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Abstract. Evaluating exact computational resources necessary for fac-
toring large integers by Shor algorithm using an ideal quantum computer
is difficult because simplified circuits were used in past experiments, in
which qubits and gates were reduced as much as possible by using the
features of the integers, though 15 and 21 were factored on quantum com-
puters. In this paper, we implement Shor algorithm for general composite
numbers, and factored 96 RSA-type composite numbers up to 9-bit us-
ing a quantum computer simulator. In the largest case, N = 511 was
factored within 2 hours. Then, based on these experiments, we estimate
the number of gates and the depth of Shor’s quantum circuits for fac-
toring 1024-bit and 2048-bit integers. In our estimation, Shor’s quantum
circuit for factoring 1024-bit integers requires 2.78×1011 gates, and with
depth 2.24 × 1011, while 2.23 × 1012 gates, and with depth 1.80 × 1012

for 2048-bit integers.

Keywords: Shor algorithm, integer factorization, quantum computer,
quantum computer simulator

1 Introduction

The security of RSA, one of the standardized public key cryptosystems, is based
on the difficulty of the integer factorization problem of large composite numbers.
The current factoring record by a classical computer is the factorization of an
829-bit composite number [6], so that RSA with larger than 2048-bit integer is
considered as secure for now. On the other hand, it is known that the integer fac-
torization problem can be solved in polynomial time by Shor algorithm by using
an ideal quantum computer [18]. Some factorization experiments on quantum
computers have been reported for only N = 15 and N = 21 [14,13,17,15,16,1]
because of the difficulty of realizing ideal quantum computers – free from the
limitation of the number of quantum bits (qubits) and the noise on qubits. To
make things worse, these experiments used the simplified Shor’s circuits in which
qubits and gates are reduced as much as possible by using the features of the
integers and their factors. In spite of some efforts for estimating circuit resources
for factoring 2048-bit integers with noisy qubits [8,9], it is too difficult to give
exact estimations for factoring such large integers.
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There are two major problems to break the situation. The first problem
is the lack of computing resource, especially the number of qubits available on
quantum computers. Though IBM developed a 433-qubit processor recently [10],
because of the effects of the noise, still processing Shor algorithm is hard even
for such computers. The second problem to solve is the lack of experimental
results of Shor algorithm. In order to estimate the circuit resources for factoring
2048-bit integers, we need more experimental results on the same computational
environments.

Contribution of This Paper

This paper has three contributions. Firstly, we implemented Shor algorithm ap-
plicable to general composite numbers based on known technique [12,4], which on
input N , generates Shor’s quantum circuit for factoring N . The dominant circuit
is Mod-EXP which computes a modular exponentiation fa,N (x) = ax mod N .
Mod-EXP can be constructed from some ADD circuits, and there are three ways
for constructing ADD circuits: R-ADD, GT-ADD, and Q-ADD. We implemented
these all ADD circuits for Shor algorithm based on known technique [12,4] with
some bug-fixes and improvements, and compared required resources.

Secondly, we made a large scale of factorization experiments on a quantum
computer simulator proceeded on a supercomputer. We used the quantum sim-
ulator mpiQulacs developed by Fujitsu [11], a State Vector (SV) type simulator
which records all qubit status on memory with no noise and enables to simulate
an ideal quantum computation [11]. In the experiments, we succeeded in factor-
ing 96 RSA-type composite numbers up to 9-bit. In the largest case, N = 511
was factored within 2 hours.

Finally, we generated some quantum circuits for n = 8, . . . , 25, and evaluated
resources including the number of qubits, the number of elementary gates and
the depth of the gate. Based on these data, we estimated the circuit resources
required for factoring 1024-bit and 2048-bit integers. In our estimation, Shor’s
quantum gate for 1024-bit integers requires 5121 qubits, 2.78× 1011 gates, and
the depth with 2.24 × 1011 with R-ADD, while 2048-bit requires 10241 qubits,
2.22× 1012 gates, and the depth with 1.79× 1012 with R-ADD. Unfortunately,
these circuits are too huge to proceed on a real quantum computer at the moment
so that RSA with these integer is secure by the current technology.

The rest of the paper is organized as follows: Section 2 describes how to
construct Shor’s quantum circuit, especially the modular exponentiation circuit
Mod-EXP using ADD circuits. Then, in section 3, concrete constructions of Mod-
EXP from R-ADD, GT-ADD, and Q-ADD are explained. Section 4 summarizes
factoring experiments by Shor’s quantum circuit using the quantum computer
simulator including the estimation for 1024/2048-bit integers.
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2 Quantum Circuit of Shor Algorithm

This section describes quantum circuits of Shor algorithm for general composite
numbers based on known technique [12,4].

In this paper, we consider the following quantum gates as the elementary
gates for evaluating number of gates and the depth:

– 1 quantum gates including the Hadamard gate, NOT gate, the rotation gate,
and the phase-shift gate,

– Controlled NOT (C-NOT) gate,
– Toffoli (C2-NOT) gate.

2.1 Shor Algorithm and Factorization

Suppose we want to factor an n-bit composite integer N . For an integer a coprime
to N , the order of a with regard to N is defined as the smallest positive integer
such that ar ≡ 1 (mod N). In 1994, Shor proposed a quantum algorithm to
compute the order r of a with regard to N in polynomial time [18]. The integer
N can be factored by using Shor algorithm in the following way:

i) Choose an integer a from {2, . . . , N − 1}. If gcd(a,N) ̸= 1 then output
gcd(a,N) and terminates (since a factor of N larger than 1 is found).

ii) Compute the order r from a,N by using Shor’s quantum algorithm.
iii) If r is even, ar/2+1 ̸≡ 0 (mod N) and gcd(ar/2±1, N) ̸= 1, output gcd(ar/2±

1, N) and terminates. Otherwise, return step i).

Note that step i) and iii) can be proceeded by classical computers. On the other
hand, step ii) can be computed by Shor algorithm on a quantum computer in
the following way:

1. Generate an initial state |ϕ0⟩ = |0 . . . 0︸ ︷︷ ︸
m

⟩ |0 . . . 0︸ ︷︷ ︸
n−1

1⟩, where the 1st qubit se-

quence has m qubits, while the 2nd qubit sequence has n qubits.
2. Apply the Hadamard operation Hm to the 1st sequence:

|ϕ1⟩ = Hm(|ϕ0⟩) =
1√
2m

2m−1∑
x=0

|x⟩ |0 . . . 0︸ ︷︷ ︸
n−1

1⟩ .

3. Apply the operation Ufa,N
which corresponds to a modular exponentiation

fa,N (x) = ax mod N , to the 2nd sequence:

|ϕ2⟩ = Ufa,N
(|ϕ1⟩) =

1√
2m

2m−1∑
x=0

|x⟩ |fa,N (x)⟩ .

4. Apply the inverse quantum Fourier operation to the 1st sequence.
5. Observe the 1st sequence. Then the approximation of a multiple of 2m/r is

obtained.
6. Repeat step 1–5 until r can be estimated.

The parameter m is determined from the approximation precision in step 5.
m = 2n is used usually and in this paper.
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2.2 Construction of Mod-EXP from ADD

Above steps except step 3. can be realized by elementary gates easily. On the
other hand, step 3. requires complex circuits called Mod-EXP [12]. This sub-
section describes how to realize Mod-EXP from elementary gates. In fact, Mod-
EXP can be constructed from ADD circuits, by transforming Mod-EXP to the
following circuits step-by-step:

– Mod-EXP(a) : |x⟩ |1⟩ → |x⟩ |ax mod N⟩
– Mod-MUL(d) : |y⟩ → |dy mod N⟩
– Mod-PS(d) : |y⟩ |t⟩ → |y⟩ |t+ dy mod N⟩
– Mod-ADD(d) : |y⟩ → |y + d mod N⟩
– ADD(d) : |y⟩ → |y + d⟩

Construction of Mod-EXP from Mod-MUL For an exponent x represented
in binary, namely, x =

∑m−1
i=0 2ixi, a modular exponentiation Mod-EXP(a) is

computed by a repetition of multiplying di = a2
i

mod N and taking modulus by
N , since ax mod N = a

∑m−1
i=0 2ixi mod N =

∏m−1
i=0 a2

ixi mod N . In other words,
Mod-EXP(a) can be computed by a repetition of the modular multiplication
Mod-MUL(di) controlled by |xi⟩, so that Mod-EXP(a) requires m controlled-
Mod-MULs, which is denoted by C(xi)-Mod-MUL.

Construction of Mod-MUL from Mod-PS The modular multiplication
Mod-MUL(d) for an integer 0 ≤ d < N and an n-bit integer y can be computed
by using modular product-sums Mod-PSs in the following way:

|y⟩ |0 . . . 0︸ ︷︷ ︸
n

⟩ Mod-PS(d)→ |y⟩ |0 + dy mod N⟩ SWAP→ |dy mod N⟩ |y⟩

Mod-PS(−d−1)→ |dy mod N⟩ |y + (−d−1)(dy mod N) mod N⟩
= |dy mod N⟩ |0⟩ .

Since di = a2
i

mod N and gcd(a,N) = 1, there always exists the inverse d−1 mod
N . Thus, Mod-MUL can be computed by two Mod-PSs, one n-qubit SWAP
with auxiliary qubits |R2⟩ = |0 . . . 0︸ ︷︷ ︸

n

⟩. Especially, C(xi)-Mod-MUL requires two

C(xi)-Mod-PSs and one n-qubit C-SWAP. Moreover, an n-qubit C-SWAP can
be realized by n 1-qubit C-SWAPs, and one 1-qubit C-SWAP can be realized by
two C-NOTs and one Toffoli gate.

Construction of Mod-PS from Mod-ADD When the 2nd sequence is repre-
sented as |y⟩ = |yn−1 . . . y0⟩, for an integer 0 ≤ d < N , we have dy =

∑n−1
j=0 d2jyj .

Thus, a modular product-sum Mod-PS(d) on a bit sequence |R2⟩ can be com-
puted by a repetition R2 ← R2 + d2j mod N if yj = 1 for j = 0, 1, . . . , n − 1
which is equivalent to C(yj)-Mod-ADD(d2j mod N). That is, Mod-PS can be
realized by n 1-controlled Mod-ADDs, and C(xi)-Mod-PS can be realized by n
2-controlled Mod-ADD, namely, C(xi, yj)-Mod-ADDs.
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Construction of Mod-ADD from ADD There are two constructions, Type
1 and Type 2 for realizing C(xi, yj)-Mod-ADD [12]. From the efficiency point
of view, Type 2 is suitable for R-ADD and Q-ADD, while Type 1 for GT-ADD.
Because of the space limitation, we omit describing the detail.

2.3 Construction of ADD

This subsection describe how to construct ADD circuits from elementary gates
in three ways: R-ADD, GT-ADD, and Q-ADD. Here, for an n-qubit register
|R2⟩ = |R2,n−1 . . . R2,0⟩, we consider the circuit to add an n-bit integer p =
pn−1 . . . p0. Considering the carry-over, the result is represented by |R1R2⟩ with
1-qubit register |R1⟩. All ADD circuits use another 1-qubit register |R3⟩, and
R-ADD uses further (n− 1)-qubit sequence |c⟩. In total, GT-ADD and Q-ADD
require m+ n+ 1+ n+ 1 = m+ 2n+ 2 = 4n+ 2 qubits, while R-ADD requires
m+2n+2+(n−1) = m+3n+1 = 5n+1 qubits. On the other hand, the number
of elementary gates is estimated by 270n3 for R-ADD, 16/3n5 for GT-ADD, and
97n4 for Q-ADD [12].

Construction of R-ADD R-ADD is a ripple carry adder [5,21], which com-
putes R2 + p by using the following addition table (1):

cn−1 cn−2 . . . c1
R2,n−1 R2,n−2 . . . R2,1 R2,0

+) pn−1 pn−2 . . . p1 p0
R1 R2,n−1 R2,n−2 . . . R2,1 R2,0

(1)

Here, c = cn−1 . . . c1 is an auxiliary (n − 1)-bit registers with initial value 0,
which is used for storing carry-overs. R-ADD consists of three circuits, CARRY
(for computing carry bits), SUM (for computing additions), and CARRY−1 (for
resetting carry bits). As in Figure 2 of Vedral, Barenco and Ekert’s paper [21],
R-ADD firstly computes all carry-overs for k = 0, 1, . . . , n− 1 by using CARRY
circuit described in Figure 1 (set cn = R1 when k = n − 1). When pn−1 = 1,
apply the NOT gate to R2,n−1. Finally, for k = n−1, . . . , 0, update R2,k by using
SUM circuit described in Figure 2 and reset ck by using CARRY−1 circuit, which
is CARRY circuit. When k = 0, CARRY−1 is omitted. Thus, R-ADD can be
constructed from Toffoli gates, C-NOT gates, and NOT gates.

Type 2 Mod-ADD requires 1-controlled R-ADD and 2-controlled R-ADD,
which require not only C-NOT gate and Toffoli gate, but 3-controlled NOT and
4-controlled NOT gates. Barenco et al. showed two conversions from a Ck-NOT
gate to Toffoli gates [3]. The first conversion converts a Ck-NOT gate to 2k − 3
Toffoli gates by using k−2 clean auxiliary qubits (qubits with their state known
to be |0⟩). The second converts a Ck-NOT gate to 4k − 8 Toffoli gates by using
k − 2 dirty (unclean) auxiliary qubits. Both auxiliary qubits return the initial
state after the usage. According to Kunihiro’s paper [12], the first conversion
can convert all Ck-NOT gates.
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|ck⟩ •
|R2,k⟩ •
|ck+1⟩

(a) pk = 0

|ck⟩ •
|R2,k⟩ • •
|ck+1⟩

(b) pk = 1

Fig. 1: CARRY Circuit
|ck⟩ •

|R2,k⟩

(a) pk = 0

|ck⟩ •
|R2,k⟩

(b) pk = 1

Fig. 2: SUM Circuit

Construction of GT-ADD For k = 0, 1, . . . , n − 1, GT-ADD adds p by re-
peatedly computing R2 ← R2 + 2k when pk = 1. An addition by 2k can be
realized by Cℓ-NOT gates (1 ≤ ℓ ≤ n− k) and NOT gates as in Figure 3. Type
1 Mod-ADD requires, in addition to GT-ADD, 1/2/3-controlled GT-ADD, that
is NOT gates, C-NOT gates, Toffoli gates, and Cℓ-NOT gates (3 ≤ ℓ ≤ n + 3).
Both conversions described in 2.3 can be used in RT-ADD, however, since it is
difficult to use clean qubits, Kunihiro used the second conversion [12].

|R2,k⟩ • • · · · •
|R2,k+1⟩ • • · · ·

... • • · · ·
|R2,n−2⟩ • • · · ·
|R2,n−1⟩ • · · ·

|R1⟩ · · ·

Fig. 3: Adder 2k to |R2⟩

Construction of Q-ADD Q-ADD is an adder by using the quantum Fourier
Transform (QFT) [4,7]. For simplicity, we set |R2,n⟩ := |R1⟩ and assume that
|R2⟩ has n+1 qubits in this subsection. Also set pn = 0. Different from R-ADD or
GT-ADD, Q-ADD computes |R2⟩ ← |R2 + p mod 2n+1⟩. Denote the state after
applying QFT to the register |R2⟩ (Figure 9 in [4]) as ϕ(|R2⟩). Then, Q-ADD
computes, for j = n, n − 1, . . . , 0, in the following way: for k = 1, 2, . . . , j + 1,
apply the Z-rotation gate

Rk =

(
1 0

0 e2πi/2
k

)
to ϕ(|R2,j⟩) when pj−k+1 = 1. Inverse Quantum Fourier Transform (QFT−1) is
required to obtain the result of the addition. Thus, Q-ADD can be realized by
rotation gates only.
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Type 2 Mod-Add requires 1/2-controlled Q-ADDs, that is, 1/2-controlled Rk

gates are required. Here, 1-controlled Rk gate can be realized by 2 C-NOTs and
4 1-qubit gates, and 2-controlled Rk gate can be realized by 6 C-NOTs and 8
1-qubit gates [3]. The estimated number of gates of Mod-EXP is about 97n4 on
average.

Construction of 1/2-controlled Rk is as follows. Arbitrary unitary matrix W
can be represented by

W = Φ(δ)Rz(α)Ry(θ)Rz(β) (2)

for parameters α, β, θ, δ ∈ [0, 2π], where

Φ(x) =

(
eix 0
0 eix

)
, Ry(x) =

(
cosx/2 sinx/2
− sinx/2 cosx/2

)
, Rz(x) =

(
eix/2 0
0 e−ix/2

)
.

Then 1-controlled W gate can be represented as in Figure 4, where

•
= E • •

W A B C

Fig. 4: Conversion of 1-controlled Rk gate

A = Rz(α)Ry(θ/2), B = Ry(−θ/2)Rz(−(α+ β/2)),

C = Rz((β − α)/2), E = Rz(−δ)Φ(δ/2).
Thus, for W = Rk, 1-controlled Rk can be realized by 2 C-NOTs and 4 1-qubit
gates as in Figure 4 by determining parameters α, β, θ, δ. Similarly, by applying
Lemma 6.1 in [3], 2-controlled Rk gate can be realized by 6 C-NOTs and 8
1-qubit gates.

2.4 Required Resources

Let us summarize the required resources required in Shor’s circuit to factor an
n-bit integer.

Shor’s circuit has three main circuits, Hadamard, Mod-EXP, and QFT−1.
Required number of gates for each of Hadamard and QFT−1 is O(n), while Mod-
EXP requires GModEXP(R-ADD) = 270n3 with R-ADD, GModEXP(GT-ADD) =
16/3n5 with GT-ADD, and GModEXP(Q-ADD) = 97n4 with Q-ADD. Therefore,
required number of gates for Shor’s circuit can be identified by these numbers:
GShor(R-ADD) = 270n3, GShor(GT-ADD) = 16/3n5, and GShor(Q-ADD) =
97n4. Unfortunately, no estimation for the depth is known,

Required numbers of qubts are QShor(R-ADD) = 5n + 1 with R-ADD, and
QShor(GT-ADD = QShor(Q-ADD) = 4n+2 with GT-ADD and Q-ADD. Though
Takahashi and Kunihiro proposed a reduced Shor circuit with 2n+2 qubits [20],
since extra device is required in the circut and the number of gates remains in
the same order, so we do not use this construction in this paper.
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|c1⟩ • • •
|c2⟩ • • • • •
|c3⟩ • • •
|c4⟩ • = • •
|0⟩ • •
|t⟩

Fig. 5: Conversion from a C4-NOT to C2-NOTs with 1 clean qubit
|c1⟩ • • • • •
|c2⟩ • • • • •
|c3⟩ • • • •
|c4⟩ • • • •
|c5⟩ • = • = •
|0⟩ • •
|0⟩ •
|t⟩

Fig. 6: Conversion from a C5-NOT to C2-NOTs with 2 clean qubits

3 Implementation of Shor’s Quantum Circuit

This section describes how to implement Mod-EXP with each of R-ADD, GT-
ADD, and Q-ADD, respectively, based on Kunihiro’s paper [12]. We also show
bug-fixes and improvements from them.

3.1 Mod-EXP with R-ADD

For implementing Mod-EXP with R-ADD, we use Type 2 Mod-ADD in order
to minimize the number of gates. We also apply the following bug-fixes and
improvements.

Bug-fix on Converting C3-NOT, C4-NOT to Toffoli Gate For all Ck-
NOT (k = 3, 4) gates used in 1/2-controlled R-ADD, the first conversion de-
scribed in section 2.3 converts them to 2k − 3 Toffoli gates with k − 2 clean
auxiliary qubits. In practice, k − 2 clean qubits are not available in some cases.
In such cases we propose to take the following procedures. When k = 3 and no
clean qubit is available, then use the second conversion described in section 2.3.
When k = 4, use the second conversion described in section 2.3 if no qubit is
available, and use the conversion described in Figure 5 if 1-qubit is available.
Compared to the first conversion, 1 Toffoli gate is increased when k = 3, and
3/1 Toffoli gates are increased when k = 4 with 0/1 clean qubit. Though this in-
creases the number of Mod-EXP gate, since it is at most O(n) (explained later),
so that there is no effect on the total number and its coefficient.



9

Effect by the Bug-fix In step 2 of Shor algorithm, we apply the Hadamard gate
to the m-qubit sequence. By changing this operation to applying the Hadamard
gate to xi just before each C(xi)-Mod-MUL, xi+1, . . . , xm−1 can be used as clean
qubits in C(xi)-Mod-MUL. Thus, for i = 0, . . . ,m− 3, xi+1, xi+2 can be used as
clean qubits and there is no increase on the number of gates.

On the other hand, when i = m−2,m−1, available clean qubits are less than
2 and additional circuits are required. When i = m−1, CARRY and CARRY−1

for c1, . . . , cn−3 and SUM for R2,0, . . . , R2,n−2 can use cn−2 and cn−1 as clean
qubits so that no additional circuits are required. Clean qubits may not be
available in at most 6 circuits: CARRY and CARRY−1 for cn−2, cn−1, CARRY
for R1, and SUM for R2,n−1. Thus, the increased number of gates in Ck-NOT
is constant. and that in controlled R-ADD is also constant. When i = m − 2,
the increased number of gates is constant similarly. Since Mod-ADD is applied
2n times in Mod-EXP, the total increased number of gates is O(2cn) = O(n),
which is negligible.

Clean Qubits Management It is difficult to figure out which qubit is clean
or not manually when Ck-NOT conversion is required. So we implemented the
management function to automatically list the status of auxiliary qubits.

– When a quantum gate is added to the circuit, set the status of the target
qubit of the gate as ‘dirty’ (not clean). If the gate makes the status clean
(such as CARRY−1), set ’clean’.

– Use ’clean’ qubits in Ck-NOT conversion.

This management makes the number of gates of Mod-EXP minimum.

3.2 Mod-EXP with GT-ADD

For implementing Mod-EXP with GT-ADD, Type 1 Mod-ADD is used to min-
imize the number of gates. Kunihiro used the second coversion described in sec-
tion 2.3 for converting Ck-NOT gates (for 3 ≤ k ≤ n+ 3) to Toffoli gates. This
paper proposes to use clean qubits as much as possible by a greedy approach to
decrease the number ofgates.

Greedy Method Suppose 1 ≤ c ≤ k−3 clean qubits and sufficient dirty qubits
are available in the conversion of a Ck-NOT gate to Toffoli gates. Our greedy
method proceeds as follows:

1. Generate a null circuit circ.
2. Set X be a set of indexes of k control qubits.
3. Select two indexes from X, and delete these indexes from X.
4. Select one clean bit with changing its status as ’dirty’ in clean qubit man-

agement, and add its index to X.
5. Generate a 2-controlled Toffoli gate, controlled by selected indexed-qubits

and targeted to the selected clean qubit.
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6. Add the generated Toffoli gate to circ.
7. Repeat 2. to 6. c times.
8. Generate a Ck−c-NOT gate controlled by (k− c) indexes in X, and targeted

to the same qubit as the original Ck-NOT gate, and convert to 4(k − c)− 8
Toffoli gates by using the 2nd conversion, and add to circ.

9. Add all Toffoli gates generated in step 2. to 7. in the reversed order tocirc.
10. Output circ.

The number of Toffoli gates generated by the above greedy method is c+ 4(k−
c) − 8 + c = 4k − 8 − 2c．Figure 5 shows an example with k = 4, c = 1, while
Figure 6 with k = 5, c = 1, 2.

Greedy Method in Mod-EXP For all conversions from Ck-NOT gates (3 ≤
k ≤ n + 3) to Toffoli gates appeared in Mod-EXP with GT-ADD, we use the
1st conversion described in subsection 2.3 when more than k − 2 clean qubits
are available, the greedy method when 1 to k − 3 clean qubits are available,
and the 2nd conversion when no clean qubit is available. Since GT-ADD uses
4n+ 2 qubits in total and k + 1 qubits are used in the greedy method, the rest
4n+2− (k+1) qubits are available as ’dirty’ qubits. We also use the clean qubit
management described in subsection 3.1 in the greedy method,

3.3 Mod-EXP with Q-ADD

Bug-fix in Q-ADD Since Q-ADD requires to apply QFT to the registers
|R1R2⟩, QFT just before C(x0)-Mod-MUL in Q-ADD (Figure 2 in [4]), and
QFT−1 just before C-SWAP and QFT just before C-SWAP in C(xi)-Mod-MUL
should be added. Thus the number of gates are increased to 4n + 2 QFT for
Mod-EXP from the original [12]. Furthermore, the original number of gates did
not consider C-SWAP, so that mn Toffoli and 2mn C-NOT should be added.
However, since these increase is at most O(n3), it does not effect on the total
number of Mod-EXP at all.

• • • • •
• = E • E† • E

Rk A B B† B

Fig. 7: Conversion of 2-controlled Rotation Gate

Change of Mod-ADD When Type 2 Mod-ADD is used for Q-ADD, 4 QFTs
and 4 QFT−1s are required, and the number of gates of Mod-EXP will be in-
creased (the order is same, but the coefficient becomes larger). So, we propose
to use Beauregard’s Mod-ADD which requires 2 QFTs and 2 QFT−1s [4].
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R-ADD GT-ADD Q-ADD
N n a Q G D T Q G D T Q G D T

15 4 2 21 12937 10507 2.4 18 12595 9838 0.91 18 38967 20208 3.5
21 5 2 26 26155 20779 89.9 22 25325 18824 5.2 22 78334 40409 18.0
33 6 5 31 46935 36870 – 26 44461 31436 92 26 145620 76578 404
35 6 2 31 47662 37775 – 26 55387 38869 115 26 155329 79693 426
39 6 2 31 47843 38214 – 26 61941 43483 129 26 160315 81152 441
51 6 2 31 46991 37413 – 26 55755 39348 116 26 152468 78285 421
55 6 2 31 47845 38513 – 26 61899 43507 129 26 160613 80877 441
57 6 5 31 47555 38028 – 26 51360 36346 107 26 154085 78686 431
65 7 3 36 76341 59902 – 30 82676 56199 2430 30 251424 132329 10545
69 7 2 36 78035 61939 – 30 98774 66690 2866 30 271832 138888 11329
77 7 2 36 77066 61391 – 30 104285 70616 3033 30 267042 135177 11125
85 7 2 36 75704 60041 – 30 99407 67570 2906 30 256625 132179 10719
87 7 2 36 78196 62751 – 30 120027 80999 3485 30 284083 142164 11792
91 7 2 36 77819 62369 – 30 116234 78729 3369 30 279204 141000 11594
93 7 2 36 77659 62319 – 30 108070 73227 3150 30 276912 140313 11516
95 7 2 36 78550 63480 – 30 125960 85061 3664 30 289797 144364 12098

111 7 2 36 78692 63633 – 30 124959 84533 3646 30 289793 144261 12020
115 7 2 36 78591 63151 – 30 109922 74503 3188 30 282238 141557 11809
119 7 2 36 78563 63477 – 30 122960 83264 3577 30 287020 142555 11978
123 7 2 36 78691 63672 – 30 118337 80519 3452 30 286730 143475 11899

Table 1: Factorization of N up to 7-bit (with 1-node)

Gate Reduction of Controlled Rotation Gate Conversion When 1/2-
controlled Rk gates are converted to elementary gates, one 1-qubit quantum gate
can be reduced by setting parameters properly. In fact, in W = Rk in (2), set
α = β = −π/2k, θ = 0, δ = π/2k. Then, C becomes an identity matirix and can
be omitted. Similarly, in 2-controlled Rk gates, setting α = β = −π/2k−1, θ =
0, δ = π/2k−1 reduces one 1-qubit quantum gate as in Figure 7, where † denotes
an inversion.

4 Experimental Results

This section reports our factorization results based on our implementation de-
scribed in section 3 by using the quantum computer simulator mpiQulacs [11],
a distributed version of the quantum simulator Qulacs [19]. We used an A64FX-
based cluster system similar to Todoroki [11] with 512 nodes, which enables
39-qubit operations. A64FX is an ARM-based CPU that is also equipped in the
world’s top Fugaku supercomputer.

The experiments were conducted by the following steps:

1. For an n-bit RSA-type composite number (a product of two different odd
primes) N , choose the integer a which induces the factorization (for efficiency
reason).
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2. Generate the quantum circuit for factoring N by Shor algorithm. Here we
have three choices for ADD circuit.

3. Input the quantum circuit to the simulator.
4. Observe the 1st bit sequence 10,000 times to estimate the order r.
5. Output gcd(ar/2 ± 1, N).

Note that, since the observation in step 4. does not destroy the quantum state,
it is enough to proceed each quantum circuit once in the experiments.

4.1 Naive Circuit

Firstly, we factored small RSA-type composite numbers, a product of two dif-
ferent odd primes, up to 7-bit with 1-node by using Shor’s quantum circuits
generated by our implementation. Table 1 shows the required resources and tim-
ings for factorization, where Q, G, D, T denote the number of required qubits,
the number of elementary gates, the depth of Shor’s circuit, and the timing data
in seconds. Since we used 1-node only, 30 qubits are available for factorization.
Thus, circuits with R-ADD for 6-bit and 7-bit integers cannot be proceeded
(denoted by ‘–’ in the table).

GT-ADD No Greedy Greedy Ratio
N n a Q G0 D0 T0 G1 D1 T1 G1/G0 D1/D0 T1/T0

15 4 2 18 17881 17763 1.5 12595 9838 0.91 0.71 0.56 0.61
21 5 2 22 37044 36867 10.1 25325 18824 5.2 0.69 0.52 0.52
33 6 5 26 66679 66433 227 44461 31436 92 0.67 0.48 0.41
35 6 2 26 83216 82966 282 55387 38869 115 0.67 0.47 0.41
39 6 2 26 93136 92886 315 61941 43483 129 0.67 0.47 0.41
51 6 2 26 83790 83541 285 55755 39348 116 0.67 0.48 0.41
55 6 2 26 93156 92906 315 61899 43507 129 0.67 0.47 0.41
57 6 5 26 77400 77151 262 51360 36346 107 0.67 0.48 0.41
65 7 3 30 126462 126133 6814 82676 56199 2430 0.66 0.45 0.36
69 7 2 30 151490 151157 8121 98774 66690 2866 0.66 0.45 0.36
77 7 2 30 159842 159509 8546 104285 70616 3033 0.66 0.45 0.36
85 7 2 30 152208 151875 8165 99407 67570 2906 0.66 0.45 0.36
87 7 2 30 183909 183575 9864 120027 80999 3485 0.66 0.45 0.36
91 7 2 30 178045 177711 9537 116234 78729 3369 0.66 0.45 0.36
93 7 2 30 165750 165417 8857 108070 73227 3150 0.66 0.45 0.36
95 7 2 30 193219 192885 10358 125960 85061 3664 0.66 0.45 0.36

111 7 2 30 191313 190979 10257 124959 84533 3646 0.66 0.45 0.36
115 7 2 30 168479 168145 9048 109922 74503 3188 0.66 0.45 0.36
119 7 2 30 188369 188035 10112 122960 83264 3577 0.66 0.45 0.36
123 7 2 30 181029 180695 9692 118337 80519 3452 0.66 0.45 0.36

Table 2: Factorization of N with GT-ADD without and with the greedy method (with
1-node)
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As in the table, required resources are depend on the parameters N and n,
but on n mainly. The ratio G/D seems to be a constant depending on the features
of R-ADD, GT-ADD, and Q-ADD. Since Q-ADD has many 1-qubit operations
and is easy to parallelize, so that the ratio G/D is smaller (0.50-0.53) compared
to other ADDs (0.79 to 0.81 for R-ADD, 0.68-0.79 for GT-ADD). Though G and
D are in expected order, O(n3) for R-ADD, O(n5) for GT-ADD, and O(n4) for
Q-ADD, coefficients differ from expected ones. The reason is that parameters are
so small that other terms rather than the dominant term affect. The difference
may be smaller for larger parameters.

4.2 Greedy Circuit

Next, in order to show the superiority of the greedy method, we factored (same)
small RSA-type composite numbers up to 7-bit, without and with the greedy
method described in subsection 3.2 for GT-ADD. Results are summarized in
Table 2, where results in the ’Greedy’ column coincide the results shown at the
center column in Table 1.

As in the table, the greedy method reduces the number of gates to 0.66 to
0.71, and the depth to 0.45 to 0.56. Since generated Toffoli gates by the greedy
method can be parallelized easily, the effect on the depth is much larger than
that on the number of gates. In addition, the greedy method works well when
k becomes larger. Analyzing the effect of greedy method mathematically is the
future work.

4.3 Optimized Circuit

Then, we factor larger integers, 8-bit and 9-bit integers with 512-nodes. GT-
ADD is used for the experiment because it requires less number of qubits and
gates compared to other ADDs. In order to decrease the number of gates and
the depth as much as possible, we used optimize_light option of Qulacs which
unifies successive 1-qubit gates to one gate. However, the effect was very limited:
it reduce the number of gates by only 1 percent.

Since factorization of 9-bit integers require 38-qubits, and 256-nodes are suf-
ficient for the computation, other 256-nodes can be used for the speed-up. To
do so, we used the fused_swap_option option of mpiQulacs which enables to
distribute tasks to identified nodes for efficient computation.

Table 3 summarizes the factorization results. As in the table, we have suc-
ceeded factoring all RSA-type integers up to 9-bit. The largest integer we fac-
tored here was N = 511, which requires 8226 seconds (2.3 hour). On the other
hand, optimize_light option works very well for Q-ADD, since Q-ADD uses
a lot of successive 1-qubit gates. In fact, the optimized quantum circuit for fac-
toring N = 511 with Q-ADD requires 225523 gates and 187618 depth, and it
factors N = 512 in 7050 seconds (1.96 hours) in the experiment.
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4.4 Circuit Estimation

Finally we estimated the quantum circuit resources for factoring 1024-bit and
2048-bit integers. For each 8 ≤ n ≤ 25, we generated 10 composite numbers N
randomly (180 composite numbers in total). Then, we generated the quantum
circuit for each N with optimize_light option, and evaluate the number of
elementary gates and the depth. Here, we used R-ADD since resources become
smaller than others for larger N ’s. Next, we compute the average of resources
for each n. Average values, lowest values, and highest values for each n are
summarized in Table 4.

From averaged values for 8 ≤ n ≤ 25, we obtain the approximation polyno-
mials

G(n) = 258.7738275n3 − 274.4792312n2 − 672.6639462n+ 3829.183247,

D(n) = 208.4410876n3 − 202.3885578n2 − 1143.4193n+ 6530.413897.

with assuming that G(n) = O(n3) and D(n) = O(n3). Then, by substituting
n = 1024 and n = 2048 to these polynomials, we obtain approximations as in
Table 5. Compared to the estimation by Kunihiro, our estimation decreases to
about 4% for the number of gates. We do not discuss the feasibility of such a
huge quantum computer, however, if the quantum circuit for factoring 2048-bit
integers are proceeded by an ideal quantum computer which can proceed the
operation in the same speed as Google’s Sycamore [2], that took 200 seconds to
sample 106 times with a circuit with depth 40, factoring requires about 104.17
days, which seems infeasible by the current quantum technology.

5 Concluding Remarks

In this paper, we implemented Shor algorithm for factoring general composite
numbers using 3 different ADD circuits (R-ADD, GT-ADD, and Q-ADD) and
succeeded in factoring all RSA-type composite numbers up to 9-bit composite
numbers in addition to the maximum 9-bit composite number 511, using the
quantum computer simulator developed by Fujitsu. The time required for fac-
torization of N = 511 is within 2 hours. We also estimated the number of gates
and depth required of Shor’s quantum circuit for larger composite numbers by
actually generating quantum circuits, and gave the estimation for 1024 and 2048-
bit integers. The future work will be to complete the experiments in factorization
and estimation, provide a method to minimize the circuit depth, and conduct
integer factorization experiments of larger composite numbers.
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N n a Q G D T N n a Q G D T

129 8 7 34 152780 100141 256 321 9 7 38 260877 166496 5899
133 8 2 34 169108 111205 247 323 9 2 38 304490 193554 5956
141 8 2 34 183453 120170 287 327 9 2 38 322336 204745 6115
143 8 2 34 207514 135907 311 329 9 3 38 285506 182113 6099
145 8 6 34 158918 105271 262 335 9 2 38 349246 222013 8104
155 8 2 34 198473 130150 311 339 9 2 38 317273 201779 7109
159 8 2 34 217743 142924 335 341 9 2 38 291468 186213 6363
161 8 3 34 155238 103030 238 355 9 2 38 310783 197410 7491
177 8 5 34 168876 111997 259 365 9 2 38 322926 206125 6346
183 8 2 34 207468 136410 297 371 9 2 38 324641 206674 6287
185 8 3 34 180752 119593 282 377 9 3 38 316691 202612 6676
187 8 2 34 208281 137192 328 381 9 2 38 321134 204686 5860
201 8 7 34 170050 112064 244 391 9 2 38 326281 207709 6697
203 8 2 34 193163 126762 285 393 9 5 38 281956 179878 6014
205 8 3 34 178117 117326 276 395 9 2 38 319088 203494 7307
209 8 3 34 165014 109327 243 403 9 2 38 307506 195485 6271
213 8 2 34 184210 121450 272 407 9 2 38 338095 214301 7907
215 8 2 34 204621 134697 327 411 9 2 38 335319 214006 7404
217 8 5 34 178741 118044 255 413 9 2 38 327370 208569 6648
219 8 2 34 204160 134522 299 415 9 2 38 359587 228199 7723
221 8 2 34 200121 131790 283 417 9 5 38 267426 171328 5940
235 8 2 34 198443 130597 285 427 9 2 38 324243 207582 6862
237 8 2 34 193348 127347 286 437 9 2 38 314856 200771 5925
247 8 2 34 208086 136900 289 445 9 2 38 339458 216426 6572
249 8 11 34 186487 123502 292 447 9 2 38 373035 237421 7448
253 8 2 34 202159 133987 306 451 9 2 38 306484 195876 5999
259 9 2 38 288684 183065 6143 453 9 2 38 286538 183164 6146
265 9 6 38 272685 173346 5620 469 9 2 38 303229 193946 6246
267 9 2 38 309270 196137 6572 471 9 2 38 343707 219148 7473
287 9 2 38 359003 228259 7511 473 9 3 38 303975 194528 6933
291 9 2 38 308155 195603 6542 481 9 3 38 281077 180267 6815
295 9 2 38 334848 212590 6370 485 9 2 38 305606 195586 6502
299 9 2 38 321523 204402 7094 489 9 7 38 302012 193333 7218
301 9 2 38 317493 202575 6461 493 9 2 38 329162 210756 6188
303 9 2 38 353151 224856 7559 497 9 3 38 296472 189877 5750
305 9 3 38 285798 182560 6350 501 9 2 38 322414 207063 6335
309 9 2 38 309354 196737 6358 505 9 6 38 313370 200596 6811
319 9 2 38 367923 233944 7419 511 9 3 38 395310 252188 8226

Table 3: Factorization of N up to 9-bit with GT-ADD (with 512-nodes)



18

Average Lowest Highest
n G D G D G D

8 113227.4 90682.7 111867 89084 114916 91792
9 164064.8 131693.9 162562 130386 165761 133579

10 228620.5 183741.9 227406 181906 229925 184448
11 307189.8 246775.1 302661 242850 309775 248542
12 404000.3 324664.2 397526 318331 406308 327116
13 517945.8 416032.7 513422 410828 522196 419008
14 650122.7 522313.3 640454 514596 655329 527115
15 805998.7 647481.2 797863 641646 810234 649475
16 982330.4 790253.8 977792 787101 988121 795903
17 1184249.2 951764.9 1179409 947741 1191981 956522
18 1411723.6 1134871.5 1406205 1129190 1420032 1140315
19 1666814.8 1342127.5 1661379 1338674 1671055 1345156
20 1948712.5 1568464.2 1943035 1563174 1956088 1571912
21 2265657.1 1824869.0 2261356 1821422 2274226 1831784
22 2613616.4 2104499.0 2607625 2098512 2619419 2108826
23 2991653.5 2409196.1 2986364 2405673 3007653 2415521
24 3407453.3 2744574.6 3395725 2733019 3424474 2754929
25 3857799.5 3107256.0 3843059 3100858 3867954 3116754

Table 4: Resources of optimized Shor’s circuit with R-ADD

n = 1024 n = 2048
Q G D Q G D

Ours 5121 2.78× 1011 2.24× 1011 10241 2.23× 1012 1.80× 1012

Kunihiro [12] 3074 2.90× 1011 – 6146 2.32× 1012 –
Table 5: Circuit estimation for factoring 1024/2048-bit integers
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