kind of robustness against delays, without relying on large time-out bounds.
Our goal is to design a concretely efficient protocol based on more realistic network assumptions.

Concretely, we can summarize our main results as follows: 1) We formalize our communication
model in the UC framework by giving an ideal functionality, called FSecureRobustRelay, which defines a
network where all communication occurs through relay nodes in a star-like topology and in the pres-
ence of a δ-delaying active adversary which can arbitrarily delay a party’s execution of a command
for up to δ rounds. In addition, we provide a protocol implementing this ideal functionality. 2) We
give a generic secret sharing based MPC protocol secure against a δ-delaying active adversary that
can proceed at the speed of the fastest parties. Our protocol makes use of an ideal functionality
FMult to evaluate multiplication gates. 3) We instantiate FMult and show that the efficiency of the
resulting protocol is comparable to that of the most efficient protocols in the setting of an honest
majority which assume point-to-point channels between each pair of parties and without delays.
In particular, our protocol achieves O(n|C|) communication and takes advantage of the star-like
network topology which allows to implement broadcast communication essentially for free. In ad-
dition, we give a detailed description of related protocols and highlight the differences with our
approach. 4) Finally, we implement the communication network with relay nodes in pure Rust and
present experimental results comparing its performance to that of direct TLS connections between
the parties and showing the practicality of our star-like topology. Additionally, we explore the be-
haviour of our network under different settings and the performance of the MPC protocol built on
top of the relays.

We now describe our contributions and techniques in greater detail.

Relays Nodes/Star-Like Network Topology. We consider a star-like topology network and
build a model for relay nodes. We demonstrate that it is possible to remove the problem of ad-
versarial control of the relay node by providing a set of r relay nodes {R1, . . . ,Rr}, instead of
just one, such that quality of service is maintained, after an initial key agreement phase, as long
as at least one relay node is honest. Compared to the White-City protocol, our setting requires

4

consensus only to set the communication channels (where pairwise keys are distributed), offering
a significant advantage compared to other protocols, like White-City, which requires consensus at
every interaction. Thus, once authenticated connections are established, and unlike the White-City
protocol, we do not require an expensive consensus protocol to be run between the relays. However,
this comes at the expense of requiring each party Pi to maintain authenticated connections to the
r relay nodes Rj . We provide more comparison with [Zen20] is given in Section 1.2.

In practice, the value of r can be much less than the number of MPC parties n. For example,
one may allow for r = 2 and have the two relay nodes provided by two different companies or
servers. In such a situation, the adversary can corrupt one out of the r = 2 relay nodes and we still
maintain security.

P0

P1P2

P3

R

P1

P2 P3

P4

R1 R2

P1P1

P2P2 P3P3

P4P4

Fig. 1. Comparison between different topology networks with 4 computing parties P1,P2,P3,P4: a full network
topology, a star-like network with 1 relay node and a replicated star-like topology with 2 relays.

More formally, we will model a relay node as an ideal functionality, and have the comput-
ing parties P1, . . . ,Pn connected with each other via a replicated star-like network with r relays
R1, . . . ,Rr, such that each Pi is connected only to the relays. The adversary, in practice, has full
control of the communication, through point-to-point, secure authenticated channels, in that it can
read (note not modify) messages sent between honest parties. In Figure 1, we graphically compare
our model with a full-network topology and a more classical star-like topology. Notice the relays are
not connected to each other and they maintain an internal state that is updated when interacting
with parties.

The benefit of this network model is twofold: a more realistic communication model and low
communication complexity in the MPC evaluation, since it allows us to reduce the communication
between the computing parties, in that they only need to communicate with the central nodes. We
will expand on this below.

Modelling Delays. We consider protocols where one could have a large number n of computing
parties, some of which may be statically corrupt, over a network topology as described above with
r ≪ n. In such a situation it can be the case that even honest parties Pi may occasionally drop out of
the computation and then come back or be suffering from some kind of delays in the communication.
This could be for legitimate reasons, the need for something to be patched in the organization, a
simple reboot, or it could be via adversarial behaviour, i.e. the adversary temporarily stops the
given party from being part of the computation via a DoS attack, for example. We note that in
these situations the adversary does not take control of the party, instead we are still in a static
and not adaptive security model, but the adversary can actively make the party drop out of the
computation for a while (a time interval we denote by δ).

5

We ensure that our relays, and the MPC protocol we run on top, can cope with a party dropping
out of a computation and then returning to it. This is why we require that the relays must not
simply act as a store-and-forward postal service, but must maintain some state in order to allow a
party to rejoin and recover messages which they have not received.

More formally, we assume a synchronous network. This means that there is a publicly-known
upper bound on message delays which allow the parties to follow the protocol specifications based
on time. Therefore, the communication proceeds in rounds, each taking a fixed amount of time,
and such that all the messages sent at the beginning of a certain round are delivered within the
same round. However, we give the adversary the possibility of partially control the scheduling of the
delivery of all messages. Concretely, we allow the adversary to choose whether a specific command
is responded to, or not, by allowing a delay , i.e., the adversary can prevent the execution of a
command for at most δ rounds. Clearly, without restriction, the adversary would be able to mount
an indefinite denial of service attack but, since our usage of this ability is to model the situation
where a party goes temporarily offline for a short period, we admit only bounded delays. In addition,
the delays are local , i.e., it applies to a single party Pi and it applies to all the messages passed
between Pi and all the relays R1, . . . ,Rr.

We define an ideal functionality FSecureRobustRelay modelling such a network with relays and
delays and describe a protocol implementing it.

Efficient MPC with Stragglers. A line of research [BJMS20, CGG+21, GHK+21, DEP21,
FHM98, RS22, AHKP22, ANOS22], motivated by concrete applications, have proposed MPC pro-
tocols supporting a more dynamic form of participation, with parties that can join and/or leave
the computation. Most of these protocols (see Section 1.2 for a short description of these works)
rely on committees to carry on the computation.

We describe an MPC protocol which allows for parties to recover from dropped messages without
the need for either the relays to maintain a list of all messages ever sent, or the parties restart
the computation from scratch. However, we adopt a different approach compared to other works.
Our protocol will proceed without waiting for all parties’ message to be delivered in each round,
but rather at the speed of the fastest parties. In particular, a party will progress through the MPC
computation at its own pace, essentially stopping if a delay is activated. Thus, it can be the case that
different parties progress through the MPC protocol at different rates, a bit like an asynchronous
MPC protocol, even though the underlying communication model is synchronous.

Our main goal is to achieve efficiency by reducing the time-out bound of rounds and make the
whole protocol proceed at the peace of the fastest parties. We note that a similar approach was
also taken by Benhamouda et al. [BBG+21]. In this latter paper is defined the notion of stragglers
resilience. Our security goal is similar, and we will give a detailed comparison both in techniques
and efficiency between this and our work at the end of this section.

MPC Techniques. We describe an MPC protocol with computing parties P1, . . . , Pn and relays
R1, . . . ,Rr, where a malicious static adversary can corrupt up to tp computing parties and tr
relays and control the delays of an arbitrary number of computing parties, albeit for a limited
number of rounds. We provide active security with abort in the case of a strong honest majority,
i.e. tp/2≪ n/2.

Our protocol is based on a degree-t Shamir secret sharing scheme, with tp ≤ t < n/2, and can
proceed through a computation at the speed of the fastest 2 · t+1 parties (which could include the
tp dishonest ones). This is possible as the fast parties can rely on the relays to act as a ‘storage’
mechanism to allow for the slower parties to catch up. We can also easily bound, and try to limit,

6

the state size which needs to be stored by the relays as a function of the multiplicative width and
depth of the function being computed, and the number of computing parties.

We first present a generic secret-shared based protocol which makes use of a multiplication
functionality, FMult, to evaluate multiplication gates. The functionality FMult can be instantiated
with a multiplication protocol that is secure up to additive attacks [GIP+14]. As observed in prior
work, some of the most efficient passively secure multiplication protocol [Mau06, DN07] are actually
actively secure up to additive attacks in normal networks, or in networks without a super-honest
majority. Roughly, this means that the only thing a fully malicious adversary can do is to add
fixed values to the output of multiplication gates, and to the output of the computation. We show
that our basic protocol is secure up to additive internal attacks (additive attacks mounted on the
internal wires of the circuit) in the FSecureRobustRelay-hybrid. Notice to allow input completeness, i.e.
all honest parties’ input being included in the computation, we assume that no delays occur in the
input phase, or alternatively, we could make all the parties wait until they receive all the n − 1
input messages from all the other parties.

We then compile this protocol to achieve active security with abort. A standard strategy to do
this is to first run the basic passively secure protocol, then add a verification step aimed to check
that all the multiplications were correctly done and finally reconstruct the output if the check
passed. However, this would imply storing very large states on our relays. Hence, we use the same
approach of Chida et al. [CGH+18], also used in Fluid MPC [CGG+21] and LeMans [RS22], and
perform two computations of the circuit, one on secret shared values ⟨x⟩ and the other one with
randomised versions ⟨∆ ·x⟩ of the actual values. To avoid maintaining large states, we proceed like
in FluidMPC and incrementally compute the checking equation during the computation.

We adopt the framework of circuit compilation [GIP+14, CGG+21], and compile the circuit C
to be evaluated into a new circuit C̃, called a robust circuit , such that when C̃ is evaluated using
a passively secure MPC protocol which is secure up to additive attacks, it results in a protocol for
evaluating the original circuit C which is actively secure with abort. This view point allows us to
bound the state which needs to be saved by the relays in our protocol.

We note that our notion of state is different from that in Fluid MPC, where the state needed to
be transferred is the entire width of the circuit at any one layer, whereas in our situation the state
is only the part of the width related to multiplication gates at that layer. Thus we adopt a slightly
different notion of robust circuit, and associated compiler. This also implies that, although keeping
small states is an important task, it is not as crucial as in committee-based protocols because we
do not need to pass them from one committee to another. This gives rise to trade-offs between
communication and state-complexity.

As a last remark, even if the general strategy we adopt in our MPC protocol is similar to that
used in other works, adapting it to our setting and trying to maintain low complexity requires a
careful design of the basic building blocks. For example, we show in Section 4.3 that if we instantiate
FMult with the widely used Maurer’s multiplication protocol [Mau03], our general construction
does not work anymore. Instead, we provide a simple and efficient instantiation of FMult using
a variant of the multiplicative protocol given by Damg̊ard and Nielsen [DN07] (DN protocol),
showing that the security of the multiplication and resulting MPC protocol relies on the robustness
of FSecureRobustRelay. In particular, our network allows a single party Pi to send a value to all the
computing parties in a single command, by simply sending the value to all the relays. This means
that we can remove the “king” from the DN protocol, and instead utilize a broadcast mechanism
to allow all parties to essentially be the king. Since at least one relay is honest, this broadcast

7

mechanism comes “for free” and ensures that corrupt parties are forced to send the same value
to all honest parties. This simple observation enables us to prevent the double dipping attack
[GLS19, FL19] on the DN protocol.

Notice that the fact that it is simpler – and more efficient – for a party to communicate in a
broadcast manner, as opposed to a point-to-point manner, via the relays means that traditional
notions of communication complexity of protocols may not apply, since, traditionally a broadcast
is considered more expensive than point-to-point communication.

Finally, we outline possible optimizations to our basic construction and give an estimation of the
complexity of different strategies. In particular, we show that our main approach roughly match the
communication complexity of [CGH+18], achieving linear communication and a concrete amortized
communication cost of 12/13 field elements per multiplication gate per party. If we allow the use
of PRGs this costs goes down to 8/9 field elements per party. We also sketch how to further reduce
the communication costs to 6 (or 4 with PRGs) field elements per party using techniques from
[GS20, GSZ20, BBC+19].

Implementation. While the use of relays results in a more realistic network, it might introduce
additional communication. To evaluate the performance of our network topology, we implemented
protocol ΠSecureRobustRelay, presented in Figure 9, in pure Rust, and compared its performance to
that of direct communication between two parties. The results in Section 7 show that using relays
has no noticeable impact on the performance when sending up to 219 16-byte messages. Note that,
a 16-byte message can correspond to a finite field element of around 128 bits in size, and thus can
represent native data-type for any MPC computation layered ontop.

In addition, we analyse how to best configure the network in order to optimise the communica-
tion runtimes. First, we conclude that although erasing each message in the relays immediately after
retrieval results in slower communication, erasing them in batches achieves similar performance to
direct communication. On the other hand, never deleting messages not only means the relays might
run out of memory, but also turns out to be slower since the relays must iterate through several
messages when answering message request. Second, we show that a network with more relays has
increased security while adding only a small overhead to the communication time.

A second set of experiments is dedicated to evaluate the performance of the MPC protocol. We
measure the number of multiplications performed in one second both when parties all run at the
same speed and when some of them are slower than others.

1.2 Other Related Work

Star-like Topology. Motivated both by practical issues, like the incompatibility of standard commu-
nication model used in MPC protocols with many real-world applications, and theoretical questions,
like achievable security in networks with reduced interaction, some works have studied feasibility
and efficiency of secure MPC in more general networks.

The paper closest to ours is the White-City protocol [Zen20], already mentioned before, which
builds a star-like infrastructure with relay nodes. The underlying application is assumed to be
a short MPC protocol, such as a threshold EC-DSA signing for use in blockchain applications.
Thus, in the White-City protocol, the relay nodes do not need to worry about maintaining a large
state, and thus the system does not enable mechanisms to keep the number of messages stored
to a minimum. Unlike our work, the White-City protocol describes a methodology for interested
parties, who wish to engage in an MPC computation to enrol in the system. For us, we assume

8

that such parties already come equipped with a certified public key. This distinction is, again, due
to the use-case which White-City is focused on. Their registration system could be adapted to our
work relatively easily. In common with our approach, White-City allows for parties to be offline
and re-joining the computation, assuming a partially synchronous network where some of the sent
messages may be lost. However, to ensure security, in White-City the relays are all connected with
each other and constantly run a consensus protocol to maintain the state of the computation. In
our model, the relays are not connected with each other and we prove that the consensus protocol
is not necessary if at least one of the relays is honest.

Another recent work by Alon et al. [ANOS22] considers MPC over a star-like topology network
with a single powerful server (Gulliver), playing the role of a single, central node, and n considerably
less powerful users (Lilliputians). Thus, the model described in this work is different from ours in
few aspects, mainly in the role played by the central node, that in [ANOS22], needs to do most of
the heavy-lifting of the computation, and has the power to block messages between honest parties,
while in our protocol this cannot happen if at least one relay is honest.

A different line of works [HLP11, HIJ+16] studied the notion of security of MPC in different
networks, and in particular in a star-like network. The goal of these works was mainly that of
establishing feasility/infeseabilty results, and their model is different from the one considered in
this paper since in our work we allow more than one single interaction between the computing
parties and the central node.

Dynamic Participation. In Lazy MPC [BJMS20], as in our work, parties can leave the computation.
These parties, called honest-but-lazy, are not assumed to be adversarial, but, unlike our work, they
are not necessarily assumed to come back into the computation. Further, parties that leave the
computation are not guaranteed to receive the output, and the protocol only achieves computational
security. In our work we assume that a party who leaves, only leaves temporarily, and we wish to
maintain enough state to enable them to return to the computation and ‘catch up’ with the others.

In You Only Speak Once (YOSO) [GHK+21], the computation is split into “roles” which are
distributed randomly among participating parties. Each of these roles consists of a single message.
The assumption made here is that the adversary cannot target a party executing a role, if they
do not know who it is, until after the role is completed. In this way the protocol ensure resilience
against adaptive adversary for large scale MPC protocols. The adversary can, after a message
is sent, take down the sending party for the rest of the computation. Parties removed from the
computation in this way do not return, so the computation succeeding is defined as the collective
receiving the output instead of any given party.

Motivated by the nice features of YOSO, in particular its resilience against adaptive adversaries,
Acharya et al. in [AHKP22] recently described a YOSO-style large scale MPC protocol with much
better performance compared to [GHK+21], and also additional features.

Another relevant work is [CGG+21] that introduces the fluid setting , where only a dynamically-
changing subset of parties is involved in the protocol computation. In particular, a subset of parties is
called to be part of the computing committee only for a specific number of rounds. This implies that,
once a computing committee finishes its job, it has to transfer the entire state of the computation
to the next committee. The protocol described in this work achieves active security with abort with
honest majority and requires O(n2|C|) communication. Our protocol is not committee-based and
achieves linear communication complexity taking advantages of the star-like topology with relays.

Similarly to our work, Phoenix [DEP21] deals with parties dropping out of the computation
and rejoining. The adversary chooses some parties to be offline in each round of a computation.

9

However, unlike our scheme, Phoenix limits the number of parties that can be offline in a round.
From such an unstable network, the authors build a standard stable network, assuming a certain
threshold of honest parties is online in any given round. From this they can then build an MPC
protocol ontop of the unstable network. In Phoenix, the protocol places a limit on the length of time
a party may be kept offline by the adversary, whereas in our protocol this limit is not a protocol
construct but a construct of the memory available in the relays.

There are works, for example [FHM98], which study the MPC setting in which the adversary, on
top of being able to corrupt some number of parties, can cause some parties to fail and go offline.
As in our model, parties which are online at one point in time do not know if another party is
currently online or offline. However, parties that fail do not return to the computation in [FHM98],
but they do in our work.

In [GPS19], a synchronous network is assumed in which, similar to our work and to Phoenix,
parties may be offline and come back online later. The network is assumed to have the property
that parties will receive all the messages sent to them while being offline. In our work, each party,
once back online, can decide which messages sent to them retrieve. Unlike Phoenix, there are no
assumptions made on the number of honest parties that are available in consecutive rounds. The
protocol described in [GPS19] is a constant-round computationally secure protocol that requires
honest-majority in each communication round.

Honest majority MPC There has been a huge amount of work that focuses on improving the
efficiency of secure multi-party computation protocols in the honest-majority setting. Most of these
works in the client-server model, where it is sufficient to only consider adversaries corrupting exactly
t parties considering minimal honest majority with n = 2t + 1, and assume the existence of a
private, synchronous point-to-point channel between every pair of parties. The main goal of these
works is to reduce the concrete communication costs by allowing security with abort against active
adversaries. While Genkin et al. [GIP+14] presented the first construction achieving the same
asymptotic cost of state-of-the-art passively secure protocols ([DN07], DN protocol), the work of
Chida et al. [CGH+18] and that of Nordholt and Veeningen [NV18] showed a concrete cost of 12 field
elements per party for each multiplication gate, that is roughly twice the cost of the DN protocol.
In [GS20, GSZ20, BBC+19], the authors presented a way to improve the communication efficiency
of this type of protocols by using a new technique to check the correctness of multiplication gates
achieving an amortized complexity of 6 field elements per multiplication gate, effectively matching
the cost of DN. This result was further improved in [GLO+21], in which the communication of both
the passive and active-secure with abort protocol is reduced to 4 elements per multiplication gate
in the information-theoretical setting and to 2 in the computational setting.

The setting of a strong honest majority has not received much attention, with few exceptions
[FL19, BBG+21]. If, on the one hand, the benefits of having more honest parties are obvious “in
theory”, this observation has not yet translated in concretely efficient constructions. For arbitrary
number of parties, Furukawa and Lindell [FL19] described a 2/3-honest majority protocol which
achieves the same efficiency of DN. We discuss about [BBG+21] extensively below.

MPC with Stragglers. The protocol of Benhamouda et al. [BBG+21] also considers security with
abort in the strong honest majority setting and solves the stragglers problem by allowing the
protocol to proceed at the speed of the 2 · t+1 fastest parties. Compared to their work, our solution
differs on some key aspects other than network setting, since we achieve stragglers resilience against
node failures, while in [BBG+21] delays are caused by network channels.

10

First, we give a generic protocol where the functionality FMult can be instantiated with any
passively-secure multiplication protocol that is secure up to additive attack; whereas [BBG+21]
gives a protocol based solely on the work of Damg̊ard and Nielsen [DN07]. This choice seems indeed
the most natural since Damg̊ard and Nielsen is the most efficient MPC protocol in the presence
of a minimal honest majority. However, in our setting, this choice comes with drawbacks. While
the passively-secure Damg̊ard and Nielsen protocol achieves privacy against a malicious adversary
when n = 2 · t+ 1, this is no longer true if n > 2 · t+ 1. This was first observed in [GLS19, FL19].
The attack, also known as double dipping attack , exploits the redundancy of Shamir’s secret sharing
scheme in the presence of a strong honest majority and that can be used by corrupt parties when
the masked result of a multiplication gate is open by the designated party (the king) to completely
recover the input of the gate. To deal with this problem, [BBG+21] uses a solution based on a novel
PRSS technique that however adds a certain overhead to the computation. Hence, this solution
even if theoretical interesting, is not yet practical for a large number of parties.

The second issue rises as relying on a party playing the role of the king is not ideal in protocols
with delays caused by node failures. If the king is delayed, then all parties are delayed because they
cannot receive the shares necessary to continue the MPC evaluation.

We circumvent both these issues by removing the king from the protocol of Damg̊ard and
Nielsen, and instead utilize a broadcast mechanism to allow all parties to essentially be the king.
This broadcast mechanism come “for free” (assuming one honest relay) in our network model, due
to the sendToAll command of the robust relay functionality.

Another difference with our work is in the verification step necessary to achieve active security
with abort. The paper [BBG+21] uses the technique described in [BBC+19] which only requires
sublinear communication, but needs a large state to be stored. More importantly, to complete the
check [BBG+21] assumes that all the messages delayed during the MPC evaluation arrived before
the final check. This is not required in our protocol.

2 Preliminaries

For a set S, we denote by a ← S the process of drawing a from S with a uniform distribution
on the set S. If D is a probability distribution, we denote by a ← D the process of drawing a
with the given probability distribution. For a probabilistic algorithm A, we denote by a ← A the
process of assigning a the output of algorithm A, with the underlying probability distribution being
determined by the random coins of A. We use [n] to denote the set {1, . . . , n} and P = {P1, . . . ,Pn}
the set of parties.

2.1 Communication and Security Model

We summarize here our settings, as previously described. We assume P = {P1, . . . ,Pn} computing
parties and {R1, . . .Rr} relay nodes. Parties are only connected with relays via authenticated, but
not necessarily private, channels and not with each other and also the relays are not connected
with each other. More formally, we prove security in the authenticated-links model (AM) [CK01],
where the adversary can only deliver messages that were sent by parties and must deliver them
unmodified. Relays maintain an internal state that is updated when interacting with parties.

We assume a synchronous network with a publicly-known upper bound (time-out) on message
delays which allows the parties to follow protocol specifications based on time. Therefore, the
communication proceeds in rounds, each taking a fixed amount of time.

11

We consider δ-delaying malicious static adversaries which are allowed to control up to tr ≤ r−1
relays and tp ≤ t parties, where n ≥ 2t+ 1. We also give the adversary the possibility of partially
control the scheduling of the delivery of all messages by allowing it to arbitrarily delay parties by
up to δ rounds. This means that each party can be delayed more than once during the computation,
but each time only by δ rounds.

We consider security with selective abort , where the adversary receives the output and deter-
mines which honest parties will receive abort and which will receive their correct output.

2.2 Shamir Secret Sharing

Our protocols are built ontop of the specific secret sharing scheme due to Shamir [Sha79]. We
will utilize a degree-t Shamir’s secret sharing over a finite field F in most situations, and for our
multiplication protocol a degree-2 · t sharing.

Shamir’s sharings consists of two interactive algorithms. In the sharing phase a secret x ∈ F
is shared amongst n parties P by the sharing party (the dealer) by defining a random degree-t
polynomial fx(X) ∈ F[X] whose constant term is x. Assuming |F| > n (this restriction can be
remove by field extension in a standard manner), the integers 1, . . . , n are mapped to distinct non-
zero values α1, . . . , αn ∈ F, and each party Pi is given the share xi = f(αi) ∈ F. We denote such
degree-t sharing by ⟨x⟩t. We will drop the index t when it is clear from the context. LetM⊆ [n],
we may write ⟨x⟩M to denote the set of shares {xi}i∈M.

The reconstruction algorithm rec takes as input a set of shares {xi}i∈M, where M ⊆ [n] and
outputs either the secret x or ⊥, i.e. rec(⟨x⟩M) = x or ⊥. Given any subsetM⊆ [n] of size greater
than t and valid sharings xi ∈ F, i ∈M, then there is a unique value x which can be reconstructed
from ⟨x⟩M. We denote the recombination equation for the setM as

x =
∑
i∈M

rMi · xi = rM · xM,

where rMi are constants which depend on the precise set M, and xM is the share vector corre-
sponding to the parties in the set M. We say the vector rM ∈ Fn is the recombination vector for
the setM. The existence of such a recombination vector follows from the existence of the Lagrange
interpolation coefficients for polynomial interpolation.

Definition 2.1. We say that a degree-t sharing ⟨x⟩t is invalid if exists a subset M ⊆ [n], |M| ≥
t+ 1, such that rec(⟨x⟩M) = ⊥; we say that ⟨x⟩t is inconsistent if exist two subsets M1,M2, with
t+ 1 ≤ |M1|, |M2| < n such that rec(⟨x⟩M1) ̸= rec(⟨x⟩M2).

A degree-t Shamir secret sharing scheme can also be viewed as an [n, t+1, n− t] Reed-Solomon
code over F, where (f(α1), . . . , f(αn)) are codewords. This means that, even in presence of corrupt
parties that lie about their share values, honest parties are still able to detect and (in same case)
correct such errors if the number of corruptions are bounded. Concretely, let tp be the number
corrupted parties with tp ≤ t, then the code allows to detect the errors if tp < n − t and even
correct them if 2tp < n− t. When |M| > 2 · t, and hence t < n/2, and the number tp of dishonest
parties is bounded by t, then we are guaranteed that the set M contains indexes of t + 1 honest
parties and they can either recover a unique value x, or will output ⊥ indicating that the shares are
invalid. This can be efficiently done using a parity check matrix PM related to the code underlying
the secret sharing scheme which, for a valid sharing, will satisfy

PM · xM = 0,

12

where, again, xM is the share vector corresponding to the parties in the setM.

When |M| > 3·t, parties inM can robustly recover the secret x, and avoid the case of indicating
the received shares are invalid; however this assumes that the honest parties have started with valid
shares. We shall not use this latter property in this work.

Lemma 2.1. [SW19] Given a set M of d > 2 · t parties, let PM be the parity check matrix and
xM be the share vector of a value x corresponding to the parties inM. Let e be an error introduced
to the shares of the parties controlled by the adversary. Then, one of the following holds:

- PM · (xM + e) ̸= 0
- (xM + e) is a sharing of x.

Protocol ΠMult

Input: ⟨x⟩t, ⟨y⟩t; Output: ⟨z⟩t

1. Parties locally compute ⟨x · y⟩2t = ⟨x⟩i · ⟨y⟩t, i.e., each Pi computes xi · yi = vi.
2. Each party Pi acts as a dealer and produces a degree t sharing ⟨vi⟩t of vi. The shares are distributed to the

other parties.
3. Each party Pi locally takes a subsetMi of size at least 2 · t+ 1 of shares they have received in the previous

step, including their own, and computes

vi =
∑

j∈Mi

sMi
j · vi,

where zi is the ith shares of z.

Figure 2. The basic multiplication protocol for Shamir’s secret sharing scheme

Properties of Shamir’s secret sharing. Shamir’s secret sharing scheme is a linear secret sharing
scheme in that linear functions on share values can be locally applied, i.e., given ⟨x⟩t and ⟨y⟩t one
can locally compute ⟨z⟩t = α · ⟨x⟩t + β · ⟨y⟩t + γ, for any constants α, β, γ ∈ F, by computing
zi = α · xi + β · yi + γ. It is also what is called a multiplicative secret sharing scheme in the case
when t < n/2. Given two sharings ⟨x⟩ and ⟨y⟩, with individual sharings xi = fx(i) and yi = fy(i)
held by the parties Pi, for two polynomials fx(X) and fy(X), and any setM ⊂ {1, . . . , n} of size
strictly greater than 2 · t we have that

z =
∑
i∈M

sMi · xi · yi.

We say that the vector sM ∈ Fn, where si = 0 if i ̸∈ M, is the recombination vector for the Schur
products. By abuse of notation we also refer to sM as the vector length |M| where we drop all
entries for which i ̸∈ M. The existence of such a recombination vector follows since xi · yi = fz(i)
for the polynomial fz(X) = fx(X) ·fy(X) of degree 2 · t, thus the values xi ·yi are a Shamir sharing
of the product z of degree 2 · t.

The fact it is linear and multiplicative means we have the (standard) protocol for multiplication
[Mau06] described in Figure 2 in the case when t < n/2; often dubbed Maurer-multiplication. This

13

protocol, assuming the input sharings are valid, will produce a valid sharing of the product up to
an additive error which adversarial parties may introduce. Note, that the protocol is one round
(step 2) and that any subset Mi of size larger than 2 · t + 1 can be utilized in step 3. The total
number of finite field elements transmitted in step 2 is n · (n− 1).

Reducing communication using PRGs. Using a PRG the cost of step 2 per party is (n− t− 1) field
elements [NV18]. Assuming that each pair of parties agreed on a common seed, that can be done
by simply sending a value at the beginning of the protocol, then to distributed a Shamir’s sharing
of vi, Pi first sends t random elements to the first t parties, which can be done with no interaction
using a PRG, then it creates the remaining n− t−1 shares consistently with vi and those t random
values, and finally sends these n− t− 1 values to the relevant parties.

2.3 Encryption

Our protocols will make use of both symmetric and public key encryption.

Symmetric key encryption algorithms will be denoted by a triple of probabilistic polynomial
time algorithms (KeyGen,Enck,Deck).

- KeyGen(1λ): On input the security parameter λ, this algorithm outputs a key k drawn from a
space K.

- Enck(m, a): On input of a key k, a message m and associated data a this outputs a ciphertext
ct.

- Deck(ct, a): On input of a key k, a ciphertext ct and associated data a, this algorithm outputs
a message m or the symbol ⊥.

We adopt the standard definitions for correctness and security of such AEAD (Authenticated
Encryption with Associated Data) schemes. In particular, we require the AEAD scheme to be
IND-CCA and to be secure against forgeries, where AEAD-unforgeability is defined as follows.

Definition 2.2 (AEAD Unforgeability). An AEAD-scheme (authenticated-encryption scheme
with associated-data) E consists of three algorithms (KeyGen, Enck, Deck) with the following prop-
erties. Let A be an adversary having access to an oracle OEnc for some key k, we say that A forges
(for this key k) if it is able to output a ciphertext ct∗ such that

1. Deck(ct
∗) = m∗ ̸= ⊥;

2. m∗ ̸∈ Q, where Q is the set of all queries that A asked its encryption oracle.

Public key schemes can be similarly defined using a triple of algorithms (KeyGen, Encpk, Decsk), as
follows:

- KeyGen(1λ): On input the security parameter λ, this algorithm outputs a key pair (pk, sk).
- Encpk(m, a): On input of a public key pk and a message m, this outputs a ciphertext ct.
- Decsk(ct): On input of a private key sk and a ciphertext ct, this algorithm outputs a message m
or the symbol ⊥.

We assume the standard IND-CCA security definitions for public-key encryption. Whether a scheme
is public key or secret key will be clear from the context, i.e., whether the associated key is written
as k, pk or sk.

14

2.4 Internal Additive Attacks

Intuitively, an additive attack (Definition 2.3) is an attack which changes the value of a gate’s
output wire in the circuit by an additive value before the calculation is performed, i.e. blindly
changing a wire from f(x) to f(x) + δa, where f(x) is the function computed by the gate and δa is
a value known by the adversary.

We recall the formal definition of an additive attack. One minor modification to the definition
from [GIP+14, CGG+21] is due to the check in our protocol for opening a value, given in Figure 10,
Section 4. In particular, since the output wires of a circuit will be checked via the underlying
error-detection properties of the Shamir’s secret sharing scheme, we restrict to an additive attack
only related to the internal wires of a circuit and not to the output wires. We call such an attack
“internal additive attack” in order to distinguish it from the standard notion of an additive attack
(which also allows the adversary to add a known value to the output wires of the circuit).

Definition 2.3 (Internal Additive Attack). Let C : Fn → Fk be a circuit. An additive attack A
by an adversary on the evaluation of the circuit C assigns an element of F to each of the circuits’
internal wires, i.e. a wire between two gates ga and gb. Let Aa,b denote the value assigned by the
attack to the internal wire between gates ga and gb. The additive attack changes the calculation of
the circuit as follows: For each internal wire between gates ga and gb, the value Aa,b is added to the
wires value after the calculation of the output of gate ga, but before the calculation of the gate gb.

Looking ahead, the protocol ΠPMPC we give in Section 5 will take the arithmetic circuit repre-
sentation of the function to be evaluated and execute a standard secret-shared based MPC protocol,
using some simple multiplication protocol, like the one described in Figure 2, to execute the mul-
tiplication gates. The result will be a protocol which is secure up to internal additive attacks.

We then compile ΠPMPC into a protocol which is actively secure with abort, i.e. which is secure
even against internal additive attacks. This is done by applying the protocol which is secure up
to internal additive attacks to a circuit which protects against such additive attacks. Thus our
approach to proving security will be similar to that used by Genkin et al. [GIP+14], Chida et al.
[CGH+18], and FluidMPC [CGG+21].

However, in our situation, we also allow the adversary to delay messages, as explained in the
next section, by a value of at most δ. Thus we need to execute the basic multiplication protocol in
a manner which enables the fastest parties to complete the computation as soon as possible and,
in addition, we need to bound the size of the state which needs to be stored by the relays.

2.5 Depth and Width of Randomized Arithmetic Circuits

We recall some useful definitions that we will need to describe our MPC protocol. To bound the
size of the state which needs to be stored, we look in detail at the structure of the circuit being
evaluated. We define our basic (randomized) circuit as follows.

Definition 2.4 ((Randomized) Arithmetic Circuit). An arithmetic circuit C over a finite
field F is a directed graph consisting of nodes made of input, linear5, multiplication and output
gates, and edges called wires. The nodes are such that

- Input gates have no incoming edges and one outgoing edge, they are labeled with a party number
which indicates which party will provide that input.

5 Linear gates are those implementing addition, addition-by-constant and multiplication-by-constant operations

15

- Linear gates may have arbitrary fan-in, and one output edge.
- Multiplication gates have two input and one output edge.
- Output gates have one input and one output edge, they are labelled with a party number which
indicates which party will obtain that output.

A randomized arithmetic circuit allows an additional gate in its construction (called a random-
input gate) with no input and a single outgoing edge, which emulates a truly random source. Thus
randomized circuits can represent probabilistic functions, whereas non-randomized circuits represent
deterministic functions.

The FluidMPC protocol [CGG+21] also needs to consider circuit structure in order to bound
state, but this is the state which is passed from one committee to another at each stage. This
state transfer leads them to the idea of a layered circuit. We do not have such a need to transfer
state, thus our terminology differs in a number of ways. For example, we do not restrict from which
depth an input wire for the gates at depth d comes. Due to the way our state is measured we make
small changes to the way depth and width are calculated, for examoke in FluidMPC each gate (and
not just multiplication gates) is important for the size of the state passed between committees.
Thus multiplicative depth and width (as defined below) are the only values relevant to us. Given a
standard circuits, as defined by Definition 2.4, we define the circuit depth and width as follows.

Definition 2.5 (Circuit Depth and Width). Let C denote a randomized arithmetic circuit.
We assign a depth to each wire and gate as follows:

- All input and random-input gates have depth zero.
- Each wire has depth the depth of the gate which produces that wire.
- Each linear gate has depth the maximum depth of the associated input wires.
- Each multiplication gate has depth one more than the maximum depth of the associated input
wires.

- Output gates are all placed at the depth of their associated input wire.

The depth of a circuit is the maximum depth of all output gates in the circuit. The width at depth
d of a circuit, wd, is the number of multiplication and output gates of the given depth d. The width
of a circuit is the maximum value of wd across all possible depths d.

3 Relays and Delays

In this section, we present the protocol ΠSecureRobustRelay, which formally describes how parties and
relays securely communicate in presence of bounded delays. The protocol is given in Figure 9. It
implements the ideal functionality FSecureRobustRelay, given in Figure 7 and Figure 8.

The protocol ΠSecureRobustRelay uses two main distinct building blocks, namely the functionalities
FSingleRelay and FDelay, that we briefly describe before introducing our main protocol. This approach
allows to first introduce the topology of our network with relays and then add the possibility of
adversarial delays.

3.1 A Single Relay

The functionality FSingleRelay, described in Figure 3, captures all the interactions between parties
P1, . . . ,Pn and a single relay R. The functionality is described by six commands, other than the
initialization command Init, as explained below.

16

Functionality FSingleRelay(R,P1, . . . ,Pn)

This functionality runs with an adversary S, a special party (denoted by R), which is the relay, and n parties
(denoted by P1, . . . ,Pn). The functionality maintains pairwise counters τi,j , for all i ̸= j, and global counters
τi,P for all i ∈ P, and variables ϵτi,j ∈ {⊥, 0, 1}, and ϵτi,P,j ∈ {⊥, 0, 1}.
Upon activation the functionality receives either (−,PI) or (R,PI) from the adversary, where PI ⊂ {P1, . . . ,Pn}
is the set of corrupt parties, indicating in the first case that the relay is honest, and the in second case that the
relay is dishonest. We assume |PI | ≤ tp.

Init: On input (init) from all parties the functionality sets all the counters τ ← 0 and ϵ← ⊥.
Send: On input (send,R,Pi,Pj ,m) from Pi,

1. Send (sent, i, j,m) to R and increment τi,j by one.
2. Set mτi,j ← m and store it. Set ϵτi,j ← 0.
3. Delete (i, j,m) from the store.

SendToAll: On input (sendToAll,R,Pi,P,m) from Pi,
1. Send (sendToAll, i,P,m) to R and increment τi,P by one.
2. Set mτi,P ← m and store it. Set ϵτi,P,j ← 0, ∀j ∈ P \ i.
3. Delete (i,P,m) from the store.

Erase: On input (erase,R,Pi,Pj , τi,j) from Pj .
1. Send (erase,Pi,Pj , τ) to R.
2. Set ϵτi,j ← 1, and delete mτi,j for all τi,j ≤ τ .

EraseAll: On input (eraseAll,R,P,Pj , τ) from Pj , where τ = {τi,P}i̸=j

1. Send (eraseAll,P,Pj , {τi,P}i ̸=j) to R.
2. Set ϵτi,P,j ← 1,∀i
3. For each i, if ϵτi,P,j = 1 for all j ∈ P, delete mτi,P for all τi,P ≤ τ .

Request: On input (request,R,Pi,Pj , τi,j) from Pj ,
1. Send (request,Pi,Pj , τi,j) to R.
2. If R is corrupt, wait for (Deliver, m̃) from S, send m̃ to Pj .

Else, if ϵτi,j ̸= 0 then return ⊥ to Pj , else retrieve mτi,j and send it to Pj .
RequestFromAll: On input (requestFromAll,R,P,Pj , τ) from Pj , where τ = {τi,P}i ̸=j ,

1. Send (requestFromAll,P,Pj , {τR
i,P}i ̸=j) to R.

2. If R is corrupt, wait for (Deliver, m̃) from S, send m̃ to Pj .
Else, for all i ̸= j, if ϵτi,P,j ̸= 0 then set the ith-coordinate of m to be equal to ⊥, otherwise retrieve the
ith-message corresponding to τi,P . Send the vector m to Pj .

Figure 3. Functionality modelling a single relay

Send. In the send command we let the adversary see the message being sent even between honest
parties and an honest relay. This captures the fact that our connections are only authentic. To
manage the send commands the functionality maintains pairwise counters, τi,j , ∀(i, j), that are
used to store, retrieve and erase messages sent from party Pi to Pj . The relay uses the variable
ϵτi,j to indicate whether the τi,j-th message from Pi to Pj needs to be stored for future possible
retrievals by party Pj . We have ϵτi,j = ⊥ if the specific message associated to counter τi,j has not
been sent, ϵτi,j = 0 if the associated message is stored for future use, and ϵτi,j = 1 if the associated
message is never going to be retrieved.

The variable ϵτi,j is used to avoid messages being stored indefinitely by the relay. We allow a
receiving party to indicate that the network can erase messages, and these will never be requested
in the future. To indicate which messages are not going to be retrieved, a receiving party uses the
erase command.

Request. Parties use the request command to retrieve a message. The request is of the form
(i, j, τi,j), where party Pj is requesting the τi,j-th message sent to it by party Pi. The adversary is

17

allowed to replace any sent message, which has not been erased, to any value it wants, including
⊥, as long as the relay is corrupt, via the request query. A ⊥ value is returned by an honest relay
if the message has been erased, or it has not yet been received by the relay. Note, the request

command allows an adversarial relay to send different messages for the same (i, j, τi,j) tuples for
different request queries.

SendToAll. Similarly, a party Pi can also send a message to all the other parties (or even a subset
of P), by just sending a single message to the relay. This is captured by the sendToAll command.
To manage these, the functionality maintains ‘global’ counters, τi,P and ϵτi,P,j , ∀i, j ∈ P, used to
store, retrieve and erase messages sent from Pi to all parties in P \ Pi. The sendToAll command
is paired with requestFromAll and eraseAll commands in order to manage these sent messages.

RequestToAll.The command requestFromAll allows a single party Pj to retrieve messages from all
parties. To ease the exposition, we only allow this command on global messages with counters τi,P ,
for all i. It can be used by Pj to obtain all the n− 1 messages mτi,P , for i ̸= j. This command will
retrieve a vector of messages, one from each sending party. If a specific message has not yet been
received by the relay, then ⊥ is returned in this location.

Erase EraseFromAll. The relaying party R only stores messages for which ϵτi,j (resp. ϵτi,P,j) is not
equal to one. Notice that, the relay R does not delete the message on retrieval (by setting ϵτi,j = 1)
since the receiving party may wish to request it again (in the case of it failing for some reason during
the execution of the request command). Relays delete messages only when they are instructed to,
which happens when either erase or eraseAll are called.

An implementation of this underlying functionality FSingleRelay is immediate, in that the relaying
party R just needs to maintain a list of messages sent, which may be requested in future, and it
needs to maintain authenticated links with all parties.

3.2 Key Agreement

In order to describe our main robust form of relay, which allows an adversary to delay messages,
we require that the parties have exchanged secret keys; this is to enable the communication be-
tween parties to be both secure and authenticated. Now we could assume that such keys are
pre-assigned, however we show that, assuming set of relays of which we have an honest majority
and pre-authenticated public keys, we can run a simple key agreement process across the network
provided by the said relays.

In Figure 4, we give a key agreement functionality FKE and then, in Figure 5, we present the
corresponding protocol ΠKE. The protocol is run between r + 2 parties, r of the parties are the
relays R1, . . . ,Rr and the other two parties, Pi and Pj , are the two parties who wish to agree on
a secret key, and assumes that the number of corrupt relays tr is less than r/2, i.e. the majority of
the relays are honest.

More concretely, FKE captures the security requirements from a single key-exchange between
two parties: if both parties Pi and Pj are honest, then they receive the same uniformly-distributed
key k ∈ K, where K is the key space for a symmetric encryption scheme E , while the adversary
learns nothing except that a secret key was generated; if either Pi or Pj are corrupt, then the
adversary is given the power to generate the secret key, since it will know that key in any case.
The protocol ΠKE, implementing FKE, is in the FSingleRelay-hybrid model, and assumes an already
existing PKI, in that the parties Pi have certified public keys pki.

18

Using these public keys and the functionality FSingleRelay from Figure 3, the parties can establish
pairwise secret keys k for every pair Pi and Pj . Concretely, this can be done via a protocol such
as the Station-to-Station protocol [DvW92] or via TLS [Res18]. However, since we are in a static
corruption model, we can actually deploy a non-forward secure key agreement scheme in order to
establish the keys k. In Figure 9, we therefore use a simplistic key agreement scheme based upon
key transport. This can obviously be replaced by a more complex key agreement scheme if desired.

Functionality FKE(R1, . . . ,Rk,Pi,Pj)

This functionality runs with an adversary S and r + 2 parties, r special parties (denoted by Rk) which are the
relays and 2 parties (denoted by Pi,Pj).
It is parametrized by a domain D.

1. Upon receiving (establish-key, sid,Pi,Pj , sender) from Pi and (establish-key, sid,Pi,Pj , receiver) from
Pj , record the tuple (sid,Pi,Pj) and send this tuple to S and R1, . . . ,Rk.

2. If both Pi and Pj are honest, sample k← D, send (key, sid, k) to Pi and Pj and a message (key, sid,Pi,Pj)
to S, and halt.

3. If Pi is corrupt (or Pj is corrupt), then send a message (chooseKey, sid, Pi, Pj) to the adversary. If S sends
abort, forward abort to the honest parties and halt; otherwise, receive a value k from S and send (key, sid, k)
to Pj (resp. Pi), then halt.

4. If both Pi and Pj are corrupt, then send a message (chooseKey, sid,Pi,Pj) to the adversary. If S sends
abort, forward abort to the honest parties.

Abort: S can at any point send the message abort, upon which the functionality sends (abort) to all honest
parties and halt.

Figure 4. Functionality for key exchange

To define these keys we assume a cryptographic hash function H : {0, 1}∗ −→ K which we model
as a random oracle and we capture the fact that the parties own certified key by exploiting the
presence of an ideal functionality FCKeyGen which generates certifies keys (pki, ski) for each party
Pi, i ∈ [n].

The problem is that to perform this key agreement we rely on the request commands from
the functionality FSingleRelay. At this point we need consensus which is guaranteed if tr < r/2, or
we abort. Thus in the key-agreement protocol protocol, if the adversary does not mount a Denial-
of-Service attack, (i.e. all parties will complete the pair-wise key agreement protocol) each pair
of parties will end up with a unique uni-directional key k (for some AEAD symmetric encryption
scheme) with which to securely encrypt messages from Pi to Pj . We hence obtain the following
theorem.

Theorem 3.1. Assuming tr < r/2, a random oracle, a public-key IND-CCA encryption scheme
E = (Encpk,Decsk), an ideal functionality FC

CKeyGen for the key-generation of E which returns certified
keys, the protocol ΠKE, described in Figure 5, securely implements the functionality FKE in the
{FSingleRelay,FC

KeyGen}-hybrid model.

Proof. Let A be the real world adversary, we construct an ideal-world adversary S such that
no environment can distinguish between an ideal and real execution. Throughout the execution, S
emulates the random oracle H by answering every new query with a random value from the relevant
set and maintaining a list of past queries to answer repeated queries consistently.

19

- Upon receiving (sid,Pi,Pj) from the functionality, S emulates FCKeyGen obtaining (pki, ski) and
(pkj , skj). Send pki and pkj to the adversary. If either Pi or Pj is corrupt, send the corresponding
secret key to A.

- Honest Pi and honest Pj. Send random ciphertexts cti,j and ctj,i to the adversary. Then

emulate FSingleRelay and receive values c̃ti,j
k
and c̃tj,i

k
, for k ∈ RI , from A. If some c̃t

k ̸= ct, set
the flag corruptRk = true. Since we assume than more than r/2 relays are honest, halt.

- Corrupt Pi and corrupt Pj. Receive (chooseKey, sid, Pi, Pj) from the functionality. Simu-
lates the honest relays sending the received ciphertexts to A in the emulation of FSingleRelay. If
A sends abort, forward it to the functionality and halt.

- Corrupt Pi and honest Pj. Receive (chooseKey, sid,Pi,Pj) from the functionality. Receive
(send,Rk,Pi,Pj , ctki,j) fromA, emulating FSingleRelay. Then emulate again the same functionality

on the command request and receive from the adversary c̃t
k
ij , for k ∈ RI . Decrypt and check

whether there are more than r/2 values that are consistent. If this is the case, let ki,j be such a
value; otherwise send abort to the functionality and halt. S samples a random k′ and encrypt it
sending ctji = Encpki(k

′) to the adversary. If A sends abort, then forward it to the functionality.
In case of no abort, compute k = H(ki,j , k′), forward this value to the functionality and halt.

- Honest Pi and corrupt Pj. This is symmetric to the previous case.

Indistinguishability.When both Pi and Pj are honest, the outputs of the two executions are indistin-
guishable as H is modelled as a truly random function. The transcript is also indistinguishable due
to the semantic security of the encryption scheme. The only point where the simulation could fail
is if the adversary managed to change the output of the real execution; however this is not possible
because honest relays will always send the correct ciphertexts and of the assumption tr > r/2.

When Pi is corrupt in both executions the honest relays will send the ciphertexts obtained by
A which fix the output. All other cases are similar. ⊓⊔

3.3 Modelling Bounded Delays

We now turn to modelling the bounded-delay communication setting for our main protocol. This
is captured by the functionality FDelay given in Figure 6. It is parametrized by a constant δ and it
works by querying the adversary, who can then impose a delay bounded by δ. This means that, as
soon as a party has been delayed for δ rounds, the next command will proceed. More in details,
once the functionality is called with (delay,Pi, command), where command represent a specific action
that Pi is trying to execute, we distinguish two different cases. If δi = ⊥, it means that Pi is not
currently delayed. Hence, the functionality sends a message (delay, i) to the ideal adversary S. If
S replies with (delay, Di), then the functionality sets δ = Di, meaning that Pi will be delayed for
Di rounds, otherwise returns ok to Pi. If otherwise δi ̸= ⊥, Pi has been already delayed, so the
functionality sets δi ← δi − 1, and if the resulting δi is 0, it sends ok to Pi.

In a real world implementation, as communication is essentially synchronous, if a party does
not receive a valid response (e.g. a message or an ok signal) after a request, then they interpret
this as a delay. Note, that the delay is local for a party Pi, it does not depend on the specific
corresponding party Pj . However, it does apply for all messages passed between Pi and all of the
relays R1, . . . ,Rr.

In addition, we require that parties are delayed only for a limited number of rounds; if we
removed this condition, and set δ = ∞, then the resulting functionality would produce something

20

Protocol ΠKE(R1, . . . ,Rr,Pi,Pj)

The protocol assumes tr > r/2. It uses a public-key encryption scheme with certified keys. Let H be an hash
function modelled as a random oracle.
Output: A unidirectional secret key ki,j for an AEAD encryption scheme.

1. Upon activation, parties Pi,Pj send input init to FSingleRelay and set pairwise counter τi,j ← 0 and ϵi,j ← ⊥.
2. Both parties runs FCKeyGen obtaining (pki, ski) and (pkj , skj), respectively.
3. Parties Pi and Pj respectively generate keys k′i,j ← K and k′j,i ← K.
4. Pi computes cti,j ← Encpkj (k

′
i,j) and Pj computes ctj,i similarly.

5. For k ∈ [r], Pi calls the command (send,Rk,Pi,Pj , cti,j) on the functionality FSingleRelay. Pj does the same
with ctj,i.

6. For k ∈ [r], party Pj sends (request,Rk,Pi,Pj , 1) to FSingleRelay which forwards the request to Rk, so that
Pj obtains the message cti,j ; for k ∈ [r], party Pi sends (request,Rk,Pj ,Pi, 1) to FSingleRelay which forwards
the request to Rk, so that Pi obtains the message ctj,i

7. Each party decrypts all the received ciphertexts: Pj computes k′i,j = Decskj (cti,j), for each r ∈ [k], and Pi

computes k′j,i = Decski(ctj,i), for each r ∈ [k]. Both Pi and Pj does as follows:
- If there is no value that is repeated more that r/2 times, then abort
- Otherwise, if the value repeated more than r/2 is k′i,j = ⊥ (similarly for Pi if the decrypted value is
k′j,i = ⊥), then abort; else, parties Pi and Pj define ki,j = H(k′i,j , k′j,i).

8. For k ∈ [r], party Pj calls the command (erase,Rk,Pi,Pj , 1) on the functionality FSingleRelay.

Figure 5. Protocol instantiating the key exchange functionality

Functionality FDelay(P1, . . . ,Pn,R1, . . . ,Rr, δ)

This functionality runs with an adversary S, n parties, denoted by P1, . . . ,Pn, and r relays, denoted by
R1, . . . ,Rr. In addition as input it takes a parameter δ ∈ N. Further, it stores δi ≤ δ for each i ∈ [n].

Init: Set δi ← ⊥ for all i ∈ [n].
Delay: On input (delay,Pi, command):

- If δi = ⊥: Send (delay, i) to S and wait for input.
- If S returns (delay, Di) and 0 < Di ≤ δ, then

1. Send (delayed, Di) to S.
2. Set δi ← Di.

- If S returns (delay, Di) and Di ≥ δ, then
1. Send (delayed, δ) to S.
2. Set δi ← δ.

- Else, send ok to Pi

- If δi ̸= ⊥:
1. Set δi ← δi − 1.
2. If δi = 0: send ok to Pi

Figure 6. Functionality modelling delays

akin to an asynchronous network, which would result in some changes needed to the resulting MPC
protocol which we run on top of our relays.

As remarked, the delays model the fact that parties can execute the protocol at different speeds,
and can reboot themselves or go offline for a short period. We give the adversary the ability to
control this operation.

21

Functionality FSecureRobustRelay(R1, . . . ,Rr,P1, . . . ,Pn, δ) - Part 1

This functionality runs with an adversary S and n+ r parties, such that parties R1, . . . ,Rr act as relays, whilst
parties P1, . . . ,Pn wish to use the set of relays as a means of relaying messages between themselves. In addition
as input it takes a parameter δ ∈ N. The functionality maintains pairwise counters τi,j for all i ̸= j and global
counters τi,P for all i ∈ P, variables ϵRτi,j ∈ {⊥, 0, 1}, ϵ

R
τi,P,j

∈ {⊥, 0, 1}, δn ∈ {⊥} ∪ N, i ∈ [n], and a variable
operation.
Upon activation, the functionality receives (RI ,PI) from the adversary, where RI is the set of corrupt relays,
and similarly PI is the set of corrupt parties, where |RI | ≤ tr and |PI | ≤ tp. The functionality stores these two
sets in its variable state.

Abort: S can at any point send the message (abort), upon which the functionality sends (abort) to all honest
parties and halts.

Init: On input (init) from all parties, the functionality sets all counters τ ← 0 and variables ϵτ ← ⊥, k ∈ [r],
and sets δi ← ⊥, for all i ∈ P. In addition, it runs as a copy of FKE and sends to the adversary all the
relevant keys; the keys obtained in this stage are available for later use.

Send: On input (send,Pi,Pj) from Pi

1. Run the DelayMacro on input (send, i, j,⊥).
2. We distinguish two cases:

- If Pi is honest, receive m from Pi. Compute ct← Encki,j (m) and send it to the adversary and honest
relays. Set m← mk, for each k ∈ [r].

- If Pi is corrupt, receive mk, k ∈ [r], from the adversary. Compute ctk ← Encki,j (mk) and send it to
Rk, for all k ̸∈ RI .

3. Increment τi,j by one.
4. For k ∈ [r], set mk

τi,j ← mk and store it.
5. For k ∈ [r], set ϵτi,j ← 0.
Note the messages sent in a send command are not sent to the adversary.

SendToAll: On input (sendToAll,Pi,P) from Pi

1. Run the DelayMacro on input (send, i,P,⊥).
2. We distinguish two cases:

- If Pi is honest, receive m from Pi. Send it to the adversary and honest relays. Set m ← mk, for
each k ∈ [r].

- If Pi is corrupt, receive mk, k ∈ [r] from the adversary. Send it to Rk, for all k ̸∈ RI .
3. For all k ∈ [r],

(a) Increment τi,P by one.
(b) Set mk

τi,P ← mk and store it.
(c) Set ϵτi,P,j ← 0.

Note the messages sent in a sendToAll command are sent to the adversary.

Figure 7. Functionality FSecureRobustRelay - Part 1

3.4 Implementing a Secure Robust Relay using Multiple Single Relay’s

We can now formally describe our star-like topology where n parties, instead of relying on a single
relay, rely on a set of relays, assuming at least one of them is honest. We show that, once each
party has agreed pair-wise keys for an AEAD encryption scheme with each other party, then a
robust relay protocol can be implemented, assuming only one honest relay and without expensive
consensus procedures. These keys can either be pre-distributed or they can be agreed using the
honest majority protocol presented in Section 3.2.

We stress that AEAD encryption is only used on point-to-point channels, i.e. with the send

command. Looking ahead, our MPC protocol only relies on sendToAll, which works like a public
broadcast in a normal MPC protocol and does not require encryption.

We model FSecureRobustRelay in such a way that it does not manipulate the received messages,
unless this is strictly necessary. In this way we keep the description of the functionality as simple as

22

Functionality FSecureRobustRelay(R1, . . . ,Rr,P1, . . . ,Pn, δ) - Part 2

Request: On input (request,Pi,Pj) from party Pj ,
1. Run the DelayMacro on the input (request, i, j,⊥).
2. Receive τ, k ∈ [r], from Pi (or the adversary if Pi is corrupt), where τ is of type τi,j , and send

(request, i, j, τ) to Rk,
3. There are three different cases:

- If the adversary sends abort, forward abort to the honest parties and halt.
- Else, if S sends (request,⊥), retrieve one of the mτ for k at choice and set this value to be the
output of Pj

- Else, if S sends a value m̃, retrieve mk
τ for all k ̸∈ RI . If either mk

τ = m̃ for all k ̸∈ RI or mk
τ = ⊥

for all k ̸∈ RI , then set this value m̃ to be the output of Pj ; else output abort.
RequestFromAll: On input (requestFromAll,P,Pj) from party Pj ,

1. Run the DelayMacro on the input (requestFromAll,P, j,⊥).
2. Receive τ , k ∈ [r], from Pi (or the adversary if Pi is corrupt), and send (requestFromAll,P, j, τ) to Rk.

Note, τ is an (n− 1)-dimensional vector of counters of type τi,P , i ̸= j.
3. There are three different cases:

- If the adversary sends abort, forward abort to the honest parties and halt.
- Otherwise, for each τi,P , i ̸= j:

- If S sends (requestFromAll,⊥), retrieve one of the mk
τi,P , for k at choice, and set this value to

be the ith value of the output of Pj

- Else, if S sends a value m̃i, retrieve mk
τi,P for all k ̸∈ RI . If m

k
τi,P = m̃i for all k ̸∈ RI , then set

this value m̃i to be the value of the output of Pj corresponding to τi,P ; else output abort.
4. If no abort has occurred, output the vector of messages mτ to honest Pj

Erase: On input (erase,Pi,Pj) from Pj

1. Run the DelayMacro on the input (erase, i, j,⊥).
2. Receive τi,j , k ∈ [r], from Pi (or the adversary if Pi is corrupt), and send (erase, i, j, τi,j) to Rk.
3. Set ϵτi,j ← 1, and delete mk

τ̄i,j for all τ̄i,j ≤ τi,j .
EraseAll: On input (eraseAll,P) from Pj

1. Run the DelayMacro on the input (eraseAll, j).
2. Receive τi,P , from Pi (or the adversary if Pi is corrupt), and send (erase, i, j, τi,P) to Rk, k ∈ [r].
3. Set ϵτi,P,j ← 1.

4. If ϵτi,P,j = 1 for all j ∈ P, delete mk
τ̄i,P for all τ̄i,P ≤ τi,P

DelayMacro: On input (command, i, j, arg):
1. Store (command, i, j, arg) in the variable operation.
2. Send (command, i, j) to S and wait for an input.
3. If S sends (continue), send ok to Pi; else, if S sends (continue∗), move to the next step.
4. Retrieve (command, i, j, arg) from the variable operation.

Figure 8. Functionality FSecureRobustRelay - Part 2

possible. Moreover, the functionality does not control the delays, but messages can be arbitrarily
delayed by the adversary (up to δ rounds).

Our main goal is to present a relay functionality in which the adversary has no access to the
underlying messages sent, via the send command, between Pi and Pj , unless the adversary controls
party Pi and/or Pj . However, the messages sent from a party Pi to all other parties in P, via a
sendToAll command, are public. Also, we require a request (resp. requestFromAll) which is
guaranteed to be correct, and which does not enable a trivial Denial-of-Service attack upon this
command.

In terms of the underlying messages sent over the underlying synchronous network, every
command sent from the party Pi to the relays has an “implicit” or “explicit” response. Thus a
send/sendToAll or erase/eraseAll command will result in the relays responding with an im-

23

Protocol ΠSecureRobustRelay(R1, . . . ,Rr,P1, . . . ,Pn, δ)

Let H be a hash function modelled as a random oracle and E = (KeyGen,Enc,Dec) an AEAD encryption scheme
that uses FKE as key-exchange functionality.

init: Each pair of parties (i, j) call the functionality FKE obtaining ki,j .
send: When Pi wishes to send a message m to Pj :

1. Pi computes ct← Encki,j (m) and sends (delay,Pi, (send,Pj)) to FDelay until it receives an ok message
from the functionality.

2. When Pi receives ok, it calls (send,Rk,Pi,Pj , ct) on FSingleRelay, ∀k ∈ [r].
sendToAll: When Pi wishes to send a message m to all other parties:

1. Pi sends the command (delay,Pi, (sendToAll,P)) to FDelay until it receives an ok message from the
functionality.

2. When Pi receives ok, it calls (send,Rk,Pi,P,m) on FSingleRelay ∀k ∈ [r].
request: When party Pj wishes to get the message from Pi with index τi,j , Pj sends (delay,Pj , (request,Pi))

to FDelay until it receives an ok message from the functionality.
1. When Pj receives ok, it calls (request,Rk,Pi,Pj , τi,j) on FSingleRelay, for each k ∈ [r], obtaining ctk for

k ∈ [r].
2. Check: Party Pj performs the following check

- If, for all values of k, ctk = ⊥ then return ⊥ //it might be that the message has not yet been sent
by party Pi.

- Else, for each k such that ctk ̸= ⊥, compute mk ← Decki,j (ctk).
- If there is a unique mk ̸= ⊥ then accept this value.
- Else, if there is more than one value mk ̸= ⊥, then abort.

requestFromAll: When party Pj wishes to get n − 1 messages from P \ Pj with index τi,P , i ̸= j, Pj sends
(delay,Pj , (requestFromAll,P)) to FDelay until it receives an ok message from the functionality.
1. When Pj receives ok, it calls (requestFromAll,Rk,P,Pj , τ), where τ = {τi,P}i ̸=j , on FSingleRelay, for

each k ∈ [r], obtaining mk, k ∈ [r].
2. Check: Party Pj performs the following check for each coordinate of the received vectors mk =

(mi,k)i ̸=j .
- If, for some values of k, mi,k = ⊥, then set mτi,P = ⊥.
- Otherwise, if there is a unique mi,k ̸= ⊥, for all k, then accept this value; else, if there is more than
one value mi,k, for different k, such that mi,k ̸= ⊥, then abort.

erase: When Pj wishes to erase messages from Pi:
1. Pj sends (delay,Pj , (erase,Pi)) to FDelay until it receives an ok message from the functionality.
2. When Pj receives ok, it calls (erase,Rk,Pi,Pj , τi,j) on FSingleRelay ∀k ∈ [r].

eraseAll: When Pj wishes to erase messages from P:
1. Pj sends (delay,Pj , (eraseAll,P)) to FDelay until it receives an ok message from the functionality.
2. When Pj receives ok, it calls (eraseAll,Rk,P,Pj , τ) on FSingleRelay for each k ∈ [r], where τ is a vector

of counters (τi,P)i̸=j .

Figure 9. Protocol ΠSecureRobustRelay

plicit acknowledgement. The request/requestFromAll command has an obvious explicit response
which comes from the relays. The delay operations will apply to the commands sent from the party,
and not separately to the responses from the relays. Thus we assume that as soon as a command
is sent to the relays, and not delayed, then it completes at the relays and a response is sent back.

Notice, that the request command is both secure and robust: the adversary does not see the
content of a message sent from an honest party, and that if the request command fails then the
receiving party knows this is due to adversarial behaviour on the part of the sending party and not
on the part of the relays.

24

When a party Pi sends a message to all members of P, via sendToAll, this message is not
encrypted with an AEAD scheme, but just sent over authenticated channels. Also in this case, we
are able to prove that the requestFromAll command is robust

The protocol implementing request/requestFromAll is very lightweight, and will form the
basis of the requesting of delivery of messages when we run in our final MPC protocol. The final
correct messages will be identified using an underlying symmetric key AEAD encryption scheme in
case of ‘private’ messages sent by a party Pi to another party Pj . To allow the use of an AEAD
algorithm is the reason we will need to create pairwise keys ki,j , agreed between Pi and Pj , and to
agree such keys we will need a key agreement protocol to be run across the network.

Protocol intuition. The protocol ΠSecureRobustRelay has an initialization phase where parties call the
key-exchange functionality FKE. To send a message mi,j to Pj , a party Pi first encrypts the message
and then waits for an ok message from the network. This model the fact that Pi might be either
temporarily offline, for example for a reboot, or delayed by the adversary. When ok is received,
it sends the ciphertext cti,j ← Encki,j (mi,j) to all the relays. Each relay stores the ciphertext,
and makes it available for a later request from Pj . Note that if Pi is honest, then all the relays
have the same ciphertext cti,j stored. When Pj wants to get this message, again it waits for an ok
message from the network, and then requests these ciphertexts to all the relays. Intuitively, security
is guaranteed by the following argument.

- If both Pi and Pj are honest, and Pj requests a message sent by Pi, it receives cti,j from the
honest relays, which will decrypt to the input message mi,j sent by Pi. Note that corrupt relays
can send arbitrary messages/ciphertexts, however, since they do not know the secret key ki,j ,
these messages are either invalid ciphertexts or ⊥. For this reason, Pj will always receive the
correct message.

- If Pi is honest and Pj is corrupt, then Pj can output whatever they want. It can also abort after
it decrypts the message mi,j sent by Pi.

- The case of Pi, Pj both corrupt is similar to the previous one.
- If only Pi is corrupt, then it can send arbitrary values to the relays during the send command.
However, if Pi is colluding with some of the corrupt relays, then it can make an honest Pj
accept a value that was not previously stored. This can happen for example when the honest
relays reply ⊥ on a request command from Pj , while the corrupt ones send valid ciphertexts
corresponding to a unique message m. This is possible since in this case the key ki,j is known
to the relays in RI , i.e., the set of corrupt relays. This means that a corrupt sender cannot
change a value that was previously stored by the honest relays, but can input a new value if no
previous value was stored in Rk, k ̸∈ RI .

When a party Pi wants to send a common message to all parties, via sendToAll, it does not
encrypt the message but simply sends it to all the relays via authenticated links. Similar to the
previous case, we show that, since we assume at least one honest relay, the output of the request
step, if the receiving party Pj is honest, either is the value actually sent and stored in the relays or Pj
outputs abort. Note that this time we do not allow the adversary to send values that are not stored
in all the relays, so a message is not accepted unless it is the only valid message stored in all the
relays. Similarly, we extend request to requestFromAll allowing a party Pj to request messages
from all other parties. The security of it can be proven by applying the same arguments given
for request to each of the messages that Pj is retrieving. More formally, we prove the following
theorem.

25

Theorem 3.2. The protocol ΠSecureRobustRelay (Figure 9) securely with abort realizes FSecureRobustRelay

(Figure 7 and Figure 8) in the {FSingleRelay,FDelay, FKE}-hybrid model.

Proof. We first describe a simulator S, which runs a simulated copy of A and mimics an interaction
with parties executing the protocol. For each party, it maintains a counter δi. We denote by RI the
set of corrupt relays.

Description of the simulation.

Init. At the beginning of the protocol S receives the keys ki,j for each pair (i, j) of parties such
that at least one between Pi and Pj is corrupt. It sends these keys to the adversary, when the
functionality FKE is queried, and stores them for later use. The simulator also maintains all the
pairwise tags τi,j , ∀(i, j), the global tags τi,P ,∀i ∈ P, and corresponding variables ϵ.

Send: We start from the case of an honest sender Pi.
- When Pi calls FDelay in the protocol, the simulator sends (delay, i) to the adversary receiving
either a message to delay or to continue.

- If S receives Di > 0, it sends a message (delayed, Di) to the adversary and sets δi ← Di.
It emulates FDelay, when δi = 0, S sends continue to FSecureRobustRelay.

- Else, if there is no delay, it sends continue to the functionality FSecureRobustRelay.

The simulator then emulates FSingleRelay: it receives ct from FSecureRobustRelay and sends this
value to A, for all k ∈ RI . S stores ct for later use.

We now consider the case of corrupt sender Pi.
- S emulates FDelay as before. When δi = 0 or when there is no delay, S sends continue to
the functionality. It then receives ctk from A emulating FSingleRelay, for each k ∈ [r], and
sends mk ← Decki,j (ctk), for each k ∈ [r], to FSecureRobustRelay.
If Pi calls FSingleRelay on input ctk for some k before receiving an ok message , S sends
continue∗ to the functionality together with mk ← Decki,j (ctk). Emulating FSingleRelay, S
stores ctk for each k for later use.

SendToAll: When a party Pi sends a message m to all other parties, the simulation is similar to
the previous case, except that S receives m from the functionality if Pi is honest, and from A
when Pi is corrupt.

Request: S emulates FDelay as above. We recall that when a corrupt Pj calls the functionality
FSingleRelay before an okmessage, S sends continue∗ to FSecureRobustRelay. We distinguish different
cases:

- Pi,Pj honest : The simulator just sends (request,Rk,Pi,Pj) to the adversary simulating
an honest Pj . The simulator ignores the ciphertexts received from A and sends the message
(request,⊥) to the ideal functionality.

- Pi honest and Pj corrupt : S retrieves the value ct previously stored and sends it to the
adversary on behalf of honest relays emulating FSingleRelay. Output whatever the adversary
outputs.

- Pi corrupt and Pj honest : The simulator receives ctk from the adversary, for each k ∈ RI ,
when emulating FSingleRelay and retrieves the one previously stored on behalf of honest relays.
If all those ciphertexts decrypt to the same value m̃, S forwards the value to the functionality,
otherwise it sends abort.

- Pi,Pj corrupt : Emulating FSingleRelay, it retrieves the values ctk, k ̸∈ RI , previously stored
and sends these values to A. It outputs as the adversary does.

26

RequestFromAll: When a party Pj requests a message sent to all parties in P by Pi, again
we need to distinguish different cases as before. When Pi is honest, S retrieves the message
m previously stored with the tag corresponding to the one requested by Pj and also receives
messages from A.
Note this is different from what the simulator does in the pairwise send command. Since the
messages are not encrypted and we only assume authenticated links, a corrupt relay can actually
change the message here. However, since we have at least one honest relays, in the real protocol
the receiving party Pj can detect this malicious behaviour if it receives different messages from
different relays or some ⊥, and hence it can abort the computation. When Pi is corrupt, S
receives the messages mk, k ∈ RI from A and retrieves the message received by A in the
sending phase. If all those messages are the same, S forwards m to the ideal functionality,
otherwise it aborts.

Indistinguishability. We need to argue that the transcripts of corrupt parties and all the outputs
are indistinguishable in the real and ideal executions. More formally, given the simulator S de-
scribed above, we prove that no environment Z can distinguish between the ideal execution of
FSecureRobustRelay and S and the real execution of Π and A in the {FSingleRelay,FDelay,FKE}-hybrid
model. We denote by REALΠ,A,Z(1

λ, z) and IDEALF,S(1
λ, z) the distributions of Z’s view in the

protocol and ideal execution, respectively.

Lemma 3.1. In the authenticated-link model, if E is an AEAD encryption scheme, then

REALΠ,A,Z(1
λ, z) ≈ IDEALF,S(1

λ, z).

Proof. First, note that since in the real protocol all the communications are authenticated, this
ensures the receiver, i.e. the relays in Send and the requesting party in Request, to obtain a
non-transferable and non-repudiable proof of communication. We start with the Send command.
Consider the case of an honest Pi first. Z knows all the inputs, in particular Pi sends these inputs
to FSecureRobustRelay. When Pi calls FDelay, S is given Di by A. When Pi receives ok in the real
execution, it calls FSingleRelay that sends the messages to the relays; in the ideal execution, when
δi = 0, S sends continue to FSecureRobustRelay . The simulator receives the ciphertexts from the
ideal functionality and sends them to the adversary, for each of the corrupt relays in RI . The
indistinguishability of the two executions directly follows from standard security of the encryption
scheme.

The case of a corrupt Pi is similar. In the real execution, Pi receives ok from FDelay, in the
ideal execution, when δi = 0, S sends continue to FSecureRobustRelay which sends ok to Pi and an
encryption of the messages received from S to the relays. However, in the real protocol Pi can send
at any time a request to FSingleRelay, even before receiving an ok message. In this case FSingleRelay

immediately sends the message to the relays. The same happens in the ideal execution, when the
adversary calls FSingleRelay, S sends continue∗ to FSecureRobustRelay that does not send ok to Pi, but
instead immediately sends the messages received from the simulator to the relays. In this case the
simulation is perfect.

In the Request step, we distinguish different cases. First we consider a request on private
messages between two parties Pi and Pj . Intuitively, if both Pi and Pj are honest , even if the
adversary A sends arbitrary messages to S, these cannot be valid ciphertexts except with some
negligible probability; on the other hand, in the real world, the honest relays will send the same

27

previously stored ciphertext. The same happens in the ideal execution where the functionality re-
trieves the value mτi,j and sets this value to be the output of Pj . Note that in this case there is no
abort, except when A calls abort, which can happen at any point in both the executions. More for-
mally, we see that the simulation fails on behalf of the honest receiver Pj , if it receives a ciphertext
c̃t from a corrupt relay which correctly decrypts to a message m̃ that was not previously stored.
Assume that there exists an environment Z that distinguishes with non-negligible probability be-
tween the two executions. We can describe an adversary B for the AEAD encryption scheme E
according to Definition 2.2. B emulates the execution of Π in the {FSingleRelay,FDelay,FKE}-hybrid
model and mimics for Z the role of A and honest parties with the exception that the required
encryptions are obtained using OEnc. Given that Z can distinguish between the two executions
with some noticeable probability, it can also recognize when some forgery is received during the
emulation of the protocol with respect to A. This forgery will also be the output of B. Thus, unless
the simulation fails, the two executions are identical.

When Pi is honest and Pj corrupt , the indistinguishability again follows from the security of the
encryption scheme since the transcript only consists of the ciphertexts that the simulator previously
stored.

If Pi is corrupt and Pj is honest , the transcripts are trivially indistinguishable. We need to
ensure that the ideal execution outputs abort exactly when the real protocol does. In more detail,
in the real protocol an honest Pj will abort if the ciphertexts it receives are not consistent, i.e.,
they decrypt to different values. This can happen either when the corrupt relays send encryptions
of different messages (in the ideal execution these are checked by S) or if their message is not the
same as the message stored by the honest relays (in the ideal execution this check is performed by
the ideal functionality). Moreover, in both worlds, if a corrupt sender does not send any message
to the relays, since it knows the secret keys, it can always decide to send a (delayed) message m̃
to Pi through the corrupt relays, if they collude. In these cases, since the ciphertexts are directly
provided by A, the output of the honest parties are indistinguishable.

When a party Pj sends or requests a ‘global’ non-private message from Pi, via the sendToAll and
requestFromAll commands, a similar argument can be applied. For the case of requestFromAll
we again need to distinguish different cases. If both Pi and Pj are honest, a correct message m is
stored by the honest relay because we are in the AM and an adversary cannot change the value
sent by an honest party towards another honest party. Since the adversary is able to send arbitrary
messages for corrupt relays in RI , both executions terminate with abort if this happens. When Pi is
corrupt, the messages for honest relays are provided by A; when only Pi is honest, then S uses the
message provided by the ideal functionality to simulate the communication between honest relays
and Pj . In both cases transcript and output of the two executions are identical.

This also concludes the proof of the theorem. ⊓⊔

4 MPC Building Blocks

We describe our MPC protocol via a set of standard MPC functionalities and sub-protocols which
utilize FSecureRobustRelay to implement the communication between the parties. We let PI denote the
set of computing parties which are adversarially controlled, i.e. PI ⊂ {P1, . . . ,Pn}.

We recall that in our protocols, both parties P and relays R maintain pairwise and global
counters and variables, as described in the previous section. To ease the exposition, we describe our
protocols implicitly assuming that each message is associated with its counter.

28

In describing our protocols in the FSecureRobustRelay-hybrid model, we present each command
as separate send, sendToAll, request and requestFromAll commands. However, evaluating each
layer of the circuit (bar those at depth zero) consists in each party executing a set of send/sendToAll
commands followed, by a set of request/requestFromAll commands. In terms of the underlying
synchronous communication model upon which the relays are built, a send/sendToAll command
passed to the r-relays from party Pi is executed in one round. This means that, if Pi wants to send
a message to Pj and there are no delays, then the send from Pi to all of the Rk’s terminates within
the same communication round. However, two consecutive send commands by party Pi destined
for Pj and Pk will take up two rounds in the underlying synchronous communication model.

We will make use of the following sub-protocols and functionalities.

Sub-protocol Open(j, ⟨x⟩)

Input: Each party Pi holds a share xi of the unknown value x. We denote by ctxi the ciphertext corresponding
to xi according to an AEAD encryption scheme.
Output: Pj obtains x

Open(j, ⟨x⟩t):
1. For all i ∈ [n], j ̸= i Pi calls (send,Pi,Pj) on FSecureRobustRelay, inputting a vector x after receiving ok,

where x is the vector consisting of r-values ctxi and r is the number of relays. Let the associated τ value
for these messages be τi,j .

2. Pj runs the sub-protocol y← Receive(j, 2t) below.
3. Pj forms the setM of all indices for which yi ̸= ⊥, and the vector xM of values yi ̸= ⊥.
4. Pj computes PM · xM and outputs abort if the result is not equal to 0, where PM is the parity check

matrix, from Lemma 2.1, restricted to the set of partiesM.
5. Party Pj computes x← rM · xM, where rM is the recombination vector restricted to the parties inM,

and returns this as the output of the procedure.

Figure 10. Procedure to open a sharing ⟨x⟩ towards a single party Pj or to P

Sub-protocol Open(i, ⟨x⟩t). Described in Figure 10, it takes a shared value ⟨x⟩t and opens it to
Pi .

Sub-protocol Open(⟨x⟩t). It takes a shared value ⟨x⟩t and opens it to all parties P. The cost of
Open(⟨x⟩t) and Open(i, ⟨x⟩t) is r field elements per party, where r is the number of relays.

Sub-protocol Receive(i, ι). It is described in Figure 11 and allows party Pi to receive a vector y of
shares/values via a number of request to FSecureRobustRelay. The second input parameter ι, indicates
the minimum number of shares Pi needs to receive to complete the command. Notice, in Receive(i, ι)
after executing enough request commands to complete the recovery of the secret shared value, we
then execute erase commands for all other parties. Thus data which has been received is deleted
on the relays, and data which is not received for this round is not stored by the relays when they
do eventually receive it. These erase commands could be executed every so often, and not every
execution of Receive(i, ι), as they increase the number of underlying rounds needed. However, the
less one executes them, the more data needs to be stored by the relays. Thus there is a trade-off,
and we settle on executing the erase commands for every Receive(i, ι) for expository purposes. It
can be modified to obtain the sub-procedure ReceiveFromAll(i, ι) by using the requestFromAll to

29

Sub-protocols Receive(j, ⟨x⟩) and ReceiveFromAll(j, ι)

Receive(j, ι):
1. Party Pj initializes a vector y of length n containing ⊥ in each location, bar location j where it places

the value xj .
2. Pj repeats the following step until the vector y contains at least ι non-⊥ values:

(a) For i ∈ [n], if yi = ⊥ then call (request,Pi,Pj) on FSecureRobustRelay, inputting τi,j after receiving ok,
to obtain the value xi. If the functionality return abort, then abort, otherwise place xi in position i
in the vector y.

Note, this may take many iterations since party Pj may possibly not yet have sent its message yet, or
the adversary may be delaying messages.

3. Party Pj calls (erase,Pi,Pj) on FSecureRobustRelay, inputting τi,j on receiving ok, for all parties Pi.
This ensures that data on relays is either deleted, or not stored if it is not going to be called for.

ReceiveFromAll(j, ι):
1. Party Pj initializes a vector y of length n containing ⊥ in each location, bar location j where it places

the value xj .
2. Pj repeats the following step until it receives at least ι non-⊥ values:

(a) Call (requestFromAll,P,Pj) on FSecureRobustRelay, inputting τ = (τi,P)i after receiving ok, to obtain
the values (xi)i ̸=j . If the functionality return abort, then abort, otherwise place (xi)i in position i in
the vector y, for each i.

Note, this may take many iterations since party Pj may possibly not yet have sent its message yet, or
the adversary may be delaying messages.

3. Party Pj calls (eraseAll,P,Pj) on FSecureRobustRelay, inputting τ = (τi,P)i on receiving ok, for all parties
Pi.
This ensures that data on relays is either deleted, or not stored if it is not going to be called for.

Figure 11. Sub-Procedures to open a sharing ⟨x⟩

FSecureRobustRelay. Notice that both variants allow the receiving parties to proceed as soon as they
have received 2 · t+ 1 shares, hence they do not need to wait for the full set of n shares.

Sub-protocol Input(i)

Input: Party Pi holds a secret value x
Output: Parties in P hold ⟨x⟩t
This protocol assumes δ = 0.

1. All the parties call FRand for a new counter value cnt and obtains a sharing ⟨v⟩.
2. Pi runs Open(Pi, ⟨v⟩), to obtain the random value v. If the output is abort, then Pi outputs abort.
3. Pi computes w ← x − v and calls Fδ=0

SecureRobustRelay on (sendToAll,Pi,P), inputting a vector w consisting of
r-ciphertexts ctw.

4. Each Pj , for Pj ̸= Pi, calls (request,Pi,Pj), inputting τ on receiving ok, for the requisite value of τ .
- If this returns ⊥ then party Pj aborts.
- If a value w is returned then call (erase,Pi,Pj), inputting τ on receiving ok.

5. The parties set ⟨x⟩ ← ⟨v⟩+ w.

Figure 12. Sub-protocol Input(i) to enable party Pi to enter a secret value x into the computation.

Sub-Protocol ΠInput(i). It is a data-input sub-protocol given in Figure 12. It requires that all
parties are in consensus about the value broadcast by party Pi, thus we need all parties to terminate
Input(i) before proceeding. This is unlike other parts of our MPC scheme, which allow faster parties
to continue with the computation, i.e. they do not need to wait for all other parties to terminate

30

the protocol. The communication cost of the protocol is ≈ 2 · r field elements per party for each
input, where r is the number of relays, plus a call to FRand.

4.1 Functionalities FRand and FCoin

Functionality FNI
Rand

init(): Wait for input from the adversary. If the adversary inputs abort, send the message abort to all parties.
Rand(cnt, i, t): On input of Rand(cnt, i, t) from party Pi

- If the counter value has not been used before, sample a Shamir sharing ⟨r⟩t of a random value r, store
(cnt, ⟨r⟩t) and send ri to party Pi.

- Otherwise, retrieve ri and send the value to Pi.

Figure 13. The non-interactive functionality FRand

In our protocols, we use the relatively standard functionality FNI
Rand, which generates a random

degree-t Shamir sharing ⟨r⟩t. This is given in Figure 13, and it assumes a non-interactive method of
generating the share values. For “reasonable” values of n and tp this can be realised using a PRSS
(pseudo-random secret sharing) [CDI05]. In [BBG+21], the authors propose a new PRSS scheme
that greatly improve the efficiency of [CDI05] in some cases. This new construction can also be
applied in our protocol. Notice, that our functionality only delivers the shares to the parties when
asked, this is to enable our protocol to be described in a manner in which parties are not fully in
sync with each other.

For larger values of n and t, interactive versions are possible, which would require few changes
in the functionality and the usage we make of it. An interactive functionality FRand is described in
Figure 14. Before showing a protocol ΠRand implementing it, we observe that a coin functionality,
FCoin, can also be implemented by using FRand to generate a random ⟨x⟩t and calling Open(⟨x⟩) to
publicly reconstruct the value.

The interactive protocol ΠRand [DN07] (Figure 15) uses a fixed Vandermonde matrix of size
(n − t) × n as randomness extractor to generate n − t random degree-t sharings ⟨r1⟩, . . . , ⟨rn−t⟩.
Notice parties wait the input from all other parties, in particular each party Pi run the procedure
Receive with ι = n − 1, equivalently, we can assume the calls to FRand only happen in the input
stage of the MPC protocol where no delays occur. The amortized cost of ΠRand is n−1

n−t or, assuming

a PRG, n−t−1
n−t field elements per party.

We stress that this protocol does not securely realize FRand, as malicious parties may cheat and
cause the resulting sharing to be incorrect. Roughly, when they send honest parties’ shares these
might correspond to a sharing that is either invalid or incorrect. This is true even in a setting with
no delays.

To correctly implement FRand against malicious parties, we need to add a check to verify the
correctness of the shares [LN17]. This is given in Figure 16. If we denote by Π+

Rand the protocol
ΠRand augmented with the check ΠCheckShares, then we have the following lemma. The amortized
extra cost of this check is that of 2 openings, i.e. 2 · r field elements per party.

Lemma 4.1. The protocol Π+
Rand securely implements FRand with abort against malicious adver-

saries corrupting up to t < n/2 computing parties and r − 1 relays in the (FCoin,FSecureRobustRelay)-
hybrid model with statistical error 1

|F|−1 .

31

Functionality FRand

The functionality runs with an adversary S, n parties P1, . . . ,Pn, and r relays R1, . . . ,Rr.

init(): The functionality is activated. If the adversary inputs abort, send the message abort to all parties.
Rand(cnt, i, t): On input of Rand(cnt, i, t) from Pi:

1. If the counter value has not been used before, wait to receive an input from the adversary. If it sends
abort, halt; otherwise, when the adversary sends (continue, {ri}i∈PI), then sample a random r and
generate ⟨r⟩t. Store (cnt, ⟨r⟩t).

2. Otherwise, retrieve ri and send the value to Pi.

Figure 14. The standard functionality FRand

Protocol ΠRand

Let M be a (n− t)× n a fixed Vandermonde matrix.

1. Each party Pi randomly creates ⟨si⟩t and call (send,Pi,Pj) on FSecureRobustRelay. After receiving ok from the
functionality, Pi inputs sij . Let τi,j be the counters associated with these messages that will be stored by
both parties and relays.

2. Each Pi run s← Receive(i, n− 1)
3. All parties locally compute (⟨r1⟩t, . . . , ⟨rn−t⟩t)T = M · (⟨s1⟩t, . . . , ⟨sn⟩t)T

Figure 15. Protocol for random degree−t sharing

Sub-protocol ΠCheckShares

Input: Parties hold ℓ shares ⟨x1⟩t, . . . , ⟨xℓ⟩t

CheckShares:
1. Parties call FCoin, receiving random γ1, . . . , γℓ
2. Parties run ΠRand, obtaining ⟨r⟩t
3. Parties locally compute ⟨w⟩t =

∑ℓ
i=1 γi · ⟨x

i⟩t + ⟨r⟩t
4. Parties run Open(⟨w⟩t) and output either accept or abort accordingly to the output of this sub-protocol.

Figure 16. Procedure to check that ℓ shares are correct, i.e. that are neither invalid nor inconsistent.

Proof. We first describe the simulator S. Recall that PI and RI denote the set of corrupt parties
and corrupt relays, respectively.

Description of the simulation. When an honest party, Pi, needs to distribute a random sharing
⟨si⟩t, S samples t random shares of corrupt parties and emulates the command (send,Pi,Pj) of
FSecureRobustRelay for all j ̸= i. If δ = 0, then it sends the corresponding ciphertexts and counters τi,j
to the RI , otherwise receives an input D ≤ δ from A and wait to send those values accordingly.
When the command request on FSecureRobustRelay is called, forwards the ciphertexts on behalf of the
honest relays. If A sends abort, S forwards it to FRand. For each corrupt relay, S calls the command
request on behalf of the honest parties.

For each corrupt party Pi ∈ PI , S receives the shares of ⟨si⟩t held by honest parties. This is
done by emulating request, hence S forward abort to the functionality if something goes wrong.
When all the shares are received, S learns n− t shares for each ⟨si⟩, i ∈ PI . If any of these shares
are either invalid or inconsistent, S forward abort to the functionality. Otherwise, it computes the
shares ⟨ri⟩t held by PI and passes these shares to FRand.

32

Indistinguishability. Showing that S correctly simulated the behaviours of honest parties is quite
standard and one can adapt the proof given for example in [GS20]. The only difference is that in
our setting, we have t < n/2, hence the shares obtained by honest parties can be either invalid
or inconsistent. In the real protocol, this is checked by ΠCheckShares, while in the simulation, S can
directly check the correctness of the received shares. Therefore, indistinguishability follows from
the following lemma, whose proof can be found in [LN17].

Lemma 4.2. If there exists a j ∈ [m] such that ⟨xj⟩t is not correct, then honest parties output
accept in ΠCheckShares with probability at most 1

|F|−1 .
⊓⊔

Intuitively, it is possible to prove that if some of the ⟨xi⟩, i ∈ [ℓ], are incorrect, then for any
(possibly incorrect) sharing ⟨r⟩, ⟨w⟩ is also not correct except with negligible probability. The
complete proof is given in [LN17].

We can define in a similar manner a functionality FDoubleRand that generates a random double
sharing (⟨r⟩t, ⟨r⟩2t). The interactive protocol is exactly the same as ΠRand, except that in the
first step parties create n double-sharings (⟨si⟩t, ⟨si⟩2t) that are randomized using a Vandermonde
matrix. For the non-interactive version one uses a PRSS to obtain ⟨r⟩t, a PRZS to obtain ⟨0⟩2t,
from which one can obtain ⟨r⟩2t by locally computing ⟨r⟩t + ⟨0⟩2t.

4.2 Multiplication Protocols

Functionality FMult

Let PI be the set of corrupt parties and PH = P \ PI the set of honest parties.
On input (Multiply,P ′, idx, idy, idz), where P ′ ⊆ P, and idx, idy are present in memory. Retrieve the values x,
y. Send (Multiply,P ′, idx, idy) to S along with corrupt shares, and wait for a reply. We can have the following
cases:

- If S sends (abort, Ĥ), forward abort to Ĥ ⊆ PH

- If S sends (Done, P̂, δa, {zi}i∈PI), compute x ·y+δa, construct a full sharing ⟨z⟩t using x ·y+δa and {zi}i∈PI

and distributes it to the honest parties in P̂. Moreover, store (idz, ⟨z⟩t).
- If the adversary sends (Done, Ĥ), retrieve the (idz, ⟨z⟩) and sends {zi}Ĥ to parties in Ĥ.

Figure 17. The functionality FMult secure up to additive attacks

In our main MPC protocol we will use the the ideal functionality FMult (given in Figure 17) to
evaluate multiplication gates. FMult takes two sharing ⟨x⟩t and ⟨y⟩t present in memory and outputs
a sharing ⟨z⟩t = ⟨x · y + δa⟩t, where δa is a value chosen by the adversary.
FMult is a delayed functionality and it works as follows. It takes as input ⟨x⟩t and ⟨y⟩t. When

a subset P ′ ⊆ P of parties calls the functionality, FMult sends a message to the ideal adversary S.
The ideal adversary S emulates FSecureRobustRelay and controls all the communications between the
computing parties and relays receiving delay messages from the adversary A. In the simulation,
every time a party Pi, or a subset of parties P̂, is able to request enough shares to compute the
shared output of the multiplication gate, S checks if these shares are valid. If this is the case, it
extracts the error δa that could have been introduced by A and forward the value δa, along with
corrupt shares {zi}i∈PI

to the functionality which constructs a valid sharing of x · y+ δa consistent

33

with the corrupt shares obtained by S. In addition, the functionality stores ⟨z⟩t. If S detects same
inconsistency in the output shares, then it sends an abort message to the functionality, together
with the set of honest parties that in the simulation received those shares. Finally, when slower
parties successfully conclude the evaluation of the multiplication gate, S just communicates to the
functionality the indices of those parties, that will receive their consistent shares from FMult.

Crucially, since the 2t + 1 or more shares used by the “fastest parties” to evaluate the mul-
tiplication gate are stored in the relays and used also by the slower parties later in the protocol,
these shares fix any (potential) malicious behaviour. Indeed, if the first parties output abort when
they reconstruct their shares, also slower parties that are going to use the same shares will out-
put abort; on the other hand, if the fastest parties successfully evaluate the gate, then the shares
used by those fix the (potential) additive error, so that the next set of parties concluding the gate
evaluation either output the same value (and additive error) or abort.

Protocol ΠMult1

Input: ⟨x⟩t and ⟨y⟩t. Also we need random ⟨r⟩t and ⟨r⟩2t
Output: ⟨z⟩t, s.t. z = x · y

Init: Parties call FDRand to obtain ⟨r⟩t and ⟨r⟩2t.
Mult: 1. Each party locally computes ⟨v⟩2t = ⟨x⟩t · ⟨y⟩t + ⟨r⟩2t

2. Each Pi calls FSecureRobustRelay on (sendToAll,Pi,P).
After receiving ok, Pi inputs its share value vi.

3. Each party Pi runs the sub-protocol ReceiveFromAll(i, 2t+ 1) to obtain the shares vj , j ̸= i.
Note, each party has to receive 2 · t+ 1 shares, 2 · t are not enough to ensure the simulation is correct.

4. Parties reconstruct v = x · y + r and locally compute ⟨z⟩t = v − ⟨r⟩t.
Note, on reconstruction the parties may notice that the sharing is not a degree 2 · t sharing, in which
case they abort.

Figure 18. Protocol ΠMult1 to compute ⟨z⟩t.

The protocol ΠMult1 (Figure 18), which we use to implement FMult, is an adaptation of [DN07,
GLO+21] and requires a communication of only r field elements per party, plus the cost of generating
random ⟨r⟩t and ⟨r⟩2t, that can be amortized as we have seen before.

Recall, the DN was proven to be insecure (i.e., not private) in the case of MPC protocols with
strong honest majority via the double-dipping attack. However, in our setting, the double-dipping
attack does not work anymore because corrupt parties have to send the same share (that can be
incorrect) to all honest parties and, moreover, we do not have a special computing party playing
the role of the king. We will prove this in the next lemma, showing that the view of the adversary
controlling up to tp ≤ t parties is independent from honest parties’ shares.

Lemma 4.3. The protocol ΠMult1 described in Figure 18 securely with abort implements the func-
tionality FMult in the {FSecureRobustRelay, FRand}-hybrid model against a malicious adversary cor-
rupting up to t < n/2 computing parties and r − 1 relays.

Proof. We start by describing the simulator S. As before, PI denotes the set of corrupt parties and
let PH = P \ PI denote the set of honest parties.

Description of the simulation. We recall that S keeps track of all the counters τi,j when it emulates
the functionality FSecureRobustRelay.

34

- S emulates FRand. Since by the privacy property of Shamir secret sharing with privacy threshold
t or 2t, the distribution of messages received by the adversary does not depend on the value
secret shared, S just creates two random sharing ⟨r⟩t and ⟨r⟩2t. It sends to A the shares held
by corrupt parties.

- It receives the shares ⟨x⟩t, ⟨y⟩t held by corrupt parties from FMult

- Then it starts to simulate the protocol. It sets the honest shares of v to be equal to honest shares
⟨r⟩2t plus some random value6. It emulates FSecureRobustRelay waiting for an input Di ≤ δ, i ∈ PH ,
and sending toA the honest shares {vi}i∈PH

according to theseDi. S also receives corrupt shares
vi, i ∈ PI from A, sends request messages to corrupt relays (i.e. to A) on behalf of honest parties
accordingly to the delays schedule, and replies consistently to A’s request messages. It sends
abort to FMult if something goes wrong during the emulation of FSecureRobustRelay.

- S knows all the shares of ⟨v⟩, it reconstructs this value, simulating honest behaviour for corrupt
parties.

- As soon as one or more parties P̂ ⊆ P get enough shares to reconstruct the value ṽ (note each
party needs to receive 2t+1 shares, so that the value ṽ is uniquely identified. If we wait only 2t
shares, and say P1 adds its own share and then say P2 adds its own share in the same round,
they might reconstruct to 2 different values. Note, in case n = 2t+1 this is not possible because
if a party receives 2t shares from 2t other parties, there is no other party that can reconstruct
to a different value. S checks if these shares are correct. If they are not, then it sends (abort, Ĥ)
to the functionality, where Ĥ = PH ∩ P̂. Otherwise, if A does not send any abort, it checks the
shares delivered to P̂. From these, reconstructs ṽ and computes ⟨δa⟩2t = ⟨ṽ⟩2t−⟨v⟩2t. Note this
value does not depend on the honest shares, i.e. honest shares of ⟨δa⟩2t are equal to 0. S also
computes the shares {zi}i∈PI

held by corrupt parties and forwards (Done, P̂, δa, {zi}i∈PI
) to the

functionality.
- If the error δa was already communicated to the functionality, S just forward to FMult the set
of honest parties that can receive the output of the gate.

Indistinguishability. Consider the following hybrid experiments.

H0: This hybrid corresponds to the real execution.
H1: This hybrid is described as the previous one, except that here S computes the difference δa and

the shares {zi}i∈PI
held by corrupt parties as described above. S sends δa and the corrupt shares

to the ideal functionality; honest parties that successfully complete the computation output the
shares received by FMult instead of the real ones.
Note that, when at least 2t + 1 shares are delivered to parties in P̂, these shares uniquely
determine a value ṽ. Recall that all parties in P̂ receive the same set of shares. If these are
inconsistent with some shares held by P̂, the corresponding parties output abort; otherwise
they accept the value ṽ, that at this point is fixed. Indeed, when more shares are delivered, and
more parties complete the evaluation of the multiplication, there are only two possible options:
either the new shares are consistent with the first 2t + 1, so they obtain the same value ṽ, or
they output abort. Using ṽ and v, S computes ⟨δa⟩2t and reconstructs δa. Hence, it computes all
the corrupt shares {zi}i∈PI

. From these and x ·y+δa the honest shares are uniquely determined.
The distributions H0 and H1 are indistinguishable.

6 Usually, when we have n = 2 · t+1, the honest shares are set to be just random values, because a corrupt party, i.e.
the adversary, will receive 2 · t+ 1 shares and these uniquely fix a secret. In our case, a corrupt party can receive
in theory more that 2 · t+ 1 shares, and if in the real execution these are consistent, they should be consistent in
the ideal one as well. So we need that the adversary is able to receive a correct sharing to ensure this.

35

H2: Here S simulate the honest parties in the entire multiplication protocol. This hybrid is the
same as the previous one, except that in the previous one S uses the real shares of ⟨v⟩2t and
now S uses consistent random values instead. Since the shares of ⟨r⟩2t are uniformly random,
the distributions of the two hybrids are indistinguishable.

By observing that H2 corresponds to the ideal execution, we conclude the proof.

⊓⊔

4.3 Instantiating FMult with Maurer’s protocol

We could be tempted to instantiate the ideal functionality FMult with Maurer’s multiplication
protocol ΠMult (Figure 2). Surprisingly, this approach does not work and in order to use ΠMult we
should change the way we model additive attacks significantly. This is because with this protocol,
the additive attack A is not uniquely determined for all parties P. More concretely, when a corrupt
party Pi acts as a dealer and produces a sharing of ⟨vi⟩t, then it can send inconsistent shares to
honest parties, so that different sets of parties reconstruct different values without detecting any
malicious behaviour. The crucial difference is that in ΠMult parties use the pairwise send command
of FSecureRobustRelay, while in ΠMult1, parties use the “global” command sendToAll. It is possible to
show that again a simulator would be able to reconstruct the additive attack A, but this will not
consists any more of a single value Ac for each multiplication-output wire, but rather of different
values Ac

P̂ , A
c
P̄ , . . . for different subsets P̂, P̄, · · · ⊂ P. We remark that instantiating FMult with

ΠMult has the advantage of not requiring random secret shared values from FRand and FDRand, but
the disadvantage of more communication since each party needs to send n− 1 field elements, while
in ΠMult1 each party only sends r elements plus the communication required by instantiations of
FRand and FDRand that can be amortized as shown in the previous section.

5 MPC Secure up to an (Internal) Additive Attack Using Secure Robust
Relays

In this section, we show how to run an MPC protocol with an honest majority using the network
model described in the previous sections, i.e., according to the functionality FSecureRobustRelay, which
is secure up to a form of additive attack. Assuming only adversaries which do not delay messages,
this is relatively simple7, thus our main challenge is to efficiently deal with delays. Our protocol will
allow the parties not being delayed, (or being delayed less) to proceed without waiting messages
from the slowest parties and as soon as they have the required 2 · t + 1 values from other parties.
Any messages that are sent to the delayed parties will of course be stored in the relays until they
are needed. As an extreme example, assuming a large enough number of participating parties, a
party could simply send no messages, wait for the other parties to finish the computation, and then
request all of the messages from other parties to compute the output for themselves.

5.1 The δ-iaa MPC protocol in the FSecureRobustRelays-hybrid model

The protocol ΠPMPC to securely (up to internal additive attacks) evaluate a randomized arithmetic
circuit C over a finite field F is given in Figure 19. At a high level the protocol proceeds in three

7 No delays means that the relays function like a regular point to point network on which one can run general MPC
protocols.

36

stages: an input stage, that is instantiated with the sub-protocol ΠInput, described in Figure 12,
and with calls to the ideal functionalities FRand and FDRand, an evaluation stage, consisting in
the evaluation of linear and multiplicative gates, and an output stage, where parties call the sub-
protocol Open, given in Figure 10. We start with a protocol ΠPMPC that evaluates a (randomized)
circuit C in the FSecureRobustRelay-hybrid model with security against δ-delaying passive adversaries,
except for an actively secure input step without delays, i.e. with δ = 0. We show that, when ΠPMPC

is executed in the presence of an active adversary, it computes a circuit C ′ that is the same as C
up to some internal additive attacks. The key point is that, if the actively secure input protocol
completes, then we know that the share values in the input gates are correct and the output gates
are self-authenticating in that ΠOpen will output abort if the input shared value is not a valid Shamir
sharing. Thus the only place where the adversary can introduce errors, and avoid an abort, is by
transmitting the sharing of the wrong value in the multiplication protocol. This wrong value will
equate to the adversary introducing a known error, as per Definition 2.3.

Note that, whilst the underlying network is synchronous and the underlying MPC protocol
proceeds in what looks like “rounds” of interaction, due to the delays, the parties can actually be
at different rounds of the MPC protocol at the same point in time.

More formally, we prove the following theorem.

Theorem 5.1. Given a randomized circuit C, the protocol ΠPMPC (Figure 19) for computing C
is secure against any δ-delaying passive adversary controlling up to t < n/2 parties and r − 1
relays in the {FDoubleRand, FRand,FMult, FSecureRobustRelay}-hybrid model. In addition, ΠPMPC securely
evaluates a circuit C ′ with abort against δ-delaying active adversaries controlling up to t < n/2
parties and r − 1 relays, where C ′ is a corruptible version of C that additionally takes an input A,
which specifies an additive attack on each internal wire of C from the adversary, and outputs the
result of the additively corrupted C as specified by A to a subset P̂ ⊆ P of parties.

Protocol ΠPMPC

The protocol takes as input a randomized arithmetic circuit C. The protocol executes all the gates at a given
depth in parallel. We proceed from depth zero to depth d. The depth zero gates consist of input, random-input
and linear gates. At depth greater than zero there are linear, multiplication and output gates.

Setup∗: Parties compute the randomness needed for evaluating multiplication gates, calling FDoubleRand.
This step depends on the actual instantiation of FMult, so it may not be necessary.

Input: Input gates with label i, corresponding to party Pi, are executed by running the sub-protocol Input(i).
This produces a secret shared value ⟨x⟩t.

Random-Input: Random input gates are executed by calling the Rand command on the functionality FRand

for a value cnt uniquely associated with the gate. This produces a secret shared random value ⟨r⟩t (or ⟨r⟩2t).
Linear Gates: A linear gate with fan-in f and input x1, . . . , xf is of the form y ← v0 +

∑f
j=1 v

j · xj , for

given constants vj ∈ F. To execute these gates, parties utilize the fact that Shamir sharing is a linear secret
sharing scheme in order to compute ⟨y⟩t ← ⟨v0⟩t +

∑f
j=1 v

j · ⟨xj⟩t.
Multiplication Gates: All the multiplication gates at depth l are executed in parallel. Let wl be the number

of such gates with inputs ⟨xk⟩t, ⟨yk⟩t producing output ⟨zk⟩t, for k ∈ [wl]. Each party call FMult on input
(Multiply,P ′, idxk

i
, idyk

i
).

Output Gates: An output gate is executed by running the sub-protocol Open(⟨y⟩t).

Figure 19. The protocol ΠPMPC for δ-iaa secure MPC

37

Proof. Privacy against semi-honest adversary comes directly from the privacy of the underlying
building blocks and properties of Shamir’s secret sharing scheme. To prove the second part of the
theorem, we proceed as follows. We prove that the protocol can be simulated against a malicious
adversary up to the output step. In this way we describe what in Genkin et al. is called simulator
for weak privacy against a malicious adversary. Simultaneously, we construct the simulator up to
additive attacks extracting the additive errors during the evaluation (which does not change the
view of the adversary).

Description of the simulation. Through the simulation S emulates FSecureRobustRelay to send honest
shares to A and receive corrupt shares from A, following the delays schedule dictated by A. It
keeps track of all the tags τi,j , for all i, j ∈ P, and τi,P ,∀i ∈ P. The simulator initializes an internal
additive attack A.

- S emulates FRand and FDRand according to the protocol and sends corrupt shares to A.
- When it simulates the opening procedure in the input stage, S reconstructs all corrupt parties’
input. If, during these openings, some inconsistency is detected, the S also outputs abort to the
ideal functionality and halts.

- During the circuit evaluation, when a subset of parties P ′ evaluate a multiplication gate ga,
S emulates the functionality FMult. Note that it can compute both the “honest” messages the
adversary should have sent based on its internal state, i.e., based on the evaluation of previous
gates, and both the actual messages sent by A. As proved in Lemma 4.3, the difference δa
between the actual messages and the honest messages is an additive term that corresponds to
the additive attack on the output of the multiplication gate. Since this value is the same for
all the parties that successfully conclude the evaluation of the gate, it uniquely determines the
additive attack corresponding to the output wire of the gate ga. More formally, the simulator
determines the entry for the additive attack corresponding to the output wire of ga: let gb be
any non-output gate connected to the output wire of the multiplicative gate ga, it holds that
Aa,b = δa.

- At the end of the evaluation phase, for each output gate gOut, each corrupt parties P̂I , holds a
share of the supposed output. S sets to 0 all the coordinates of A that were not previously set.
Then sends to the ideal functionality all the inputs of the corrupt parties PI and the additive
attack A. The functionality replies with the output y. For each output gate gOut of C that is
connected to an output of some gate ga, S chooses honest shares of yOut that are compatible
with corrupt shares. Then, it simulates the opening of the shares in P̂, i.e., among the parties
actually running this step according to the delays schedule. If this step terminates correctly, it
sends (Done, Ĥ) to the corresponding ideal functionality, otherwise it returns abort.

Indistinguishability. First we show that the view of A during circuit evaluation is distributed iden-
tically regardless of the input held by honest parties. We can observe that the view of A excluding
the output step during a real execution of the protocol consists of the input of corrupt parties and
all the messages received to PI and RI during the input step and evaluation of the multiplication
gate. When parties call the ideal functionalities FRand and FDRand, there is no communication so
the two executions are indistinguishable. We recall that during the input step, we set δ = 0 and
that all the communications are simulated by calling the ideal functionality FSecureRobustRelay. The
only difference between the two executions during the input stage is that in the ideal execution
S uses random shares as input of the honest parties. Since |PI | ≤ t, by the privacy of Shamir’s
secret sharing with privacy threshold t or 2t, the distribution of the messages received by A does

38

not depend on the secret shared value. The distributions of shares of corrupt parties in both exe-
cutions are the same. In addition, in both executions, the opening sub-protocol will output abort
independently of honest shares (see Lemma 2.1). During the evaluation of multiplication gates, S
emulates FMult. Again, here the two executions are indistinguishable. This proves that the view of
the adversary up to the point where the output value is opened has exactly the same distribution
in the real and simulated case. Now, if the ideal and simulated protocol proceed to the last step, it
means that enough parties P̂ concluded the circuit evaluation. Note that since the delay schedule
is dictated by A, both the executions start this last step with the same set of parties. The only
new messages that A can see in the output step is the output value y and same shares of honest
parties in P̂. These are random shares that are consistent with the output y and corrupt shares.
If during the opening step, A sends incorrect values, then S outputs abort. Indistinguishability is
again guaranteed by Lemma 2.1. When more parties complete the evaluation of the circuit, then
either new shares from parties in PI are consistent with the sharing stored by S and the ideal
functionality, or ideal execution sends abort to the functionality. The same also happens in the real
protocol, indeed indistinguishability of the output as well as of A’view in the last round depends
on whether or not the additive errors A were correctly computed by S. The correctness of A is
guaranteed by FMult and from the fact that such an attack, also in a real execution, is fixed by the
first 2t+1 shares used by the parties to complete the evaluation of multiplication gates. Therefore,
in the simulation the output value y is the correct evaluation of C on the inputs matching the
shares extracted by S and the additive attack A computed by S.

5.2 Modeling the State Size of the Relays

The size of state that each relay must store for our MPC protocol can be bounded and modelled
under various scenarios. In this section we examine this in the worst case, best case and (a specific
form of) average case.

The storage is dominated, for most circuits, by the number of multiplications (i.e. we can
ignore the input and output gates in general). The number of multiplication gates can in turn be
bounded by the multiplicative width w per layer of the circuit, and there are d such layers. In the
multiplication protocol each message to a relay consists of just a single field element, and so can
be represented by log2(p) bits.

Worst Case Analysis: In the worst case, assuming a δ-delaying active adversary, the way the
adversary can force the relays to store the most state is to choose a minimal number (i.e. 2 · t+ 1)
of parties to complete the computation and delay the remaining parties indefinitely. Each party
not selected to complete the protocol will repeatedly get delayed δ messages for each message they
wish to send, i.e. they will be allowed to send a single command to the relays, then delayed for a
further δ rounds, and so on. As the commands that are delayed include all the necessary erase

commands, the maximum state the relays will need to store may contain all messages. So the state
size each relay needs to keep in the worst case scenario is dominated by the term

n · w · d · log2 p.

Best Case Analysis: In the best case the adversary introduces no delays. Considering only the
multiplication gates (again for simplicity) we see that each gate requires the relay to store n values.

39

Simulation for average case analysis of the MPC protocol

Input parameters: n, t, d, w, δ and a probability p.

Simulator:
1. rnd← 0, state← 0.
2. For i ∈ {1, . . . , n} do

(a) depthi ← 0, commi ← send, δi ← 0.
3. For i ∈ {0, . . . , d− 1} do

(a) si ← 0 ∈ {0, 1}n.Stores in si[j] whether party j has sent it’s messages at depth i.
(b) ei ← 0 ∈ {0, 1}n. Stores in ei[j] whether party j has requested an erase at depth i.

4. While ∃i such that depthi ̸= d do
(a) For all i ∈ [1, . . . , n] such that depthi ̸= d do

i. π ← [0, 1]. Pull a value to decide whether to delay this command for party Pi.
ii. If π < p and δi < δ then

A. δi ← δi + 1.
iii. Else

A. δi ← 0.
B. If commi = send then execute sub-procedure SendToAll below.
C. Else if commi = request then execute sub-procedure RequestFromAll below.
D. Else execute sub-procedure EraseAll below.

iv. If depthi = d then output “party i finished in round rnd”.
(b) Output “State size in round rnd is state”.
(c) rnd← rnd+ 1.

5. Output “End of simulation”.
SendToAll :

1. sdepthi [i]← 1.
2. state← state+ w. Increase state as we are sending data.

RequestFromAll :
1. If sdepthi has Hamming weight at least 2t+ 1 then

(a) commi ← erase. Complete the multiplication for party Pi.
EraseAll :

1. edepthi [i]← 1.
2. If edepthi equals the all one vector then

(a) state← state− n · w. Decrease state as everyone has read it.
3. commi ← send, depthi ← depthi + 1. Pass to the next level for party Pi.

Figure 20. Simulator for average case analysis of the MPC protocol

However, as we pass from depth d to depth d+ 1 the parties execute the erase commands needed
to remove this state. Thus the maximum state needed to be stored in the best case is

n · w · log2 p.

In this case we can also bound the number of rounds of communication in the underlying syn-
chronous network on which the relays are built. Each MPC multiplication requires each party to
send (sequentially) one sendToAll command, one requestFromAll commands and one eraseAll

commands; each of which requires one round of communication. The parties operate in parallel,
thus across all parties the total number of rounds needed, when there are no delays, is

3 · d.

Average Case Analysis: To understand what happens in the intermediate cases we examine in
this sub-section the situation where a delay is applied to a message with a given probability p. We

40

then simulate (for a given set of parties n and threshold t) the number of rounds and the relay state
size to execute a circuit of multiplicative depth d and multiplicative width w, assuming a maximum
delay of δ. Again we concentrate just on the multiplication sub-protocol as this will dominate for
most circuits. Our simulation is given in Figure 20, and it assumes each level of the circuit consists
of w multiplication gates.

From the simulation we can compute the average (over time) and worst case state-size, as well
as the number of rounds needed for some parties to complete the execution, as well as all parties.
We ran two sets of experiments to demonstrate the effect of the delays. Both sets were ran with
w = 1, as adding more would simply scale the state size with w, with the value of δ was set to 5,
and the number of rounds of the computation was 3. Regardless of the number of parties, t is set
to 1.

In Figure 21, the size of state through six experiments is shown. Each combination of between
n ∈ {4, 5, 6} parties and a 25% chance to get delayed or no delays are represented here. The
simulation without delays will always be the same (i.e. it proceeds deterministically). When there
are no delays the state rises to n, stays there while everyone reads and asks for the removal of all
the messages. Then the state size drops to zero for a round until everyone sends messages again.
Thus the simulation for no-delays is regular, and we represent it in the figure by a dotted line.
The non-dotted line represents the simulation when we have a 25% chance of delaying each specific
command. Here we see that the drop in the state size is less regular, and the maximum state size
can increase past n if parties are delayed.

0 5 10 15 20

0

2

4

6

8

10

Rounds

S
iz
e
o
f
st
a
te

n=4, 0% delays

n=4, 25% delays

n=5, 0% delays

n=5, 25% delays

n=6, 0% delays

n=6, 25% delays

Fig. 21. Size of state for sample runs of the simulation

In Figure 22, for each value of n in {4, 5, 6} we a run 10, 000 simulations, each with a 25% chance
of delay. In the graph we show the proportion of parties on the y-axis and the round in which they
finished on the x-axis. The random distribution of the delays in the simulation causes the finish
position to become a bell curve as the finish position is dependent on the minimum number of
rounds added to the number of rounds that party is delayed and the number of rounds they need to
wait on enough messages being sent from other parties. We notice that for n = 4 the distribution
of finishing rounds is skewed slightly to the right compared to n = 5 and n = 6. This is because

41

with such a small number of parties (for the same value of t = 1) a delay in two parties will slow
down everyone. Whereas for n = 5 if two parties are delayed, the other three can proceed without
waiting for the slow two. Thus on average parties will terminate faster.

10 15 20 25 30

0

5 · 10−2

0.1

0.15

0.2

0.25

Rounds

P
ro
p
o
rt
io
n
o
f
p
a
rt
ie
s

n=4

n=5

n=6

Fig. 22. The distribution of the round in which a party terminates, in our simulation of our MPC protocol applied
to a circuit with multiplicative depth three with 25% chance of delay on each parties commands to the relay.

6 Actively Secure MPC-with-Abort Using Secure Robust Relays

In Figure 23, we give our functionality FDelayedMPC, with the associated implementing protocol
ΠDelayedMPC, being given in Figure 24. Intuitively, the functionality presents a variant of the standard
active-with-abort MPC security definition, modified to the situation where we have delays, so
that some subset of parties can conclude the evaluation before others. In the previous section,
we presented a protocol ΠPMPC which achieves security up to δ-internal additive attacks. In this
section, we compile the prior protocol into one which does not allow internal additive attacks. This
is done by following the same approach described in [GIP+14], in which it was proved that every
circuit C can be compiled to a robust circuit C̃, i.e., the circuit itself protects the protocol against
internal additive attacks. Therefore, we simply apply ΠPMPC to a robust circuit and prove that this
is enough to achieve our goal.

Unlike [GIP+14], we do not need to compile into the robust circuit an error correcting code, since
this comes “for free” with Shamir’s secret sharing. Thus our definition of a robust circuit differs
slightly from the one in [GIP+14] and it is perhaps closest to the definition given in [CGG+21]
even if we do not need to preserve each wire value in the state across committees, therefore our
definition becomes simpler than that considered in [CGG+21].

Definition 6.1 (Robust Circuit). Given an arithmetic circuit C for a functionality f of depth
d and width w = max{w1, . . . , wd}, a robust circuit C̃ corresponding to C is a circuit that realizes
the functionality f̃ that computes:

42

Functionality FDelayedMPC(P1, . . . ,Pn)

The functionality runs with parties P1, . . . ,Pn and an adversary S. Let C be a (randomized) arithmetic circuit

Initialise: On input (init,F) from all parties, if (init) was received before then ignore the command, otherwise
store F.

Evaluation: The functionality receives input from parties and adversary. Evaluate the circuit C and compute
the output. Send the output to S.

Output: The functionality wait an input from the adversary. When S sends (abort, Ĥ), send abort to honest
parties Ĥ ⊆ PH ; when S sends (Done, P̂), send the output to honest parties in P̂.

Figure 23. The delayed MPC functionality

Protocol ΠDelayedMPC

The protocol takes as input a randomized arithmetic circuit C and the corresponding robust circuit C̃. The
protocol executes all the gates at a given depth in parallel. We proceed from depth zero to depth d. The
depth zero gates consist of input, random-input and linear gates. At depth greater than zero there are linear,
multiplication and output gates.

Evaluation: Parties evaluates the robust circuit C̃ on their private input using Shamir’s secret sharing scheme
to run the protocol ΠPMPC.

Output: This is the final stage of the protocol and parties P̂ ⊆ P reaching this point hold the output of C̃, i.e.
⟨z⟩t = ⟨y + c · Z⟩t and ⟨T ⟩t = ⟨β · Z⟩t.
1. Each Pi ∈ P̂ runs Open(⟨T ⟩) and Open(⟨z⟩) to obtain the values T and z. If either of these protocols

outputs abort then output abort.
2. If T ̸= 0 then output abort, otherwise return z.

Figure 24. The protocol ΠDelayedMPC for secure delayed MPC

Original output: Compute y = C(x) for some inputs x.
Random values: Sample random values ∆,β, αk,l ∈ F, where each αk,l is associated to the
k-th multiplication gate at depth l, and c ∈ F|y|.
Linear Combinations: Computes the following linear combinations

u =
d∑

l=1

(
wl∑
k=1

αk,l · zk,l

)
,

v =
d∑

l=1

(
wl∑
k=1

αk,l · (∆ · zk,l)

)
,

where zk,l corresponds to the output of the k-th multiplication at depth l.
Zero Check Value: Compute Z = ∆ · u− v.
Final Output: Output (z, T) = (y + c · Z, β · Z).

A robust circuit can be computed from a standard circuit with a small increase in depth and a
linear increase in the width, as the following lemma demonstrates.

Lemma 6.1. Any arithmetic circuit C for functionality f , with input x, output y, depth d and
width w, can be transformed into a robust randomized circuit C̃ for functionality f̃ of Definition
6.1 of depth d+ 4 and maximum width 4 · w, assuming |x| ≤ w.

43

Evaluating the robust circuit C̃ instead of C implies that all the secret shared values in the circuit
are randomized using a random secret-shared value ∆. In particular, during the input stage the
robust circuit requires additional calls to FRand to receive ⟨∆⟩t, ⟨β⟩t, ⟨c⟩t ⟨αk,l⟩, k ∈ [w], l ∈ [d],
and computation of ⟨xi · ∆⟩ for each input xi. The evaluation of the circuit is required also on
these randomized values: for linear gates with inputs y1, . . . , ys it is enough to evaluate the gates
also on inputs ⟨y1 ·∆⟩, . . . , ⟨ys ·∆⟩; for multiplication gates with inputs xk,l, yk,l, it is necessary to
compute ⟨zk,l · ∆⟩ = ⟨∆ · xk,l · yk,l⟩ other than ⟨zk,l⟩ = ⟨xk,l · yk,l⟩, which doubles the number of
multiplications for each round. Finally, the output of the randomized evaluation is used to check
the correctness of the non-randomized one. To this end, the circuit C̃ requires the computation of
the two values u and v as in Definition 6.1. Instead of computing these two values at the end of the
computation, and hence needing to maintain a huge state for all randomized and non-randomized
values, we incrementally compute random linear combinations of the output of multiplication gates
at each round. More precisely, at depth l we have the values

⟨ul−2⟩ =
l−2∑
l=1

(wl∑
k=1

⟨αk,l⟩ · ⟨zk,l⟩
)

⟨vl−2⟩ =
l−2∑
l=1

(wl∑
k=1

⟨αk,l⟩ · ⟨∆ · zk,l⟩
)

and we compute

⟨ul−1⟩ = ⟨ul−2⟩+ ⟨αk,l−1⟩ · ⟨zk,l−1⟩
)

⟨vl−1⟩ = ⟨vl−2⟩+ ⟨αk,l−1⟩ · ⟨∆ · zk,l−1⟩
)
.

Notice that at level l we compute the random linear combination related to multiplications at depth
up to l − 1. In this way, these operations do not increase the number of rounds.

At the end, when the evaluation of C is concluded, so that some subset of parties P̂ holds
⟨y⟩t = ⟨C(x)⟩, ⟨u⟩t, ⟨v⟩t, C̃ requires the computation of ⟨Z⟩t = ⟨∆ · u − v⟩. Parties in P̂ then
open both ⟨T ⟩ = ⟨β · Z⟩ and ⟨z⟩ = ⟨y + c · Z⟩. The value of T will be zero if and only if all
the values, in particular all the multiplication gates, are correctly computed, except with some
negligible probability. If T is zero then z will equal the correct output of the circuit y, otherwise it
will equal a uniformly random value in F|y|.

Proof. The transformation proceeds as follows:

1. Adding random-input gates: Add (at most) d · w + |z| + 2 random-input gates at depth
l = 0 for ∆,β, αk,l ∈ F and c.

2. Add |x| multiplication gates of depth one with inputs ∆ and xi.
This does not increase the width as we assume |x| ≤ w.
All the gates at depth l ∈ {1, . . . , d} in the original circuit C are now placed at depth l + 1

3. Now for each depth l ∈ {2, . . . , d+ 1} do the following:
- For each linear gate in C: Let the gate take as input y1, . . . , ys, add an additional linear
gate which takes as input ∆ · y1, . . . ,∆ · ys.

- For the k-th multiplication gate at depth l: Let xk,l and yk,l be the input of the
gate and zk,l its output, add a new multiplication gate at the same depth, which takes as
input Xk,l and ∆ · yk,l and produces rk,l = ∆ · zk,l.
This step doubles the width at this depth from wl to 2 · wl.

44

5. Now for each depth l ∈ {3, . . . , d+ 2} do the following:
- Add wl−1 multiplication gates at depth l with input αk,l−1 and zk,l−1, producing sk,l−1 =
αk,l−1 · zk,l−1.
This increases the width at this depth to wl−1 + 2 · wl.

- Add wl−1 multiplication gates at depth l with input αk,l−1 and rk,l−1 = ∆ · zk,l−1 producing
tk,l−1.
This increases the width at this depth to 2 · wl−1 + 2 · wl.

- Assuming u1 = v1 = 0, one adds an additional two linear gates at depth l in order to
compute the sum, ul, of ul−1 and the set {sk,l−1}k∈[wl−1] = {αk,l−1 · zk,l−1}k∈[wl−1], and the
sum, vl, of vl−1 and the set {tk,l−1}k∈[wl−1] = {αk,l−1 · (∆ · zk,l−1)}k∈[wl−1].

4. At depth d + 3, set u = ud+1 and v = vd+1. Add a single additional multiplication gate
which computes the multiplication of ∆ · u, followed by a single linear gate which computes
T = ∆ · ud+1 − vd+1.

5. At depth d + 3, add |y| + 1 additional multiplication gates, and |y| additional linear gates to
compute z and t.

6. At the end the circuit the output gates for y, are replaced by those for z and an additional
output gate for t is added, all of which are at depth d+ 3.

Since wi ≤ w the total (multiplicative) width increases to at most 4 · w.

Given this lemma, we can now prove that if we evaluate a robust circuit C̃ corresponding to
a (randomized) circuit C using the protocol ΠPMPC described in the previous section, we obtain
an actively secure protocol with abort implementing the ideal functionality FDelayMPC for C, where
the communication can be adversarially delayed by the adversary and modelled using relays.

This discussion is formalised in the following theorem.

Theorem 6.1. Let C̃ be the robust circuit over F corresponding to C (according to Definition 6.1).
The protocol ΠDelayedMPC in Figure 24, computing C̃, securely implements FDelayedMPC with abort
against a δ-delaying active adversary corrupting up to t < n/2 parties and r− 1 relays, except with
probability 3/|F| in the {FRand, FSecureRobustRelay, FMult}-hybrid model.

Our main delayed MPC functionality FDelayedMPC(P1, . . . ,Pn) is given in Figure 23, with the
protocol to implement this ΠDelayedMPC being given in Figure 24.

Proof. Let A be the real adversary which controls the set of corrupt parties and relays, the simulator
S works as follows.

- S emulates the ideal functionality FSecureRobustRelay and simulates the communication among
parties and relays according to the delay messages delivered by A. It keeps track of all the tags
and variables associated to the relays.

- S invokes SPMPC, the simulator for ΠPMPC, as described in the previous section, and obtains a
simulated view up to the output step.

- S simulates the honest parties sending their shares in the Open sub-protocol. This is done by
using the view obtained by SPMPC; and it receives the shares from A sent to the honest parties.
If any honest party would abort, S sends abort to the ideal functionality, otherwise it checks if
A = 0. If this is not the case, it sends abort to FDelayedMPC.

- If no abort occurred, S sends the input of the corrupted parties to the ideal functionality and
simulates the output step as shown in the previous section.

45

Indistinguishability. The only major difference between the real and the ideal execution is that the
former checks whether the output T = β · Z of the robust circuit is zero and aborts if this is not
the case, while in the latter the simulator aborts the computation if the extracted additive error A
is not zero. The following lemma shows that for the first set of parties concluding the protocol, the
difference between these two executions is statistically small.

Lemma 6.2. If A inputs an internal additive attack A to the evaluation of C, the value ⟨β · Z⟩t
open by the first P̂ ⊆ P parties equals zero with probability less than 3/|F|.

Proof. The proof of the lemma follows the same arguments in [CGH+18] and [CGG+21], to which
we remand for a more formal discussion. At a high level, the upper bound on the probability
of 3/|F| can be seen as follows. For an adversary to avoid detection, the value of T should be
zero on computation of the robust circuit. This can happen either because β = 0, which happens
with probability 1/|F|, or because Z = 0, since, due to the random linear combinations, the value
of u can be assumed to be uniformly random and outside the control of the adversary. Thus to
obtain Z = 0 either the adversary needs to be lucky in fixing the unknown ∆ value to be v/u, in
the case of u ̸= 0, an event which happens with probability 1/|F|, or the adversary needs to be
lucky in obtaining a random linear combination which gives u = 0, and hence v = 0. Again an
event which happens with probability 1/|F|. Since the adversary can only win (i.e. avoid detection
after introducing an additive error) if one of these three conditions is satisfied, we have that the
probability the adversary cheats and avoids detection is at most 3/|F|. ⊓⊔

When more shares are delivered, we need to distinguish different cases. If A = 0 and the check
correctly passed, then the shares used by the previous set of parties P̂ are also used by the slower
parties P̄. So either the new shares are consistent with the shares used by P̂, in which case also
parties in P̄ obtain the correct output, or the new shares are inconsistent with the previously stored
ones and parties in P̄ output abort. In the simulation, S checks the consistency of the new shares
and detect any malicious behaviour, in which case it will forward abort to the ideal functionality.
The two executions are indistinguishable. If A ̸= 0, S always aborts. We proved that the same
happens in the real protocol with the fastest set of parties P̂ concluding the computation, except
with some negligible probability. When more parties reach the output step, the shares stored in the
relays, using the sendToAll command in FSecureRobustRelay, are the same shares already used by P̂
and A cannot change them anymore. Therefore, even if the zero-check is performed using the same
randomness already used by P, this does not help A to pass the test. ⊓⊔

6.1 Efficiency and Optimizations

We can now estimate the efficiency of our scheme in term of communication and round complexity,
and sketch different possible instantiations of the general construction given in the previous section.
As done in previous works, to estimate the communication costs of our protocol we consider the
number of field elements required for the evaluation of multiplication gates.

Näıve implementation of the protocol ΠDelayedMPC with ΠMult1. The first, simpler instantiation
is given by implementing FMult with ΠMult1 to evaluate both randomized and non-randomized
multiplication gates. We recall that for each multiplication, ΠMult1 needs to call the functionality
FDRand plus it requires the communication of r field elements per party. Setting r = 2, the passively
secure version of our protocol, ΠPMPC, achieves the same amortized communication complexity of

46

DN, i.e. 6 field elements per party, or 4 assuming PRGs. We recall that these figures have been
improved in [GLO+21] to 4 and 2, respectively, using t-wise independence. We leave to future work
the possibility to further improve the efficiency of our scheme with similar techniques.

In the active security setting with abort, considering that the evaluation of C̃ requires the
computation of ⟨αk,l⟩, ⟨zk,l⟩, ⟨∆ · zk,l⟩ for each multiplication gate, and values ⟨ul⟩, ⟨vl⟩ for each
layer of the circuit, our simpler instantiation has an amortized cost of 13 + 12 d

m field elements per
party, where m is the total number of multiplication gates and d is the depth of the circuit. Using
PRGs, this goes down to 9 + 8 d

m fields element per party. Note that the communication can be
further reduced if instead of calling the interactive functionalities FRand and FDRand, the protocol
calls the non-interactive functionality FRandNI .

We already mentioned that in order to avoid maintaining large states, we incrementally compute
the checking equation during the computation. This means that we need to compute the values
⟨ul⟩ and ⟨vl⟩ at each level. If we compute the random linear combinations ⟨u⟩ and ⟨v⟩ at the end
of the circuit evaluation, then the communication of our protocol is essentially the same as in
[CGH+18, NV18], i.e. 13 (or 9 with PRGs) field elements per party.

Use the trick of Beaver-friendly shares from [GLO+21] to reduce the round complexity. Following
[GLO+21], we can use the special form of the output of ΠMult1 either to evaluate all the multi-
plications in 2 consecutive levels in parallel, so to reduce the round complexity by a factor of 2,
or evaluate both randomized and non-randomized multiplication gates in parallel, as in the näıve
instantiation described above, but with slightly better communication.

First, we briefly recall the technique from [GLO+21]. If the inputs ⟨x⟩t and ⟨y⟩t of a multipli-
cation gate are expressed in a so called Beaver friendly form (BF-form), i.e. as ⟨x⟩t = v − ⟨r⟩t and
⟨y⟩t = u−⟨s⟩t, where v, u are publicly known and random sharings ⟨r⟩t, ⟨s⟩t and ⟨r · s⟩t are known
before the gate being evaluated, then the output of the multiplication can be computed without
interaction as

⟨x · y⟩t = (v − ⟨r⟩t) · (u− ⟨s⟩t) = u · v − u · ⟨s⟩t − v · ⟨r⟩t + ⟨r · s⟩t.

Therefore, to evaluate two consecutive levels in the same round, first we transform the input sharings
⟨x⟩t of all the multiplications in the second level in a BF-form, i.e., ⟨x⟩ = u−⟨r⟩. Concretely, if this
sharing is an output of a multiplication gate in the first level, we know it is already in BF-form (see
ΠMult1 Figure 18); if, otherwise, it is either an input sharing of the circuit or an output sharing of
an additive gate, it is enough to set u = 0 and ⟨r⟩ = −⟨x⟩.

Since the evaluation of the multiplications in the second level does not require any interaction,
the security and the formal proof of this approach follows directly from the security of ΠMult1,
assuming an ideal functionality FRTriple that outputs a random triples ⟨r⟩t, ⟨s⟩t and ⟨r · s⟩t.

Reducing the round complexity in our setting is extremely important, as it allows to mitigate
the effects of delays introduced by A. However, this approach has the disadvantage of requiring
more randomness, in particular it needs pre-computed random triples of the form ⟨r⟩t, ⟨s⟩t and
⟨r · s⟩t in case the second-level multiplications we compute in this way are the multiplications in
the next layer of the circuit. Overall, the communication complexity is roughly the same as in the
previous approach, but the number of rounds is reduced by an half.

If we use this approach to compute in parallel ⟨z⟩ = ⟨x · y⟩ and ⟨z ·∆⟩, the technique sketched
above only requires a pre-computed value ⟨r ·∆⟩t, for a random ⟨r⟩. Given this value, it is indeed
possible to compute ⟨z ·∆⟩t as follows:

⟨z ·∆⟩t = v · ⟨∆⟩t − ⟨r ·∆⟩t = (z + r) · ⟨∆⟩t − ⟨r ·∆⟩t = ⟨z ·∆⟩t.

47

We leave to future work to investigate how to efficiently implement the functionality FRTriple,
especially in the case of correlated random triples, i.e. in the case the triples have the special form
⟨ri⟩, ⟨∆⟩, ⟨ri ·∆⟩, for i ∈ [m].

Changing the definition of robust circuit. In [GS20, GSZ20, BBC+19], it was described how to
reduce the communication complexity of the protocol of [CGH+18] by using a new technique for
checking the correctness of multiplication gates with communication complexity independent of the
number of multiplication gates in the circuit. This allowed to match the communication complexity
of the passively secure DN protocol. In order to apply the same technique, we need to change the
definition of robust circuit given in Definition 6.1, in such a way that, after the original output
y = C(x), the robust circuit consists of the circuit Ĉ evaluating the verification procedure of
[GS20]. This would require an extra log2(m) rounds of communication, but overall an amortized
communication of 6 (4 with PRGs) field elements per party.

The security of this instantiation can be argued similarly to what we did in Section 6. Note
however that, even if this approach permits to reduce the communication compared to what we
did in previous sections, it does not immediately allow to keep small states, because parties need
to keep the sharings of ⟨xk,l⟩, ⟨yk,l⟩ and ⟨zk,l⟩ in order to perform the evaluation of the verification

circuit Ĉ after the evaluation of C.

7 Experiments

We present two forms of experiments. The first evaluates the networking performance of the relays.
We investigate the difference multiple relays have on performance, as well as the communication
slowdown induced by the relays’ existence. The second set of experiments evaluates the performance
of the MPC protocol built on top of the relays. Here we measure performance by the number of
multiplications per second that can be performed. In Table 1, Table 2 and Table 3, we give the
precise numerical values for the main results presented in this section.

Experiment (p2p)
Number of messages

27 29 211 213 215 217 219

DP - 16B 0.07 0.25 1.31 3.11 5.88 15.16 58.05

Ek - 16B
2 relays 0.03 0.08 0.29 1.08 4.25 17.21 68.24

Ek - 16B
3 relays 0.03 0.09 0.32 1.24 4.89 19.44 78.24

Ek - 16kB
3 relays 0.06 0.17 0.61 2.34 9.43 37.58 149.94

Ek - 16B
4 relays 0.03 0.10 0.35 1.35 5.36 21.51 85.82

Table 1. Runtimes in seconds for experiment DP with 16-byte messages, p2p experiment Rk with k = 100 and
16-byte messages with 2,3 and 4 relays, as well as p2p experiment Rk with k = 100 and 16kB messages with 3 relays.

48

Experiment (BC)
Number of messages

27 29 211 213 215 217 219

Ek - 16B
2 relays 0.04 0.15 0.57 2.37 9.44 37.92 153.41

Ek - 16B
3 relays 0.05 0.17 0.65 2.60 10.40 41.47 166.40

Ek - 16kB
3 relays 0.23 0.53 2.03 8.01 31.77 126.20 503.65

Ek - 16B
4 relays 0.05 0.19 0.73 2.81 11.20 44.84 178.77

Table 2. Runtimes in seconds for BC experiment Rk with k = 100 and 16-byte messages with 2,3 and 4 relays, as
well as BC experiment Rk with k = 100 and 16kB messages with 3 relays.

Experiment Number of multiplications per batch

(Multiplication) 20 21 26 27 28 29 210 211 212 213 214 215 216

3 Parties, 3 Relays 2917 4644 96235 136818 45104 59002 71808 92594 108449 120366 178802 249692 297783

6 Parties, 2 Relays

(fast parties)
3521 5772 89550 126885 160055 47736 57125 86412 127602 162238 194710 244092 268381

6 Parties, 2 Relays

(slow parties)
1165 1835 32223 43356 57467 36934 45912 59992 71384 77884 83298 83955 85051

Table 3. Number of multiplications per second for increasing size of multiplication batches and erasing messages in
batches of 100, for 3 parties and 3 relays and for 6 parties and 2 relays.

7.1 Networking Experiments

We now provide a more detailed explanation of our implementation of the protocolΠSecureRobustRelay,
as well as the results of our experimental evaluations. To maximise the degree of concurrency, asyn-
chronicity and parallelism, we used the tokio framework. For high-performance and manageable
communications between the parties and relays, we used the tonic framework to employ gRPC,
which is a remote-procedure-call framework that uses Protocol Buffers (known as protobuf) for
data serialisation. We used the RustCrypto crate for standard cryptographic primitives, such as
the AES256-GCM-SIV authenticated encryption scheme and the CMAC-AES256 message authen-
tication code (MAC) algorithm. We ensure that our deployment takes advantage of AES hardware
acceleration, namely AES-NI.

In the following experiments, the relays are run on identical machines with an Intel i9-9900
CPU and a 128GB RAM. The parties communicating through the relays run machines with an
Intel i7-770 CPU and a 32GB RAM. The ping time between all of the machines is 1.003 ms.

We examine the case of both the send and request commands and the sendToAll and requestFromAll
commands; we refer to the former as the “p2p experiments” whereas the latter we refer to as the
“broadcast experiments”. The send and request commands have potentially more overhead, since
the sending party needs to encrypt and the receiving party needs to decrypt.

Data Structures. The data structures used to implement the different message stores in the
relays are different depending on whether we are considering p2p or broadcast communication.

For the p2p messages, the relays use multi-value maps to store the messages exchanged between
party Pi and party Pj . At runtime, there are n · (n−1) entry lists in the map for all uni-directional
channels. For each entry (Pi,Pj), the map stores a list of messages sent by Pi to Pj . Each message is

49

composed of a round number, an encrypted message payload and a MAC for authentication between
parties and relays. Since the relays should be capable of handling many requests concurrently in
a multi-threaded setting, the multi-value map should be resilient against the problems caused by
concurrent accesses. We used the evmap crate for this purpose. The crate evmap offers lock-free,
eventually consistent, and concurrent read handles. Our protocol requires many reads since parties
continuously invoke the request command until a new message is retrieved. However, the write
handles in a multi-writer setting require a mutex for thread safety. As a result, writing operations
will be considerably more expensive than reads.

For the broadcast messages, multi-value maps are again used through the evmap crate, and the
messages contain the same information. However, since each message is now meant to be received by
all the other parties, messages are no longer stored according to the corresponding (Pi,Pj) pair, but
to their counter (or round number). Thus, for each counter, the map stores a list of messages sent
by the different parties during that same round. Note that every time we erase broadcast messages,
we always erase all the messages associated with the same counter. Hence, erasing messages will
correspond to deleting entries from the map.

Experiments. We identified four key experimental setups that we wanted to investigate, which
we label as DP, E0, E1 and Ek.

- DP : This experiment used no relays between the parties. Parties communicate directly, and all
communications are protected by TLS.

- E0 : This experiment used relays to establish indirect communications between the parties.
Parties request messages without removing them from the relays.

- E1 : This experiment had the same setting as E0, but parties immediately remove each message
after retrieval, i.e. the removal batch size is one.

- Ek : This experiment is similar to E1, but parties issue erase commands after retrieval of k > 1
messages, i.e., the removal batch size is k.

For the p2p experiments we considered the case of only two communicating parties: a sender
and a receiver. The sender sends a predetermined number of messages one by one, either directly to
the receiver (in DP) or to all the relays (in E0, E1 and Ek). In DP, the receiver passively waits until
all the expected messages were received and the runtime is measured on the sender’s side as the
time taken to send all the messages. In the experiments with relays (E0, E1 and Ek), the receiver
continuously queries the relays for each message. Once message i is successfully retrieved, queries
for message i + 1 are sent, and so on, until all of the expected messages were sent and received.
At the end of the experiment, an acknowledgement of receipt is sent to the sender through the
relays (the sender starts querying the relays for the receipt once all messages have been sent). The
runtime is measured on the sender’s side as the time between starting sending the messages and
receiving the acknowledgement of receipt.

For the broadcast experiments we considered the case of three communicating parties, where
each party simultaneously acts as a sender and receiver. Parties alternate between sending and
receiving messages: after sending message i, they continuously query the relays until they receive
message i from the other parties. They then send and request message i+1, and so on, until all the
expected messages were received. When this happens, each party broadcasts an acknowledgement
of receipt and then waits for the acknowledgement of receipt from the other parties. The runtime
is measured by each party as the time between starting sending the messages and receiving the
acknowledgement of receipt from every other party.

50

Relays vs direct comm. We seek first to understand the overhead caused by relays compared to a
deployment topology wherein parties communicate directly. The graphs in Figure 25 and Figure 26
show the runtimes of the experiments above for an increasing number of 16-byte messages, with
three relays and Ek with the removal batch size k = 100 for both the p2p and broadcast messages.
Additionally, runtimes for Ek with batch size k = 100 and 16kB messages are also presented. First,
it is clear that the results for all experiments are very similar when sending up to 215 messages.
For 217 and 219 messages, E1 has the slowest runtimes, which is due to the receiver invoking the
erase command after each received message and before requesting the next message. However,
erasing messages is necessary to guarantee the relays do not run out of memory. Furthermore,
for p2p communications, even though E0 is faster than E1, it is still much slower than Ek. This
happens because when answering message requests, the relays need to iterate through all of their
stored messages until the desired one is found. As the number of stored messages grows, this will
substantially affect the performance.

Fig. 25. Runtimes (with linear scale on the y-axis) for experiments DP, E0, E1 and Ek with k = 100 and 16-byte
messages, and for Ek with k = 100 and 16kB messages, showing: (left) p2p messages; (right) broadcast messages.

Erasing batches of messages as in the Ek experiment prevents running into a memory limit
while keeping the runtimes very close to the ones for DP. Indeed, batch erasure avoids accumu-
lating large numbers of messages in the relays without the high cost of repeatedly invoking the
erase command. Sending larger messages will naturally increase the communication time, but the
overhead is insignificant.

Note that the broadcast experiments are always slower than the p2p experiments, which results
from the following difference: in the p2p experiments, there is one sender and one receiver; in the
broadcast experiments, there are three parties, and all of them send and receive (additionally, each
of them needs to receive the messages from the other parties before sending the next message).

One can also see that E0 and E1 behave differently in the broadcast experiments compared to
the p2p experiments. This is due to the difference in the way messages are organised in the relays, as
was mentioned in Sub-section 7.1. In the p2p experiments, the relays first find the list of messages
between two parties and then iterate through the list to obtain the message with the requested
counter. In the broadcast experiments, the relays find the list of messages for the requested counter
(which will contain at most a message by each party), and return all of them. Therefore, requesting

51

Fig. 26. Runtimes (with logarithmic scale on the y-axis) for experiments DP, E0, E1 and Ek with k = 100 and
16-byte messages, and for Ek with k = 100 and 16kB messages, showing: (left) p2p messages; (right) broadcast
messages.

Fig. 27. Communication runtimes, showing for both the p2p and broadcast (BC) communications: (left) experiment
Ek with 217 16-byte messages and increasing batch size k; (right) experiment Ek with k = 100 and 16-byte messages
with 2, 3 and 4 relays.

broadcast messages does not become slower even when we never erase them. In both cases erasing
in batches is to be preferred anyway, as it prevents an explosion in the memory requirements.

Removal batch size. We also wished to determine the influence of the size k of the removal batch
in the Ek experiment. To do so, we perform this experiment with a fixed number of sent messages
(217) and an increasing batch size k for both the p2p and the broadcast settings. The results are
presented in the left graph of Figure 27.

As seen in the previous experiment, erasing each message after retrieval is considerably slower
than batch erasure. However, the batch size k > 1 has little influence on the total runtime up until
k = 50000. For this batch size, because the relays will store up to k−1 messages before deleting, the
time required for the relays to iterate through all of the stored messages and retrieve the correct one
becomes noticeable in the total communication time. This is, however, only a small increase when
compared to lower batch sizes, and still much faster than erasing every message after retrieval.

In the p2p experiments with k = 1, we observe a considerable slowdown because of numerous
concurrent write queries (requests and erasures) sent to the relays. The relays employ a pessimistic
concurrency control by locking the data items to mitigate conflicting updates. Therefore, such
controls offer data safety and integrity at the cost of latency due to resource contention. In our

52

implementation, as explained earlier, the p2p and the broadcast experiments have slightly different
data structures impacting the locking mechanisms. Another critical factor for concurrent systems
is the resource access pattern. The p2p experiment (k = 1) and the broadcast experiments are
inherently different. In the latter, the parties send messages to the relays simultaneously and wait
until all messages for that round are available within the relays. Afterwards, they issue delete
requests concurrently. They do not need to wait for all deletes; the faster parties can continue
to the next broadcast round. However, in the former, a sending and a receiving party exchange
messages simultaneously via relays (causing contention within the relays). The write queries fight
to acquire locks, which is one of the reasons that the larger erase batches reduce the number of
concurrent write queries, resulting in faster overall runtimes. These experiments are quite different
in terms of deployment topology and the order of executions.

Note that when choosing the optimal batch size we must consider our specific setting, e.g., the
number of players and the memory of the relays.

Number of relays. Finally, we analysed the influence of the number of relays on the network per-
formance. In the right graph of Figure 27 we present results for experiment Ek with k = 100 when
using 2,3 and 4 relays (as opposed to the previous experiments which used a fixed number of three
relays). On one hand, more relays mean the sender will send each message more times (one for each
relay). On the other hand the receiver accepts a message as soon as it decrypts correctly (in the
p2p experiments) and hence does not need to wait until all relays reply to the message request.
However, requesting and erasing messages from more relays will also increase the communication.
We therefore obtain slower communication times when using more relays, even though the overhead
of adding each new relay is relatively small.

Recall also that because we only require one honest relay to ensure the overall communication
is secure, having more relays will allow a higher corruption percentage within the relays themselves.
Thus, the exact number of relays used should depend on the desired performance security trade-off.

Concluding remarks. We have shown that communicating through relay nodes introduces only a
small overhead when compared to direct communication between parties, especially when erasing
messages in batches. Our implementation can be further optimized by, e.g., using a lock-free data
structure for both reading and writing. For a real-world deployment of this network topology, we
do recommend doing application-specific benchmarking to find a (sub)optimal batch size and relay
number for the desired settings since there are unlimited possible deployment plans and hardware
profiles.

7.2 Multiplication

We now turn to benchmarking our MPC protocol running on top of the relay enabled network. We
benchmark the protocol by examining the number of multiplications which can be performed per
second by the MPC protocol. Recall that the main communication required in the multiplication
protocol is that of each party sending a single broadcast message via the sendToAll command,
and then each party executing the requisite requestFromAll commands. The computation cost
on top of this is then the execution of the relevant PRSS and some associated simple arithmetic
operations.

We first targeted an MPC protocol with three parties, with at most one corruption; thus the
non-interactive version of the PRSS could be utilized. We examined an implementation based on a
finite field of 128 bits in size, which fits into the 16 bytes of our earlier experiments. We performed

53

experiments similar to the broadcast experiments mentioned above. In particular, we examined
the effect on the throughput (measured in multiplications per second) of varying the number of
multiplications which are batched in each execution of the protocol. One can think of the batch
size as the number of multiplications at a given depth in the evaluated circuit, since all such
multiplications can be batched together.

Then, we examined an MPC protocol with six parties, again with at most one corruption. The
setup is similar to the experiment with three parties, except now instead of three relays we have
only two, one of them run on one of the faster machines (Intel i9-9900 CPU and 128GB RAM)
and the other on one of the slower machines (Intel i7-770 CPU and 32GB RAM) - note that in all
previous experiments, the relays were always run on the faster machines. Regarding the parties,
instead of running all of them on the slower machines as before, three of them are now run on the
faster machines. This allows us to simulate a situation where some of the parties participating the
protocol are faster and progress in the computation ahead of the others. Indeed, since we assume
at most one corruption, it is possible to process multiplications as soon as messages from any three
of the parties are available.

The experiments are presented in Figure 28, where we averaged the execution time over a total
of 211 multiplication rounds. For the six party setting, we averaged the run time over the three
slow parties, and the three fast parties, separately. We see that for the three party multiplication,
our implementation can cope with up to around 300 thousand multiplications per second when the
number of parallel multiplications exceeds 216 = 65536. When considering six parties, the faster
parties achieve close to 270 thousand multiplications per second for the same batch size. The effect
of having both fast and slow parties is observable in the throughput of multiplications per second
shown in Figure 28, for the average of the three fast and the three slow parties.

Fig. 28. Number of multiplications per second for increasing size of multiplication batches and erasing messages
every 100 multiplication rounds, for 3 parties and 3 relays and for 6 parties and 2 relays.

54

For sequential multiplication (i.e., batch size 20) the difference is less obvious (1165 multiplica-
tions per second for slow parties vs 3483 for fast parties) since the slow parties can catch up after
every single multiplication. As the batch size increases, the computation and communication to be
performed in each multiplication round also increase, resulting in the fast parties computing on
average 180 thousand more multiplications per second than the slow ones. This illustrates how the
use of relays allows faster parties to progress in the computation, while slower ones are still able
to retrieve all the necessary messages at their own pace. We note that one of the slow parties was
on average 4 times slower than the other two, which impacts the presented average multiplication
rate. There is a small kink in the graph at a batch size of around 27 (for the three party case)
or around 28 (for the six party case) which we could not explain, we think this is an effect of the
underlying Rust switching between two different algorithms for data access.

Our code can be significantly improved, as this is just a first implementation, with the mul-
tiplications being performed in a single threaded manner. We expect throughputs of around one
million multiplications per second could be easily achieved with a fully optimized implementation.

Acknowledgements

This work was supported by CyberSecurity Research Flanders with reference number VR20192203,
by the FWO under an Odysseus project GOH9718N, and by the Flemish Government through
FWO SBO project SNIPPET S007619N.

The work of the second and third authors was primarily carried out while these authors were
affiliated with COSIC.

References

AHKP22. Anasuya Acharya, Carmit Hazay, Vladimir Kolesnikov, and Manoj Prabhakaran. SCALES - MPC with
small clients and larger ephemeral servers. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022:
20th Theory of Cryptography Conference, Part II, volume 13748 of Lecture Notes in Computer Science,
pages 502–531, Chicago, IL, USA, November 7–10, 2022. Springer, Heidelberg, Germany.

ANOS22. Bar Alon, Moni Naor, Eran Omri, and Uri Stemmer. MPC for tech giants (GMPC): Enabling gulliver
and the lilliputians to cooperate amicably. Cryptology ePrint Archive, Report 2022/902, 2022. https:

//eprint.iacr.org/2022/902.

BBC+19. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs
on secret-shared data via fully linear PCPs. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science,
pages 67–97, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

BBG+21. Fabrice Benhamouda, Elette Boyle, Niv Gilboa, Shai Halevi, Yuval Ishai, and Ariel Nof. Generalized
pseudorandom secret sharing and efficient straggler-resilient secure computation. In Kobbi Nissim and
Brent Waters, editors, TCC 2021: 19th Theory of Cryptography Conference, Part II, volume 13043 of
Lecture Notes in Computer Science, pages 129–161, Raleigh, NC, USA, November 8–11, 2021. Springer,
Heidelberg, Germany.

BJMS20. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure MPC: Laziness leads
to GOD. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020,
Part III, volume 12493 of Lecture Notes in Computer Science, pages 120–150, Daejeon, South Korea,
December 7–11, 2020. Springer, Heidelberg, Germany.

CDI05. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and appli-
cations to secure computation. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference,
volume 3378 of Lecture Notes in Computer Science, pages 342–362, Cambridge, MA, USA, February 10–12,
2005. Springer, Heidelberg, Germany.

55

https://eprint.iacr.org/2022/902
https://eprint.iacr.org/2022/902

CGG+21. Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel Kaptchuk. Fluid MPC:
Secure multiparty computation with dynamic participants. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part II, volume 12826 of Lecture Notes in Computer Science,
pages 94–123, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast
large-scale honest-majority MPC for malicious adversaries. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer
Science, pages 34–64, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

CK01. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lec-
ture Notes in Computer Science, pages 453–474, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg,
Germany.

DEP21. Ivan Damg̊ard, Daniel Escudero, and Antigoni Polychroniadou. Phoenix: Secure computation in an
unstable network with dropouts and comebacks. Cryptology ePrint Archive, Report 2021/1376, 2021.
https://eprint.iacr.org/2021/1376.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in
Computer Science, pages 572–590, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Heidelberg,
Germany.

DvW92. Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication and authenticated key
exchanges. Designs, Codes and Cryptography, 2(2):107–125, June 1992.

DY81. Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols (extended abstract).
In 22nd Annual Symposium on Foundations of Computer Science, pages 350–357, Nashville, TN, USA,
October 28–30, 1981. IEEE Computer Society Press.

FHM98. Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy in unconditional multi-
party computation (extended abstract). In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98,
volume 1462 of Lecture Notes in Computer Science, pages 121–136, Santa Barbara, CA, USA, August 23–
27, 1998. Springer, Heidelberg, Germany.

FL19. Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority MPC for malicious adversaries at almost
the cost of semi-honest. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019: 26th Conference on Computer and Communications Security, pages 1557–1571,
London, UK, November 11–15, 2019. ACM Press.

GHK+21. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin, and Sophia
Yakoubov. YOSO: You only speak once - secure MPC with stateless ephemeral roles. In Tal Malkin and
Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part II, volume 12826 of Lecture Notes
in Computer Science, pages 64–93, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

GIP+14. Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits resilient to
additive attacks with applications to secure computation. In David B. Shmoys, editor, 46th Annual ACM
Symposium on Theory of Computing, pages 495–504, New York, NY, USA, May 31 – June 3, 2014. ACM
Press.

GLO+21. Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. ATLAS: Efficient
and scalable MPC in the honest majority setting. In Tal Malkin and Chris Peikert, editors, Advances in
Cryptology – CRYPTO 2021, Part II, volume 12826 of Lecture Notes in Computer Science, pages 244–274,
Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

GLS19. Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional MPC with guaran-
teed output delivery. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science, pages 85–114, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

GPS19. Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part I, volume
11692 of Lecture Notes in Computer Science, pages 499–529, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Heidelberg, Germany.

GS20. Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority MPC. Cryptology ePrint
Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134.

GSZ20. Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in honest majority
MPC. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,

56

https://eprint.iacr.org/2021/1376
https://eprint.iacr.org/2020/134

Part II, volume 12171 of Lecture Notes in Computer Science, pages 618–646, Santa Barbara, CA, USA,
August 17–21, 2020. Springer, Heidelberg, Germany.

HIJ+16. Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure multiparty computation
with general interaction patterns. In Madhu Sudan, editor, ITCS 2016: 7th Conference on Innovations in
Theoretical Computer Science, pages 157–168, Cambridge, MA, USA, January 14–16, 2016. Association
for Computing Machinery.

HLP11. Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Computing without
simultaneous interaction. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 132–150, Santa Barbara, CA, USA, August 14–18, 2011.
Springer, Heidelberg, Germany.

LN17. Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic circuits with
malicious adversaries and an honest-majority. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Computer and Communications Security,
pages 259–276, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

Mau03. Ueli M. Maurer. Secure multi-party computation made simple (invited talk). In Stelvio Cimato, Clemente
Galdi, and Giuseppe Persiano, editors, SCN 02: 3rd International Conference on Security in Communi-
cation Networks, volume 2576 of Lecture Notes in Computer Science, pages 14–28, Amalfi, Italy, Septem-
ber 12–13, 2003. Springer, Heidelberg, Germany.

Mau06. Ueli M. Maurer. Secure multi-party computation made simple. Discrete Applied Mathematics, 154(2):370–
381, 2006.

NV18. Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-majority MPC by
batchwise multiplication verification. In Bart Preneel and Frederik Vercauteren, editors, ACNS 18: 16th
International Conference on Applied Cryptography and Network Security, volume 10892 of Lecture Notes
in Computer Science, pages 321–339, Leuven, Belgium, July 2–4, 2018. Springer, Heidelberg, Germany.

Res18. Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. IETF, RFC 8446, 2018.
RS22. Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid MPC for dishonest majority. In Yevgeniy

Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part I, volume 13507
of Lecture Notes in Computer Science, pages 719–749, Santa Barbara, CA, USA, August 15–18, 2022.
Springer, Heidelberg, Germany.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

SW19. Nigel P. Smart and Tim Wood. Error detection in monotone span programs with application to
communication-efficient multi-party computation. In Mitsuru Matsui, editor, Topics in Cryptology –
CT-RSA 2019, volume 11405 of Lecture Notes in Computer Science, pages 210–229, San Francisco, CA,
USA, March 4–8, 2019. Springer, Heidelberg, Germany.

Zen20. ZenGo. White-City: A framework for massive mpc with partial synchrony and partially authenticated
channels, 2020.

57

	MPC With Delayed Parties Over Star-Like Networks
	Introduction
	Our Contributions
	Other Related Work

	Preliminaries
	Communication and Security Model
	Shamir Secret Sharing
	Encryption
	Internal Additive Attacks
	Depth and Width of Randomized Arithmetic Circuits

	Relays and Delays
	A Single Relay
	Key Agreement
	Modelling Bounded Delays
	Implementing a Secure Robust Relay using Multiple Single Relay's

	MPC Building Blocks
	Functionalities FRand and FCoin
	Multiplication Protocols
	Instantiating FMult with Maurer's protocol

	MPC Secure up to an (Internal) Additive Attack Using Secure Robust Relays
	The -iaa MPC protocol in the FSecureRobustRelays-hybrid model
	Modeling the State Size of the Relays

	Actively Secure MPC-with-Abort Using Secure Robust Relays
	Efficiency and Optimizations

	Experiments
	Networking Experiments
	Data Structures.
	Experiments.

	Multiplication

	References

