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Abstract. The ChaCha20-Poly1305 AEAD scheme is being increasingly widely deployed in prac-
tice. Practitioners need proven security bounds in order to set data limits and rekeying intervals for
the scheme. But the formal security analysis of ChaCha20-Poly1305 currently lags behind that of
AES-GCM. The only extant analysis (Procter, 2014) contains a flaw and is only for the single-user
setting. We rectify this situation. We prove a multi-user security bound on the AEAD security of
ChaCha20-Poly1305 and establish the tightness of each term in our bound through matching at-
tacks. We show how our bound differs both qualitatively and quantitatively from the known bounds
for AES-GCM, highlighting how subtle design choices lead to distinctive security properties. We
translate our bound to the nonce-randomized setting employed in TLS 1.3 and elsewhere, and we
additionally improve the corresponding security bounds for GCM. Finally, we provide a simple yet
stronger variant of ChaCha20-Poly1305 that addresses the deficiencies highlighted by our analysis.
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1 Introduction

ChaCha20-Poly1305 and Galois Counter Mode (GCM) are the two most popular AEAD schemes in use
on the Internet today. The TLS 1.3 specification [Res18] mandates (MUST) support for AES128-GCM
and strongly recommends (SHOULD) support for AES256-GCM and ChaCha20-Poly1305. In addition,
ChaCha20-Poly1305 is the default AEAD scheme in OpenSSH, WireGuard, OTRv4, and the Bitcoin
Lightning Network. GCM owes much of its popularity to its high parallelizability as well as native support
for AES and carry-less multiplication on Intel and AMD CPUs, which allow it to run at record speeds.
However, in the absence of such hardware support, ChaCha20-Poly1305 wins the race by a significant
margin. Accordingly, ChaCha20-Poly1305 is generally the favored choice on mobile phone hardware
and Apple’s M1 processor. Moreover, ChaCha20-Poly1305 benefits from Intel’s new AVX512 instruction
set, which has further narrowed the performance gap between the two schemes on Intel hardware.4

Its performance benefits derive from the minimalistic ARX design behind the ChaCha20 cipher, the
amenability of Poly1305 to fast arithmetic, and the parallelizability in each of these components. Another
reason for preferring ChaCha20-Poly1305 on generic hardware platforms is that it is easier to implement
in constant time. As a consequence, it is less prone to timing side-channel attacks.

ChaCha20-Poly1305 combines the ChaCha20 stream cipher and the one-time MAC Poly1305 into
a nonce-based AEAD scheme. Both were designed independently as separate components by Bern-
stein [Ber08, Ber05a], and Langley later adapted and combined the two into a nonce-based AEAD
scheme and proposed its use in TLS [Lan13]. Despite its popularity, ChaCha20-Poly1305 has received
very little formal security analysis. The only extant analysis is in a short, unpublished note by Proc-
ter [Pro14]. In contrast, GCM has been the subject of several formal security analyses [MV04, IOM12,
NOMI15, BT16, LMP17, HTT18]. In particular, [IOM12] identified a flaw in GCM’s original security
proof in [MV04] and provided a corrected proof which was in turn improved upon in [NOMI15]. Later
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works [BT16, LMP17, HTT18] have studied the security of GCM in the multi-user setting, where an
adversary is given access to an encryption oracle and a decryption oracle for many distinct users and the
adversary wins if it can break the security of any single user. Having access to encryptions under distinct
keys of the same message and the same nonce can, for instance, facilitate key-recovery attacks on block
ciphers [Bih02, BMS06]. Accordingly, the multi-user setting captures a very practical concern reflecting
how a state-actor adversary can benefit from its ability to eavesdrop on TLS connections en masse. In
fact, TLS 1.3 includes a nonce-randomization mechanism to mitigate against such multi-user attacks,
and the rekeying frequencies for GCM in TLS, DTLS, and QUIC were based on its multi-user security
bounds [Res18, RTM21, TT21]. In the specific cases of DTLS and QUIC, the multi-user security bounds
are also used to determine the maximum number of failed decryptions that can be tolerated before a
session is terminated, since decryption failures are not immediately fatal in these protocols. Moreover, in
light of the tighter security bounds presented in [HTT18], the QUIC specification [TT21, Appendix B.1]
now allows for larger limits than those prescribed in the TLS 1.3 specification.

Currently, for ChaCha20-Poly1305, the only multi-user security bound available to the IETF is that
outlined by Luyks and Paterson in [LP17]. It leverages the single-user security bound from [Pro14] by
applying a standard hybrid reduction technique. The resulting multi-user security bound is essentially
the single-user bound, where each term is now multiplied by the number of users. However, this simple
approach has three significant shortcomings. Firstly, as described in [LMP17], it generally results in loose
bounds, leading to overly conservative security parameter estimates in practical protocols. Secondly, it
fails to explicitly quantify the adversary’s advantage in terms of its local computational resources. This
is because in the standard-model security analysis in [Pro14] this aspect is concealed in a term capturing
the PRF security of the ChaCha20 block function, which is not as easy to estimate concretely. Thirdly,
the security proof described in Procter’s note [Pro14] on which [LP17] relies is actually incorrect, as we
explain in Appendix A.1. As such, the security of an important and increasingly widely deployed AEAD
scheme currently rests on shaky foundations.

In this work, we remedy this state of affairs by presenting a new dedicated multi-user security analysis
of ChaCha20-Poly1305, on par with that for GCM [HTT18]. A common misconception is that ChaCha20-
Poly1305 is structurally equivalent to GCM but instantiated with different primitives. Accordingly, one
might be tempted to think that it suffices to simply reuse GCM’s security bound with ChaCha20-
Poly1305’s parameters. While the two constructions share some similarities, they have a number of im-
portant differences that preclude such an approach. In addition, their differences are further accentuated
in the multi-user security model. For instance, while all multi-user security treatments of GCM are in the
ideal-cipher model, ChaCha20-Poly1305 is better analyzed in the (unkeyed) random permutation model.
We elaborate on this choice and the differences between GCM and ChaCha20-Poly1305 in Section 3.
Below is a summary of our contributions.

1.1 Contributions

Single-user security. We start off by revisiting Procter’s single-user security proof [Pro14]. We point
out a flaw in the proof and provide a new proof under the same standard-model assumptions. Our proof
retains the same security bound as that originally claimed by Procter. However, fixing the proof is not
straightforward and required us to restructure and augment the sequence of games significantly. The
single-user security analysis of ChaCha20-Poly1305 is located in Appendix A.

Multi-user security. Our main contribution is a tight multi-user security proof for ChaCha20-Poly1305.
Through the security bounds we establish, we expose fundamental differences in its security traits com-
pared to GCM [HTT18]. One case in point is that, while the multi-user security of GCM can be improved
by rekeying more frequently, i.e., reducing the limit on the maximum amount of data that can be en-
crypted under a single key, this does not hold in the case of ChaCha20-Poly1305. This is due to the fact
that our security bound does not depend on any per-user parameters—such as the number of queries per
user or the amount of data per user. On an intuitive level, this distinction stems from the fact that under
the hood ChaCha20 is based on a permutation and not a block cipher in counter mode. We provide
attacks matching our bounds, showing that our observations are not just an artefact of weak bounds.

Another point of divergence is that for ChaCha20-Poly1305 the dominant term in the security bound
depends on the number of verification queries made by the adversary and the tag length, whereas for GCM
the dominant term depends on the total number of encrypted data blocks and the block length. Note that
the number of verification queries represents the number of valid forgery attempts made by an adversary.
In the context of secure communications protocols, this relates to the number of times that an adversary

2



attempts to insert a new ciphertext into the secure channel.5 Typical protocols running over reliable
transport, like TLS [Res18], shut down upon the first verification error. Protocols running over unreliable
transport, like DTLS [RTM21] or QUIC [TT21], however have to tolerate many invalid ciphertexts due
to the network behavior [FGJ20], yet their number is still much smaller than the maximum number
of messages that can be encrypted. Thus, our analysis shows that these two schemes require protocol
designers to tune their security parameters rather differently depending on which scheme they use.

We note that our security proof borrows many ideas from [HTT18], but it also deviates from it
substantially and even improves upon it in some respects.

Tightness. We describe attacks to prove the tightness of every term in our security bound. We adapt
some of the attacks for GCM and introduce new ones. In particular, adapting the forgery attack on GCM
to the case ChaCha20-Poly1305 requires substantially new techniques, due to the different finite field
that they employ in their universal hash functions. We describe these attacks in Section 7.1.

Nonce randomization. Next, we turn our attention to the multi-user security of ChaCha20-Poly1305
when combined with the XN transform for nonce randomization that is currently employed in TLS 1.3.
Similarly to [HTT18], we extend our multi-user security bound for plain ChaCha20-Poly1305 to this
setting using a balls-into-bins argument. Interestingly, applying the balls-into-bins lemma from [HTT18]
to our security bound results in a relatively weak security bound—on the order of 2−48. We present an
improved balls-into-bins lemma allowing us to translate our main bound to the XN transformed version
of ChaCha20-Poly1305 without any degradation in the security bound. As a noteworthy side-effect, our
improved bound for XN also eliminates the corresponding term in the bound of [HTT18] for the nonce-
randomized version of GCM, enabling tighter advantage bounds than 2−48. We also apply our improved
balls-into-bins lemma to translate our main bound to the CN transformed version of ChaCha20-Poly1305.
The CN transform, introduced in [HTT18], randomizes the nonce through concatenation with a random
string and is used in TLS 1.2 and IPsec. We cover nonce randomization in Sections 7.2 and 7.3.

A stronger variant. As already observed, the dominant term in the security bound for ChaCha20-
Poly1305 relates to the ciphertext integrity of the scheme, which in turn depends on the security of the
Poly1305 MAC. Indeed, this term dominates all other terms by a substantial margin. Accordingly, our
bound shows that the multi-user security of ChaCha20-Poly1305 would be strengthened significantly if
Poly1305 were to be replaced with a more secure MAC. In Section 7.5 we explore this possibility by
considering a simple variant of ChaCha20-Poly1305 which uses two independently-keyed Poly1305 MAC
tags instead of one.

2 Preliminaries

Notation. The empty string is denoted by ε. We denote by |x| the bit length of the bit string x, and by
|x|n its size in n-bit blocks (and the empty string is assigned a block size of 1, i.e., |x|n = max (1, ⌈|x|/n⌉)).
We call strings whose bit length is a multiple of 8 byte strings. For 1 ≤ i < j ≤ |x|, let x[i:j] denote
the substring of x spanning bit i to bit j inclusive, and trunc(x, n) denote the first n bits of x, i.e.
trunc(x, n) = x[1:n]. For any two bit strings x and y, their concatenation is denoted by x∥y. When

|x| = |y| = c · n for some positive integer c, x
(n)

+ y and x
(n)

− y denote the strings that result from
individually adding and subtracting their n-bit subwords modulo 2n when each word is interpreted as
an unsigned integer.

If S is a finite set then |S| denotes its cardinality and y ←$ S denotes the process of sampling uniformly
at random an element from S and assigning it to y. If A is an algorithm or a procedure, y ← A(x1, . . . )
denotes running A on inputs x1, . . . and assigning the output to y. By convention, the running time of
an adversary is the sum of its running time, the time to answer all of its oracle queries, and the size of
its description.

Note that we specify some additional notation, that is specific to the ChaCha20-Poly1305 scheme, at
the end of Section 3.

5 Such a new ciphertext could be obtained by tampering with an existing one, or could result from reordering
ciphertexts or creating entirely new ones from scratch.
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Game-playing framework. We use the code-based game-playing framework of Bellare and Rog-
away [BR06], where a game is a collection of procedures, an adversary is a single procedure and the
interaction between a game and an adversary is implicit. An adversary A playing a game G is given as
input the output of the initialize procedure of G, and has oracle access to the other procedures of G.
We write AG ⇒ y for the event that the adversary A outputs y when playing the game G and “AG sets
bad” for the event that the adversary A sets the boolean variable bad to true when playing game G. All
variables, sets, and boolean variables are assumed to be initialized, to 0, ∅, and false, respectively. Unless
stated otherwise, all array entries are initialized to ⊥.

Pseudorandom functions. Let F : K × X → Y be a keyed function. Let Func(X ,Y) be the set of all
functions from X to Y. For any adversary A, we define the PRF advantage of F as

AdvPRF
F (A) =

∣∣∣Pr[AGReal-PRF
F ⇒ 1

]
− Pr

[
AG

Ideal-PRF
F ⇒ 1

]∣∣∣,
where games GReal-PRF

F and GIdeal-PRF
F are defined in Fig. 1.

procedure Initialize

1 : K ←$ K

procedure F(X)

1 : return F (K,X)

Game GReal-PRF
F

procedure Initialize

1 : f ←$ Func(X ,Y)

procedure F(X)

1 : return f(X)

Game GIdeal-PRF
F

Fig. 1. Games defining the PRF advantage of a keyed function F .

AEAD syntax. A nonce-based authenticated encryption scheme with associated data Π = (K, E ,D)
is a triple of algorithms:

– The key generation algorithm K takes no input and returns a secret key K. We overload K to also
represent the key space associated to the key generation algorithm.

– The deterministic encryption algorithm E : K × N × AD ×M → C takes as input a secret key
K ∈ K, a nonce N ∈ N , associated data AD ∈ AD, and a message M ∈M and returns a ciphertext
C ∈ C. We require E to have constant expansion, i.e. for any (K,N,AD,M) ∈ (K,N ,AD,M), the
expansion t = |E(K,N,AD,M)| − |M | is constant.

– The deterministic decryption algorithm D : K × N × AD × C → M ∪ {⊥} takes as input a secret
key K ∈ K, a nonce N ∈ N , associated data AD ∈ AD, and a ciphertext C ∈ C and returns either
a message M ∈M or the symbol ⊥ to indicate an invalid ciphertext.

We refer to the associated sets K, N , AD,M, and C as the key space, the nonce space, the associated-
data space, the message or plaintext space and the ciphertext space, respectively. We require every
nonce-based AEAD to satisfy correctness, namely for all (K,N,AD,M) ∈ (K,N ,AD,M), it must hold
that if C ← E(K,N,AD,M) then M ← D(K,N,AD,C).

AEAD single-user security. We now give an all-in-one security definition for a nonce-based AEAD
scheme, as introduced by Rogaway and Shrimpton [RS06]. This combines chosen-plaintext confidentiality
and integrity of ciphertexts into a single notion.

We consider an adversary A having access to an encryption oracle Enc(N,AD,M) and a decryption
oracle Dec(N,AD,C). Such an adversary is considered nonce-respecting if it never repeats a nonce N
in a query to its encryption oracle. It is valid if it never asks a decryption query Dec(N,AD,C) with C
being the output of a previous encryption query Enc(N,AD,M). Without loss of generality, any valid
nonce-respecting adversary will also make no redundant queries.

Definition 2.1 (Single-user AE advantage). Let Π = (K, E ,D) be a nonce-based AEAD scheme
with expansion t, defined over (K,N ,AD,M, C). For any valid nonce-respecting adversary A, we define
the AE advantage of Π in the single-user setting to be:

AdvAE
Π (A) = Pr

[
AG

Real-AE
Π ⇒ 1

]
− Pr

[
AG

Ideal-AE
Π ⇒ 1

]
,

where games GReal-AE
Π and GIdeal-AE

Π are defined in Fig. 2.
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procedure Initialize

1 : K ←$ K

procedure Enc(N,AD,M)

1 : C ← E(K,N,AD,M)

2 : return C

procedure Dec(N,AD,C)

1 : M ← D(K,N,AD,C)

2 : return M

Game GReal-AE
Π

procedure Enc(N,AD,M)

1 : C ←$ {0, 1}|M|+t

2 : return C

procedure Dec(N,AD,C)

1 : return ⊥

Game GIdeal-AE
Π

Fig. 2. Games used to define the single-user AE advantage.

AEAD multi-user security. We use the multi-user security definition for authenticated encryption put
forward by Bellare and Tackmann [BT16] adapted to the ideal permutation model. Here, the encryption
oracle Enc(i,N,AD,M) and the verification oracleVf(i,N,AD,C) can be queired for distinct users
(identified by the integer i). The adversary A is also given access to the ideal permutation π through the
oracle Prim(X) and its inverse Prim−1(Y ).

An adversary is said to be nonce-respecting if it never repeats a pair (i,N) across encryption queries.
Throughout, we require that every adversary be nonce-respecting and never asks a verification query
Vf(i,N,AD,C) with C being the output of a previous encryption query Enc(i,N,AD,M) (since such
queries permit trivial wins). Without loss of generality, we will assume that an adversary does not repeat
any queries.

At points in our analysis, we will require that an adversary A be d-repeating, meaning that A does not
repeat the same nonce with more than d users in its encryption queries. We say A is strongly d-repeating
if it does not repeat the same nonce across all encryption and verification queries for more than d users.
Note that if A is strongly d-repeating, then it is also d-repeating.

Definition 2.2 (Multi-user AE advantage). Let Π[π] = (K, E ,D) be a nonce-based AEAD scheme
constructed from an ideal permutation π : X → X with expansion t. We define the multi-user AE
advantage of adversary A against Π[π] as:

AdvmuAE
Π[π] (A) = Pr

[
AG

Real-muAE
Π[π] ⇒ 1

]
− Pr

[
AG

Ideal-muAE
Π[π] ⇒ 1

]
,

where games GReal-muAE
Π[π] and GIdeal-muAE

Π[π] are defined in Figure 3.

procedure Initialize

1 : K1,K2, . . .←$ K

procedure Enc(i,N,AD,M)

1 : C ← E(Ki, N,AD,M), return C

procedure Vf(i,N,AD,C)

1 : M ← D(Ki, N,AD,C), return (M ̸= ⊥)

procedure Prim(X)

1 : return π(X)

procedure Prim−1(Y )

1 : return π−1(Y )

Game GReal-muAE
Π[π]

procedure Enc(i,N,AD,M)

1 : C ←$ {0, 1}|M|+t, return C

procedure Vf(i,N,AD,C)

1 : return false

procedure Prim(X)

1 : return π(X)

procedure Prim−1(Y )

1 : return π−1(Y )

Game GIdeal-muAE
Π[π]

Fig. 3. Games used to define the multi-user AE advantage.
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Adversarial parameters. In the following, for an associated adversary A, we will denote by qe its
maximum number of encryption queries and by σe an upper bound on its total number of encrypted
blocks. We denote by qv the maximum number of decryption/verification queries of A and by σv an upper
bound on its total number of decrypted/verified blocks. Further, let ℓm denote the maximum size in t-bit
blocks (including associated data) that A is allowed to query to its encryption and decryption/verification
oracles. Finally, for the multi-user setting, p denotes the maximum number of ideal permutation queries
and d denotes the maximum number of users queried with the same nonce (during encryption for a
d-repeating adversary, or during encryption and verification for a strongly d-repeating adversary).

∆-universal hash functions. Let H : R×D → {0, 1}t be a family of keyed hash functions with key
space R, domain D and digest space {0, 1}t, for some positive integer t. We will consider hash function
families over strings and string pairs. When D = {0, 1}∗, for any increasing function ϵ : N→ R+, we say
that H is ϵ-almost ∆-universal if for all distinct M,M ′ ∈ {0, 1}∗ and all z ∈ {0, 1}t, it holds that

Prr←$R

[
Hr(M) = Hr(M

′)
(t)

+ z

]
≤ ϵ (max (|M |t, |M ′|t))

2t
.

Alternatively, when D = {0, 1}∗ × {0, 1}∗, for any distinct (AD,C), (AD′, C ′) ∈ {0, 1}∗ × {0, 1}∗ and all
z ∈ {0, 1}t, we require that

Prr←$R

[
Hr(AD,C) = Hr(AD

′, C ′)
(t)

+ z

]
≤ ϵ (max (|AD|t + |C|t, |AD′|t + |C ′|t))

2t
.

H-coefficient technique. The H-coefficient technique [Pat09, CS14] is a method for bounding the
advantage of a computationally unbounded adversary A, which wlog can be assumed to be deterministic,
attempting to distinguish between a real and an ideal game. The technique focusses on the transcripts
generated when A interacts with the oracles in these games, namely, the sequence of input-output pairs
τ = ((x1, y1), (x2, y2), . . . , (xq, yq)). We use Tideal to denote the random variable corresponding to the
transcript generated by A in the ideal game. Then, Pideal(τ) and Preal(τ) denote the probabilities that
a given transcript τ is generated in the corresponding game when interacting with A. A transcript τ is
said to be attainable if there exists an adversary such that the probability of generating τ in the ideal
game is strictly greater than 0.

The H-coefficient technique relies on identifying a suitable partition of attainable transcripts, applying
the following theorem, and then calculating ϵ1 and ϵ2 (for a proof, see [CS14]):

Theorem 2.1 (H-coefficient Technique). Let A be a computationally unbounded adversary trying to
distinguish between a real game GReal and an ideal game GIdeal. Let T = Tgood ⊔ Tbad be a partition of
the set of attainable transcripts.
If there exist ϵ1, ϵ2 ≥ 0 such that

∀τ ∈ Tgood,
Preal(τ)

Pideal(τ)
≥ 1− ϵ1 and Pr[Tideal ∈ Tbad] ≤ ϵ2,

then ∣∣∣Pr[AGReal

⇒ 1
]
− Pr

[
AG

Ideal

⇒ 1
]∣∣∣ ≤ ϵ1 + ϵ2.

3 The ChaCha20-Poly1305 Scheme

In this section, we provide a brief overview of ChaCha20-Poly1305, as defined in RFC 8439 [NL18], and
lay some of the groundwork for our security analysis.

The AEAD composition. Pseudocode for ChaCha20-Poly1305 is shown in Figure 5, consisting of the
encryption algorithm E , the decryption algorithm D, and their subcomponents: the ChaCha20 stream
cipher, the one-time MAC Poly1305 Mac, and the MAC’s key-generation algorithm Poly1305 Key Gen.
In turn, these subcomponents are based on the ChaCha20 block function CC block and the ∆-universal
hash function family H over string pairs.

The encryption algorithm E is represented in Figure 4. It takes as input a 256-bit secret key K, a
96-bit nonce N , a variable-length byte string of associated data AD, and a variable-length byte-string
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Nonce
N

Key
K

Associated Data
AD

CC block

Counter=0

CC block

Counter=1

CC block

Counter=ℓ

. . .

Keystream

Plaintext
M

ChaCha20

AD pad(AD) C pad(C) len(AD) len(C)

Poly1305

2t bits

One-time key (r, s)

Poly1305 Key Gen

Poly1305 Mac

T
Authentication Tag

C
Ciphertext

Fig. 4. The encryption procedure in ChaCha20-Poly1305.

message M . It returns a ciphertext C consisting of the ChaCha20 encryption of M , and a 128-bit tag T ,
computed over AD and C using Poly1305 Mac with a one-time key (r, s) consisting of two 128-bit strings.
The one-time key (r, s) is derived anew in each encryption by running the ChaCha20 block function
in Poly1305 Key Gen on K, N , and the counter value zero—which is reserved solely for this purpose.
The decryption algorithm D proceeds analogously: it first derives the one-time key, it recomputes the
MAC tag and checks whether it matches that supplied in the ciphertext. If so, it proceeds to decrypt
the rest of the ciphertext using ChaCha20 and returns the decrypted message. Otherwise it returns ⊥,
indicating error.

Chacha20. Designed by Bernstein, the ChaCha20 stream cipher [Ber08] is a refinement of the Salsa
stream cipher [Ber05b]. It uses a 256-bit secret key K and a 96-bit nonce N to encrypt (or decrypt)
an arbitrary-length message M (or ciphertext C). As with any stream cipher, it generates a pseudo-
random keystream that is XORed to the message. The keystream is generated in blocks of 512 bits
through the ChaCha20 block function CC block. The CC block function is keyed with K and is eval-
uated over an input composed of the 96-bit nonce N and a 32-bit block counter j. This way, it is
employed as a pseudorandom function, but under the hood it really consists of a 512-bit permuta-
tion π in a Davies–Meyer-type configuration. More specifically, the key, counter, and nonce are con-
catenated and prepended with a constant to form the input to the ChaCha20 permutation and then
added once again to the permutation’s output using modulo 232 addition on word-by-word basis, i.e.,

CC block(K,N, j) = π(Z∥K∥j∥N)
(32)

+ (Z∥K∥j∥N), where Z is a 128-bit constant.

Poly1305. The Poly1305 algorithm [Ber05a] is a one-time MAC, also designed by Bernstein. It takes
a key consisting of two 128-bit strings (r, s); the tag corresponding to a message M is computed as

Hr(M)
(t)

+s. Its security relies on the ϵ-almost∆-universality of the hash functionH, as shown by Bernstein
[Ber05a]. The hash function H is outlined in Definition 3.1 and its security is stated in Theorem 3.1,
reproduced here from [Ber05a] for completeness.

Definition 3.1 (The Hash Function H in Poly1305). Let t be a positive integer multiple of 8, let
p ≥ 2t+1 be a prime, let r be a t-bit string and let M be any byte string. Parse M as M = M1∥ · · · ∥Mℓ
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procedure E(K,N,AD,M)

1 : r∥s← Poly1305 Key Gen(K,N)

2 : C ← ChaCha20(K,N,M)

3 : T ← Poly1305 Mac((r, s), AD,C)

4 : return C∥T

procedure ChaCha20(K,N,M)

1 : M1∥ · · · ∥Mℓ ←M

2 : for j = 1 to ℓ− 1 do

3 : Cj ←Mj ⊕ CC block(K,N, j)

4 : Cℓ ←Mℓ ⊕ trunc(CC block(K,N, ℓ), |Mℓ|)
5 : return C1∥ · · · ∥Cℓ

procedure D(K,N,AD,C∥T )

1 : r∥s← Poly1305 Key Gen(K,N)

2 : T ′ ← Poly1305 Mac((r, s), AD,C)

3 : if T ̸= T ′ then return ⊥
4 : return ChaCha20(K,N,C)

procedure Poly1305 Key Gen(K,N)

1 : return trunc(CC block(K,N, 0), 2t)

procedure Poly1305 Mac((r, s), AD,C)

1 : return Hr(AD,C)
(t)

+ s

Fig. 5. Pseudocode description of ChaCha20-Poly1305.

where |Mj | = t for j < ℓ and 0 < |Mℓ| ≤ t. Then, Hr(M) is given as the t-bit string representation of

(c1x
ℓ + c2x

ℓ−1 + · · ·+ cℓx
1 mod p) mod 2t,

where cj is the integer representation of the (t + 1)-bit string Mj∥1 and x is the integer representation
of r after fixing 22 of its bit positions to zero (a process referred to as “clamping”).

We refer the reader to [Ber05a] for further details on the bit clamping in r and the conversion between
integers and strings. Note that for increased generality in our security analysis, we consider a general tag
size t, but for ChaCha20-Poly1305 this should be understood to be equal to 128 bits and p = 2130 − 5.
Indeed these values give rise to the function ϵ (ℓ) = 225 · ℓ in the next theorem.

Theorem 3.1 (H is A∆U). Let ϵ (ℓ) = 225 · ℓ, then for any t-bit string s and any pair of distinct byte
strings (M,M ′), it holds that:

Prr←${0,1}t

[
Hr(M) = Hr(M

′)
(t)

+ s

]
≤ ϵ (max (|M |t, |M ′|t))

2t
.

Carefully note here, that this theorem only holds for messages being bytes strings and not for bit strings.
The one-time MAC (Poly1305 Mac) that is used in ChaCha20-Poly1305 (Figure 5) extends the orig-

inal Poly1305 algorithm to authenticate a pair of strings instead of one. This is accomplished by aug-
menting the hash function with an appropriate encoding mapping the string pair to a single string.
The encoding demarcates the boundary between the two strings. Importantly, this encoding needs to
be injective. Definition 3.2 describes how H is constructed from H. In Theorem 3.2 we show that if
H is a ϵ-almost ∆-universal for single strings, then H is also ϵ-almost ∆-universal over string pairs,
where ϵ (ℓ) = ϵ (ℓ+ 1).

Definition 3.2 (The hash function H in Poly1305 Mac). Let r be a t-bit string and H be the hash
function used in Poly1305. Then, the hash of any pair of byte strings (AD,C) is given by

Hr(AD,C) = Hr(AD∥pad(AD)∥C∥pad(C)∥len(AD)∥len(C)),

where pad(X) returns the minimum number of zero bytes such that the bit length of X∥pad(X) is multiple
of t, and len(X) is the t

2 -bit representation of the byte length of X.

Theorem 3.2 (H is A∆U). Let ϵ (ℓ) = 225 · (ℓ + 1) and s be a t-bit string, then for any two distinct
byte-string pairs (AD,C) and (AD′, C ′) it holds that:

Prr←${0,1}t

[
Hr(AD,C) = Hr(AD

′, C ′)
(t)

+ s

]
≤ ϵ (max (|AD|t + |C|t, |AD′|t + |C ′|t))

2t
.

Again, it should be noted here that the theorem only holds for pairs of byte strings as input to Hr and
not for bit strings.
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Proof. Let

M = AD∥pad(AD)∥C∥pad(C)∥len(AD)∥len(C),
M ′ = AD′∥pad(AD′)∥C ′∥pad(C ′)∥len(AD′)∥len(C ′).

If M =M ′, then len(C) = len(C ′) and len(AD) = len(AD′). Thus C = C ′ and AD = AD′, which is not
possible as (AD,C) ̸= (AD′, C ′). Therefore M ̸=M ′. Using Theorem 3.1,

Prr←${0,1}t

[
Hr(M) = Hr(M

′)
(t)

+ s

]
≤ 225 ·max (|M |t, |M ′|t)

2t

=
225 ·max (|AD|t + |C|t + 1, |AD′|t + |C ′|t + 1)

2t

=
225 · (max (|AD|t + |C|t, |AD′|t + |C ′|t) + 1)

2t
.

⊓⊔

Notation specific to ChaCha20-Poly1305. In the sections that follow, we will consider a generalized
form of the ChaCha20-Poly1305 construction parameterized by n, k, t, µ, ϵ, and |Z|. The first four pa-
rameters denote the size in bits of the ChaCha20 permutation, the ChaCha20 key K, the Poly1305 Mac
tag and hash key r, and the nonce N , respectively. The last two parameters denote the security function
of the almost ∆-universal hash function H in Poly1305 Mac and the bit length of the ChaCha20 constant
Z. Note, from the ChaCha20-Poly1305 construction, that n − (|Z| + k + µ) is equal to the bit length
of the ChaCha20 counter and n ≥ 2t. Following RFC8439, and additionally applying Theorem 3.2, the
actual values of these parameters are:

n = 512, k = 256, t = 128, µ = 96, ϵ (ℓ) = 225 · (ℓ+ 1), and |Z| = 128.

For any n-bit string w we use [w]K+ to denote the substring of w corresponding to the key portion
when w is parsed as an input to the ChaCha20 block function, i.e., w[|Z|+ 1:|Z|+ k]. Similarly, we use
[w]K- to denote the complementary portion of the string, i.e., w[1:|Z|] ∥w[|Z|+k+1:n]. In addition, [w]r

and [w]s denote respectively the substrings corresponding to the hash key r, i.e., w[1:t], and the blinding
value s, i.e., w[t+ 1:2t], when w is parsed as a ChaCha20 block function output.

4 The Single-user Security of ChaCha20-Poly1305

The single-user security of ChaCha20-Poly1305 can of course be derived from its multi-user security
theorem (Theorem 6.1) as a special case. A security proof in the single-user setting was already provided
by Procter in [Pro14]. However, Procter’s proof is in the standard model and thus relies on a different
security assumption on ChaCha20 than our multi-user security proof. Unfortunately his proof is incor-
rect, but we remedy this in Theorem 4.1 where we recover the same security bound under the same
assumptions. Our new security proof together with a note describing the issue in [Pro14] can be found
in Appendix A.

Theorem 4.1 (Single-user security of ChaCha20-Poly1305). Let n, k, t, ϵ be the parameters of the
ChaCha20-Poly1305 AEAD scheme. Let A be a valid nonce-respecting adversary making at most qv
decryption queries, and let ℓm be an upper bound on the total size (in t-bit blocks) of every query that
it makes. Then there exists a PRF adversary Aprf against the Chacha20 block function CC block such
that:

AdvAE
ChaCha20-Poly1305(A) ≤ AdvPRF

CC block(Aprf) +
qv · ϵ(ℓm)

2t
,

where Aprf makes the same number of queries as the number of encryption and decryption queries plus
the total number of blocks queried by A.

Note that for small values of ℓm this bound is tight, as evidenced by our forgery attack from Propo-
sition 7.1.

The proof of our single-user theorem can be adapted without much modification to the multi-user
setting in the standard model, by assuming that the Chacha20 block function CC block is a secure multi-
user PRF. The bound obtained would be similar to that in Theorem 4.1, where the PRF advantage would
become the multi-user PRF advantage against CC block and in the second term qv would then represent
the total number of decryption queries across all users.
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5 Generalized Balls-Into-Bins

Before delving into the multi-user security of ChaCha20-Poly1305, we present an improved balls-into-bins
result. We make extensive use of this result in the proof of our main theorem and in extending the security
bound to the nonce-randomization setting. The balls-into-bins problem considers an experiment whereby
m balls are thrown into n bins at random. In our case, we will consider a distribution that deviates from
the uniform distribution, and we will be concerned with bounding the maximum load, i.e., the maximum
number of balls landing in any bin. Maximum load results are known in the asymptotic setting [RS98]
and in the concrete setting for uniform and slightly biased distributions [BHT18]. In Theorem 5.1, we
give a more general result in the concrete setting that is valid for any biased ball distribution and any
number of balls (Case 4). Indeed, through it, we are also able to improve significantly over prior bounds
for GCM in the nonce-randomization setting.

Theorem 5.1 (Biased balls-into-bins). Consider an experiment where at most Q balls are thrown
into a set of bins, where each throw may depend on the outcome of the prior ones. Let D ∈ (0, 1] be an
upper bound on the probability that, when conditioned on prior throws, a ball lands into any bin. Then,
for any m ∈ N∗, m̃ > 0 and λ > 1 satisfying one of the following conditions:

1. m =
⌈
logλ(D

−1)+m̃
logλ((QD)−1)

⌉
and Q ≤ 1

D ,

2. m =
⌈
logλ(D

−1) + m̃
⌉
and Q ≤ logλ(D

−1)+m̃
Dλe ,

3. m = ⌈QDλe⌉ and Q ≥ logλ(D
−1)+m̃

Dλe ,

4. m =
⌈
max(QDλe,logλ(D

−1)+m̃)
max(1,logλ((QD)−1))

⌉
,

the probability that the heaviest bin contains m balls or more is at most λ−m̃.

The proof can be found in Appendix B. Compared to prior results, the first advantage of this theorem
is its generality, as it allows more freedom in selecting parameters. Case 4 yields the best bound, giving
the smallest maximum load m for a fixed maximum probability bound λ−m̃, and has no restrictions on
the maximum number of balls Q. Moreover, Cases 1, 2 and 3 can be derived as subcases of Case 4.

In comparison to the biased balls-into-bins lemmas of Bose, Hoang, and Tessaro, Case 1 improves
over [BHT18, Lemma 10] by introducing a trade-off parameter m̃ between the maximum load and the
probability bound instead of a fixed probability bound. This is essentially what allows us to lift the
restrictive term of 2−48 in the bound for nonce-randomized GCM (cf. Sections 7.2 and 7.4).

In combination, Cases 2 and 3 are roughly equivalent to [BHT18, Lemma 11]. While the latter allows
for an unrestricted number of balls, it yields a looser bound than [BHT18, Lemma 10] when the number
of balls is small. Thus, when applying the lemmas of [BHT18], one has to choose between a good bound
over a restricted range of Q, or a suboptimal bound extending over a larger range of Q. Case 4 improves
over both lemmas in [BHT18] by combining their advantages in a single expression while additionally
retaining the improvement from Case 1. We employ this improved bound in our multi-user security proof
through Lemma C.1, when bounding the probabilities of bad transcripts in Appendix C.2.

6 The Multi-user Security of ChaCha20-Poly1305

The following theorem bounds the multi-user security of ChaCha20-Poly1305 in the ideal permutation
model, i.e., when the ChaCha20 permutation is assumed to be a random permutation. This allows us to
capture the local computation of the adversary expressed as the number of offline queries that it makes
to the ChaCha20 permutation.

Theorem 6.1 (Multi-user security of ChaCha20-Poly1305). Let ChaCha20-Poly1305[π] be the
AEAD scheme described in Figure 5 having parameters n, k, t, ϵ with its underlying permutation π mod-
elled as a random permutation. Let A be a d-repeating adversary making at most p ideal permutation
queries, qe encryption queries totaling at most σe encrypted blocks, and qv verification queries. Further,
let ℓm denote the maximum size in t-bit blocks (including associated data) that it is allowed to query to
its encryption and verification oracles. Then

AdvmuAE
ChaCha20-Poly1305[π](A) ≤

qv(ϵ(ℓm) + 3)

2t
+
d(p+ qe)

2k
+

2p · (n− k)
2k

+
2qv · (n− k + 4t)

2k
+

(σe + qe)
2

2n+1

+
1

22t−2
+

1

2n−k−2
.
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In the above we further require that n − k ≤ 2k−2, σe ≤ n−k
6 · 2n−k, qv ≤ 2n−2, d ≤ 2t

3 · 2
2t, and

p ≤ min
(
2t−1
6 · 22t, n−k−16 · 2n−k

)
.

We note that the bound we obtain here is actually stronger than the simplified version presented in
Theorem 6.1 for better exposition. In particular, the third and fourth terms in the bound in Theorem 6.1
are more accurately given by

2p · (n− k)
σe

2k
+

2qv · ((n− k)
p
+ 2t

p
+ 2t

d
)

2k
,

with the shorthand notation i
j
=

⌈
i

max(1,i−log2(2j))

⌉
and i

0
= 0, for any i, j ∈ N. Note that always

i
j ≤ i, yielding the terms in Theorem 6.1, and if j ≤ 2i/2−1 then i

j ≤ 2, yielding the terms in the
following corollary.

Corollary 6.1 (Multi-user Security of ChaCha20-Poly1305). Let ChaCha20-Poly1305[π] be the
AEAD scheme described in Figure 5 having parameters n, k, t, ϵ with its underlying permutation π mod-
elled as a random permutation. Let A be a d-repeating adversary making at most p ideal permutation
queries, qe encryption queries totaling at most σe encrypted blocks, and qv verification queries. Further,
let ℓm denote the maximum size in t-bit blocks (including associated data) that it is allowed to query to
its encryption and verification oracles. Then

AdvmuAE
ChaCha20-Poly1305[π](A) ≤

qv(ϵ(ℓm) + 3)

2t
+
d(p+ qe)

2k
+

4p+ 12qv
2k

+
(σe + qe)

2

2n+1
+

1

22t−2
+

1

2n−k−2
.

In the above we further require that: 2 ≤ t, 3 ≤ n − k ≤ 2k−2, σe ≤ 2
n−k

2 −1, qv ≤ 2n−2, d ≤ 2t−1 and

p ≤ min
(
2t−1, 2

n−k
2 −1

)
.

Corollary 6.1 is of practical interest, as it gives a simpler and better bound than Theorem 6.1 and for
real-world parameters (i.e., n = 512, k = 256, t = 128), the further restricted range of queries compared
to the main theorem (σe, p, d ≤ 2127) is not a limitation in practice. Moreover, for practical parameters
of ChaCha20-Poly1305 and GCM, the range of queries allowed by Corollary 6.1 is similar to the one
from [HTT18, Theorem 3.1], so practical comparison should be done between the two of them. The
improved bound we obtain in Corollary 6.1 is made possible by our improved balls-into-bins theorem.
Another corollary could have been given with a wider range of queries than Theorem 6.1, using again our
generalized balls-into-bins theorem to obtain a variant of Lemma C.1 without any upper bound on Q,
but the bound obtained is more complex and not of practical interest.

6.1 Proof Overview

The proof of Theorem 6.1 is based on the H-coefficient technique (Theorem 2.1) which we apply to
the augmented games described in Figures 6 and 7. These games modify the multi-user AEAD games
shown in Figure 3 to give the adversary more information, thereby capturing an even stronger notion
of security, but which nevertheless facilitates our proof. Specifically, the adversary is given access to an
additional oracle Reveal, that it must query exactly once as its last query, right before returning its
output—which in turn triggers the Finalize procedure.

In the real world, the Reveal oracle returns the outputs Vj corresponding to all the internal calls
made by the encryption oracle to the ChaCha20 block function and all the user keys Ki. In the ideal
world, on the other hand, the Reveal oracle returns randomly distributed strings Vj and keys Ki.
Note that through {Vj} and {Ki}, the adversary implicitly also learns the direct outputs of the ideal
permutation in the real world, as it can easily reconstruct them. Since the augmented games are strictly
stronger than the original ones, we can bound any adversary’s multi-user advantage by bounding its
distinguishing advantage with respect to the augmented games.

In the rest of this section we gradually set up all the components needed to apply the H-coefficient
technique. We start in Section 6.2 by specifying the format of transcripts with respect to the augmented
games. In Section 6.3 we define six sets of bad transcripts. In Section 6.4 we bound the H-coefficient over
good transcripts, and in Section 6.5 we bound the probability of each individual set of bad transcripts.
Then plugging the two bounds into Theorem 2.1 yields the desired result.
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procedure Initialize

1 : K1,K2, · · · ←$ {0, 1}k, ηe ← 0

procedure Enc(i,N,AD,M)

1 : C∥T ← E(Ki, N,AD,M)

2 : ηe ← ηe + 1

3 : V [ηe]← (i,N,AD,M,C, T )

4 : return C∥T

procedure Vf(i,N,AD,C)

1 : M ← D(Ki, N,AD,C)

2 : return (M ̸= ⊥)

procedure Prim(X)

1 : return π(X)

procedure Prim−1(Y )

1 : return π−1(Y )

procedure Reveal // last query before Finalize

1 : for η = 1 to ηe do

2 : (i,N,AD,M,C, T )← V [η]

3 : M1∥ · · · ∥Mℓ ←M

4 : for j = 0 to ℓ do

5 : Vj ← π(Z∥Ki∥j∥N)
(32)

+ (Z∥Ki∥j∥N)

6 : V (η) ← V0∥ · · · ∥Vℓ

7 : return V (1), . . . , V (ηe),K1,K2, . . .

procedure Finalize(b)

1 : return b

Game GaugReal-muAE
Π[π]

Fig. 6. Real Augmented Game.

procedure Initialize

1 : ηe ← 0

procedure Enc(i,N,AD,M)

1 : C∥T ←$ {0, 1}|M|+t

2 : ηe ← ηe + 1

3 : V [ηe]← (i,N,AD,M,C, T )

4 : return C∥T

procedure Vf(i,N,AD,C)

1 : return false

procedure Prim(X)

1 : return π(X)

procedure Prim−1(Y )

1 : return π−1(Y )

procedure Reveal // last query before Finalize

1 : for η = 1 to ηe do

2 : (i,N,AD,M,C, T )← V [η]

3 : r ←$ {0, 1}t,W ←$ {0, 1}n−2t

4 : V0 ← r∥(T
(t)

−Hr(AD,C))∥W
5 : M1∥ · · · ∥Mℓ ←M, C1∥ · · · ∥Cℓ ← C

6 : for j = 1 to ℓ− 1 do

7 : Vj ←Mj ⊕ Cj

8 : W ′ ←$ {0, 1}n−|Mℓ|

9 : Vℓ ← (Mℓ ⊕ Cℓ)∥W ′

10 : V (η) ← V0∥ · · · ∥Vℓ

11 : K1,K2, · · · ←$ {0, 1}k

12 : return V (1), . . . , V (ηe),K1,K2, . . .

procedure Finalize(b)

1 : return b

Game GaugIdeal-muAE
Π[π]

Fig. 7. Ideal Augmented Game.
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6.2 Transcripts and Multi-sets

In the H-coefficient technique, we only need to consider attainable transcripts, i.e., ones that have a
probability strictly greater than 0 of occurring in the ideal world. Note that here we define transcripts
slightly differently, as we include additional information beyond the input-output pairs corresponding to
the adversary’s queries. We define them this way to facilitate the classification of good and bad transcripts
and other aspects in the proof.

Transcripts. A transcript τ of an adversary interacting with an augmented game consists of the fol-
lowing entries:

– Revealed key entries: (key, i,Ki).
Keys are returned as part of the output to the Reveal query. In the real world, these entries
correspond to the actual user keys, whereas in the ideal world they correspond to values sampled
independently of the rest of the transcript. In the real augmented game these are generated during
initialization, whereas in the ideal augmented game they are not sampled until Reveal is queried.

– Ideal permutation entries: (prim, x, y,+) and (prim, x, y,−).
An entry (prim, x, y,+) corresponds to a query Prim(x) to the ideal permutation oracle with answer y,
and an entry (prim, x, y,−) corresponds to a query Prim−1(y) to the inverse of the ideal permutation
oracle with answer x.

– Encryption entries: (enc, i, N,AD,M,C∥T, V (η)).
These entries contain the values specified in each encryption query Enc(i,N,AD,M) together with
the corresponding response C∥T . They additionally include the associated list V (η) of internal
ChaCha20 block function calls made by the encryption algorithm in that encryption query. In partic-
ular, the V (η) values contain the key material used in Poly1305 Mac. Note, however, that while in the
transcript, for convenience, we include V (η) in the encryption entries they are not actually returned
to the adversary by the encryption oracle. In the augmented games these values are only revealed
to the adversary at the end in the Reveal query. In the ideal world, V (η) is instead generated at
random, as described in Figure 7, so that all good transcripts (defined below) have a probability
strictly greater than 0 of occurring in the real world. This, in turn, ensures that the H-coefficient
is not zero. Intuitively, including V (η) in the transcript allows us to better define the set of bad
transcripts for our proof and thereby get a better H-coefficient ratio.

– Verification entries: (vf, i, N,AD,C∥T, false).
Entries of this type correspond to verification queries Vf(i,N,AD,C∥T ) which return false as an
answer. In the H-coefficient technique, we only need to be concerned with attainable transcripts, and
in the ideal world, verification queries always return false as an answer.

Multi-sets. The H-coefficient technique requires us to bound from below the ratio of the real-world
and ideal-world probabilities, for any good transcript, to a value close to one. We accomplish this via a
counting argument. In addition to the probability of the user keys being sampled, the probability of a
transcript can be reduced to counting the number of distinct ideal permutation calls and random blocks
generated (for encryption queries in the ideal world). If their sum is close in either world, we obtain
a good H-coefficient ratio that is close to one. To facilitate our counting argument we introduce the
following three multi-sets (sets where elements can repeat) and calculate their cardinality:

S1(τ) = {(x, y) | (prim, x, y, ·) ∈ τ}.

The set S1(τ) contains those input-output pairs of the ideal permutation π that were induced through
the ideal permutation queries to Prim or Prim−1.

S2(τ) = {(Z∥Ki∥0∥N,V0
(32)

− (Z∥Ki∥0∥N)), . . . , (Z∥Ki∥ℓ∥N,Vℓ
(32)

− (Z∥Ki∥ℓ∥N)) |
(enc, i, N,AD,M,C∥T, V0∥ · · · ∥Vℓ) ∈ τ}.

The set S2(τ) contains input-output pairs of the ideal permutation π that were induced through encryp-
tion queries to Enc. In the ideal world, the outputs are the random blocks generated, in the real world
they are the π outputs.

S3(τ) = {(Z∥Ki∥0∥N) | ((vf, i, N,AD,C∥T, false) ∈ τ) ∧ ((Z∥Ki∥0∥N, ·) /∈ S1(τ) ∪ S2(τ))}.
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The set S3(τ) contains the inputs to the ideal permutation π called during verification queries to Vf in
the real world, if they are not also called (or obtained) during a primitive or encryption query.

6.3 Bad Transcripts

Our overarching methodology for defining bad transcripts (i.e., the set Tbad) is to rule out transcripts
that: 1) have a different multi-set cardinality in the real world compared to the ideal world or 2) have
zero probability of occurring in the real world. This way we ensure that the H-coefficient is close to one.
Towards the former, we will ensure that each entry in the first two multi-sets corresponds to a unique
and independent call to the ideal permutation π, or a unique and independently generated random block.
In the second case, even if the transcripts do not result in repeated multi-set entries they may still be
impossible in the real world. Thus a transcript is in Tbad if it satisfies one of the following:

Case 1 (x1, y1) ∈ S1(τ) and (x2, y2) ∈ S2(τ) where x1 = x2. In this case, in the real world, two calls
are made to the ideal permutation on the same input, through one ideal permutation query and
one encryption query. This case also encompasses the case where x1 = x2 and y1 ̸= y2, which is
impossible in the real world. From this case, we can define the following simplified bad transcript
description (which is the only possibility of this case happening):

Bad1: There are two entries (prim, x, y, ·) and (enc, i, N,AD,M,C∥T, V0∥ · · · ∥Vℓ) such that
x ∈ {Z∥K∥0∥N, . . . , Z∥K∥ℓ∥N} and Ki = K.

Case 2 (x1, y1) ∈ S1(τ) and (x2, y2) ∈ S2(τ) where y1 = y2. In this case, in the real world, two calls with
the same output are made to the ideal permutation, through one ideal permutation query and
one encryption query. This case also encompasses the case where y1 = y2 and x1 ̸= x2, which is
impossible in the real world. From this case, we can define the following simplified bad transcript
description:

Bad2: There are two entries (prim, x, y, ·) and (enc, i, N,AD,M,C∥T, V0∥ · · · ∥Vℓ) such that

y ∈ {V0
(32)

− (Z∥Ki∥0∥N), . . . , Vℓ
(32)

− (Z∥Ki∥ℓ∥N)}.

Case 3 (x1, y1), (x2, y2) ∈ S2(τ) where x1 = x2. In this case, in the real world, two calls are made to
the ideal permutation on the same input, through one or two encryption queries. This case also
encompasses the case where x1 = x2 and y1 ̸= y2, which is impossible in the real world. From this
case, we can define the following simplified bad transcript description:

Bad3: There are two entries (enc, i, N,AD,M,C∥T, V ) and (enc, i′, N ′, AD′,M ′, C ′∥T ′, V ′) with
N = N ′ (block counter values do not overlap across different nonces), i ̸= i′ (because nonce reuse
is not allowed for the same user) and Ki = Ki′ .

Case 4 (x1, y1), (x2, y2) ∈ S2(τ) where y1 = y2. In this case, in the real world, two calls with the same
output are made to the ideal permutation, through one or two encryption queries. The case where
y1 = y2 and x1 = x2 being already considered in the previous point, we can restrict this case to
y1 = y2 and x1 ̸= x2, which in fact is impossible in the real world. From this case, we can define
the following simplified bad transcript description:

Bad4: There are two entries (enc, i, N,AD,M,C∥T, V0∥ · · · ∥Vℓ) and (enc, i′, N ′, AD′,M ′, C ′∥T ′,
V ′0∥ · · · ∥V ′ℓ′) such that (Ki, j,N) ̸= (Ki′ , j

′, N ′) and Vj
(32)

− (Z∥Ki∥j∥N) = V ′j′
(32)

− (Z∥Ki′∥j′∥N ′) for
0 ≤ j ≤ ℓ and 0 ≤ j′ ≤ ℓ′.

Case 5 (x, y) ∈ S1(τ) and (vf, i, N,AD,C∥T, false) ∈ τ where x = (Z∥Ki∥0∥N) and ∃r ∈ {0, 1}t,
W ∈ {0, 1}n−2t such that y

(32)

+ x = (r∥(T
(t)

− Hr(AD,C))∥W ). This case corresponds to an im-
possible transcript in the real world. As in the real world π(x) = y and from this case we obtain

π(Z∥Ki∥0∥N)
(32)

+(Z∥Ki∥0∥N) = (r∥(T
(t)

−Hr(AD,C))∥W ). Therefore, trunc(CC block(Ki, N, 0), 2t)

= r∥(T
(t)

− Hr(AD,C)). Thus (N,AD,C∥T ) is a valid nonce/AD/ciphertext triplet under key i,
and in the real world, the verification query considered would have returned true. From this case,
we can define the following simplified bad transcript description:
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Bad5: There are two entries (vf, i, N,AD,C∥T, false) and (prim, x, y, ·) such that x = (Z∥K∥0∥N),

Ki = K and ∃r ∈ {0, 1}t,W ∈ {0, 1}n−2t such that y
(32)

+ x = (r∥(T
(t)

−Hr(AD,C))∥W ).

Case 6 (x, y) ∈ S2(τ) and (vf, i, N,AD,C∥T, false) ∈ τ where x = (Z∥Ki∥0∥N) and ∃r ∈ {0, 1}t,
W ∈ {0, 1}n−2t such that y

(32)

+ x = (r∥(T
(t)

− Hr(AD,C))∥W ). This case corresponds to an im-
possible transcript in the real world, for a similar reason as the previous case, i.e., in the real
world, the verification query considered would have returned true. From this case, we can define
the following simplified bad transcript description:

Bad6: There are two entries (vf, i, N,AD,C∥T, false) and (enc, i′, N,AD′,M ′, C ′∥T ′, V ′0∥ · · · ∥V ′ℓ )
such that Ki′ = Ki and ∃r ∈ {0, 1}t,W ∈ {0, 1}n−2t such that V ′0 = (r∥(T

(t)

−Hr(AD,C))∥W ).

For j ∈ {1, . . . , 6}, let Badj be the set of attainable transcripts satisfying the j-th simplified bad transcript

description defined above. Then Tbad =
⋃6
j=1 Badj . Note that Bad1, Bad2, and Bad3 contain attainable

transcripts calling more than one time the ideal permutation on the same input-output during primitive
and encryption queries, and Bad4, Bad5, and Bad6 contain attainable transcripts impossible in the real
world.

6.4 Good Transcript Ratio (H-Coefficient)

An attainable transcript that is not in Tbad is called good, and the set of all good transcripts is denoted
by Tgood. In the H-coefficient technique, we need to bound the probability ratio of a good transcript
being generated in the real world with respect to that of it being generated in the ideal world.

Anomalous transcripts that result in a weak H-coefficient or that make it hard to evaluate have been
weeded out as bad transcripts in the previous section. Roughly, these were transcripts that resulted in
different multi-set cardinalities across the two worlds and transcripts with a real-world probability of zero.
Consequently, we can now easily bound the H-Coefficient (of good transcripts) through a simple counting
argument which yields the bound specified in Proposition 6.1. Its proof can be found in Appendix C.1.

Proposition 6.1 (Probability of good transcripts). For any good transcript τ ∈ Tgood it holds that

Preal(τ)

Pideal(τ)
≥ 1− 2qv

2t
.

6.5 Bad Transcript Probabilities

We now bound the probability that Tideal ∈ Tbad, i.e., the probability that a transcript generated in the
ideal world is bad.

The probabilities of events Tideal ∈ Badj , for j ∈ {1, . . . , 6} are bounded in Lemmas C.2–C.7, the
proofs of which can be found in Appendix C.2. The corresponding bounds are reproduced below in
Equations (1)–(6). Proposition 6.2 is then obtained by a direct application of the union bound and
substituting terms through Equations (1)–(6). To quickly describe the arguments used when bounding
the different sets of bad transcripts, we bound the probability that Tideal ∈ Bad4 by the probability of
a collision through the randomly generated V blocks during Reveal. We bound the probabilities of
Tideal ∈ Badj , for j ∈ {1, 2, 3, 5, 6} through a counting argument of specific pairs of entries, after which
we apply a union bound over all of these possible pairs for a specific key sampling event. The description
of the pairs of entries and the key sampling events are specific to each set Badj . We notably use our
improved balls-into-bins theorem to count the pairs of entries in a transcript for Bad2, Bad5 and Bad6.
In addition, we also use the ϵ-almost ∆-universal property of the function H to bound the probability
of Tideal ∈ Bad6.

15



Pr[Tideal ∈ Bad1] ≤
pd

2k
. (1)

Pr[Tideal ∈ Bad2] ≤
p · 2(n− k)

σe

2k
+

1

2n−k
. (2)

Pr[Tideal ∈ Bad3] ≤
qe(d− 1)

2k
. (3)

Pr[Tideal ∈ Bad4] ≤
(σe + qe)

2

2n+1
. (4)

Pr[Tideal ∈ Bad5] ≤
qv · 2

(
(n− k)

p
+ 2t

p
)

2k
+

1

2n−k−1
+

1

22t−1
. (5)

Pr[Tideal ∈ Bad6] ≤
qv
2t

+
qv · ϵ(ℓm)

2t
+
qv · 2 · 2t

d

2k
+

1

22t
. (6)

Proposition 6.2 (Probability of bad transcripts). Let Tideal be the random variable representing
the transcript generated by A in the ideal game. It then holds that:

Pr[Tideal ∈ Tbad] ≤
qv · (ϵ(ℓm) + 1)

2t
+
d(p+ qe)

2k
+

2 · p(n− k)
σe

2k
+
qv · 2

(
(n− k)

p
+ 2t

p
+ 2t

d
)

2k

+
(σe + qe)

2

2n+1
+

1

22t−2
+

1

2n−k−2
,

again using the shorthand notation i
j
=

⌈
i

max(1,i−log2(2j))

⌉
and i

0
= 0, for any i, j ∈ N.

Theorem 6.1 is obtained by combining Propositions 6.1 and 6.2 with Theorem 2.1, where Proposition 6.1
yields ϵ1 and Proposition 6.2 yields ϵ2.

7 Implications of the Main Result

In this section, we discuss some properties and implications of our multi-user security theorem from
Section 6. Succinctly, we prove the tightness of the bound and extend the security result to the nonce-
randomized setting. Then we explain how our bounds improve over previous results and how they compare
and contrast with the security profile of GCM. We further discuss the security limits of ChaCha20-
Poly1305 induced by the dominant term in our bound and propose a potential variant scheme that
overcomes these limitations.

7.1 Tightness of the Bound

We establish the tightness of the bound in Theorem 6.1 by providing several attacks matching the theorem
bounds via the Propositions 7.1–7.6 below. To the best of our knowledge, the attacks in Propositions 7.1
and 7.6 are new in this context and do not seem to be covered elsewhere in the literature. In the following,
we summarize the attack ideas; the details for all attacks establishing the stated propositions are given
in Appendix D.

Note that all our attacks are valid against the original multi-user game and not only against the
augmented version used in the proof. Moreover, for all our attacks except the one in Proposition 7.6, we
only need the underlying ChaCha20 permutation π to be a permutation over {0, 1}n and not necessarily
an ideal permutation.

Forgery attack. The main idea of the first attack is to create a forgery by trying to retrieve the hash
key of Poly1305 Mac. Similarly, as the forgery attack against GCM [ABBT15, PC15], the attacker tests
a set of ℓm possible hash keys through each verification query; if the correct hash key is in this set, the
forgery attempt will be valid, distinguishing the real from the ideal game.

The attack is described in the multi-user setting but is also valid in the single-user setting as it
queries only one user. The main difference with forgery attacks on GCM is that in Poly1305 Mac, 128-
bit message/ciphertext blocks are encoded (padded with 1) before being transformed into coefficients of
a polynomial modulo 2130 − 5, preventing the attacker from accessing the full range of coefficients. We
use here the technique from [Kry21] as a workaround.
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Proposition 7.1. Let t be the tag size of Poly1305 Mac and H its associated ϵ-almost ∆-universal hash
function. Let ℓm ≥ 5 be the maximal number of t-bit input blocks in an encryption or verification query
to the ChaCha20-Poly1305 AEAD scheme. There exists an adversary A making one encryption query
and qv verification queries such that:

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

qv · 221 · (ℓm − 5)

2t
.

Key-recovery attack. The main idea of the two following attacks is to use offline computations (via
the permutation oracle in our model) to try to recover one of the user keys in the real game.

For the first attack, the attacker makes d encryption queries on the same input (N,M,AD) across d
different users. It then makes p permutation queries Prim(Z∥K ′i′∥1∥N) for guessed keys K ′i′ , to construct
corresponding ciphertexts for M , checking if any ciphertexts match to one of the d encryption queries.
In the ideal game, as ciphertexts are randomly generated strings, the probability of this event is smaller
than in the real game, allowing the attacker to distinguish between the two games.

Proposition 7.2. Let k be the key length of the ChaCha20-Poly1305 AEAD scheme. There exists a

d-repeating adversary A, that makes p permutation queries and d ≤ 2k

p encryption queries such that:

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

pd

2k+2
.

The previous attack can be adapted to verification queries instead of encryption queries, yielding the
following variant.

Proposition 7.3. Let k be the key length of the ChaCha20-Poly1305 AEAD scheme. There exists an
adversary A, that makes one permutation query and qv ≤ 2k verification queries such that:

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

qv
2k+1

.

Key-collision attack. The main idea of the following attack is to detect when two users sample the
same key in the real game.

For the attack, the adversary makes encryption queries on the same input across different users. If
two of the received ciphertexts match, it means that the two corresponding users have the same key in
the real game. In the ideal game, ciphertexts are randomly generated strings. Thus, if the ciphertexts are
long enough, the probability that they match is smaller in the ideal game than in the real game, allowing
the attacker to distinguish between the two games. We note that, although stated here as an attack
against ChaCha20-Poly1305, it extends to a generic attack against any deterministic AE scheme with
positive ciphertext expansion in the multi-user setting, similar to the key collision attack of [BHT18],
but for d-repeating adversaries.

Proposition 7.4. Let k be the key length of the ChaCha20-Poly1305 AEAD scheme. There exists a

d-repeating adversary A, that makes 2 ≤ qe ≤ 2k+1

d−1 encryption queries such that:

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

qe(d− 1)

2k+3
.

Block-collision attack. Finally, the two last attacks distinguish the output of the ChaCha20 block
function from the output of a random function due to block collisions. By construction, the ChaCha20
block function outputs can have collisions for different inputs, but collisions cannot occur between the
outputs of the ChaCha20 permutation. The first attack is a direct application of the idea that, for a
single user, we can detect collisions by canceling the feed forward and looking at the difference between
two values Cj ⊕Mj . In the second attack, we exploit the encryption queries of multiple users, looking
only at the parts of Cj ⊕ Mj that do not correspond to the key location. This gives us access to a
truncated part of the ChaCha20 permutation and reduces to the problem of distinguishing a truncated
permutation from a random function.

Proposition 7.5. Let n be the block length of the ChaCha20-Poly1305 AEAD scheme. There exists an

adversary A that encrypt at most B blocks per user for a total number of σe ≤ 2n+1

B−1 encrypted blocks
across all users such that:

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

σe(B − 1)

2n+2
.
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procedure K∗()

1 : K ←$ K
2 : J ←$ {0, 1}µ

3 : return K∥J

procedure E∗(K∥J,N,AD,M)

1 : N∗ ← N ⊕ J

2 : C ← E(K,N∗, AD,M)

3 : return C

procedure D∗(K∥J,N,AD,C)

1 : N∗ ← N ⊕ J

2 : M ← D(K,N∗, AD,C)

3 : return M

Fig. 8. The XN transform of an AEAD scheme Π = (K, E ,D) into a nonce-randomized AEAD scheme Π∗ = (K∗, E∗,D∗).

Proposition 7.6. Let n, k be the block and key length of the ChaCha20-Poly1305[π] AEAD scheme,
where the underlying ChaCha20 permutation π is modeled as an ideal random permutation. There exists

an adversary A encrypting a total number of σe ≤ min
(
2
n−k

2 , 2n−k−1
)
blocks such that:

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

σe(σe − 1)

2n+2
.

Matching the bound. The presented attacks closely match the most significant and some further
terms in the bound of Theorem 6.1:

Proposition 7.1: first term, ≈ qv·ϵ(ℓm)
2t .

Proposition 7.2: first half of second term, ≈ pd
2k
, and third term ≈ p

2k
, up to a factor of 2(n− k).

Proposition 7.3: fourth term, ≈ qv
2k
, up to a factor of 2(n− k + 4t).

Proposition 7.4: second half of second term, ≈ qed
2k

.

Proposition 7.5: fifth term, ≈ σ2
e

2n , up to a factor of σe
B , when σe ≤ 2n+1

B−1 . Note that σe
B ≤ 1 in the

single-user case.

Proposition 7.6: fifth term, ≈ σ2
e

2n , up to a factor of 4, when σe ≤ min
(
2
n−k

2 , 2n−k−1
)
.

7.2 Nonce Randomization: The XN Transform

The record protocols of TLS 1.3 [Res18], DTLS 1.3 [RTM21] and QUIC [TT21] use a nonce-randomization
technique to counter large-scale multi-user attacks. Analyzing this technique for the GCM mode, Bel-
lare and Tackmann [BT16] provided the first multi-user treatment. Hoang, Tessaro, and Thiruven-
gadam [HTT18] captured the nonce-randomization mechanism as a generic transform XN, which we
recall in Figure 8. The XN transform turns an AEAD scheme Π into a nonce-randomized scheme Π∗,
and [HTT18] showed that a generic adversary against the multi-user security of Π∗ can be reduced to
the security of Π against a strongly d-repeating adversary via an adaptive balls-into-bins argument.

We reuse our Lemma B.1 to obtain a generalization of [HTT18, Lemma 4.1 and Theorem 4.2]; their
version emerges from our Theorem 7.1, when setting the new parameter δ we introduce to δ = 1/2.

Theorem 7.1 (Multi-user security of the XN transform). Let Π[π] = (K, E ,D) be a nonce-based
AEAD scheme with nonce length µ defined on top an ideal permutation π, and let Π∗[π] = XN(Π[π])
for the XN transform defined in Figure 8. Let A be a nonce-respecting adversary against Π∗ making at
most qe Enc queries and qv Vf queries. Then, for some fixed δ > 0, we can construct an adversary B of

the same concrete query complexity as A which is (strongly) d-repeating for d =
⌈

(δ+1)·µ
max(1,µ−log2(q))

⌉
− 1,

if q ≤ 2µ · (δ+1)·µ
6 , where q = qe for d-repeating and q = qe + qv for strongly d-repeating, such that

AdvmuAE
Π∗[π] (A) ≤ AdvmuAE

Π[π] (B) + 1

2δµ
.

The new parameter δ. The improvement over [HTT18, Theorem 4.2] comes from the introduction of a
new, tweakable parameter δ in the security bound. The added benefit is that when the theorem is applied
to an AEAD scheme with known advantage AdvmuAE

Π[π] (B), one can now minimize the bound by tuning δ

based on the other parameters. If the advantage term AdvmuAE
Π[π] (B) can be expressed as a function of δ,

one may be able to find the optimal value directly via calculus. Alternatively, if this is not possible, one
could use numerical techniques to obtain a near-optimal value that is good enough in practice. One such
approach to choose δ is as follows. Note that d increases as δ increases, and in turn AdvmuAE

Π[π] (B) may

increase as d increases. Then the optimal value is attained when AdvmuAE
Π[π] (B) and 1

2δµ
are roughly equal,
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and so a suitable choice for δ is − log2(Adv
muAE
Π[π] (B))
µ . Note that d is less or equal to (δ+1) ·µ and the upper

bound on the number of queries is bigger than 2µ, improving over the nonce randomization theorems in
[HTT18] even when δ = 1/2. In Section 7.4 below we will see that choosing δ = 2 allows to ensure that
the term 2−δµ added through nonce randomization becomes non-dominant.

Proof. The proof follows the same strategy as for [HTT18, Theorem 4.2], but then applies our generalized
bound from Lemma B.1. The d-repeating reduction B samples nonce randomizer values Ji for each user i,
used to derive the effective nonce N∗ = N ⊕ J in encryption and verification queries forwarded to its
multi-user AE game. It keeps a counter for any used nonce value N∗ in encryption queries, counting the
number of users for which B queried this effective nonce to its encryption oracles. When any such counter
reaches d+1, B sets a bad flag bad, stops immediately, and outputs 1 (ensuring that B is d-repeating6);
otherwise, B relays the bit output by A.

In the real world,

Pr
[
BG

Real-muAE
Π[π] ⇒ 1

]
≥ Pr

[
AG

Real-muAE
Π∗[π] ⇒ 1

]
,

as B either outputs 1 or repeats A’s output. Furthermore, B simulates the ideal world for A perfectly
until the bad flag is set, by the identical-until-bad lemma [BR96],

Pr
[
BG

Ideal-muAE
Π[π] ⇒ 1

]
≤ Pr

[
AG

Ideal-muAE
Π∗[π] ⇒ 1

]
+ Pr

[
B sets bad in GIdeal-muAE

Π[π]

]
.

Overall, this yields

AdvmuAE
Π[π] (B) ≥ AdvmuAE

Π∗[π] (A)− Pr
[
B sets bad in GIdeal-muAE

Π[π]

]
,

so it remains to bound the probability of B setting bad in the ideal world game.
In GIdeal-muAE

Π[π] , the oracles answer independently of the queried effective nonces and B’s randomizer

values Ji. The bad flag is set when across all encryption (and, for the strongly d-repeating case, also
verification) queries, an effective nonce derived by B is used across d+1 users. We can view each effective
nonce N∗ queried to a user i, as throwing a ball i into one of 2µ bins, where the bin represents the nonce
queried. In total, we throw at most q balls, where q = qe for the d-repeating case and q = qe + qv for
the strongly d-repeating case. With this perspective, if the flag bad is set, then there exist a set of d+ 1
balls corresponding to d+ 1 distinct user in the same bin. Thus we can bound the probability that bad
is set by the probability that there exist a set of d + 1 balls corresponding to d + 1 distinct user in the
same bin.

For distinct users, the ball throws are independent and uniformly random distributed through the
randomizer values Ji. The probability for any set of d + 1 balls of distinct users to hit the same bin is
hence 2−µd. Throwing up to q balls means there are at most

(
q
d+1

)
sets of d+ 1 balls. So, by the union

bound,

Pr
[
B sets bad in GIdeal-muAE

Π[π]

]
≤

(
q

d+ 1

)
· 2−µd.

We can now apply Case 4 of Lemma B.1 with m = d + 1, Q = q, D = 2−µ, m̃ = δµ, and λ = 2, to
upper-bound the bad-event probability that any bin contains m = d+1 or more balls at λ−m̃ = 2−δµ as

claimed. For q ≤ 2µ · (δ+1)·µ
6 , we obtain

d = m− 1 =

⌈
(δ + 1) · µ

max(1, µ− log2(q))

⌉
− 1. ⊓⊔

We can combine Theorem 7.1 with our multi-user AE security result for ChaCha20-Poly1305 in
Theorem 6.1 to obtain the following bound for the nonce-randomized usage of ChaCha20-Poly1305
(where n = 512, k = 256, t = 128, and µ = 96), against an adversary that is not necessarily d-repeating.
We emphasize that to obtain this result, we only need to use Theorem 7.1 with a reduction adversary B
that is d-repeating and not strongly d-repeating, as this assumption suffices to apply Theorem 6.1.

Theorem 7.2 (Multi-user security of nonce-randomized ChaCha20-Poly1305). Let ChaCha20-
Poly1305[π] be the AEAD scheme described in Figure 5 having parameters n, k, t, ϵ, µ and its underlying

6 For the strongly d-repeating case, B counts the number of users using a particular effective nonce N∗ across
both its encryption and verification queries. Aborting when a counter reaches d+1 then ensures B is strongly
d-repeating.
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procedure K∗()

1 : K ←$ K

2 : J ←$ {0, 1}µ
′

3 : return K∥J

procedure E∗(K∥J,N,AD,M)

1 : N∗ ← J∥N
2 : C ← E(K,N∗, AD,M)

3 : return C

procedure D∗(K∥J,N,AD,C)

1 : N∗ ← J∥N
2 : M ← D(K,N∗, AD,C)

3 : return M

Fig. 9. The CN transform of an AEAD scheme Π = (K, E ,D) into another AEAD scheme Π∗ = (K∗, E∗,D∗).

permutation π modelled as a random permutation. Let A be an adversary against the multi-user AE
security of XN(ChaCha20-Poly1305[π]) making at most p ideal permutation queries, qe encryption queries
totaling at most σe encrypted blocks, and qv verification queries. Further, let ℓm denote the maximum
size in t-bit blocks (including associated data) that A is allowed to query to its encryption and verification
oracles. Then

AdvmuAE
XN(ChaCha20-Poly1305[π])(A) ≤

qv(ϵ(ℓm) + 3)

2t
+
d(p+ qe)

2k
+

2p · (n− k)
2k

+
2qv · (n− k + 4t)

2k

+
(σe + qe)

2

2n+1
+

1

22t−2
+

1

2n−k−2
+

1

2δµ
,

where d =
⌈

(δ+1)·µ
max(1,µ−log2(qe))

⌉
− 1, for any 0 < δ ≤ t

µ · 2
2t−1 − 1.

In the above we further require that n − k ≤ 2k−2, σe ≤ n−k
6 · 2n−k, qe ≤ 2µ · (δ+1)·µ

6 , qv ≤ 2n−2, and

p ≤ min
(
2t−1
6 · 22t, n−k−16 · 2n−k

)
.

Note that as long as δ ≤ t
µ · 2

2t−1 − 1, the restriction on d from Theorem 6.1 is satisfied. In Sec-
tion 7.4 below, we discuss and interpret the above bound for nonce-randomized ChaCha20-Poly1305. In
particular, we will see how to pick δ such that the term 1

2δµ
induced through nonce randomization does

not dominate the overall bound.

7.3 Nonce Randomization: The CN Transform

In TLS 1.2 [RD08] and IPsec [VM05, Nir15] a different nonce-randomization technique than the XN
previously described is used. Again, [HTT18] captured the mechanism through a generic transform CN,
which we recall in Figure 9. In the CN transform, the effective nonce N∗ derived as the concatenation of
an implicit nonce J of length µ′ bits, chosen at random, and an explicit nonce N of length µ − µ′ bits.
Practical values used in TLS 1.2 and IPsec are µ = 96 and µ′ = 32. Revisiting the formal treatment by
[HTT18], we reuse our Lemma B.1 to give an equivalent of Theorem 7.1 for the CN transform.

Theorem 7.3 (Multi-user security of the CN transform). Let Π[π] = (K, E ,D) be a nonce-based
AEAD scheme with nonce length µ defined on top an ideal permutation π, and let Π∗[π] = CN(Π[π]) be
the scheme with nonce length µ−µ′ for the CN transform defined in Figure 9. Let A be a nonce-respecting
adversary against Π∗ making at most qe Enc queries and qv Vf queries. Then, for some fixed δ > 0, we
can construct an adversary B of the same concrete query complexity as A which is (strongly) d-repeating

for d =

⌈
max

(
6q·2−µ

′
,(δ+1)·µ′

)
max(1,µ′−log2(q))

⌉
− 1, where q = qe for d-repeating and q = qe+ qv for strongly d-repeating,

such that

AdvmuAE
Π∗[π] (A) ≤ AdvmuAE

Π[π] (B) + 1

2δµ′ .

By setting δ = 7 in Theorem 7.3 above, we obtain an equivalent bound to that in Theorem 5.2 of
[HTT18]. Note that, compared to [HTT18], in our theorem the tradeoff parameter δ can be chosen to
adapt the additional term 1

2δµ′
to the other terms in the bound. E.g., when choosing δ = 4, the added

term 1
2δµ′

stays non-dominant while slightly improving the value of d.

Proof. The proof is similar to that of Theorem 7.1 (and [HTT18, Theorem 5.2]), but uses Lemma B.1
with different parameters. Therefore we only describe in the following how it differs from the proof of
Theorem 7.1:
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– The effective µ-bit nonceN∗ is no longer built asN⊕J but as J∥N with a shorter nonce randomizer J
of length µ′ bits.

– We apply Case 4 of Lemma B.1 with parameters

m = d+ 1, Q = q, D = 2−µ
′
, m̃ = δµ′, and λ = 2. ⊓⊔

To obtain a multi-user bound for nonce-randomized ChaCha20-Poly1305 as used in TLS 1.2 and IPsec,
one simply combines Theorem 7.3 with our multi-user bound for ChaCha20-Poly1305 in Theorem 6.1,
adding a 1

2δµ′
term to the latter similar to Theorem 7.2 for the XN transform.

7.4 Interpreting the Bounds

The dominant term. A closer look at Theorems 6.1 and 7.1 tells us that the most significant term in

our bounds for practical scenarios is likely to be qv·ϵ(ℓm)
2t . This is mainly due to the fact that for current

ChaCha20-Poly1305 parameters, the block size is large (n = 512) and the key size k = 256 of ChaCha20 is
twice as big as the tag size t = 128 of Poly1305, where the latter is effectively further reduced by the factor
225 due to the clamping of 22 bits in the hash key r (cf. Definition 3.1 and Theorem 3.2). Hence, for the
ChaCha20-Poly1305 parameters, this term in practical scenarios dominates the second-most significant

term: qv·ϵ(ℓm)
2t ≥ d(p+qe)

2k
, as long as the total number of primitive and encryption queries is bounded

as p + qe ≤ ℓm+1
d · 2153, even if qv = 1 (when, e.g., applying the bound to a rekeying connection of a

reliable-transport Internet security protocol like TLS [Res18] which terminates upon the first verification
error).

Improving the nonce-randomizer bound. When moving from the basic multi-user security result for
restricted, d-repeating adversaries to general adversaries, the analysis of the nonce-randomizer trans-
form XN by [HTT18] introduces an additive loss term of 2−µ/2 for nonce length µ. Through our improved
balls-into-bins lemma, we instead obtain a parameterized term 2−δµ, for which δ = 1/2 as in [HTT18]
is just one instantiation. Indeed, choosing δ = 2 allows us to ensure that this term is not dominant in
the bound of Theorem 7.2 for nonce-randomized ChaCha20-Poly1305 for adversaries making up to even
around qe ≈ 2µ = 296 encryption queries.7

Notably, our improved result for the XN transform also readily improves the multi-user security
for nonce-randomized GCM [HTT18, Theorem 4.3], allowing improvements to IETF/IRTF draft AEAD
limits [GTW21, Section 6.1]: while the advantage bound in [HTT18] cannot become smaller than 2−µ/2 =
2−48 (for the GCM nonce length of µ = 96), our result entirely lifts this restriction, similar to the
ChaCha20-Poly1305 case.

Improving over the standard hybrid loss in real-world settings. The only prior multi-user security bound
for ChaCha20-Poly1305 is outlined in [LP17] and is based on a standard hybrid security loss in the number
of user u over the single-user bound [Pro14]. This hybrid bound was reflected in early versions of the

IETF/IRTF draft on AEAD limits [GTW21] as
u·qv/u·ϵ(ℓm)

2t , where qv/u is the maximum failed verification
attempts per user. In comparison, our bound is more fine-grained, bounding the total number qv of
verification attempts across all users, where always qv ≤ u · qv/u; this gap can become relatively large
when no tight upper bounds for attempts per user can be derived. Our multi-user bound is now reflected
in [GTW21, Section 6.2.1] and confirms the approach taken in DTLS 1.3 [RTM21, Section 4.5.3] and
QUIC [TT21, Section 6.6] to derive integrity limits from summing the number of forgery attempts across
multiple keys in a connection to counter the security degradation of repeated forgeries over unreliable
transports [FGJ20].

7.5 Increasing the Hash Size

As discussed in Section 7.4, the dominant term in the multi-user security bounds for ChaCha20-Poly1305

in essentially all practical scenarios is qv·ϵ(ℓm)
2t , making—relatively speaking—the tag length the scheme’s

weakest point. The natural question then is whether we can improve this term and obtain a stronger
bound by increasing the tag size of ChaCha20-Poly1305. An obvious solution would be to use a wider
almost ∆-universal hash function. This appears as an even more appealing solution when considering

7 Observe that Theorem 7.2 for δ = 2 allows the adversary to make up to qe ≤ µ · 2µ−1 encryption queries while
ensuring, via Theorem 7.1, that d ≤ ⌈µ · (δ + 1)⌉ − 1 = 287 ≤ 2128 = 2t as required for Theorem 6.1.
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that, in ChaCha20-Poly1305, twice as much key material is computed than is used (namely, only half of
the first CC block call output), leaving the other half available as possible extra key material without
needing any extra computation. To illustrate one potential approach, we give a construction doubling
the tag size and then discuss how this affects the security of ChaCha20-Poly1305.

To double the tag size, we propose as an easy solution the following almost ∆-universal hash function
that reuses the almost ∆-universal hash function H component of the Poly1305 Mac one-time MAC of
ChaCha20-Poly1305. The main idea of our construction H

c
in Definition 7.1 below is to concatenate

two instantiations of the hash function H using two independent hash keys. This new hash function
H
c
, when augmented with a 2t-bit blinding value, creates a one-time MAC that we call cPoly1305 in

reference to it arising from concatenation. This one-time MAC cPoly1305 takes a 2t-bit hash key and a
2t-bit blinding value. Note again that due to the unused key material, we can obtain the needed key and
blinding value for this new almost ∆-universal hash function in the ChaCha20-Poly1305 construction
without additional computation and with little modification to the original scheme.

Definition 7.1 (The hash function H
c

in cPoly1305). Let r, γ be two t-bit strings,
H be the ϵ-almost ∆-universal hash function of Poly1305 Mac and (AD,C) be a pair of byte strings.
Define the hash function used in cPoly1305 as

H
c

r∥γ(AD,C) = Hr(AD,C)∥Hγ(AD,C).

We now give a bound on the almost ∆-universal property of H
c
.

Theorem 7.4 (H
c
is A∆U). Let ϵ (ℓ) = 225 · (ℓ+1) and s be a 2t-bit string, then for any two distinct

byte-string pairs (AD,C) and (AD′, C ′) it holds that:

Prr∥γ←${0,1}2t

[
H
c

r∥γ(AD,C) = H
c

r∥γ(AD
′, C ′)

(t)

+ s

]
≤

(
ϵ(max (|AD|t + |C|t, |AD′|t + |C ′|t))

2t

)2

.

Proof. Let H be the ϵ-almost ∆-universal hash function of Poly1305 Mac. Let (AD,C) and (AD′, C ′)

be distinct pairs of byte strings. If H
c

r∥γ(AD,C) = H
c

r∥γ(AD
′, C ′)

(t)

+ s then

Hr(AD,C) = Hr(AD
′, C ′)

(t)

+ s[1:t] and Hγ(AD,C) = Hγ(AD
′, C ′)

(t)

+ s[t+ 1:2t].

Thus if we sample two keys r, γ independently and uniformly at random, then

Prr∥γ←${0,1}2t

[
H
c

r∥γ(AD,C) = H
c

r∥γ(AD
′, C ′)

(t)

+ s

]
is equal to

Prr←${0,1}t

[
Hr(AD,C) = Hr(AD

′, C ′)
(t)

+ s[1:t]

]
· Prγ←${0,1}t

[
Hγ(AD,C) = Hγ(AD

′, C ′)
(t)

+ s[t+ 1:2t]

]
.

The final bound is obtained by applying Theorem 3.2 to each factor of this product. ⊓⊔

We now discuss how using this almost ∆-universal function H
c
in the ChaCha20-Poly1305 construc-

tion impacts the scheme’s security (the argument can be generalized to any universal function doubling
the tag size). Applying Theorem 6.1 (with a slight modification), we obtain the following upper bound
on the multi-user security of ChaCha20-cPoly1305, the AEAD scheme obtained using H

c
in place of H

in ChaCha20-Poly1305:

AdvmuAE
ChaCha20-cPoly1305[π](A) ≤

qv((ϵ(ℓm))2 + 3)

22t
+
d(p+ qe)

2k
+

2p · (n− k)
2k

+
2qv · (n− k + 8t)

2k

+
(σe + qe)

2

2n+1
+

1

24t−2
+

1

2n−k−2
.

The first observation on this changed bound is that by doubling the tag size, we obtain a more
uniform bound, with denominators in each term being at least 22t = 2k = 2256, increasing the security
by t− log2(ϵ(ℓm)) bits. The second and perhaps more interesting observation is that the most significant
term in the bound would likely become d·p

2k
, making offline computation the most probable attack against

the scheme. This term corresponds to a key recovery attack (see Proposition 7.2) and is most likely
inherent to any nonce based scheme against d-repeating adversaries (see [BT16] for the equivalent attack
in GCM and [Bih02] for block ciphers). Thus choosing a tag size equal to the key length as we have done
is probably the best tradeoff in terms of selecting the smallest tag size with the best security.
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Our construction ChaCha20-cPoly1305 for doubling the tag size and increasing security allows par-
allelization and reuse of current implementations of Poly1305. However, if we use instead a dedicated
construction with an almost ∆-universal hash function similar in structure to the one in Poly1305 but
with a bigger prime number, we could improve even more the security bound over what we obtain for
ChaCha20-cPoly1305. For a given maximum message length ℓm, the corresponding term in our bound
is quadratic in ℓm, and in such a construction would be linear in ℓm. A good candidate for the bigger
prime number would be the pseudo-Mersenne prime p = 2255− 19. We leave the development of such an
alternative construction to future work.

8 Conclusions

We have given a detailed security analysis of ChaCha20-Poly1305, an increasingly important AEAD
scheme. Our analysis is in the multi-user setting and assumes the permutation underlying the scheme is
ideal. This enables us to capture offline computation in our model and make a detailed comparison with
the corresponding analysis of GCM by Hoang, Tessaro, and Thiruvengadam [HTT18]. Amongst other
things, our analysis surfaces that the security limits for ChaCha20-Poly1305 are dominated by the limits
of its MAC component. This is in contrast to GCM, where the limiting factor is the AES block size.
We have proposed a lightweight way to strengthen ChaCha20-Poly1305 by doubling its MAC tag length.
In future work, we plan to investigate alternative MAC constructions and their performance/security
characteristics. We will also bring our work to the attention of the TLS and QUIC working groups of
the IETF and collaborate with them to establish safe data limits for ChaCha20-Poly1305 in the context
of the TLS, DTLS and QUIC protocols.
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A Proof of The Single-User Security of ChaCha20-Poly1305

We first comment on an error present in the previous single-user security proof of ChaCha20-Poly1305
by Procter [Pro14]. Then we give a new single-user proof retaining the same security bound as the one
originally claimed.

A.1 A Note on Procter’s Prior Security Proof

A proof for the single-user setting was previously proposed by Procter [Pro14]. However, we noticed an
error in this proof that we briefly describe here.

The error resides in the transition between Game 1 and 2 in [Pro14]. The assumption that, in Game 1,
inputs to the random function URF never repeat is false: an encryption query with a nonce N followed by
a decryption using the same nonceN are permitted queries, which result in a repeated call to URFk(0∥N).
Therefore Game 1 and Game 2 are not identical.

Fixing this seemingly small error led us to a significantly more complex proof than Procter’s analysis
would indicate is necessary. In order to reduce the ciphertext integrity security to the almost universal
hash property of the function Hr used in Poly1305, one needs to end up in a game where the hash keys r
are sampled independently from the previous queries, during decryption. To accomplish this, Procter
made the false assumption that nonces never repeat across encryption and decryption queries, and hence
he sampled r independently across encryption and decryption queries. We address this in our proof by
first reducing ciphertext forgery in a game G3 with multiple decryption queries to ciphertext forgery in

a game G
(1)
3 with only one decryption query. This allows us to then transition to a game G′′ in which,

during the only decryption query, either the tag is sampled independently at random or the hash key r
is sampled independently at random. In the latter case, we are then able to correctly use the almost
universal hash property of the function Hr.

A.2 Proof of Theorem 4.1 (Single-User Security Proof)

We use the code-based game-playing technique of [BR06] and prove the Theorem 4.1 using a sequence
of games, starting from a game that corresponds to the real world in the security definition and ending
up with a game corresponding to the ideal world. Consider the ChaCha20-Poly1305 nonce-based AEAD
scheme described in Section 3 and let A be a valid nonce-respecting adversary making at most qv
decryption queries. The associated data, messages, and ciphertexts queried by A are restricted to be
byte strings, as required for the use of the almost ∆-universal property of H.

G1: Game G1 is the real Game GReal-AE
ChaCha20-Poly1305 (Fig. 2) instantiated with ChaCha20-Poly1305 i.e.,

the game where an adversary has oracle access to the encryption and decryption algorithm of the
ChaCha20-Poly1305 AEAD Scheme.

G2: GameG2 is the same asG1 with the only difference being that the ChaCha20 block function CC block
is replaced by a truly random function TRF. We also introduce a flag forge in the decryption proce-
dure, which is set to true if a valid forgery is submitted to the decryption oracle. This flag is used in
the next game G3 to bound the probability of a valid forgery happening.
For any adversary A distinguishing between G1 and G2, we can construct another adversary Aprf

which breaks the PRF security of the ChaCha20 block function. The adversary Aprf has oracle
access to either the ChaCha20 block function or a truly random function. It runs A and answers
to A encryption and decryption queries by simulating the encryption and decryption algorithm of
ChaCha20-Poly1305 using its own PRF oracle instead of the Chacha20 block function. If A stops
and returns a value, Aprf stops and returns the output of A. When Aprf is playing the real PRF
game GReal-PRF

CC block , it has oracle access to the ChaCha20 block function and provides to A an exact

simulation of the game G1. Thus Pr
[
AG

Real-PRF
CC block

prf ⇒ 1
]
= Pr

[
AG1 ⇒ 1

]
. When Aprf is playing the ideal
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procedure Initialize

1 : K ←$ {0, 1}k

procedure Enc(N,AD,M)

1 : M1∥ · · · ∥Mℓ ←M

2 : for j = 1 to ℓ− 1 do

3 : Cj ←Mj ⊕ CC block(K,N, j)

4 : Cℓ ←Mℓ ⊕ trunc(CC block(K,N, ℓ), |Mℓ|)
5 : C ← C1∥ · · · ∥Cℓ

6 : r∥s← trunc(CC block(K,N, 0), 2t)

7 : T ← Hr(AD,C)
(t)

+ s

8 : return C∥T

procedure Dec(N,AD,C∥T )

1 : r∥s← trunc(CC block(K,N, 0), 2t)

2 : T ′ ← Hr(AD,C)
(t)

+ s

3 : if T ̸= T ′ then return ⊥
4 : C1∥ · · · ∥Cℓ ← C

5 : for j = 1 to ℓ− 1 do

6 : Mj ← Cj ⊕ CC block(K,N, j)

7 : Mℓ ← Cℓ ⊕ trunc(CC block(K,N, ℓ), |Cℓ|)
8 : return M1∥ · · · ∥Mℓ

Game G1

procedure Enc(N,AD,M)

1 : M1∥ · · · ∥Mℓ ←M

2 : for j = 1 to ℓ− 1 do

3 : Cj ←Mj ⊕ TRF(N, j)

4 : Cℓ ←Mℓ ⊕ trunc(TRF(N, ℓ), |Mℓ|)
5 : C ← C1∥ · · · ∥Cℓ

6 : r∥s← trunc(TRF(N, 0), 2t)

7 : T ← Hr(AD,C)
(t)

+ s

8 : return C∥T

procedure Dec(N,AD,C∥T )

1 : r∥s← trunc(TRF(N, 0), 2t)

2 : T ′ ← Hr(AD,C)
(t)

+ s

3 : if T ̸= T ′ then return ⊥
4 : forge← true

5 : C1∥ · · · ∥Cℓ ← C

6 : for j = 1 to ℓ− 1 do

7 : Mj ← Cj ⊕ TRF(N, j)

8 : Mℓ ← Cℓ ⊕ trunc(TRF(N, ℓ), |Cℓ|)
9 : return M1∥ · · · ∥Mℓ

Game G2

Fig. 10. Games G1 and G2 used for proving the single-user security of ChaCha20-Poly1305. Highlighting indicates
changes from the respective prior game.

PRF game GIdeal-PRF
CC block , it has oracle access to a truly random function and provides to A an exact

simulation of the game G2. Thus Pr
[
AG

Ideal-PRF
CC block

prf ⇒ 1
]
= Pr

[
AG2 ⇒ 1

]
. Therefore:

Pr
[
AG1 ⇒ 1

]
−Pr

[
AG2 ⇒ 1

]
= Pr

[
AG

Real-PRF
CC block

prf ⇒ 1
]
−Pr

[
AG

Ideal-PRF
CC block

prf ⇒ 1
]
= AdvPRF

CC block(Aprf). (7)

The adversary Aprf makes at most σe + qe + σv + qv queries.

G3: Game G3 has the same encryption oracle as Game G2, but its decryption oracle always returns ⊥.
We can see that Game G3 is identical to Game G2 unless the flag forge is set to true (identical
until forge). The differences between these games happen only after, and if, the flag forge is set to
true. Using the fundamental lemma of game playing [BR06]:

Pr
[
AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]
≤ Pr

[
AG3 sets forge

]
. (8)

The flag forge is set to true in G3, when the adversary A provides a valid forgery to the decryption
oracle of G3. We are going to bound the probability of this event, by transforming the game into
another one where only one decryption query is allowed, and by bounding the probability of forgery
in this new game.

G
(1)
3 : GameG

(1)
3 is identical to Game G3, except that the adversaryA is allowed to make only one query

to the decryption oracle (but still multiple queries to the encryption oracle). For the subsequent

analysis of G
(1)
3 , observe that anything happening after the decryption query in G

(1)
3 does not

influence the probability of forge being set, as forge can only be set during this unique decryption

query. Therefore, as we only want to bound the probability of forge being set in G
(1)
3 , without

loss of generality, we are going to consider for the encryption oracle of G
(1)
3 , only the encryption

queries made before the decryption query.
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procedure Enc(N,AD,M)

1 : M1∥ · · · ∥Mℓ ←M

2 : for j = 1 to ℓ− 1 do

3 : Cj ←Mj ⊕ TRF(N, j)

4 : Cℓ ←Mℓ ⊕ trunc(TRF(N, ℓ), |Mℓ|)
5 : C ← C1∥ · · · ∥Cℓ

6 : r∥s← trunc(TRF(N, 0), 2t)

7 : T ← Hr(AD,C)
(t)

+ s

8 : return C∥T

procedure Dec(N,AD,C∥T )

1 : r∥s← trunc(TRF(N, 0), 2t)

2 : T ′ ← Hr(AD,C)
(t)

+ s

3 : if T ̸= T ′ then return ⊥
4 : forge← true

5 : return ⊥

Game G3

procedure Enc(N,AD,M)

1 : M1∥ · · · ∥Mℓ ←M

2 : for j = 1 to ℓ− 1 do

3 : Cj ←Mj ⊕ TRF(N, j)

4 : Cℓ ←Mℓ ⊕ trunc(TRF(N, ℓ), |Mℓ|)
5 : C ← C1∥ · · · ∥Cℓ

6 : r ←$ {0, 1}t, s←$ {0, 1}t

7 : VS[N ]← (r, s)

8 : T ← Hr(AD,C)
(t)

+ s

9 : return C∥T

procedure Dec(N,AD,C∥T )

1 : (r, s)← VS[N ]

2 : if (r, s) = (⊥,⊥) then
3 : r ←$ {0, 1}t, s←$ {0, 1}t

4 : T ′ ← Hr(AD,C)
(t)

+ s

5 : if T ̸= T ′ then return ⊥
6 : forge← true

7 : return ⊥

Game G′

procedure Enc(N,AD,M)

1 : M1∥ · · · ∥Mℓ ←M

2 : for j = 1 to ℓ− 1 do

3 : Cj ←Mj ⊕ TRF(N, j)

4 : Cℓ ←Mℓ ⊕ trunc(TRF(N, ℓ), |Mℓ|)
5 : C ← C1∥ · · · ∥Cℓ

6 : T ←$ {0, 1}t

7 : VS[N ]← (T,AD,C)

8 : return C∥T

procedure Dec(N,AD,C∥T )

1 : (T ∗, AD∗, C∗)← VS[N ]

2 : if T ∗ = ⊥ then

3 : T ′ ←$ {0, 1}t

4 : else

5 : r ←$ {0, 1}t, s← T ∗ (t)

−Hr(AD∗, C∗)

6 : T ′ ← Hr(AD,C)
(t)

+ s

7 : if T ̸= T ′ then return ⊥
8 : forge← true

9 : return ⊥

Game G′′

Fig. 11. Games G3, G
′, and G′′ used for proving the single-user security of ChaCha20-Poly1305. Highlighting

indicates changes from the respective prior game.

Let IAG denote the random variable indicating at which decryption query the adversary A forges
for the first time in some game G, where IAG = 0, if A does not forge. Let A be an adversary
playing game G3 and making qv decryption queries. Then IAG3

denote the number of decryption

queries made by A before a decryption query (the IAG3
-th) set forge to true for the first time.

Thus Pr
[
AG3 sets forge

]
=

∑qv
i=1 Pr

[
IAG3

= i
]
. Similarly to the reduction used in [BGM04, Thm

B.2], we construct from A an adversary B playing G
(1)
3 and making only one decryption query.

Then using a reduction argument, we prove that Pr
[
AG3 sets forge

]
≤ qv · Pr

[
BG

(1)
3 sets forge

]
.

The adversary B is specified in figure 12.
Let S be the simulated game for A in the reduction. The adversary B provides to A an exact sim-
ulation of game G3 until the IAS -th decryption query, thus Pr

[
IAS = i

∣∣ guess = i
]
= Pr

[
IAG3

= i
]
.

Furthermore, if AS sets forge (i.e., IAS ≥ 1) and guess is equal to IAS , then B sets forge. Therefore

Pr
[
BG

(1)
3 sets forge

]
≥ Pr

[
IAS = guess

]
. (9)
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Adversary BG
(1)
3

ηdquery ← 0, guess←$ {1, . . . , qv}
Run A and reply to its oracle queries as follows:

- If A makes a query to its encryption oracle, reply with the encryption oracle of B.
- If A makes a query to its decryption oracle, do:

ηdquery ← ηdquery + 1

if ηdquery ̸= guess then reply ⊥ to A
if ηdquery = guess then reply with the decryption oracle of B.

If A stops and returns a value, B stops and returns the output of A.

Fig. 12. Description of the adversary B used in the reduction from G3 to G
(1)
3 .

Moreover :

Pr
[
IAS = guess

]
=

qv∑
i=1

Pr
[
IAS = i ∧ guess = i

]
=

qv∑
i=1

Pr
[
IAS = i

∣∣ guess = i
]
· Pr[guess = i]

=

qv∑
i=1

Pr
[
IAG3

= i
]
· 1
qv

= Pr
[
AG3 sets forge

]
· 1
qv
. (10)

By combining (9) and (10), we get

Pr
[
AG3 sets forge

]
≤ qv · Pr

[
BG

(1)
3 sets forge

]
. (11)

G′: GameG′ is identical to gameG
(1)
3 , with only one decryption query allowed, but with the difference

that in Game G′, we now lazily sample the output of the random function TRF on inputs (N, 0)
(for any N), in both the encryption and decryption oracle. For this, we keep track of the values
already sampled in a vector VS indexed byN , where we assume that all entries in VS are initalized

to (⊥,⊥) at the beginning of the game. As in Game G
(1)
3 , we are only interested in bounding

the probability of forge being set in G′ (which can only be done during the unique decryption
query), and hence only need to consider those encryption queries made before the decryption
query. (Indeed, the lazy sampling might become inconsistent after the decryption query, which
will not burden us.) For each of these encryption queries, a new nonce N is used and we sample
lazily a new pair (r, s) of one time keys. For the decryption query, (r, s) are sampled only if they
were not already sampled during a previous encryption query. The lazy sampling does not change
the behavior of the game up to the decryption query, therefore the probability of setting forge is

identical in Games G
(1)
3 and G′:

Pr
[
BG

(1)
3 sets forge

]
= Pr

[
BG

′
sets forge

]
. (12)

G′′: Game G′′ is similar to game G′, except for two changes that leave the overall behavior of the
game before the decryption query unchanged. (Again, we are only concerned with bounding the
probability of forge being set in the single decryption query.) In Game G′′, instead of sampling r

and s, and computing T (or T ′) as Hr(AD,C)
(t)

+ s, we instead sample r and T (or T ′) and

compute s as T
(t)

− Hr(AD,C) (or T ′
(t)

− Hr(AD,C)). Since r and s are never reused within
encryption queries (due to the changes from G′), we can further defer the sampling of r and
computation of s to when they would be reused in the decryption query. To do so, we have VS

store (T,AD,C), which, after sampling r for decryption, allows us to compute s as T
(t)

−Hr(AD,C).
In case the values (T ∗, AD∗, C∗), corresponding to the nonce N queried to decryption, are not
stored in VS, we can directly sample T ′ at random, which is equivalent to sampling r and s at
random as in G′.
The difference between Games G′ and G′′ (swapping s with T and deferring the computation
of r and s) being only conceptual and indistinguishable to the adversary, we have:

Pr
[
BG

′
sets forge

]
= Pr

[
BG

′′
sets forge

]
. (13)
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During the decryption query, either it is the first use of the nonce N , and T ′ is sampled uniformly
from {0, 1}t, or it is the second use of the nonce N (the first one was an encryption query), and

r is sampled uniformly from {0, 1}t. In the latter case, T ′ is computed as Hr(AD,C)
(t)

+ T ∗
(t)

−
Hr(AD

∗, C∗) for (AD,C) ̸= (AD∗, C∗). Therefore:

Pr
[
BG

′′
sets forge

]
= Pr[T = T ′ during the only decryption query of G′′]

≤ max

(
1

2t
,Prr←${0,1}t

[
T = Hr(AD,C)

(t)

+ T ∗
(t)

−Hr(AD
∗, C∗)

])
≤ ϵ(ℓm)

2t
. (Thm. 3.2) (14)

Combining Equations (11), (12), (13) and (14), we can conclude our sequence of games bounding the
difference between G2 and G3 as

Pr
[
AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]
≤ Pr

[
AG3 sets forge

]
≤ qv ·

ϵ(ℓm)

2t
. (15)

procedure Enc(N,AD,M)

1 : M1∥ · · · ∥Mℓ ←M

2 : for j = 1 to ℓ− 1 do

3 : Y ←$ {0, 1}n

4 : Cj ←Mj ⊕ Y

5 : Y ←$ {0, 1}|Mℓ|

6 : Cℓ ←Mℓ ⊕ Y

7 : C ← C1∥ · · · ∥Cℓ

8 : r ←$ {0, 1}t, s←$ {0, 1}t

9 : T ← Hr(AD,C)
(t)

+ s

10 : return C∥T

procedure Dec(N,AD,C∥T )

1 : return ⊥

Game G4

procedure Enc(N,AD,M)

1 : M1∥ · · · ∥Mℓ ←M

2 : for j = 1 to ℓ− 1 do

3 : Cj ←$ {0, 1}n

4 : Cℓ ←$ {0, 1}|Mℓ|

5 : C ← C1∥ · · · ∥Cℓ

6 : T ←$ {0, 1}t

7 : return C∥T

procedure Dec(N,AD,C∥T )

1 : return ⊥

Game G5

Fig. 13. Games G4 and G5 used for proving the single-user security of ChaCha20-Poly1305. Highlighting indicates
changes from the respective prior game.

G4: Game G4 is identical to Game G3, except that we sample lazily the random function TRF. To obtain
Game G4 from Game G3, observe that the decryption oracle of Game G3 does not have any side
effects and always returns ⊥, so in addition to the lazy sampling, we have the decryption oracle
directly return ⊥ . As a nonce can only be used once in an encryption query, the values of the
random function are only used once and therefore do not need to be stored. These modifications
being indistinguishable for any adversary, we get:

Pr
[
AG3 ⇒ 1

]
= Pr

[
AG4 ⇒ 1

]
. (16)
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G5: Finally, Game G5 is the ideal AE game GIdeal-AE
ChaCha20-Poly1305 (Fig. 2), i.e., its encryption procedure

returns a random bit-string of length equal to the length of the message plus t (the bit-length of
the tag), and its decryption procedure always returns ⊥. In this game, we make two changes that
leave the overall behavior of the game unchanged. First, we swap the dependent and independent
variables Cj and Y : for all j, instead of sampling Y ←$ {0, 1}n and defining Cj ←Mj⊕Y , we sample
Cj ←$ {0, 1}n and define Y ← Mj ⊕ Cj . As Y is not being used in G5 anymore, we remove it. The
distribution of the ciphertexts returned by the encryption oracle is unchanged from the adversary’s

point of view. Secondly, instead of sampling s and computing T as Hr(AD,C)
(t)

+ s, we sample T

and compute s as T
(t)

− Hr(AD,C). These processes are equivalent and leave the distribution of s
and T unchanged. With those changes, r and s are not used anymore, thus again we remove them.
The differences between Game G4 and Game G5 (swapping Y with Cj and s with T ) being only
conceptual and indistinguishable to the adversary, we obtain:

Pr
[
AG4 ⇒ 1

]
= Pr

[
AG5 ⇒ 1

]
. (17)

The combination of (7), (8), (15), (16) and (17) yields the bound of the theorem. ⊓⊔

B Proof of Balls-Into-Bins Theorem

We prove the balls-into-bins theorem in two stages via a preliminary lemma. The improvement
over [BHT18] is a direct consequence of this lemma. Lemma B.1 is additionally used to prove Theo-
rem 7.1, resulting in an improved bound for nonce randomization.

B.1 Preliminary Lemma

The proof of Theorem 5.1 and Theorem 7.1 is based on the following lemma.

Lemma B.1. Let m,Q ∈ N∗, D ∈ (0, 1] and m̃, λ ∈ R>0, with λ > 1. Let e denote Euler’s number. For
any of the following cases:

1. m =
⌈
logλ(D

−1)+m̃
logλ((QD)−1)

⌉
and Q ≤ 1

D ,

2. m =
⌈
logλ(D

−1) + m̃
⌉
and Q ≤ logλ(D

−1)+m̃
Dλe ,

3. m = ⌈QDλe⌉ and Q ≥ logλ(D
−1)+m̃

Dλe ,

4. m =
⌈
max(QDλe,logλ(D

−1)+m̃)
max(1,logλ((QD)−1))

⌉
,

it holds that
(
Q
m

)
·Dm−1 ≤ λ−m̃.

Note that Cases 2 and 3 can be combined into m = ⌈max(QDλe, logλ(D
−1) + m̃)⌉, and if Q ≤

logλ(D
−1)+m̃

Dλe , Case 4 gives us m =
⌈

logλ(D
−1)+m̃

max(1,logλ((QD)−1))

⌉
≤

⌈
logλ(D

−1) + m̃
⌉
.

Proof. We consider the different cases in turn.

Case 1: m =
⌈
logλ(D

−1)+m̃
logλ((QD)−1)

⌉
and Q ≤ 1

D .

For this case, (
Q

m

)
·Dm−1 ≤ Qm ·Dm−1 = D−1 · (QD)m = D−1 · λ−m·logλ((QD)−1).

As λ > 1, QD ≤ 1 and m ≥ logλ(D
−1)+m̃

logλ((QD)−1) , then

λ−m·logλ((QD)−1) ≤ λ− logλ(D
−1)−m̃ = D · λ−m̃.

Hence

(
Q

m

)
·Dm−1 ≤ λ−m̃.
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Cases 2 and 3: m =
⌈
max(QDλe, logλ(D

−1) + m̃)
⌉
.

For these cases, as

(
Q

m

)
<

(
Q·e
m

)m
, we have

(
Q

m

)
·Dm−1 <

(
Q · e
m

)m
·Dm−1 = D−1 ·

(
QD · e
m

)m
.

Moreover, as m ≥ QDλe,

D−1 ·
(
QD · e
m

)m
≤ D−1 · λ−m.

Finally, as m ≥ logλ(D
−1) + m̃, we obtain

D−1 · λ−m ≤ D−1 ·D · λ−m̃ = λ−m̃.

Hence

(
Q

m

)
·Dm−1 ≤ λ−m̃.

Case 4: m =
⌈
max(QDλe,logλ(D

−1)+m̃)
max(1,logλ((QD)−1))

⌉
.

When (QD)−1 < λ, then max(1, logλ((QD)−1)) = 1. Thus m =
⌈
max(QDλe, logλ(D

−1) + m̃)
⌉
and we

can reuse results from Cases 2 and 3.
When (QD)−1 ≥ λ, then max(1, logλ((QD)−1)) = logλ((QD)−1) and m =

⌈
max(QDλe,logλ(D

−1)+m̃)
logλ((QD)−1)

⌉
.

Thus m ≥ logλ(D
−1)+m̃

logλ((QD)−1) and similarly to Case 1,(
Q

m

)
·Dm−1 ≤ D−1 · λ−m·logλ((QD)−1) ≤ D−1 · λ− logλ(D

−1)−m̃ = λ−m̃.

⊓⊔

B.2 Proof of Theorem 5.1 (Biased Balls-Into-Bins Theorem)

We are now ready to show how Theorem 5.1 is derived from Lemma B.1
Since m ≥ 1, when Q = 0 the probability that the heaviest bin contains m or more balls is clearly 0.

Thus, we can focus on the case where at most Q > 0 balls are thrown into bins and where m satisfies
one of the theorem conditions. If m > Q, the probability that the heaviest bin contains m or more balls
is 0. If m ≤ Q, there are at most

(
Q
m

)
subsets of m balls among the set of all balls thrown. If the heaviest

bin contains m or more balls, then at least one of these subsets of m balls is in the same bin. Hence,
to bound the probability that the heaviest bin contains m or more balls in this case, we only need to
bound the probability that at least one of these subsets is in the same bin. For each of these subsets,
the probability that all m balls in that subset are thrown into the same bin is at most Dm−1. Thus the
probability that at least one of these subsets of m balls is in the same bin is at most

(
Q
m

)
·Dm−1. Using

Lemma B.1,
(
Q
m

)
·Dm−1 ≤ λ−m̃ for the four different cases. Hence the probability that the heaviest bin

contains m or more balls is also at most λ−m̃. ⊓⊔

C Missing Components in the Proof of Theorem 6.1

In this section, we prove the remaining pieces that are necessary to complete the proof of the multi-user
security of ChaCha20-Poly1305 outlined in Section 6. In Appendix C.1 we prove Proposition 6.1, which
lower bounds the ratio of good transcripts, and in Appendix C.2 we prove Lemmas C.2–C.7, which upper
bound the probabilities of bad transcripts in the ideal world.

C.1 Proof of Proposition 6.1 (Good Transcript Ratio)

Let τ ∈ Tgood be a good transcript and let τ key, τ prim, τ enc, and τ vf be the sets of revealed-key, ideal-
permutation, encryption, and verification entries in τ , respectively. Let u = |τ key| be the number of key
entries. Let Pideal(τ), resp. Preal(τ), be the probability that if we make the queries described in τ (in the
same order), we receive in the ideal game, resp. the real game, the corresponding answers recorded in τ .
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In the ideal world, the revealed keys and the answers to the ideal permutation, encryption, and
verification queries are generated independently. Thus,

Pideal(τ) = Pideal(τ key) · Pideal(τ prim) · Pideal(τ enc) · Pideal(τ vf).

Recall that for good transcripts, the calls to the ideal permutation π and random blocks induced by ideal
permutation and encryption entries are distinct. Therefore, there are exactly |S1(τ)| distinct calls to the
ideal permutation in τ prim and |S2(τ)| independently sampled random blocks generated in τ enc. Hence

Pideal(τ prim) =
∏|S1(τ)|−1
i=0

1
2n−i and Pideal(τ enc) =

∏|S2(τ)|−1
i=0

1
2n . Moreover, as the u-many k-bit user keys

are sampled at random and verification queries always return false, we obtain Pideal(τ key) = 2−ku and
Pideal(τ vf) = 1. Consequently,

Pideal(τ) = 2−ku ·
|S1(τ)|−1∏

i=0

1

2n − i
·
|S2(τ)|−1∏

i=0

1

2n
. (18)

In the real world, the user keys are also sampled at random and Preal(τ key) = 2−ku. Once the user
keys have been sampled, the probability of query outputs depends on the number of distinct ideal
permutation calls made. For good transcripts in the real world, the calls to the ideal permutation π
in ideal permutation and encryption entries are distinct. Therefore, there are exactly |S1(τ)| + |S2(τ)|
distinct calls to the ideal permutation in τ prim ∪ τ enc, and the input-output of these calls are also entirely
determined in these sets. Moreover, there are at most |S3(τ)| more calls to the ideal permutation done
during verification queries and distinct from the ones done during ideal permutation and encryption
queries. However, the input-output of these calls is not entirely determined in τ vf , only the inputs are.
For the outputs, as τ is a good transcript, they are required to be distinct from the ones in τ prim ∪ τ enc
and not to result in a forgery for queries in τ vf . If q is the exact number of distinct ideal permutation

calls in τ , the probability to get these calls is
∏
i∈I

1
2n−i ·

∏
j∈J

(
1− fj

2n−j

)
, where I, J is a partition of

{0, . . . , q − 1} fixed by the order of queries in τ and fj is the number of values that would result in a
forgery while sampling the associated ideal permutation call during verification queries. I contains the
index/order in which the associated ideal permutation calls from τ prim ∪ τ enc are sampled and J contains
the remaining ones from τ vf . Note that |I| = |S1(τ)|+ |S2(τ)| and |J | ≤ |S3(τ)|. Thus,

Preal(τ) = 2−ku ·
∏
i∈I

1

2n − i
·
∏
j∈J

(
1− fj

2n − j

)
.

Furthermore, we can reorder and minimize the products in the following way:

∏
i∈I

1

2n − i
·
∏
j∈J

(
1− fj

2n − j

)
≥
|I|−1∏
i=0

1

2n − i
·
|I|+|S3(τ)|−1∏

j=|I|

(
1− F

2n − j

)
,

where F is a bound on the number of values that would result in a forgery while sampling the associated
ideal permutation call of one verification query, i.e. for a verification query Vf(i,N,AD,C∥T ), the

number of (r∥s∥W ) ∈ {0, 1}n such that Hr(AD,C)
(t)

+ s = T . There are 2n−2t possible values for W , and

each of the 2t possible values for r yield exactly one value s such that Hr(AD,C)
(t)

+ s = T . Therefore,
we can consider F = 2n−2t · 2t = 2n−t in the previous inequality. Consequently,

Preal(τ) ≥ 2−ku ·
|S1(τ)|+|S2(τ)|−1∏

i=0

1

2n − i
·
|S3(τ)|−1∏
j=0

(
1− 2n−t

2n − |S1(τ)| − |S2(τ)| − j

)
. (19)

Combining (18) and (19), we can now calculate the probability ratio of a good transcript:

Preal(τ)

Pideal(τ)
≥
|S3(τ)|−1∏
j=0

(
1− 2n−t

2n − |S1(τ)| − |S2(τ)| − j

)

≥
|S3(τ)|−1∏
j=0

(
1− 2n−t

2n − |S1(τ)| − |S2(τ)| − |S3(τ)|

)
.

32



As |S1(τ)| ≤ p ≤ n−k−1
6 · 2n−k, |S2(τ)| ≤ σe + qe ≤ n−k

3 · 2
n−k and |S3(τ)| ≤ qv ≤ 2n−2, then

|S1(τ)|+ |S2(τ)|+ |S3(τ)| ≤ p+ σe + qe + qv ≤ (n− k) · 2n−k + 2n−2 ≤ 2n−1.

Hence,

Preal(τ)

Pideal(τ)
≥
|S3(τ)|−1∏
j=0

(
1− 2n−t

2n−1

)
=

(
1− 1

2t−1

)|S3(τ)|

≥ 1− |S3(τ)|
2t−1

≥ 1− qv
2t−1

= 1− 2qv
2t
. ⊓⊔

C.2 Proofs of Bad Transcript Probabilities

In this subsection, we bound the probabilities of the six sets of Bad transcripts in the ideal world
through Lemma C.2–C.7. However, we first give a corollary of our balls-into-bins theorem to simplify its
application to our lemmas.

Recall that all the transcripts are generated by a valid nonce-respecting adversary A that is d-
repeating. We also recall here that in the ideal world, the keys Ki are uniformly sampled at the end of the
execution, during the last oracle query to Reveal, and are therefore independent of any other previous
queries. Moreover, in the ideal world, all the Vj values are independent and uniformly distributed. As

for V0 = (r∥(T
(t)

−Hr(AD,C))∥W ), the values r, T and W are uniformly distributed, for Vj = (Mj ⊕Cj),
the value Cj is uniformly distributed and for Vℓ = ((Mℓ ⊕Cℓ)∥W ′), the values Cℓ and W

′ are uniformly
distributed.

C.2.1 Balls-into-bins corollary. The following lemma is a direct corollary of our balls-into-bins
theorem. It will be used below to bound bad transcript probabilities, specifically in Lemmas C.3, C.6,
and C.7. To simplify the computed bounds, we apply our generalized balls-into-bins theorem in the proof
of the lemma only for a bounded number of balls. It should be noted that we could lift some of the
restrictions on the number of queries in Theorem 6.1 and 7.2 by considering an unrestricted number of
balls, however at the expense of a more complicated bound.

Lemma C.1. Consider an experiment where at most Q balls are thrown into a set of bins, where each
throw may depend on the outcome of the prior ones. Let D ∈ (0, 1] be an upper bound on the probability

that, when conditioned on prior throws, a ball lands into any bin. If Q ≤ D−1 · log2(D
−1)

3 , the probability

that the heaviest bin contains m =
⌈

2 log2(D
−1)

max(1,log2((QD)−1))

⌉
or more balls is at most D.

Proof. We simply apply the Case 4 of Theorem 5.1, with λ = 2, m̃ = logλ(D
−1) and Q ≤ D−1 · log2(D

−1)
3 .
⊓⊔

Note that compared to [BHT18, Lemma 11], our maximum load m can be smaller than log2(D
−1).

Also, compared to [BHT18, Lemma 10], our maximal number of queries can be bigger than D−1 (when
log2(D

−1)
3 > 1) and our maximum load m is always smaller than

⌈
2 log2(D

−1)
⌉
.

C.2.2 Bounding Bad1 transcripts probability.

Lemma C.2 (Probability of Bad1 transcripts).
Let Bad1 be the set of all attainable transcripts that contain two entries (prim, x, y, ·) and
(enc, i, N,AD,M,C∥T, V0∥ · · · ∥Vℓ) such that x ∈ {Z∥K∥0∥N, . . . , Z∥K∥ℓ∥N} and Ki = K. Then,

Pr[Tideal ∈ Bad1] ≤
pd

2k
.

Proof. The main idea we use to bound Pr[Tideal ∈ Bad1] is to count the number of entry pairs of the form
((prim, Z∥K∥ · ∥N, ·, ·), (enc, i, N, ·, ·, ·, ·)) and use a union bound over the events that for such a pair, the
independently sampled key Ki is equal to K.

If a transcript generated by the adversary A in the ideal augmented game is in Bad1, then A has
made an encryption query Enc(i,N,AD,M) and either a query Prim(Z∥K∥·∥N) or a query Prim−1(y)
with answer Z∥K∥·∥N , and finally a query to Reveal that returned the key Ki to be equal to K. Hence
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the probability that a transcript generated by A in the ideal augmented game is in Bad1 is bounded by
the probability that A makes the previously described queries.

We are going to consider the case where A is just about to query Reveal, but has already made
all its other oracle queries. For each of the at most p ideal permutation queries Prim(Z∥K∥ · ∥N) or
Prim−1(y) with answer Z∥K∥·∥N done by A, there are at most d encryption queries Enc(i,N ′, AD,M)
with N ′ = N done by A. Thus there are at most pd possible pairs of such queries done by A. When
querying Reveal, for each of these pairs, the probability that Ki = K is 1

2k
, as the keys are uniformly

sampled, independently from any previous queries. Hence, using a union bound, the probability that for
at least one of these pairs Ki = K, is at most pd

2k
. Thus,

Pr[Tideal ∈ Bad1] ≤
pd

2k
. ⊓⊔

C.2.3 Bounding Bad2 transcripts probability.

Lemma C.3 (Probability of Bad2 transcripts).
Let Bad2 be the set of all attainable transcripts that contain two entries (prim, x, y, ·) and

(enc, i, N,AD,M,C∥T, V0∥ · · · ∥Vℓ) such that y ∈ {V0
(32)

− (Z∥Ki∥0∥N), · · · , Vℓ
(32)

− (Z∥Ki∥ℓ∥N)}. Then,

Pr[Tideal ∈ Bad2] ≤
p · 2(n− k)

σe

2k
+

1

2n−k
.

Proof. The main idea we use to bound Pr[Tideal ∈ Bad2] is to count the number of entry pairs of the form

((prim, ·, Vj
(32)

− (Z∥K∥j∥N), ·), (enc, i, N, ·, ·, ·, V0∥ · · · ∥Vℓ)) and use a union bound over the events that for
such a pair, the independently sampled key Ki is equal to K. However, compared to Bad1, counting
the pairs is more complex. It is done by looking at the primitive entries as bins and all the encryption

entries (enc, i, N, ·, ·, ·, V0∥ · · · ∥Vℓ) as throwing balls of the form [Vj ]
K-

(32)

− (Z∥j∥N) into bins. Using our
balls-into-bins corollary, we then obtain for each primitive entry a bound on the maximum number m1

of associated encryption entries. This yields an upper bound of p ·m1 on the number of considered pairs.
Let E1 be the event that there exist w ∈ {0, 1}n−k such that among all encryption queries, there are

m1 =
⌈

2(n−k)
max(1,n−k−log2(σe+qe))

⌉
or more values of [Vj ]

K-
(32)

− (Z∥j∥N) that are equal to w, where N is the

nonce associated to the encryption query of Vj . Then,

Pr[Tideal ∈ Bad2] = Pr
[
Tideal ∈ Bad2 ∧ E1

]
+ Pr[Tideal ∈ Bad2 ∧ E1]

≤ Pr
[
Tideal ∈ Bad2

∣∣E1

]
+ Pr[E1].

We will now bound the probability of E1, so that we only have to consider the event Tideal ∈ Bad2
conditioned by E1 afterward. Recall that in the ideal world, the Vj values are independent and uniformly
distributed. We can view each encryption query Enc(i,N,AD,M1∥ · · · ∥Mℓ) with answer C1∥ · · · ∥Cℓ∥T
together with the sampling of its associated r,W,W ′ parameters, as throwing ℓ+1 balls [Vj ]

K-
(32)

−(Z∥j∥N),
for 0 ≤ j ≤ ℓ, uniformly at random into 2n−k bins. Thus if we consider all encryption queries, we throw
at most σe + qe balls uniformly at random into 2n−k bins. Using Lemma C.1, with Q = σe + qe and
D = 2−(n−k), the probability that the heaviest bin contains m1 or more balls is at most 2−(n−k).
Therefore, the probability of E1 is bounded by 2−(n−k). Hence,

Pr[Tideal ∈ Bad2] ≤ Pr
[
Tideal ∈ Bad2

∣∣E1

]
+ 2−(n−k). (20)

Note that E1 is the event that for all w ∈ {0, 1}n−k, among all encryption queries, there are strictly less

than m1 values of [Vj ]
K-

(32)

− (Z∥j∥N) that are equal to w. To bound the remaining term, we now consider
the case where A is querying the Reveal oracle and all r,W,W ′ parameters have been sampled, but no
user keys Ki have been sampled yet. In the following, we mean by y the value associated to a primitive
query and by j the block index associated to an encryption query. The union

⋃
y,j and sum

∑
y

∑
j

are over all primitive and encrypted blocks already queried. A transcript is in Bad2, if there exist a y

from a primitive query and a Vj
(32)

− (Z∥Ki∥j∥N) from an encryption query that are equal. To bound the

probability of this event, we split it into two, one for the event that the key part of Vj
(32)

− (Z∥Ki∥j∥N)
and y are equal and a second one for the event that the remaining parts are equal. Let E2(j, y) be the
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event that [Vj ]
K+

(32)

− Ki = [y]K+ and E3(j, y) be the event that [Vj ]
K-

(32)

− (Z∥j∥N) = [y]K-. Then, using
a union bound,

Pr
[
Tideal ∈ Bad2

∣∣E1

]
≤ Pr

⋃
y,j

E2(j, y) ∧ E3(j, y)

∣∣∣∣∣∣E1


≤

∑
y

∑
j

Pr
[
E2(j, y)

∣∣E1 ∧ E3(j, y)
]
· Pr

[
E3(j, y)

∣∣E1

]
. (21)

When querying Reveal, for any pair (j, y), the probability that [Vj ]
K+

(32)

−Ki = [y]K+ is the probability

that when the key is sampled Ki = [Vj ]
K+

(32)

− [y]K+. As the keys are uniformly sampled in Reveal,
and independently from any previous queries and parameters, this probability is 1

2k
. This event is also

independent from E1 and E3(j, y). Thus

Pr
[
E2(j, y)

∣∣E1 ∧ E3(j, y)
]
= Pr[E2(j, y)] =

1

2k
. (22)

Note that conditioned on event E1 there are strictly less than m1 values [Vj ]
K-

(32)

− (Z∥j∥N) that are equal
to one [y]K-, thus for a fix y, there are strictly less than m1 block indexes j such that Pr

[
E3(j, y)

∣∣E1

]
is not zero. Thus ∑

y

∑
j

Pr
[
E3(j, y)

∣∣E1

]
<

∑
y

m1 ≤ p ·m1. (23)

Moreover, m1 =
⌈

2(n−k)
max(1,n−k−log2(σe+qe))

⌉
≤ 2

⌈
(n−k)

max(1,n−k−log2(2σe))

⌉
= 2(n− k)

σe
and in combination

with (20), (21), (22), (23), we obtain

Pr[Tideal ∈ Bad2] ≤
p · 2(n− k)

σe

2k
+

1

2n−k
. ⊓⊔

C.2.4 Bounding Bad3 transcripts probability.

Lemma C.4 (Probability of Bad3 transcripts).
Let Bad3 be the set of all attainable transcripts that contain two entries (enc, i, N,AD,M,C∥T, V ) and
(enc, i′, N ′, AD′,M ′, C ′∥T ′, V ′) with N = N ′, i ̸= i′ and Ki = Ki′ . Then,

Pr[Tideal ∈ Bad3] ≤
qe(d− 1)

2k
.

Proof. The main idea we use to bound Pr[Tideal ∈ Bad3] is to count the number of entry pairs of the form
((enc, i, N, ·, ·, ·, ·), (enc, i′, N, ·, ·, ·, ·)) with i ̸= i′ and use a union bound over the events that for such a
pair, the independently sampled key Ki is equal to Ki′ .

If a transcript generated by the adversary A in the ideal augmented game is in Bad3, then this
adversary A has made a pair of encryption queries Enc(i,N,AD,M) and Enc(i′, N ′, AD′,M ′) with
N = N ′ and i ̸= i′, and a query to Reveal that returned the two corresponding Ki and Ki′ being
equal. Hence the probability that a transcript generated by A in the ideal augmented game is in Bad3 is
bounded by the probability that A makes the previously described queries.

We are again going to consider the case where A is just about to query Reveal, but has already
made all its other oracle queries. For each of the at most qe encryption queries Enc(i,N,AD,M) done
by A, there are at most d − 1 other encryption queries Enc(i′, N ′, AD′,M ′) with N = N ′ and i ̸= i′

done by A. Thus there are at most qe(d− 1), possible pairs of such encryption queries done by A. When
querying Reveal, for each of these pairs, the probability that Ki = Ki′ is

1
2k
, as the keys are uniformly

sampled, independently from any previous queries. Hence, using a union bound, the probability that for

at least one of these pairs Ki = Ki′ , is at most qe(d−1)
2k

. Thus,

Pr[Tideal ∈ Bad3] ≤
qe(d− 1)

2k
. ⊓⊔
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C.2.5 Bounding Bad4 transcripts probability.

Lemma C.5 (Probability of Bad4 transcripts).
Let Bad4 be the set of all attainable transcripts that contain two entries (enc, i, N,AD,M,C∥T, V0∥ · · · ∥Vℓ)
and (enc, i′, N ′, AD′,M ′, C ′∥T ′, V ′0∥ · · · ∥V ′ℓ′) such that (Ki, j,N) ̸= (Ki′ , j

′, N ′) and Vj
(32)

− (Z∥Ki∥j∥N) =

V ′j′
(32)

− (Z∥Ki′∥j′∥N ′) for 0 ≤ j ≤ ℓ and 0 ≤ j′ ≤ ℓ′. Then,

Pr[Tideal ∈ Bad4] ≤
(σe + qe)

2

2n+1
.

Proof. The main idea we use to bound Pr[Tideal ∈ Bad4] is to look at the probability of a collision through
the randomly generated V blocks (minus the feed forward) in the encryption entries.

If a transcript generated by the adversary A in the ideal augmented game is in Bad4, then A has made

a Reveal query that returned values verifying Vj
(32)

− (Z∥Ki∥j∥N) = V ′j′
(32)

− (Z∥Ki′∥j′∥N ′). As established
above, the Vj values are all independent and uniformly distributed. Moreover, the keys Ki are also
independent and uniformly distributed. Hence, for each encryption query Enc(i,N,AD,M1∥ · · · ∥Mℓ),

the ℓ values V0
(32)

− (Z∥Ki∥0∥N), · · · , Vℓ
(32)

− (Z∥Ki∥ℓ∥N) are also independent and uniformly distributed.
If we consider all encryption queries, we obtain at most σe + qe independent and uniformly distributed
values, and the probability that at least two of them are equal is at most the birthday bound, i.e.,
(σe+qe)

2

2n+1 . Thus,

Pr[Tideal ∈ Bad4] ≤
(σe + qe)

2

2n+1
. ⊓⊔

C.2.6 Bounding Bad5 transcripts probability.

Lemma C.6 (Probability of Bad5 transcripts).
Let Bad5 be the set of all attainable transcripts that contain two entries (vf, i, N,AD,C∥T, false) and

(prim, x, y, ·) such that x = (Z∥Ki∥0∥N) and ∃r ∈ {0, 1}t,W ∈ {0, 1}n−2t such that y
(32)

+ x =

(r∥(T
(t)

−Hr(AD,C))∥W ). Then,

Pr[Tideal ∈ Bad5] ≤
qv · 2

(
(n− k)

p
+ 2t

p
)

2k
+

1

2n−k−1
+

1

22t−1
.

Proof. The probability calculation for this case will follow the same outline as for Bad2. The main idea we
use to bound Pr[Tideal ∈ Bad5] is to count the number of entry pairs of the form ((vf, i, N,AD,C∥T, false),
(prim, (Z∥K∥0∥N), (r∥(T

(t)

−Hr(AD,C))∥W )
(32)

− (Z∥K∥0∥N), ·)) and use a union bound over the events
that for such a pair, the independently sampled key Ki is equal to K. Again, we look at the verification
entries as bins and all the primitive entries (prim, x, y, ·) as throwing balls of the form [x]K- for inverse

primitive entries and of the form [y
(32)

+ x]r∥([y
(32)

+ x]s
(t)

+Hr(AD,C)) for forward primitive entries, into bins.
Using our balls-into-bins corollary, we then obtain for each verification entry a bound on the maximum
number m4 +m5 of associated primitive entries. This yields an upper bound of qv · (m4 +m5) on the
number of considered pairs.

Let E4 be the event that there exist w ∈ {0, 1}n−k, such that the number of inverse ideal permu-

tation queries verifying [x]K- = w, is greater or equal to m4 =
⌈

2(n−k−1)
max(1,n−k−1−log2(p))

⌉
and E5 be the

event that there exist AD∗, C∗ ∈ {0, 1}∗ and T ∗, r∗ ∈ {0, 1}t such that, the number of forward ideal

permutation queries verifying [y
(32)

+ x]s
(t)

+ Hr∗(AD
∗, C∗) = T ∗ and r∗ = [y

(32)

+ x]r, is greater or equal to

m5 =
⌈

2·(2t−1)
max(1,2t−1−log2(p))

⌉
. Then, in a similar way as for Bad2,

Pr[Tideal ∈ Bad5] = Pr
[
Tideal ∈ Bad5 ∧ E4 ∧ E5

]
+ Pr

[
Tideal ∈ Bad5 ∧ E4 ∧ E5

]
≤ Pr

[
Tideal ∈ Bad5

∣∣E4 ∧ E5

]
+ Pr[E4 ∨ E5]

≤ Pr
[
Tideal ∈ Bad5

∣∣E4 ∧ E5

]
+ Pr[E4] + Pr[E5]. (24)

We will again bound the probability of E4 and E5, leaving us afterward with event Tideal ∈ Bad5
conditioned by E4 ∧ E5.
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We can view each inverse ideal permutation query Prim−1(y) with answer x as throwing a ball [x]K-

into one of 2n−k possible bins, with probability at most 2k

2n−p . As p ≤ 2n−1, then 2k

2n−p ≤
2k

2n−1 = 1
2n−k−1 .

Thus if we consider all inverse ideal permutation queries, we throw at most p balls with conditional
probability at most 2−(n−k−1) into 2n−k bins. Using Lemma C.1, with Q = p and D = 2−(n−k−1),
the probability that the heaviest bin contains m4 or more balls is at most 2−(n−k−1). Therefore, the
probability of E4 is bounded by 2−(n−k−1):

Pr[E4] ≤ 2−(n−k−1). (25)

For any AD,C ∈ {0, 1}∗, let Throw(AD,C) be the throwing experiment, where we view each forward

ideal permutation Prim(x) with answer y, as throwing a ball [y
(32)

+ x]r∥([y
(32)

+ x]s
(t)

+ Hr(AD,C)), where

r = [y
(32)

+ x]r into one of 22t possible bins. For any bin r∥T ∈ {0, 1}2t, each throw has a conditional
probability of at most

Pry←$Prim(x)

 ⋃
W∈{0,1}n−2t

(y
(32)

+ x) = r∥(T
(t)

−Hr(AD,C))∥W


≤

∑
W∈{0,1}n−2t

Pry←$Prim(x)

[
(y

(32)

+ x) = r∥(T
(t)

−Hr(AD,C))∥W
]

≤ 2n−2t

2n − p
.

Therefore, each throw has a conditional probability of at most 2n−2t

2n−p . As p ≤ 2n−1, then 2n−2t

2n−p ≤
2n−2t

2n−1 =
1

22t−1 . If we consider all forward ideal permutation queries, we throw at most p balls with conditional

probability at most 2−(2t−1) into 22t bins. Using Lemma C.1, with Q = p and D = 2−(2t−1), the
probability that the heaviest bin of Throw(AD,C) contains m5 or more balls is at most 2−(2t−1). If E5

happens, then the bin r∗∥T ∗ in experiment Throw(AD∗, C∗) contains m5 or more balls, therefore, the
number of balls in the heaviest bin of Throw(AD∗, C∗) contains m5 or more balls. Thus, the probability
of E5 is also bounded by 2−(2t−1):

Pr
[
E5

]
≤ 2−(2t−1). (26)

Combining (24), (25) and (26), we can bound the probability of a transcript being in Bad5:

Pr[Tideal ∈ Bad5] ≤ Pr
[
Tideal ∈ Bad5

∣∣E4∧E5

]
+

1

2n−k−1
+

1

22t−1
. (27)

Note that E4 is the event that for all w ∈ {0, 1}n−k, there are strictly less than m4 inverse ideal
permutation queries such that [x]K- = w and E5 is the event that for any AD,C ∈ {0, 1}∗ and T ∈ {0, 1}t,
the number of forward ideal permutation queries verifying [y

(32)

+ x]s
(t)

+Hr(AD,C) = T , where r = [y
(32)

+ x]r,
is strictly less than m5. To bound the remaining term, we now consider the case where A is just about
to query Reveal, but has already made all its other oracle queries. In the following, we mean by Prim
and Vf, a primitive and verification query already done by A. The union

⋃
Vf,Prim and sum

∑
Vf

∑
Prim

are over all primitive and verification queries already done by A.
A transcript is in Bad5, if there exists a verification and primitive query such that x = (Z∥Ki∥0∥N)

and [y
(32)

+ x]s = T
(t)

− Hr(AD,C), where r = [y
(32)

+ x]r. To bound the probability of this event, we split
it into two, one for the event that the key part of x is equal to the key of the verification query and
a second one for the rest of the event that doesn’t depend on the key. Let E6(Vf,Prim) be the event
that when querying the Reveal oracle, the key Ki of the verification query Vf is equal to the value
[x]K+ associated to the primitive query Prim, and E7(Vf,Prim) be the event that [x]K- = (Z∥0∥N) and

[y
(32)

+ x]s = T
(t)

−Hr(AD,C), where r = [y
(32)

+ x]r, (N,AD,C, T ) are the values associated to the verification
query Vf, and (x, y) are the values associated to the primitive query Prim. Then, using a union bound,

Pr
[
Tideal ∈ Bad5

∣∣E4 ∧ E5

]
≤ Pr

 ⋃
Vf,Prim

E6(Vf,Prim) ∧ E7(Vf,Prim)

∣∣∣∣∣∣E4 ∧ E5


≤

∑
Vf

∑
Prim

Pr
[
E6(Vf,Prim)

∣∣E4 ∧ E5 ∧ E7(Vf,Prim)
]
· Pr

[
E7(Vf,Prim)

∣∣E4 ∧ E5

]
. (28)
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When querying Reveal, the users’ keys are uniformly sampled, independently from any previous queries
and parameters. Thus, for any pair Vf,Prim, the probability that Ki = [x]K+ is 1

2k
. This event is also

independent from E4, E5 and E7(Vf,Prim), which both depend only on parameters already fixed before
querying Reveal. Thus

Pr
[
E6(Vf,Prim)

∣∣E4∧E5∧E7(Vf,Prim)
]
= Pr[E6(Vf,Prim)] =

1

2k
. (29)

Note that conditioned on event E4∧E5, for any verification query Vf there are strictly less than m4+m5

primitive queries Prim such that [x]K- = (Z∥0∥N) and [y
(32)

+ x]s = T
(t)

−Hr(AD,C), where r = [y
(32)

+ x]r,
(N,AD,C, T ) are the values associated to Vf, and (x, y) are the values associated to Prim. Hence,
for a fix verification query Vf, there are strictly less than m4 + m5 primitive queries Prim such that
Pr

[
E7(Vf,Prim)

∣∣E4 ∧ E5

]
is not zero. Thus∑

Vf

∑
Prim

Pr
[
E7(Vf,Prim)

∣∣E4 ∧ E5

]
<

∑
Vf

(m4 +m5) ≤ qv · (m4 +m5) . (30)

Moreover,

m4 =

⌈
2(n− k − 1)

max(1, n− k − 1− log2(p))

⌉
≤ 2 ·

⌈
(n− k)

max(1, n− k − log2(2p))

⌉
= 2 · (n− k)

p

m5 =

⌈
2(2t− 1)

max(1, 2t− 1− log2(p))

⌉
≤ 2 ·

⌈
2t

max(1, 2t− log2(2p))

⌉
= 2 · 2t p

and in combination with (27), (28), (29) and (30), we obtain

Pr[Tideal ∈ Bad5] ≤
qv · 2

(
(n− k)

p
+ 2t

p
)

2k
+

1

2n−k−1
+

1

22t−1
. ⊓⊔

C.2.7 Bounding Bad6 transcripts probability.

Lemma C.7 (Probability of Bad6 transcripts).
Let Bad6 be the set of all transcripts that contain two entries (vf, i, N,AD,C∥T, false) and
(enc, i′, N,AD′,M ′, C ′∥T ′, V ′0∥ · · · ∥V ′ℓ ) such that Ki′ = Ki and ∃r ∈ {0, 1}t,W ∈ {0, 1}n−2t such that

V ′0 = (r∥(T
(t)

−Hr(AD,C))∥W ). Then,

Pr[Tideal ∈ Bad6] ≤
qv
2t

+
qv · ϵ(ℓm)

2t
+
qv · 2 · 2t

d

2k
+

1

22t
.

Proof. Recall that for an entry (enc, i′, N,AD′,M ′, C ′∥T ′, V ′0∥ · · · ∥V ′ℓ ), in the ideal world, V ′0 =

(r∥(T ′
(t)

− Hr(AD
′, C ′))∥W ), with r ←$ {0, 1}t and W ←$ {0, 1}n−2t. Two cases are possible. The first

one is when the two queries are made to the same user, i.e., i = i′, and the second one is when the two
queries are made to different users, i.e., i ̸= i′. The main idea we use to bound the first case is to use
the ϵ-almost ∆-universal property of the function H and the fact that encryption returns random au-
thentication tags in the ideal world. For the second case, we count the number of entry pairs of the form

((vf, i, N,AD,C∥T, false), (enc, i′, N, ·, ·, ·, V ′0∥ · · · ∥V ′ℓ )) with V ′0 = (r∥(T
(t)

− Hr(AD,C))∥W ) and use a
union bound over the events that for such a pair, the independently sampled key Ki is equal to
Ki′ . To count such pairs, we look at the verification entries as bins and all the encryption entries

(enc, i′, N, ·, ·, ·, V ′0∥ · · · ∥V ′ℓ ) as throwing balls of the form [V ′0 ]
r∥([V ′0 ]s

(t)

+Hr(AD,C)) into bins r∥T . Using
our balls-into-bins corollary, we then obtain for each verification entry a bound on the maximum number
m8 of associated encryption entries. This yields an upper bound of qv ·m8 on the number of considered
pairs.

• Bad6-1: case i = i′.
In the ideal world, Bad6 for this case could be redefined as the set of all transcripts τ that contain two

entries (vf, i, N,AD,C∥T, false) and (enc, i′, N,AD′,M ′, C ′∥T ′, V ′0∥ · · · ∥V ′ℓ ) such that T
(t)

−Hr(AD,C) =

T ′
(t)

−Hr(AD
′, C ′), where r = [V ′0 ]

r. To bound the probability of this case, we are going to use the ϵ-almost
∆-universal property of the function H. However, this property require for (AD,C) and (AD′, C ′) to
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be distinct. We are therefore first going to bound the probability of transcripts verifying this case when
(AD,C) = (AD′, C ′).

When (AD,C) = (AD′, C ′), if a transcript is in this case then T
(t)

−Hr(AD,C) = T ′
(t)

−Hr(AD
′, C ′), i.e.,

T = T ′. Depending on the order of the queries, we consider two subcases for when (AD,C) = (AD′, C ′).
The first one is for when the verification query is done after the encryption query, and the second one is
for the inverse order. For the first subcase, when the verification query is done after the encryption query
and (AD,C) = (AD′, C ′), we cannot have that T = T ′, as it would result in a non valid query. Thus
the probability of this subcase is zero. For the second subcase, when the encryption query is done after
the verification query and (AD,C) = (AD′, C ′), the probability that T ′ = T is 1

2t , as encryption queries
return uniform random strings. For each of the at most qv verification queries Vf(i,N,AD,C∥T ), there
can be at most one following encryption query Enc(i,N,AD′,M ′) with answer C ′∥T ′ and the same
(i,N), and the probability that T ′ = T is 1

2t . Thus the probability of this subcase is bounded by qv
2t .

When (AD,C) ̸= (AD′, C ′), if a transcript generated by the adversary A in the ideal augmented
game is in this case, then A has made a verification query Vf(i,N,AD,C∥T ), an encryption query
Enc(i,N,AD′,M ′) with answer C ′∥T ′, and finally a query to Reveal that returned a V ′0 associated to
the previous encryption query such that r = [V ′0 ]

r is a uniform random string. Hence the probability that
a transcript generated by A in the ideal augmented game is in this case is bounded by the probability
that A makes the previously described queries. We are going to consider the case where A is just about
to query Reveal, but has already made all its other oracle queries.

For each of the at most qv verification queries Vf(i,N,AD,C∥T ) done by A, there are at most one
other encryption query Enc(i,N,AD′,M ′) with answer C ′∥T ′ and the same (i,N) done by him. Thus
there are at most qv possible pairs of such queries done by A. When querying Reveal, for each of these

pairs, the value V ′0 associated to the encryption query is computed as (r∥(T ′
(t)

−Hr(AD
′, C ′))∥W ) with r be-

ing sampled uniformly at random and independently from any previous queries. Hence,
as (AD,C) ̸= (AD′, C ′) and H is a ϵ-almost ∆-universal hash function, the probability that

T
(t)

−Hr(AD,C) = T ′
(t)

−Hr(AD
′, C ′) is bounded by

ϵ(max(|AD|t+|C|t,|AD′|t+|C′|t))
2t ≤ ϵ(ℓm)

2t , for r = [V ′0 ]
r

and V ′0 being the associated value to the encryption query. Therefore, using a union bound, the prob-

ability that for at least one of these pairs T
(t)

− Hr(AD,C) = T ′
(t)

− Hr(AD
′, C ′) for r = [V ′0 ]

r, is at

most qv·ϵ(ℓm)
2t . Note that to use the ϵ-almost ∆-universal property of the function H, the associated

data AD, messages M , and ciphertexts C considered, are restricted to byte strings.
Combining the two sub-cases using a union bound, we obtain:

Pr[Tideal ∈ Bad6-1] ≤
qv
2t

+
qv · ϵ(ℓm)

2t
. (31)

• Bad6-2: case i ̸= i′.
The probability calculation for this case will follow the same outline as for Bad2.
Let E8 be the event that there exist AD∗, C∗ ∈ {0, 1}∗ and (N∗, T ∗, r∗) ∈ {0, 1}µ × {0, 1}t × {0, 1}t
such that, the number of encryption queries Enc(·, N∗, ·, ·) with nonce N∗ and associated V ′0 verifying

[V ′0 ]
s

(t)

+Hr∗(AD
∗, C∗) = T ∗ and r∗ = [V ′0 ]

r, is greater or equal to m8 =
⌈

4t
max(1,2t−log2(d))

⌉
. Then,

Pr[Tideal ∈ Bad6-2] = Pr
[
Tideal ∈ Bad6-2 ∧ E8

]
+ Pr[Tideal ∈ Bad6-2 ∧ E8]

≤ Pr
[
Tideal ∈ Bad6-2

∣∣E8

]
+ Pr[E8].

We will now bound the probability of E8, so that we only have to consider the event Tideal ∈ Bad6-2 condi-
tioned by E8 afterward. For any AD,C ∈ {0, 1}∗ and nonce N , let Throw(AD,C,N) be the throwing ex-
periment, where we view each encryption query Enc(·, N, ·, ·) with nonce N and associated V ′0 , as throw-

ing a ball [V ′0 ]
r∥([V ′0 ]s

(t)

+Hr(AD,C)) where r = [V ′0 ]
r into 22t possible bins. For any bin r∥T ∈ {0, 1}2t,

each throw has a conditional probability of at most

PrV ′
0←$Enc(·,N,·,·)

[
[V ′0 ]

r∥[V ′0 ]s = r∥T
(t)

−Hr(AD,C)

]
= Pr

[
[V ′0 ]

s = T
(t)

−Hr(AD,C)

∣∣∣∣ [V ′0 ]r = r

]
· Pr[[V ′0 ]r = r]

=
1

2t
· 1
2t

=
1

22t
.
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If we consider all encryption queries with the nonce N , we throw at most d balls uniformly at random
into 22t bins. Using Lemma C.1, with Q = d and D = 2−2t, the probability that the heaviest bin
of Throw(AD,C,N) contains m8 or more balls is at most 2−2t. If E8 happens, then the bin r∗∥T ∗ in
experiment Throw(AD∗, C∗, N∗) contains m8 or more balls, therefore, the number of balls in the heaviest
bin of Throw(AD∗, C∗, N∗) containsm8 or more balls. Thus, the probability of E8 is also bounded by 2−2t.
Hence,

Pr[Tideal ∈ Bad6-2] ≤ Pr
[
Tideal ∈ Bad6-2

∣∣E8

]
+ 2−2t. (32)

Note that E8 is the event that for any AD,C ∈ {0, 1}∗ and (N,T ) ∈ {0, 1}µ × {0, 1}t, the number of

encryption queries Enc(·, N, ·, ·) with nonce N and associated V ′0 verifying [V ′0 ]
s

(t)

+Hr(AD,C) = T where
r = [V ′0 ]

r, is strictly less than m8. To bound the remaining term, we now consider the case where A is
querying the Reveal oracle and all parameters r have already been sampled, but no user keys have been
sampled yet. In the following, we mean by Enc and Vf, an encryption and verification query already
done by A. The union

⋃
Vf,Enc and sum

∑
Vf

∑
Enc are over all verification queries already done by A

and all encryption queries with the same nonce as the verification query.
A transcript is in Bad6-2, if there exists a verification query Vf(i,N,AD,C∥T ) and an encryption

query Enc(i′, N,AD′,M ′) with the same nonce N and an associated V ′0 such that [V ′0 ]
s

(t)

+Hr(AD,C) = T
where r = [V ′0 ]

r, and Ki′ = Ki. To bound the probability of this event, we split it into two, one for the
event that the keys are equals and a second one for the rest of the event that doesn’t depend on the key.
Let E9(Vf,Enc) be the event that the key Ki of the verification query Vf is equal to the key Ki′ of the

encryption query Enc, and E10(Vf,Enc) be the event that [V ′0 ]
s

(t)

+ Hr(AD,C) = T , where r = [V ′0 ]
r,

(AD,C, T ) are the values associated to the verification query Vf, and V ′0 is the value associated to the
encryption query Enc. Then, using a union bound,

Pr
[
Tideal ∈ Bad6-2

∣∣E8

]
≤ Pr

 ⋃
Vf,Enc

E9(Vf,Enc) ∧ E10(Vf,Enc)

∣∣∣∣∣∣E8


≤

∑
Vf

∑
Enc

Pr
[
E9(Vf,Enc)

∣∣E8∧E10(Vf,Enc)
]
· Pr

[
E10(Vf,Enc)

∣∣E8

]
. (33)

When querying Reveal, the users’ keys are uniformly sampled, independently from any previous queries
and parameters. Thus, for any pair Vf,Enc, the probability that Ki = Ki′ is 1

2k
. This event is also

independent from E8 and E10(Vf,Enc), which both depend only on parameters already fixed before
sampling the users’ keys. Thus

Pr
[
E9(Vf,Enc)

∣∣E8 ∧ E10(Vf,Enc)
]
= Pr[E9(Vf,Enc)] =

1

2k
. (34)

Note that conditioned on event E8, for any verification query Vf there are strictly less than m8 en-

cryption queries Enc with the same nonce N and an associated V ′0 such that [V ′0 ]
s

(t)

+Hr(AD,C) = T ,
where r = [V ′0 ]

r, (AD,C, T ) are the values associated to Vf, and V ′0 is the value associated to Enc.
Hence, for a fix verification query Vf, there are strictly less than m8 encryption queries Enc such that
Pr

[
E10(Vf,Enc)

∣∣E8

]
is not zero. Thus∑

Vf

∑
Enc

Pr
[
E10(Vf,Enc)

∣∣E8

]
<

∑
Vf

m8 ≤ qv ·m8. (35)

Moreover,

m8 =

⌈
4t

max(1, 2t− log2(d))

⌉
≤ 2 ·

⌈
2t

max(1, 2t− log2(2d))

⌉
= 2 · 2t d

and in combination with (32), (33), (34) and (35), we obtain

Pr[Tideal ∈ Bad6-2] ≤
qv · 2 · 2t

d

2k
+

1

22t
. (36)

Combining the two cases (31) and (36) using a union bound, we obtain the following result:

Pr[Tideal ∈ Bad6] ≤
qv
2t

+
qv · ϵ(ℓm)

2t
+
qv · 2 · 2t

d

2k
+

1

22t
. ⊓⊔
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D Attacks and Proofs of Lower Bounds

In this section, we give the details of the attacks against ChaCha20-Poly1305 briefly described in Sec-
tion 7.1. We also lower bound their advantages as stated through Propositions 7.1–7.6.

D.1 Proof of Proposition 7.1 (Forgery Attack)

We define an adversary A that makes one encryption query and qv verification queries, attempting each
time a forgery. If a verification query returns true, then it outputs 1. As a forgery is impossible in the
ideal world, then

Pr
[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
= 0.

Thus
AdvmuAE

ChaCha20-Poly1305[π](A) = Pr
[
AG

Real-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
.

We now describe in detail this adversary A against ChaCha20-Poly1305 and how it constructs its queries.
Let p = 2130 − 5 and note that p

3
4 < 2t < p. In the following, we will use the integer representation for

t-bit strings. The adversary A makes as its first query an encryption query Enc(i,N,AD,M) with nonce
N and inputs of exactly ℓm blocks, whereM = ε is an empty string and AD = AD1∥ · · · ∥ADℓm−1, where
|ADj | = t and ADj = 2t−1. It receives a tag T as answer. Then, the adversary A constructs qv forgery
polynomials (described below). From each polynomial, it crafts a string AD′ and an associated verification

query Vf(i,N,AD′, T ) that returns true with probability at least 3(ℓm−5)
2t−20 .

We denote by rN and sN the hash key (after clamping) and the blinding value, associated to the
nonce N queried during encryption, i.e., rN∥sN = CC block(Ki, N, 0)[1:2t]. Let R denote the set of all
possible hash keys for Poly1305 Mac (after clamping). Let R1, . . . ,Rqv ⊂ R be qv disjoint sets, each of
3
⌊
ℓm−1

4

⌋
hash keys. For each Rq, we will construct a forgery polynomial and the associated pair AD′, T ,

that will be a valid forgery with nonce N , if rN is in Rq. Let

R(x,Rq) = x2 · g(x) ·
∏
r∈Rq

(x− r) mod p

be a polynomial with the set Rq as roots and where g(x) is a non zero polynomial of degree at most⌊
ℓm−1

4

⌋
− 1 defined such that when we rewrite R(x,Rq) as

∑ℓm
j=2 aℓm−j+1 · xj mod p (or equivalently

as
∑ℓm
j=2 a

′
j−2 · xj mod p later in the proof), the coefficients aj satisfies (2t−1 + aj mod p) < 2t for all

j < ℓm. Note that we consider the coefficients aj (and a
′
j) as integers that can take negative values. We

will show shortly how to construct such a polynomial g(x) and will assume for now the existence of a
g(x) ensuring that (2t−1 + aj mod p) < 2t for all j < ℓm. Recall that

Hx(AD, ε) = (c1x
ℓm + · · ·+ cℓm−1x

2 + cℓmx
1 mod p) mod 2t

where cj = 2t + ADj = 2t + 2t−1 (i.e., the integer representation of ADj∥1) for j < ℓm, and cℓm

is the integer representation of len(AD)∥len(ε)∥1. Note that HrN (AD, ε)
(t)

+ sN = T and if rN is in
Rq, then R(rN ,Rq) = 0. We can construct the string AD′ and its associated polynomial as AD′ =
AD′1∥ · · · ∥AD′ℓm−1, where |AD

′
j | = t, AD′j = (2t−1 + aj mod p), and

Hx(AD
′, ε) = (c′1x

ℓm + · · ·+ c′ℓm−1x
2 + c′ℓmx

1 mod p) mod 2t,

where c′j = 2t+AD′j = 2t+(2t−1+aj mod p) (i.e., the integer representation of AD′j∥1) for j < ℓm, and

c′ℓm is the integer representation of len(AD′)∥len(ε)∥1. Thanks to our assumption, (2t−1+aj mod p) < 2t

and therefore, the string AD′ and its associated polynomial is well defined. Moreover, as we constructed
our polynomial so that c′j = (cj + aj mod p) for j < ℓm and c′ℓm = cℓm , then

Hx(AD
′, ε) = (c1x

ℓm + · · ·+ cℓmx
1 +R(x,Rq) mod p) mod 2t.

Furthermore, since when rN is in Rq, we obtain R(rN ,Rq) = 0, it follows that, if rN is in Rq, then:

HrN (AD
′, ε)

(t)

+ sN = HrN (AD, ε)
(t)

+ sN = T.

Hence, Vf(i,N,AD′, T ) is a valid forgery query if rN is in Rq. As rN is sampled uniformly and inde-

pendently from the choices of Rq, the probability that rN ∈ Rq is 3
⌊
ℓm−1

4

⌋
· 1
2t−22 ≥ 3(ℓm−5)

2t−20 . Thus, the
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probability that Vf(i,N,AD′, T ) is a valid forgery query is at least 3(ℓm−5)
2t−20 . The adversary A makes qv

such verification queries, one for each Rq. As the Rq are disjoint, the probability that at least one of

these qv verification queries is a valid forgery is at least 3qv(ℓm−5)
2t−20 . Hence the bound in the proposition

follows.
We now show how to construct a polynomial g(x) so that the coefficients a′j of the polynomial

R(x,Rq) = x2 · g(x) ·
∏
r∈Rq

(x− r) mod p =

ℓm∑
j=2

a′j−2 · xj mod p

satisfies (2t−1 + a′j mod p) < 2t for all j < ℓm − 1. Let ψ =
⌊
ℓm−1

4

⌋
, we can rewrite

∏
r∈Rq (x − r) as

x3ψ +
∑3ψ−1
j=0 bj · xj and g(x) as

∑ψ−1
i=0 gi · xi. Then

g(x) ·
∏
r∈Rq

(x− r) mod p = g0 ·

x3ψ +

3ψ−1∑
j=0

bj · xj
+ g1x

1 ·

x3ψ +

3ψ−1∑
j=0

bj · xj
+ · · ·

+ gψ−1x
ψ−1 ·

x3ψ +

3ψ−1∑
j=0

bj · xj
 mod p.

We define how to construct the coefficients gi (and therefore g(x)), by using a lattice generated by the ψ
polynomials

xi ·

x3ψ +

3ψ−1∑
j=0

bj · xj


where i < ψ. Let L be the lattice generated by the rows of the following matrix
1 b3ψ−1 b3ψ−2 · · · b0 0 · · · · · · 0
0 1 b3ψ−1 b3ψ−2 · · · b0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 1 b3ψ−1 b3ψ−2 · · · b0

p · I4ψ−1


where, for i ≤ ψ, the i-th row represents the polynomial xψ−i ·

(
x3ψ +

∑3ψ−1
j=0 bj · xj

)
(and the columns

represents the coefficients of this polynomial) and where the last 4ψ − 1 rows represents the reductions
modulo p of the coefficients, i.e., p · I4ψ−1 where I4ψ−1 is the identity matrix of size 4ψ − 1. We denote
by (a′4ψ−2, · · · , a′0) the shortest vector in this lattice. It arises as a linear combination of the rows of
the previous matrix and, as such, defines the coefficients gi (that we don’t need to know). More impor-

tantly, R(x,Rq) =
∑ℓm
j=2 a

′
j−2 · xj mod p, where we set a′j = 0 for j > 4ψ − 2. We are left to show

that (2t−1 + a′j mod p) < 2t for all j ≤ 4ψ − 2. We can compute a basis (and determinant) of the
lattice L, by looking at the row echelon form of the previous matrix:[

Iψ A
0 p · I3ψ

]
where A is a ψ × 3ψ matrix. From this matrix, we can observe that the rank of L is 4ψ, and its
determinant is p3ψ. Minkowski’s theorem with the infinity norm yields that, for the shortest vector in

L,
∣∣a′j∣∣ ≤ p

3ψ
4ψ for all j ≤ 4ψ − 2. Thus

∣∣a′j∣∣ ≤ p
3
4 < 2t−1 for all j ≤ 4ψ − 2. Hence −2t−1 < a′j < 2t−1

and (2t−1 + a′j mod p) < 2t for all j ≤ 4ψ − 2.
Therefore, as the adversary A is unbounded, it can compute the smallest vector of L and construct

R(x,Rq) =
∑ℓm
j=2 a

′
j−2 ·xj mod p such that (2t−1 + a′j mod p) < 2t for all j < ℓm− 1. It then proceeds

to the above-described attack.

Note that [AM18] provides an algorithm for solving SVP with the infinity norm used in the proof. Also
note that the complexity of this attack may be exponential when using deterministic SVP algorithms (or
slightly better when using SVP approximation algorithms), making the attack impractical, especially for
large ℓm, but still valid in the model we use here, where the adversary is computationally unbounded. For
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simplicity, we queried only one user for a specific encryption query in our attack. The approach can be
extended to an attack querying multiple users, which then requires at least one encryption query per user.
Moreover, the encryption query we use, in fact, only authenticates the associated data AD = 0t·(ℓm−1);
the message M queried is empty. The attack should be extendable to arbitrary values AD and M of
maximum length ℓm by considering a closest vector (CVP) algorithm rather than a shortest vector (SVP)
one. ⊓⊔

D.2 Key-recovery Attacks

D.2.1 Proof of Proposition 7.2. To prove the claim we describe the following d-repeating adversary
A. It makes d encryption queries Enc(i,N,AD,M) with the same inputs across d different users (indexed
by i) such that n ≥ |M | ≥ k + 2 and receives in return d ciphertexts C1∥T1, . . . , Cd∥Td. The adversary
then makes p permutation queries Prim(Z∥K ′i′∥1∥N) using distinct and independently-chosen keys K ′i′ ,
which it can then use to construct p distinct ciphertext guesses of the form

C ′i′ =M ⊕ (Prim(Z∥K ′i′∥1∥N)
(32)

+ (Z∥K ′i′∥1∥N)).

It then checks whether there exist i, i′ such that Ci = C ′i′ , and if so returns 1, otherwise it returns 0.
Now, in the real world, if there exist i, i′ such that Ki = K ′i′ (i.e., the adversary correctly guessed a

user key) it follows that Ci = C ′i′ . Thus

Pr
[
AG

Real-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
= Pr

⋃
i,i′

(Ci = C ′i′)


≥ Pr

⋃
i,i′

(Ki = K ′i′)

 = 1− Pr

⋂
i,i′

(Ki ̸= K ′i′)

.
Noting that the user keysKi are sampled uniformly at random and using the fact that 1−x ≤ e−x ≤ 1− x

2
for all x ∈ [0, 1], we obtain

= 1−
(
1− p

2k

)d
≥ 1− e−

pd

2k

≥ pd

2k+1
.

On the other hand, in the ideal world, the ciphertexts Ci are sampled uniformly at random. It then
follows that

Pr
[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
= Pr

⋃
i,i′

(Ci = C ′i′)


≤

∑
i,i′

Pr[(Ci = C ′i′)]

=
pd

2|M |

≤ pd

2k+2
.

Where the first inequality follows from the union bound and the second from the restriction on the
message size. Combining the above it follows that

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

pd

2k+1
− pd

2k+2
=

pd

2k+2
. ⊓⊔

D.2.2 Proof of Proposition 7.3. Consider the following adversary A making one permutation query
Prim(Z∥K∥0∥N), using an arbitrary nonce N and key K, to construct from it guess values for the hash
key and the blinding value as follows

r∥s = (Prim(Z∥K∥0∥N)
(32)

+ (Z∥K∥0∥N))[1:2t].
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It then constructs a guess tag T = Hr(AD, ε)
(t)

+ s for arbitrary associated data AD and an empty
ciphertext. Afterwards, it makes qv verification queries Vf(i,N,AD, T ) with the same inputs across qv
different users (indexed by i) and returns 1 if any of these queries returns true.

In the ideal world, a verification query always returns false, and thus Pr
[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
=

0. In the real world, however, if the key Ki sampled by user i is equal to K, the verification query
Vf(i,N,AD, T ) will be a valid forgery. Noting again that the user keys are sampled independently and
uniformly at random and applying a similar analysis to that used in the previous attack, we obtain:

AdvmuAE
ChaCha20-Poly1305[π](A) = Pr

[
AG

Real-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
− 0

≥ Pr

[⋃
i

(Ki = K)

]

= 1−
(
1− 1

2k

)qv
≥ qv

2k+1
. ⊓⊔

D.3 Proof of Proposition 7.4 (Key-collision Attacks)

We describe a d-repeating adversary A that makes qe encryption queries across qe different users, such
that qe is an integer multiple of d. It uses qed different nonces throughout its encryption queries and reuses
each of these nonces precisely d times across different users. Thus each query can be uniquely identified
by the user identity i and the set of queries can be partitioned according to the nonce value used in the
query. In each encryption query Enc(i,N,AD,M) it uses the same messageM and associated data AD,
where |M | ≥ k+2, and receives in turn a ciphertext Ci of length greater or equal to |M |. Then, if there
exist two distinct queries i, i′ using the same nonce such that Ci = Ci′ , i.e., two colliding ciphertexts
within the same partition, the adversary outputs 1 and outputs 0 otherwise.

Let Ni and Ki denote the nonce and key used in query i. In the real world, we expect the ciphertexts
to collide whenever the keys collide if the same nonce and message are used. Thus, quantifying over all
queries within the same partition, it follows that

Pr
[
AG

Real-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
= Pr

 ⋃
i,i′ :Ni=Ni′

(Ci = Ci′)


≥ Pr

 ⋃
i,i′ :Ni=Ni′

(Ki = Ki′)


= 1− Pr

 ⋂
i,i′ :Ni=Ni′

(Ki ̸= Ki′)

.
To evaluate this, we can consider the probability of non-colliding keys for each partition separately and
then multiply the probabilities together as they are independent of each other, thereby yielding

= 1−
∏
N

d−1∏
i=1

(
1− i

2k

)
.
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Then using the inequality 1− x ≤ e−x for all x and simplifying, we obtain

≥ 1−
∏
N

d−1∏
i=1

e−
i

2k

= 1−
∏
N

e−
∑d−1
i=1

i

2k

= 1−
∏
N

e−
d(d−1)

2k+1

= 1−
(
e−

d(d−1)

2k+1

) qe
d

= 1− e−
qe(d−1)

2k+1 . (37)

Finally, using that e−x ≤ 1− x
2 for all x ∈ [0, 1] we obtain

≥ qe(d− 1)

2k+2
.

Now, in the ideal world the ciphertexts are sampled at random. Thus for each nonce, the probability
of having a collision in the ciphertexts is bounded above by the following birthday bound

d(d− 1)

2|Ci|+1
≤ d(d− 1)

2|M |+1
≤ d(d− 1)

2k+3
.

Applying the union bound to sum up over all the queried nonces we obtain

Pr
[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
≤ qe

d
· d(d− 1)

2k+3
=
qe(d− 1)

2k+3
. (38)

Combining the above we get

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

qe(d− 1)

2k+2
− qe(d− 1)

2k+3

=
qe(d− 1)

2k+3
. ⊓⊔

D.4 Block-collision Attacks

D.4.1 Proof of Proposition 7.5. We describe a distinguishing adversary A against ChaCha20-
Poly1305 that works by detecting collisions in the outputs of the ChaCha20 permutation. It will make
encryption queries that result in distinct inputs to the ChaCha20 permutation and look for collisions
across the outputs of the permutation corresponding to a specific user—an event that can only happen
in the ideal world.

Specifically, the adversary encrypts B blocks of plaintext per user, totalling σe blocks across all users,
such that σe is a multiple of B. It will query each of the σe

B different users exactly once. In each encryption
query Enc(i,Ni, ε,M), it uses a fixed B-block message M = M1∥M2∥ · · · ∥MB together with a distinct
nonce Ni and obtains in return a ciphertext Ci = Ci1∥Ci2∥ · · · ∥CiB∥T i. For each ciphertext Ci it receives,
it looks for two distinct block counters j, j′ such that

Cij ⊕Mj

(32)

− (Z∥0k∥j∥Ni) = Cij′ ⊕Mj′
(32)

− (Z∥0k∥j′∥Ni).

If such a collision is found for any i, it outputs 1; otherwise it outputs 0.
In the ideal world, the blocks Cij are sampled uniformly at random. Thus, the probability of a collision

across any user is given by:

Pr
[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
= Pr

⋃
i

⋃
j ̸=j′

(
Cij ⊕Mj

(32)

− (Z∥0k∥j∥Ni) = Cij′ ⊕Mj′
(32)

− (Z∥0k∥j′∥Ni)
)

= 1− Pr

⋂
i

⋂
j ̸=j′

(
Cij ⊕Mj

(32)

− (Z∥0k∥j∥Ni) ̸= Cij′ ⊕Mj′
(32)

− (Z∥0k∥j′∥Ni)
)

= 1−

σe
B∏
i=1

B−1∏
j=1

(
1− j

2n

)
.
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Then using the inequality 1− x ≤ e−x for all x and simplifying, we obtain

≥ 1−

σe
B∏
i=1

B−1∏
j=1

e−
j

2n

= 1−

σe
B∏
i=1

e−
∑B−1
j=1

j
2n

= 1−

σe
B∏
i=1

e−
B(B−1)

2n+1

= 1−
(
e−

B(B−1)

2n+1

)σe
B

= 1− e−
σe(B−1)

2n+1 .

Finally, using that e−x ≤ 1− x
2 for all x ∈ [0, 1] we obtain

≥ σe(B − 1)

2n+2
.

On the other hand, in the real world, ciphertexts are generated by xoring the plaintexts with the
ChaCha20 block function, and thus

Cij ⊕Mj = CC block(Ki, Ni, j) = π(Z∥Ki∥j∥Ni)
(32)

+ (Z∥Ki∥j∥Ni).

Then for any fixed i and any pair of distinct integers (j, j′) the following condition:

Cij ⊕Mj

(32)

− (Z∥0k∥j∥Ni) = Cij′ ⊕Mj′
(32)

− (Z∥0k∥j′∥Ni)

reduces to

π(Z∥Ki∥j∥Ni) = π(Z∥Ki∥j′∥Ni).

Since π is a permutation and j ̸= j′ it follows that

Pr
[
AG

Real-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
= 0.

Combining the above, we obtain the following bound

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

σe(B − 1)

2n+2
. ⊓⊔

D.4.2 Proof of Proposition 7.6. The attack from Proposition 7.5 only detects collisions within
queries originating from the same user. In principle it is possible to detect collisions across queries from
distinct users if the difference between the two user keys is known. However, in our security model this
information is not available to the adversary and such an assumption cannot be justified. Nevertheless, if
we ignore the part of the ChaCha20 block function’s output where the key is xored, we essentially have
access to a truncated output of the ChaCha20 permutation given by:

[π(Z∥K∥j∥N)]K- = [Cj ⊕Mj ]
K-

(32)

− (Z∥j∥N).

This way, distinguishing the real world from the ideal world can be reduced to distinguishing a truncated
random permutation from a truncated random function with σe queries. This problem was studied
in [GG21] where a lower bound for this distinguishing advantage was established. The intuition behind
the attack is that a collision in the output of a truncated random permutation is less likely than a collision
in the output of a random function. In contrast to [GG21], in our setting, the adversary does not have
full control over the queried inputs—namely the user keys. Nevertheless, the attack and its analysis can
be easily adapted to our setting, as shown below.

The adversary A queries the encryption oracle a total number of σe blocks across the different users,
where a distinct nonce N is used for every encryption query (across all users). For each of the σe blocks
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queried, we denote by WJ the (n− k)-bit string [Cj ⊕Mj ]
K-

(32)

− (Z∥j∥N), where Cj is the encryption of
the j-th message blockMj with nonce N and J is an index uniquely identifying every distinct pair (N, j).
Accordingly, because every encryption query employs a distinct nonce each value WJ is produced using
a unique pair (N, j). The adversary outputs 1, if WJ ̸=WJ′ for all J ̸= J′ and it outputs 0 otherwise.

Now, in the ideal world, the strings WJ are independent and uniformly distributed, and thus the
probability of the adversary outputs 1 is given by

Pr
[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
=

σe−1∏
J=0

(
1− J

2n−k

)
.

By the Weierstrass product inequality we can bound this expression from below to obtain

σe−1∏
J=0

(
1− J

2n−k

)
≥ 1−

σe−1∑
J=0

J

2n−k
= 1− 1

2
· σe(σe − 1)

2n−k
,

and then using that σe ≤ 2
n−k

2 the above reduces to

Pr
[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
≥ 1

2
. (39)

On the other hand, in the real world the WJ’s are computed by evaluating a permutation over σe
distinct inputs and then truncating k bits from each. Thus, the probability of all these values being
distinct is given by

Pr
[
AG

Real-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
=

σe−1∏
J=0

(
1− J(2k − 1)

2n − J

)

=

σe−1∏
J=0

(
2n − J · 2k

2n − J

)

=

σe−1∏
J=0

(
1− J

2n−k

)
·
σe−1∏
J=0

(
2n

2n − J

)

= Pr
[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
·
σe−1∏
J=0

(
2n

2n − J

)
.

Now, the second term on the right-hand side can be bounded from below using the inequality (2n − J) ·
(2n + J) ≤ 22n, leading to the following inequality

σe−1∏
J=0

(
2n

2n − J

)
≥
σe−1∏
J=0

(
2n + J

2n

)
=

σe−1∏
J=0

(
1 +

J

2n

)
.

Further applying the Weierstrass product inequality we obtain that

σe−1∏
J=0

(
1 +

J

2n

)
≥ 1 +

σe−1∑
J=0

J

2n
= 1 +

σe(σe − 1)

2n+1
,

and thus,

Pr
[
AG

Real-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
≥ Pr

[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
·
(
1 +

σe(σe − 1)

2n+1

)
.

It then follows that

AdvmuAE
ChaCha20-Poly1305[π](A) ≥

σe(σe − 1)

2n+1
· Pr

[
AG

Ideal-muAE
ChaCha20-Poly1305[π] ⇒ 1

]
,

where the final bound is obtained by combining (39) and this last inequality. ⊓⊔
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