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Abstract

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky (J. ACM ‘96), is a primi-
tive that allows a client to perform RAM computations on an external database without revealing
any information through the access pattern. For a database of size N , well-known lower bounds
show that a multiplicative overhead of Ω(logN) in the number of RAM queries is necessary as-
suming O(1) client storage. A long sequence of works culminated in the asymptotically optimal
construction of Asharov, Komargodski, Lin, and Shi (CRYPTO ‘21) with O(logN) worst-case
overhead and O(1) client storage. However, this optimal ORAM is known to be secure only
in the honest-but-curious setting, where an adversary is allowed to observe the access patterns
but not modify the contents of the database. In the malicious setting, where an adversary is
additionally allowed to tamper with the database, this construction and many others in fact
become insecure.

In this work, we construct the first maliciously secure ORAM with worst-case O(logN)
overhead and O(1) client storage assuming one-way functions, which are also necessary. By
the Ω(logN) lower bound, our construction is asymptotically optimal. To attain this overhead,
we develop techniques to intricately interleave online and offline memory checking for malicious
security. Furthermore, we complement our positive result by showing the impossibility of a
generic overhead-preserving compiler from honest-but-curious to malicious security, barring a
breakthrough in memory checking.
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1 Introduction

Suppose a user would like to outsource their database to a server. While the user could encrypt
the data to hide the contents within the database, it is possible that even the access pattern cor-
responding to the queries to the database could result in information leakage about the underlying
data [IKK12, CGPR15]. To solve this issue, Goldreich and Ostrovsky [GO96] propose the notion
of Oblivious RAM (ORAM), a primitive that supports the same database queries but transforms
the access pattern to remove any information leakage. As a general technique to ensure privacy
of RAM computations, ORAM has many applications including cloud computing, multi-party pro-
tocols, secure processor design, and private contact discovery, the latter as implemented by the
private messaging service Signal [SCSL11, FDD12, LO13, WHC+14, BNP+15, FRK+15, GHJR15,
LWN+15, ZWR+16, DFD+21, Con22].

To hide the access pattern, the ORAM client has to pay a communication cost. This cost is generally
quantified in terms of overhead : the number of (physical) queries in the oblivious simulation per
underlying (logical) database query. Note that ORAM is only interesting when we require both
the overhead and the local storage of the client to be small. Otherwise, the client could simply
conduct a linear scan of the whole database for every query or download the whole database and
make queries locally.

Larsen and Nielsen [LN18] show that for a database of size N , Ω(logN) overhead is necessary for
O(1) client space. After a long line of research [GO96, OS97, DMN11, GM11, SCSL11, KLO12,
CGLS17, CCS17, CNS18, PPRY18], the celebrated construction of OptORAMa by Asharov, Komar-
godski, Lin, Nayak, Peserico, and Shi [AKL+20] matches this lower bound with amortized O(logN)
overhead and O(1) client space. Asharov, Komargodski, Lin, and Shi [AKLS21] de-amortize this
construction to fully match the lower bound with worst-case O(logN) overhead.

Tampering adversaries. Many prior ORAM constructions, including OptORAMa [AKL+20]
and its de-amortized counterpart [AKLS21], consider security against passive adversaries that can
only observe access patterns. In reality, an adversary can potentially do a lot more. In many
applications, the adversary can play an active role in learning information from access patterns by
tampering with the memory [RFY+13, FRK+15, MPC+18]. A tampering adversary can clearly
violate correctness by arbitrarily modifying the contents in the database. Critically, however, a
tampering adversary can also breach obliviousness. In fact, we show in Section 2 that many ORAM
constructions [CGLS17, CNS18, PPRY18, AKL+20, AKLS21] are generally not oblivious when
interacting with a tampering adversary.

As such, we view obliviousness against non-tampering adversaries as the honest-but-curious defini-
tion of obliviousness, whereas we consider security against tampering adversaries to be the natural
maliciously secure notion of obliviousness. For a maliciously secure ORAM, we would like the
following properties to hold (see Section 3.3 for a formal definition):

• The user’s view should be indistinguishable from interacting with an honest RAM database
(up until an abort).

• A malicious adversary should not be able to learn anything from tampering with the database
except for the number of user RAM queries, even via the timing of a client abort.
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Existing constructions. The notion of maliciously secure ORAM (also called tamper-proof
ORAM) was first proposed by Goldreich and Ostrovsky [GO96]. They argue that their ORAM
constructions can be made maliciously secure with O(1) blowup in overhead because it is possible
to time-stamp all physical writes, i.e., to compute the number of times a given physical (not logical)
address has been written to. Authenticating time-stamped messages prevents replay attacks, forcing
the adversary to always respond honestly. However, their construction has overhead O(log3N).

Other works [SDS+18, RFY+13] use the tree-based paradigm to construct maliciously secure ORAMs.
These works use collision-resistant hash functions (CRHFs) to impose a Merkle tree [Mer90] on the
memory, with the root node stored locally by the client. Crucially, this does not add any asymp-
totic overhead since a Merkle tree can be naturally super-imposed on the underlying tree. However,
since these constructions follow the tree-based paradigm, they do not achieve the optimal O(logN)
overhead for general word sizes.

Unfortunately, in Section 2, we argue that these techniques do not work for the existing optimal
ORAM construction [AKLS21]. Indeed, there is no known O(logN) overhead ORAM that is ma-
liciously secure. There are also no known lower bounds showing separations between the overhead
needed for honest-but-curious ORAMs and maliciously secure ORAM. This motivates the following
question:

Question 1.1. Does there exist a maliciously secure ORAM construction with O(logN) overhead
and O(1) client storage?

Generic compilers for malicious security. One can ask more generally if there is a generic
way to compile any honest-but-curious ORAM into one that is maliciously secure. In this setting,
a compiler Π is a layer between any honest-but-curious ORAM C and the server, in the following
sense: the compiler Π takes queries from C and interacts with the server to generate a response for
C, and we want the composition of Π and C to be a maliciously secure ORAM.

One solution to this would be memory checking, a notion first defined by Blum, Evans, Gemmell,
Kannan, and Naor [BEG+91]. At a high level, a memory checker can be seen as a layer between
the user and an unreliable memory which verifies the correctness of the memory’s answers to the
user’s requests, using small, private, and reliable space. In fact, one can view both time-stamping
and Merkle tree verification as special cases of memory checking.

Memory checking is clearly such a compiler, as the client can use a memory checker to make
sure the adversary always answers honestly. If we had an O(1)-overhead memory checker, then
we could compile the optimal honest-but-curious ORAM constructions into ones that are mali-
ciously secure with O(logN) overhead. However, best known memory checker constructions have
a bandwidth of O(logN) [BEG+91, NN98, GTS01, HJ06, DNRV09, PT11].1 Therefore, applying
such a memory checker to an optimal ORAM construction with Θ(logN) overhead would result
in a maliciously secure ORAM with O(log2N) overhead. Moreover, Dwork, Naor, Rothblum, and
Vaikuntanathan [DNRV09] show that deterministic and non-adaptive memory checkers – capturing

1Bandwidth refers to the ratio of the number of physical bits accessed to the number of bits being requested.
While [PT11] achieves O(logN/ log logN) overhead, its bandwidth is still O(logN) because the logical and physical
word sizes differ by more than a constant factor. In our setting, the logical and physical word sizes will always differ
by at most a constant factor, so overhead and bandwidth are asymptotically equivalent.
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the known memory checking constructions – must have overhead Ω(logN/ log logN). Therefore,
barring a major development in memory checking, this approach will not work.

But do compilers have to be memory checkers? Does a weaker compiler suffice? This leads us to
the following question:

Question 1.2. Does an O(1)-overhead compiler from honest-but-curious to maliciously secure
ORAM give an O(1)-overhead memory checker?

If so, this would present a memory checking barrier to generically compile any optimal honest-but-
curious ORAM into an optimal maliciously secure ORAM.

1.1 Our Contributions

In this work, we resolve both questions. To answer Question 1.1, we construct MacORAMa, a
maliciously secure oblivious RAM with worst-case O(logN) overhead.

Theorem 1.3 (Informal version of Theorem 9.5). Assuming the existence of one-way functions, for
databases of size N and word size ω(logN), there is an ORAM construction with O(logN) worst-
case overhead, O(N) server storage, and O(1) client storage that is secure against poly(N)-time
adversaries that can tamper with the database. Moreover, if the client (but not the adversary) is
given access to a random oracle, our construction is unconditionally statistically secure, even against
computationally unbounded adversaries.

We compare MacORAMa to previous ORAM constructions and lower bounds in Table 1.

For word size ω(logN), this not only matches the lower bound known for honest-but-curious
ORAM [LN18, KL21], but also shows that malicious security is possible with no additional asymp-
totic overhead. Interestingly, even though maliciously secure ORAM is a stronger notion than
memory checking, our construction matches the best known memory checker constructions (e.g.,
[BEG+91, NN98, GTS01, HJ06, DNRV09, PT11]) in terms of bandwidth. In other words, mali-
ciously secure ORAM is a stronger primitive than both honest-but-curious ORAM and memory
checking, and our construction achieves the best known bandwidth for both simultaneously.

Also, we observe that the existence of one-way functions is necessary for maliciously secure ORAM.
One can easily show that the need for hiding the data itself (which is typically done via secret-
key encryption) implies the existence of one-way functions. Furthermore, Naor and Rothblum
[NR09] show that any memory checker, and hence maliciously secure ORAM, with local space s
and overhead q (in bits) such that s · q = o(N) implies the existence of (almost) one-way functions.
Therefore, our construction uses provably minimal assumptions.

To resolve Question 1.2, we show that any generic compiler from an honest-but-curious ORAM to
a maliciously secure one needs to essentially be a memory checker.

2While the access-pattern is unconditionally statistically secure, one ultimately needs the existence of one-way
functions to hide (i.e., encrypt) the underlying data.
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Construction Client
Storage

Server
Storage Overhead Assumption Maliciously

Secure
[GO96] Θ(1) Θ(N logN) Θ(log3N)∗ OWF Yes

Path ORAM [SDS+18] ω(logN) Θ(N) Ω(log2−ϵN) None2 No
Path ORAM [SDS+18] ω(logN) Θ(N) Ω(log2−ϵN) CRHF Yes
PanORAMa [PPRY18] Θ(1) Θ(N) Θ(logN log logN)∗ OWF No
OptORAMa [AKL+20] Θ(1) Θ(N) Θ(logN)∗ OWF No

[AKLS21] Θ(1) Θ(N) Θ(logN) OWF No

Lower Bound
[GO96, LN18, KL21] Θ(1) Θ(N) Ω(logN) – –

MacORAMa
(Our work) Θ(1) Θ(N) Θ(logN) OWF Yes

Table 1: This table outlines some of the known ORAM constructions secure against poly(N)-time
adversaries (i.e., for λ = N) for any word size w = ω(logN) and w ≤ (logN)1+ϵ, for 0 < ϵ < 1.
We justify this choice of word size in the malicious setting in Section 2.4. Client and server storage
are measured in terms of the number of words. The assumption column refers to what assumptions
the constructions use to prove security. “OWF” stands for the existence of one-way functions, and
“CRHF” stands for the existence of collision-resistant hash functions. Overheads with an asterisk (*)
superscript denote amortized overheads.

Theorem 1.4 (Informal version of Theorem 5.3). If there exists a generic honest-but-curious to
maliciously secure ORAM compiler with O(1) blowup, there exists a memory checker3 with O(1)
overhead.

Therefore, the existence of O(1)-overhead memory checkers exactly characterizes the existence of
an O(1)-blowup compiler from honest-but-curious to maliciously secure ORAM. However, since the
best memory checkers have bandwidth O(logN), this is a barrier to an overhead-preserving generic
compiler. As a result, to construct our maliciously secure ORAM with O(logN) overhead, we use
the existing optimal construction in a white-box way.

Our techniques. To prove Theorem 1.3, we use more general notions of memory checking. Blum
et al. [BEG+91] define an online memory checker as one which immediately verifies the correctness
of every answer it gives the user and an offline memory checker as one that only needs to report
that some error has occurred after a batch of requests. While all known online memory checkers
incur an additional blowup of Ω(logN), there exist offline memory checkers that achieve amortized
O(1) bandwidth [BEG+91, DNRV09]. Even though offline memory checking alone is insufficient to
guarantee malicious security, we show how to intricately combine online and offline memory checking
techniques to get O(1) blowup and malicious security simultaneously. We describe these techniques
in Section 2.3.

3Technically, we consider a slightly different notion of memory checking that we show is both necessary and
sufficient for compiling honest-but-curious to maliciously secure ORAM. See Section 5 for more details.
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We believe that our techniques in combining online and offline memory checking are general enough
to extend to future hierarchical ORAM constructions. Furthermore, as memory checking has other
applications in cryptography and beyond [BEG+91, CSG+05, ABC+07, JK07, OR07, SW13], our
techniques may be of independent interest.

1.2 Related Work

Server-side computation. The lower bounds of Goldreich and Ostrovsky [GO96], Larsen and
Nielsen [LN18], and Komargodski and Lin [KL21] assume that the server is a “passive storage,”
i.e., supports only reads and writes. Crucially, they assume that the honest server does not do any
additional work. While we only consider the passive storage model, we point out that prior work
has in fact leveraged server-side computation to construct maliciously secure ORAMs with smaller
client communication overhead [AKST14, DvF+16, AFN+17, HGY20]. For example, Devadas et al.
[DvF+16] construct Onion ORAM, which is a maliciously secure ORAM with O(1) communication
overhead for word size ω̃(log6N) (where ω̃ hides log logN factors) by relying on server-side compu-
tation. Hoang et al. [HGY20] construct a multi-server maliciously secure ORAM with server-side
computation achieving O(1) communication overhead for word size ω(logN). These constructions
generally rely on poly-logarithmic server work.

However, ORAM constructions with server-side computation are unsuitable for the multi-party com-
putation (MPC) setting. For example, ORAMs can be used to construct MPC protocols [GKK+12,
LO13, Tof14, KS14, WHC+14, LWN+15], but any server-side work has to be computed using an
MPC protocol with poly-logarithmic circuit size and is thus expensive.

Multi-client maliciously secure ORAM. Several works have studied the problem of a multi-
client ORAM [FWC+12, SS13, LO13, MMRS15, BMN17, MMRS17, CFLM20]. In this setting, data
owners can delegate access to their database to third party clients, while preserving the privacy of
the clients. In particular, the access patterns must remain hidden not only from the server, but also
from other clients.

This problem has been studied in both the honest-but-curious and malicious setting. Blass et
al. [BMN17] consider the problem in the setting where only the server is malicious. Maffei et al.
[MMRS15, MMRS17] further consider the model where both the server and the clients are malicious.
In the setting of the latter work, one not only has to protect against tampering servers, but also
against tampering clients to ensure such clients do not compromise the privacy of other clients.

However, most of these constructions at the core either rely on tree-based ORAM schemes interleaved
with Merkle trees or apply a Merkle tree on top of a hierarchical scheme. Therefore, these do not
achieve the desired efficiency for general word sizes.

Weaker notions of malicious security. The work of Fletcher et al. [FRK+15] relies on the
tree-based paradigm and recursively uses PRFs and authentication to cleverly compress the posi-
tion map and to time-stamp in an alternate way. While the construction is extremely efficient in
practice, they achieve a weaker notion of malicious security. Their construction promises oblivi-
ousness against honest-but-curious adversaries but guarantees only correctness against tampering
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adversaries. In particular, the timing of the client’s abort in the presence of a tampering adversary
can leak information about the user’s access patterns.

1.3 Organization

In Section 2, we give a technical overview of our result. In Section 3, we define the cryptographic
primitives that we use and our definitions of malicious security. In Section 4, we define memory
checking, and we give constructions for both online and offline memory checking. In Section 5, we
define a weaker notion of memory checking that we call separated memory checkers, and we show
that any generic compiler must satisfy this notion of memory checking. In Section 6, we define a
notion of write-deterministic algorithms, and we argue that algorithms that are write-deterministic
can be made maliciously secure with O(1) blowup in overhead. In Section 7, we show how the
building blocks for the final ORAM construction can be made maliciously secure. In Section 8, we
give a maliciously secure hash table construction that matches the efficiency of previous honest-
but-curious constructions. Finally, in Section 9, we give our ORAM construction and its proof of
security. We defer many technical definitions, theorems, and proofs to the appendix.

2 Technical Overview

2.1 The Hierarchical ORAM Paradigm

The hierarchical ORAM framework was first introduced by Goldreich and Ostrovsky [GO96]. For
a database D of size N , the corresponding hierarchical ORAM contains L = log2N oblivious hash
tables H1, . . . ,HL, where Hi contains 2i data items. Upon receiving a read or write to some address
addr ∈ D, the ORAM proceeds as follows:

• Look-up phase: Perform a hash table lookup for addr in each level H1, . . . , HL sequentially,
until the key addr is found. If addr is found in level Hi, look up dummies in the subsequent
layers Hi+1, . . . ,HL. If the operation is a read, copy the data found in Hi to H1 and return
it. If it is a write, write the new value to H1 that was provided as part of the access.

• Rebuild phase: Find the lowest level (i.e., smallest index) ℓ which is empty. If all levels are
non-empty, set ℓ := L. Merge all the elements in the first ℓ− 1 layers

⋃
1≤j≤ℓ−1Hi to layer ℓ,

while only keeping the copy of any addr in the lowest possible level. Construct a new oblivious
hash table at level ℓ with these contents. Now H1, . . . ,Hℓ−1 are empty, and Hℓ is non-empty.

For each access to D, we perform one hash table lookup in each Hi and one write to H1. For these
lookups to be efficient, we can use an oblivious Cuckoo hashing scheme [PR04, GM11, CGLS17]
to achieve essentially O(1) lookup time. Moreover, in the rebuild phase, the ith level is rebuilt
every 2i accesses. If the rebuild time for level i takes time T (2i), then the total number of queries
for t accesses to D is essentially given by O(t log(N)) +

∑logN
i=1 ⌈

t
2i
⌉ · T (2i). In the original work

of Goldreich and Ostrovsky [GO96], they show how to obtain T (n) = O(n log2 n), which gives an
amortized query complexity of O(log3N). Patel, Persiano, Raykova, and Yeo [PPRY18] improve
this to T (n) = O(n log log n), giving an amortized query complexity of O(logN log logN). Finally,
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the work of Asharov et al. [AKL+20] shows how to reduce to T (n) = O(n), giving an overall number
of queries of

logN∑
i=1

⌈
t

2i

⌉
·O(2i) = O(t logN),

resulting in an amortized query complexity of O(logN). This complexity was then de-amortized in
the work of Asharov et al. [AKLS21] to obtain O(logN) worst-case query complexity.

The main invariant maintained in the hierarchical construction is that any key corresponding to
a real address will be looked up only once in the life span of an oblivious hash table Hi. To see
this, note that once we find a key addr in level i, we search for dummies in subsequent layers. We
then write back addr to H1, and addr will always exist in a lower level than Hi until Hi is rebuilt.
Therefore, the hash tables only need to guarantee obliviousness when this invariant is met.

2.2 Insufficiency of Standard Techniques

2.2.1 Authentication

For static databases (i.e., ones that do not support writes), one could use message authentication
codes (MACs). MACs add tags to data (e.g., to ciphertexts) to make them difficult to modify or
forge. However, when the database supports both reads and writes, MACs may not be sufficient
because MACs do not protect against replay attacks, attacks where the server responds with old au-
thenticated content. In particular, since ORAMs have to support dynamic updates, authentication
alone is not sufficient. We show an explicit attack on hierarchical ORAMs including OptORAMa
[AKL+20, AKLS21] and PanORAMa [PPRY18] even when MACs are added.

Replay attack. First, suppose the user requests a read to address addr, and addr is found at
hash table Hi. Consider a malicious database that effectively does not write the value of addr back
to H1. Now, suppose the user requests a write to address addr′, and suppose that no rebuilding
has happened between the two accesses (e.g., this happens when the number of total accesses
so far is odd). If addr′ = addr, since addr was not written back to H1, the user looks up addr
in all layers up to Hi, just as in the previous access. Therefore, the access pattern to tables
H1, · · · , Hi in both cases will look the same. On the other hand, if addr′ ̸= addr, then the access
pattern is very likely to be different. Hence, the adversary is able to distinguish between access
patterns A1 = {(read, addr), (write, addr)}, and A2 = {(read, addr), (write, addr′)}, which breaks the
obliviousness of the ORAM.

More generally, replay attacks can break the invariant that any key is looked up exactly once in the
life span of an oblivious hash table. As a succinct summary, obliviousness of hash table lookups
depends on the correctness of previous hash table lookups.

2.2.2 Time-stamping

Goldreich and Ostrovsky [GO96] argue that their constructions are maliciously secure because it
is possible to time-stamp all physical writes. Roughly speaking, time-stamping means that at any

10



point in time, the client is able to locally compute the number of times any physical (not logical)
address has been overwritten. If the client uses authenticated encryption to encrypt the data
along with its time-stamp, any replay attack can be easily detected with essentially no blowup
in overhead or local storage. In particular, since the hash tables in [GO96] are constructed using
several AKS oblivious sorts [AKS83], it is in fact time-stampable. Therefore, their construction gives
a maliciously secure ORAM construction which achieves O(log3N) overhead. However, optimal
ORAM schemes [AKL+20, AKLS21] do not seem to be time-stampable in the same way because
the access patterns of the writes are not deterministic.

The Marking Problem. Consider the following arbitrary sequence of RAM operations, inspired
by Lemma 3.3 of Dwork et al. [DNRV09].

• Initialize a database of size n and write 0 to all of the indices.
• Choose arbitrary S ⊆ [n] of size n/2 and write 1 to all indices in S.

Claim 2.1. The Marking Problem as defined above cannot be time-stamped with o(n) bits of memory.

Proof. A time-stamping function T (i, t) outputs the number of times a given index i has been
written to up to time t. Note that T (i, 3n/2) = 2 if and only i ∈ S. Therefore, being able to
compute T (·, ·) is sufficient to recover the set S. Since there are 2(1−o(1))n possibilities for S, is clear
that computing T (·, ·) must require (1− o(1)) · n bits of space.

Balls-in-Bins Hashing. Consider the following balls-in-bins hashing algorithm for a list of values.

• Iterate over the list of n “balls” labeled by keys k1, k2, . . . , kn, while assigning a random value
ri ← [B] to ki.4

• Initialize empty buckets L1, . . . LB.
• Iterate over i ∈ [n], and write ki into the next available slot in bucket Lri .

Claim 2.2. The Balls-in-Bins Hashing Problem as defined above cannot be time-stamped in fewer
than n bits of memory for B > 1.

Proof. By a similar argument as in the marking problem, one can argue that a time-stamping
function can be used to recover all of the random ri values, which has entropy n log2(B) ≥ n (for
B ≥ 2). Thus, for any B > 1, this sequence of operations cannot be time-stamped with fewer than
n bits of memory.

While these might seem like contrived examples, these exact sequences of RAM operations shows
up in OptORAMa and its de-amortized version [AKL+20, AKLS21] within the hash table imple-
mentation.

4Even if one generates ri values via something like PRF(ki), a similar lower bound applies since the ordering of ki
is random.
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In particular, whenever an address is visited in the hash table Hi at level i of the hierarchical
ORAM, Asharov et al. [AKLS21] mark the visited elements and then remove these elements during
the rebuild phase. Crucially, these hash table constructions [AKL+20, AKLS21] work off of Patel
et al.’s [PPRY18] idea of reusing the residual randomness of unvisited elements to attain linear
rebuild time. Therefore, it is important that all marked elements are memory checked and removed
to achieve this guarantee. Since the sequence of logical addresses read could be arbitrary, by
Claim 2.1, it is not possible to time-stamp this sequence in low space.

Looking ahead, we modify the oblivious hash table constructions of OptORAMa and its de-amortized
version [AKL+20, AKLS21] to mark in a different way that is still query and space efficient but can
now be made safe against malicious servers.

The constructions of Asharov et al. [AKL+20, AKLS21] also use balls-in-bins hashing in the con-
struction of the hash table. Intuitively, if a malicious adversary deletes elements during the balls-
in-bins hashing, some elements will be lost during the hash table construction. An adversary can
exploit this to detect repeated access patterns in a similar manner as discussed in our earlier replay
attack.

2.2.3 Merkle Trees

A common technique for checking consistency of data is Merkle trees [Mer90], which are used
in applications such as succinct argument systems for NP [Kil92], trusted hardware [CD16], and
blockchains. At a high level, a Merkle tree stores the database at the leaves of a binary tree, and
each internal node contains hashes (e.g., using a collision resistant hash function) of its children
nodes. One only has to locally store the root of the binary tree to be able to check consistency. To
check a particular address of the database, one can query all of the nodes on the path to the root
and check consistency by also querying all the children of the nodes on the path. Since the height
of the tree is log2N , one would have to make O(logN) queries to check each location in memory.

While this would incur a O(logN) multiplicative overhead when applied to existing ORAM con-
structions in a black-box manner, Stefanov et al. [SDS+18] noticed that one can capitalize on the
tree-based structure of path ORAM to superimpose a Merkle tree with O(1) blowup. However,
since the hierarchical ORAM constructions do not have a similar tree-based structure, it is not clear
that a similar technique can be applied.

2.2.4 Memory Checking

More generally, one could use memory checking techniques [BEG+91] (defined in Section 4) to
construct maliciously secure ORAMs. However, best known memory checkers are in fact tree-based,
and they all have O(logN) bandwidth [BEG+91, DNRV09, PT11]. Therefore, generically applying
existing memory checkers to optimal ORAM constructions will not give the desired overhead.

2.2.5 Generic Compilers

As posed in Question 1.2, one might ask if a more efficient generic compiler from honest-but-curious
to maliciously secure ORAM exists. In Section 5, we show that such a compiler must also essentially
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be a memory checker. The idea is as follows. Intuitively, one could embed an adversarially chosen
access pattern into an honest-but-curious ORAM and adversarially tamper with the database to
force an incorrect response from the compiler. At this point, the (adversarially constructed) honest-
but-curious ORAM can misbehave arbitrarily. We formalize this idea in Theorem 5.8.

More specifically, in Section 5, we define a variant of memory checking that we show is equivalent to
a generic compiler. While the standard definition of memory checking allows user queries to depend
adaptively on the memory checker’s server access pattern, our definition of memory checking requires
security only when the user queries are independent of the memory checker’s server access pattern.
For some quick intuition as to why we need this definition, this variant of memory checking allows us
to separate out and embed adversarial user queries within an honest-but-curious ORAM. Conversely,
to show that this variant notion of memory checking is also sufficient for ORAM (Corollary 5.9),
we crucially rely on obliviousness.

2.3 Our Techniques

As our starting point, we use the worst-case O(logN) overhead honest-but-curious ORAM con-
struction of Asharov et al. [AKLS21]. Our main technique is carefully combining various forms of
memory checking. Blum et al. [BEG+91] make the distinction between online and offline memory
checkers. An online memory checker immediately verifies the correctness of every answer from the
database. An offline memory checker is a batched version of online memory checking that only
detects if some error has occurred after a long sequence of operations. We define these notions of
memory checking formally in Section 4.

Online memory checking. Online memory checking is sufficient to guarantee malicious security,
as any malicious response from the adversary can be immediately detected (as we prove in Theo-
rem 4.5). Time-stamping is an online memory checking strategy that has O(1) overhead. While
most of the construction is time-stampable, as argued earlier, some parts of the algorithm have
access patterns that are provably not time-stampable. Since the best known general online mem-
ory checkers have bandwidth O(logN), online memory checking alone does not seem sufficient to
construct a maliciously secure ORAM with O(logN) overhead.

2.3.1 Offline Memory Checking

In offline memory checking, we require detection of an incorrect response only at the end of a given
computation. It is possible with essentially only O(1) amortized overhead [BEG+91, DNRV09].
However, offline memory checking does not necessarily prevent leakage. For example, the replay
attack shows that if the outputs of the hash table lookups are tampered with, privacy leakage
will occur before offline memory checking catches this error. To combat this issue, we characterize
situations where offline memory checking is sufficient.

Access-deterministic algorithms. Many sub-protocols of the construction have deterministic
access patterns, i.e., access patterns that have no dependence on the input or any randomness.
For example, in the AKS sorting network [AKS83], the comparisons made by the algorithm are
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entirely determined by the edges of an expander graph, which is independent of the input array. In
fact, many algorithms in OptORAMa, including tight compacting a bit array and interspersing two
randomly shuffled arrays [AKL+20], have this flavor.

Since the access patterns of such algorithms are independent of the input in the honest-but-curious
setting, it seems as though directly offline checking these algorithms is sufficient to make them
maliciously secure. However, this is not always the case; the security of offline memory checking
crucially depends on the implementation.

For a concrete example, consider the oblivious sorting network of Ajtai et al. [AKS83]. This al-
gorithm, along with several algorithms in OptORAMa [AKL+20] (e.g., loose compaction), cleverly
uses edges of bipartite expander graphs to make comparisons. A few steps of an implementation
could go as follows:

1. Use space on the server to compute and store a bipartite expander graph G = (V,E).
2. Iterate over the edge set E, and make comparisons according to E.

In this implementation, if a tampering adversary were to replace the edge E with a set E′ =
{e′1, e′2, . . . , e′m} of secret values, the comparisons will leak the contents of e′1, e′2, . . . , e′m. If one were
to offline-check these steps, the contents of e′i would be leaked, which would break malicious security.
However, if the algorithm were instead to locally compute the sequence E in a low space way (on
the fly, for example), an offline-check would be sufficient, but in general, computing such an E in
low space may be impossible or at least complex to describe. Therefore, security of offline checking
these access-deterministic algorithms is quite sensitive to implementation details.

To bypass these subtleties, we show (in Theorem 6.2) a generic way to convert access-deterministic
algorithms into maliciously secure ones without worrying about implementation details.

We do this by observing that if we had access to some time-stamp oracle, a similar argument as
the one by Goldreich and Ostrovsky [GO96] can be used to check the reads of the algorithm in
an online way. We instantiate this time-stamp oracle by first running and offline memory-checking
the honest-but-curious algorithm on some fixed dummy input (independent of the real input) to
essentially build a time-stamp array T on the server. Then, we use T as a time-stamp oracle to
verify all the reads in the real execution of the algorithm. This only blows up the run-time of
the algorithm by a multiplicative O(1) factor. We prove this formally in Theorem 6.2. With this
theorem, in Section 7, we compile many honest-but-curious building blocks from OptORAMa in an
implementation-independent way into ones that are maliciously secure with O(1) blowup.

One can view this as a strengthening of Goldreich and Ostrovsky’s [GO96] notion of a time-
stampable simulation, since an algorithm being access-deterministic, or more accurately, write-
deterministic which we define in Section 6, is essentially equivalent to the existence of a (not
necessarily efficiently computable) time-stamp function. However, Goldreich and Ostrovsky’s algo-
rithm [GO96] needs the time-stamp function to be efficiently computable in low space while ours
just needs such a function to exist.

Access patterns with random leakage. Some subprotocols in Asharov et al. [AKLS21] are
in fact not access-deterministic. However, many such protocols only leak random values within
intermediate stages. One such example is balls-in-bins hashing. Since the only values leaked in the
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process are the random values associated to each ball, this can be simulated and has no dependence
on the input. Therefore, offline memory checking suffices in these cases as well. We use this
technique crucially in our hash table construction in Section 8 as well as in several of our building
blocks in Section 7. For a self-contained example, see Algorithm C.10 that obliviously implements
a random permutation.

Conditionally offline-safe access patterns. Some subprotocols S in Asharov et al. [AKLS21]
are neither time-stampable, access-deterministic, nor have only random leakage. However, the
following is often true:

• These subprotocols S are offline-safe if we assume some other portion P of the memory is
tamper-proof.

• These portions of memory P are time-stampable, so we can use authentication to effectively
assume that these portions cannot be tampered with.

As a concrete example, consider the routing problem, where there are there n balls x1, · · · , xn, and
we need to route xi to some publicly known bins Lri for ri ∈ [B]. (That is, ri does not need to
be hidden to the adversary.) If the portion of memory P that holds all of the ri is tamper-proof,
then the access pattern, namely mapping ball xi to bin Lri , is completely fixed. However, if the
adversary somehow modifies P to convert ri to some r′i that would reveal secret information, then
the adversary could learn r′i by observing the access to bin Lr′i

. If P is time-stampable, then this
attack is preventable as one could ensure that any retrieved ri value is correct, making the routing
access pattern completely fixed. Therefore, offline memory checking the memory of the addresses
being routed to is sufficient.

Therefore, if we online memory check the time-stampable portions of memory, namely P , and simul-
taneously offline memory check the conditionally offline-safe portions, namely S, we can guarantee
security against tampering adversaries.

Post-verifiable offline checking. Another issue is that as is, an adversary can tamper with
the database after an offline check was conducted, making any reads to previously offline checked
memory unreliable. To combat this, we modify the offline memory checking protocol of Blum et
al. [BEG+91] in Algorithm 4.10 to leave the memory in a post-verifiable state (using similar ideas
as [AEK+17]). In particular, after an offline check of a batch of queries, the algorithm leaves the
memory in a state that can be online-checked with query complexity O(1) during future reads. This
ensures that the contents of the memory cannot be tampered with after the offline check.

2.4 Word Size

Our results work for arbitrary word size w as long as w = ω(log λ) = ω(logN) (for N ≤ poly(λ),
as it is in our setting) and w ≤ poly(λ). Most prior work in the honest-but-curious regime focus on
the setting where w = Θ(logN). However, all existing techniques going from honest-but-curious to
maliciously secure ORAM that preserve overhead require increasing the word size from Θ(logN)
to ω(logN). For example, time-stamping requires separate MACs for each address, which each
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need to have length ω(log λ). Also, collision-resistant hash functions (CRHFs), as used in Path
ORAM [SDS+18, RFY+13], need to have output length ω(log λ) to avoid birthday attacks.

In fact, we now give some barriers for going below word size ω(log λ):

• The existing constructions of online memory checkers with O(logN) bandwidth need word size
ω(log λ) to guarantee 1−negl(λ) soundness [BEG+91, NN98, GTS01, HJ06, DNRV09, PT11].
Since maliciously secure ORAM is a stronger primitive than online memory checking, this
poses a barrier to constructing maliciously secure ORAM with O(logN) overhead and word
size.

• Any online memory checker with O(1) overhead and sublinear local space (i.e., in the compu-
tational soundness regime [NR09]) must have word size ω(log λ), as otherwise, the adversary
could simply return random values and break soundness with probability 1/poly(λ) infinitely
often. This captures the cases of time-stamping and CRHFs above.

• In the hierarchical paradigm, the replay attack shows that the correctness of each of the logN
hash table lookups is necessary to guarantee obliviousness of the subsequent lookups. As a
result, in the hierarchical paradigm, it seems that O(1)-overhead memory checking is necessary
for each hash table lookup, and thus, making ω(log λ) bits of communication necessary for
each of the logN hash tables due to the previous argument.

3 Preliminaries

For a natural number N ∈ N, we let [N ] denote the set {1, . . . , N}. Throughout, we let λ denote
the security parameter. We say a function f : N → N is negligible if for all constants c ≥ 0,
limn→∞ f(n) · nc = 0. We denote a negligible function in input λ by negl(λ). We say an algorithm
is PPT if it runs in (non-uniform) probabilistic polynomial time.

For a (finite) set S, we use the notation x ← S as shorthand for saying x is a random variable
sampled uniformly from S. We abuse notation and write x ← B() for saying that x is a sample
from the output of a randomized algorithm B. For a stateful variable x, we often abuse notation and
write x← y to denote the operation of updating the variable x to have value y. For x, y ∈ {0, 1}n,
we use the notation x ⊕ y to denote bit-wise XOR of x and y, and for x, y ∈ {0, 1}∗ we use the
notation x||y and (x, y) to denote concatenation of x and y. We use the notation ∅ to denote an
empty list or placeholder value, with the exact meaning being clear from context.

3.1 Random Access Memory

We work in the standard word RAM model throughout. Unless specified otherwise, the underlying
RAM functionality we would like to make oblivious has N logical addresses and each memory cell
indexed by addr ∈ [N ] contains a word of size w, i.e., an element of {0, 1}w. (See Functionality 3.8
for more details.) For adversaries running in poly(λ) time to be able to store an N -word dictionary,
we assume w,N ≤ poly(λ).

To obliviously implement this RAM functionality (and other functionalities along the way), it will
be convenient to work in a RAM model with a slightly larger word size w such that w = O(w).
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For clarity, we call w the logical or plain-text word size, and w the physical word size. Explicitly,
we will set w = 10w such that w = ω(log λ) and w ≤ poly(λ), but we urge the reader to think of
w as being an arbitrarily small function that is ω(log λ). Since log(N) ≤ O(log λ) < ω(log λ) = w,
physical words can contain a memory address, and we need w = ω(log λ) for security reasons so
that ciphertexts and authentication tags can fit in a word and remain secure against poly(λ)-time
adversaries. (In particular, 2−w = negl(λ).) See Section 2.4 for more details on this choice of word
size.

As is standard in previous works, we assume that word-level addition and Boolean operations, and
additionally pseudorandom function (PRF) evaluations, can be done in unit cost.

3.2 Cryptographic Primitives

In this section, we define the cryptographic primitives we need, such as pseudorandom function
families (PRFs), symmetric-key encryption, and message authentication codes (MACs).

Definition 3.1 (Pseudorandom functions (PRFs)). Let PRF be an efficiently computable function
family indexed by keys sk ∈ {0, 1}ℓskPRF(λ), where each PRFsk takes as input a word x ∈ {0, 1}w and
outputs a value y ∈ {0, 1}w. A function family PRF is secure if for every (non-uniform) PPT A, it
holds that ∣∣∣∣∣ Pr

sk←{0,1}ℓskPRF(λ)

[
APRFsk(·)(1λ) = 1

]
− Pr

f←Fw

[
Af(·)(1λ) = 1

]∣∣∣∣∣ ≤ negl(λ)

for all large enough λ ∈ N, where Fw is the set of all functions that map {0, 1}w into {0, 1}w.

Often, we only need a PRF with smaller domain or codomain than {0, 1}w. We abuse notation and
use the same PRF, where we implicitly either pad the input with 0s or ignore a suffix of the PRF
output.

Since w < w ≤ poly(λ), one can easily modify the [GGM86] construction of PRFs to have do-
main and codomain {0, 1}w. Moreover, these PRFs exist as long as there is a length-doubling
cryptographic pseudorandom generator (PRG) with seed length ℓskPRF(λ) that is secure against
poly(λ)-time adversaries, which is implied by a related quantitative statement regarding the exis-
tence of one-way functions [HILL99]. Therefore, throughout this paper, we assume there is a PRF
with key-length ℓskPRF(λ).

While ℓskPRF(λ) captures the strength of the PRF, we emphasize that, as standard in the ORAM
literature, we do not count storage of the PRF key as part of client’s space. As such, the existence
of a polynomially-secure one-way function is sufficient for our results. (In some of our theorem
statements, for clarity, we remind the reader of the need for a PRF key in parentheses.)

We now define symmetric-key encryption, where plain-text messages have size w. Throughout, we
have w = 1

10 · w = ω(log λ).

Definition 3.2 (Encryption). A symmetric-key or private-key encryption scheme (Gen,Enc,Dec)
is a triple of PPT algorithms with the following syntax:

• Gen(1λ): Outputs a key k ∈ {0, 1}ℓskPRF(λ).
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• Enck(m): Generates a ciphertext ct ∈ {0, 1}w/5 using the key k corresponding to the input
message m ∈ {0, 1}w.

• Deck(ct): Deterministic decryption algorithm which outputs a message m corresponding to the
decryption of ct with key k.

Moreover, the following properties should hold:

• Correctness: For all m ∈ {0, 1}w, it holds that Pr[Deck(ct) = m] = 1, where the probability
is taken over k ← Gen(1λ) and ct← Enck(m).

• IND-CPA Security: For all stateful PPT adversaries A, the following holds. For k ←
Gen(1λ), AEnck(·)(1λ)→ (m0,m1), where |m0| = |m1| = w,∣∣∣Pr [AEnck(·)

(
1λ,Enck(m0)

)
= 1

]
− Pr

[
AEnck(·)

(
1λ,Enck(m1)

)
= 1

]∣∣∣ ≤ negl(λ).

We use the standard construction of symmetric-key encryption from PRFs (e.g., from [Gol09]), as
follows. Gen(1λ) outputs uniformly random k ← {0, 1}ℓskPRF(λ), Enck(m) outputs ct = (r,PRFk(r)⊕
m) for r ← {0, 1}w/5−w, and for ct = (r, z), Deck(ct) = z ⊕ PRFk(r). Correctness immediately
follows, and IND-CPA security follows from PRF security and because the probability of reuse of
an r over poly(λ) ciphertexts is poly(λ) · 2−|r| = poly(λ) · 2−Ω(w) = negl(λ).

In our security proofs, we will often use a variant of IND-CPA security as defined above that we
call adaptive IND-CPA security. The game is informally defined as follows, indexed by b ∈ {0, 1}:

• The challenger samples some key k ← Gen(1λ).
• For poly(λ) iterations, the adversary A′ adaptively sends messages m0 and m1, and the chal-

lenger sends back Enck(mb).

A standard hybrid argument can be used to show that an adversary that has a non-negligible
distinguishing advantage in this adaptive IND-CPA game between b = 0 and b = 1 will also break
the standard IND-CPA security notion of (Enc,Dec,Gen).

Definition 3.3 (MACs). A message authentication code (MAC) scheme (MACGen,MAC,MACVer)
is a triple of PPT algorithms with the following syntax:

• MACGen(1λ): Outputs a key k ∈ {0, 1}ℓskPRF(λ).
• MACk(m): Outputs an authentication tag ∈ {0, 1}w/5 on the key k corresponding to the input

message m ∈ {0, 1}w.
• MACVerk(m, tag): Outputs 1 or ⊥.

Moreover, the following properties should hold:

• Correctness: For all m ∈ {0, 1}w, it holds that Pr[MACVerk(m, tag) = 1] = 1, where the
probability is taken over k ← MACGen(1λ) and tag← MACk(m).
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• Unforgeability: For all PPT adversaries A with oracle access to MACk(·) and MACVerk(·, ·),
let SA be the random variable corresponding to the set of mi queried by A to the MACk(·) oracle.
Then, for k ← MACGen(1λ) and AMACk(·),MACVerk(·,·)(1λ) → (m∗, tag∗) where |m∗| = w, we
require that

Pr [MACVerk(m
∗, tag∗) = 1 ∧m∗ /∈ SA] = negl(λ).

We use the standard construction of MACs from PRFs (e.g., from [Gol09]), as follows. MACGen(1λ)
outputs uniformly random k ← {0, 1}ℓskPRF(λ), MACk(m) outputs tag = PRFk(m), and lastly,
MACVerk(m, tag) = 1 if and only if PRFk(m) = tag. Correctness immediately follows, and unforge-
ability follows from PRF security because both the MACk and MACVerk oracles can be instantiated
with a PRF oracle, and the probability of correctly guessing a new output from a random function
is 2−w/5 = 2−ω(log λ) = negl(λ).

Because ciphertexts and MACs each have output length w/5, authenticated encryption of the form
(ct,MACk′(ct)) where ct← Enck(data) for data ∈ {0, 1}w easily fits in a physical word of bit length
w.

3.3 Maliciously Secure Oblivious Implementations

The general goal we consider is constructing a RAM client C that obliviously implements a given
functionality F , even when interacting with a possibly malicious RAM server A. That is, a space-
constrained C gives RAM instructions to A, who may behave arbitrarily and give tampered database
responses along the way. Throughout, the client C has small, private, incorruptible local space. The
client’s goal is to use the large public database to compute F(x) given input x while making sure
x is not leaked in any way during the process, even by a tampering adversary.

When A behaves dishonestly, we require that the client either aborts or outputs the correct answer
anyway. That is, our security definition simultaneously handles both correctness of the client’s
output and obliviousness of the client’s input x.

3.3.1 Stateless Functionalities

For (possibly randomized) stateless functionalities F , our notion of maliciously secure obliviousness
can be described as follows. We have a client C making RAM queries query = (op, addr, data) ∈
{read,write} × [N ] × ({0, 1}w ∪ {⊥}) to a possibly malicious RAM memory held by A. The client
may output flag = true to indicate detection of malicious activity, but if not, it generates some out
that should be distributed according to F(x).
Of course, one possibility for the adversary A is to be honest-but-curious, where it always returns
data∗ correctly according to a RAM. That is, an honest-but-curious A keeps track of N -word
memory mem ∈

(
{0, 1}w

)N , and for each query = (write, addr, data), A updates mem[addr] ← data
(and returns data∗ ← ⊥), and for each query = (read, addr, data), A returns data∗ ← mem[addr] (and
ignores data). Restricting A to be honest-but-curious is the setting considered in many previous
works.

A bit more formally, our malicious security notion is that the joint distribution of the access pattern
and the output of C, when interacting adaptively with A, is indistinguishable from the output of a
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simulator and F(x), where the simulator crucially does not have access to x. We formalize this in
the real-ideal paradigm via the following definition.

Experiment 3.4 Real(C,A).

x← A
(
1λ
)

out← ⊥
data∗ ← ⊥
while out = ⊥ do

(query, flag, out)← C
(
1λ, x, data∗

)
if flag = true then return b← A

(
1λ
)

data∗ ← A
(
1λ, query

)
end while
return b← A

(
1λ, out

)

Experiment 3.5 Ideal(F ,S,A).

x← A
(
1λ
)

done← false
data∗ ← ⊥
while done = false do

(query, flag, done)← S
(
1λ, data∗

)
if flag = true then return b← A

(
1λ
)

data∗ ← A
(
1λ, query

)
end while
return b← A

(
1λ, F(x)

)
Definition 3.6. For a (stateless) RAM functionality F , we say a stateful RAM machine CF is a
(1− δ)-maliciously secure oblivious implementation of F if the following two conditions hold:

1. Obliviousness & Correctness: There is a (stateful) PPT simulator S such that for all
(stateful) PPT A, the adversary A distinguishes between Real(x, CF ,A) (Experiment 3.4)
and Ideal (F ,S,A) (Experiment 3.5) with advantage at most δ. That is,

|Pr[Real(C,A) = 1]− Pr[Ideal(x,F ,S,A) = 1]| ≤ δ.

2. Completeness: For all (stateful) honest-but-curious servers A, with probability 1 − δ, the
client CF never aborts, i.e., never sets flag to true throughout the whole execution of the real
experiment.

When δ is not specified, we take it to mean an arbitrary negligible function in λ.

Another interpretation of this security definition is that we require the existence of a universal
compiler (namely, the simulator S) from real-world adversaries into ideal-world adversaries, where
ideal-world adversaries only have the ability to decide whether to abort.

Sometimes, instead of implementing a (stateless) functionality, we require a weaker property that
the output of a client satisfies some property that is not necessarily unique. An example of this is
TightCompaction (see Appendix C.7) that takes an input array of reals and dummies and satisfies
the property that the real elements are all moved to the front in some order. The exact nature of
the outputs of such an algorithm might be difficult to describe, so for these settings, we instead
define the functionality F as the algorithm itself:

Definition 3.7. We say that a (stateless) RAM machine C is a (1− δ)-maliciously secure oblivious
algorithm if C is a (1 − δ)-maliciously secure oblivious implementation of C, in the sense of Defi-
nition 3.6. In this setting, the definition of C as a functionality is defined as the output of C when
interacting with an honest server.
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Informally, if the output of C when interacting with an honest-but-curious adversary has some
desirable property (e.g., as in TightCompaction), then this definition says that C is also a maliciously
secure implementation of a “functionality” with this property too.

3.3.2 Reactive Functionalities

Loosely speaking, a reactive functionality F is an interactive functionality that holds some internal
state, and whenever it takes in a command cmd and input x, it gives some (possibly randomized)
output F(cmd, x), where the notational dependence on the internal hidden state is suppressed. One
way to think of a reactive functionality is as a specification for a data structure problem (i.e., the
desired behavior of a data structure), where the various types of queries are specified by cmd and
the input to those queries are denoted by x. We note that stateless functionalities are special cases
of reactive functionalities, so any theorem statements regarding reactive functionalities immediately
apply to stateless ones as well. Throughout, we assume that all functionalities considered are
computable in probabilistic polynomial time, i.e., have some (non-oblivious) implementation where
the output to any given query is computable in probabilistic polynomial time in λ.

FN,w
RAM is an important example of a reactive functionality, and we describe it in Functionality 3.8.

Functionality 3.8 FN,w
RAM: The RAM Functionality.

Syntax:

• cmd ∈ {read,write};
• x = (addr, data) ∈ [N ] × {0, 1}w, where addr is an index into an N -entry RAM database,

and data contains a word (to be used only if cmd = write).

Internal State: A memory array mem with N entries, each containing values in {0, 1}w, all
initialized to 0w.
Command FN,w

RAM(cmd, x):

• If cmd = read, return mem[addr], the word located in mem at address addr ∈ [N ].
• If cmd = write, update mem by mem[addr] ← data, and nothing is returned (i.e., only the

internal hidden state is modified).

That is, FN,w
RAM precisely describes the data structure problem of random access memory with N

addresses each holding a word of size w. In our final ORAM construction, we implement a logical
RAM with plain-text word size w by using words of size w = O(w) when interacting with the
physical storage.

Other examples of reactive functionalities that we will use include hash tables (see Functionality 8.1)
and dictionaries (see Appendix C.3).

Just like for stateless functionalities, we formalize security for reactive functionalities by a
simulation-based definition and require indistinguishability between a real-world and ideal-world
experiment, as in Experiments 3.9 and 3.10. At a high level, for a fixed functionality F , in the
experiment, the (stateful) adversary A gets to adaptively choose (cmd, x) for the (stateful) client
C. In Experiments 3.9 and 3.10, the outer “while” loop corresponds to the adversary issuing mul-
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tiple commands to the client, and the inner “while” loop corresponds to the client and adversary
performing the RAM computation of the given command.

• In the real world, the client C, based on its knowledge of cmd and x, sends RAM queries
query = (op, addr, data) ∈ {read,write} × [N ] × {0, 1}w to the possibly malicious adversary
A. The adversary A can adaptively respond to each query with a possibly incorrect data∗ ∈
{0, 1}w. At any point, C can abort (by setting flag = true, at which point the whole experiment
ends), or it can claim it is finished and output out. This continues until either (a) A stops
issuing commands or (b) C aborts at some point.

• In the ideal world, we require the existence of a simulator S that can simulate all the query and
abort behavior of C without knowing x. We do not require the simulator to compute out, as
this is in general impossible without knowing x. We instead (implicitly) set out = F(cmd, x)
and give this output to the adversary A in issuing its next command.

Our security definition is informally that no efficientA can distinguish between the two worlds. Since
A both sees the access pattern of C and the output of the computation, this indistinguishability
asserts both obliviousness and correctness. We present the formal definition in Definition 3.11.

Experiment 3.9 Real(C,A).

(cmd, x)← A
(
1λ
)

while cmd ̸= ⊥ do
out← ⊥
data∗ ← ⊥
while out = ⊥ do

(query, flag, out)← C
(
1λ, cmd, x, data∗

)
if flag = true then return b← A

(
1λ
)

data∗ ← A
(
1λ, query

)
end while
(cmd, x)← A

(
1λ, out

)
end while
return b← A

(
1λ
)

Experiment 3.10 Ideal(F ,S,A).

(cmd, x)← A
(
1λ
)

while cmd ̸= ⊥ do
done← false
data∗ ← ⊥
while done = false do

(query, flag, done)← S
(
1λ, cmd, data∗

)
if flag = true then return b← A

(
1λ
)

data∗ ← A
(
1λ, query

)
end while
(cmd, x)← A

(
1λ, F(cmd, x)

)
end while
return b← A

(
1λ
)

Definition 3.11. For a reactive functionality F , we say a (stateful) RAM machine CF is a (1 −
δ)-maliciously secure oblivious implementation of a reactive functionality F if the following two
conditions hold:

1. Obliviousness & Correctness: There is a (stateful) PPT simulator S such that for all
(stateful) PPT A, the adversary A distinguishes between Real(CF ,A) (Experiment 3.9) and
Ideal (F ,S,A) (Experiment 3.10) with advantage at most δ.

2. Completeness: For all (stateful) honest-but-curious A, with probability 1− δ, the client CF
never aborts, i.e., never sets flag to true throughout the whole execution of the real experiment.
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When δ is not specified, it is taken to mean an arbitrary negligible function in λ.

For both stateless and reactive functionalities, we focus on two main complexity measures of im-
plementations: local space complexity and query complexity. Local space complexity denotes the
number of words an implementation C locally (and privately) stores. For stateless functionalities,
the query complexity refers to the number of RAM queries made by C used to generate out. For
reactive functionalities, the query complexity for a specific cmd refers to the number of RAM queries
made by C needed to generate out for cmd. We also use the terms time, run-time, and query com-
plexity interchangeably. Another complexity measure we consider for implementations is server
space complexity, which refers to the amount of space needed on the server by the implementation.

A special case of this is oblivious RAM (ORAM), where the reactive functionality being implemented
is the RAM functionality itself:

Definition 3.12 (Oblivious RAM). We say that C is a (1 − δ)-maliciously secure oblivious RAM
(ORAM) (or honest-but-curious (1 − δ)-ORAM) for a database of size N with word size w if C is
a (1 − δ)-maliciously secure oblivious (or honest-but-curious (1 − δ)-oblivious, respectively) imple-
mentation of FN,w

RAM. When δ is unspecified, we take it to mean an arbitrary function negligible in
λ.

We define the overhead of an ORAM C to be the maximum of the query complexities of the read
and write commands for C. In fact, our ORAM construction will also hide whether there the logical
query is a read or write, making read or write part of the input, not the command. In such a case,
the notion of query complexity for an ORAM is uniquely defined. Because one can generically show
that these definitions of ORAM are equivalent up to a multiplicative factor of two in the overhead,
we use these definitions of ORAM interchangeably.

Additionally, we can assume without loss of generality that a universal simulator S for an ORAM C
has the same space complexity as C (up to multiplicative O(1) terms), as running C on some fixed
dummy inputs is itself a simulator. (In fact, this argument further holds for any functionality F
without input assumptions.)

Comparison to prior definitions. First, we observe that maliciously secure oblivious sim-
ulation (Definition 3.11) is a strengthening of the oblivious simulation definition given in
[AKL+20, AKLS21], as now the adversary A need not respond to queries truthfully. In fact, obliv-
ious simulation in [AKL+20, AKLS21] is essentially equivalent to our security definition where we
now restrict to honest-but-curious adversaries A. In our terminology, their notion of obliviousness
can essentially be defined as follows:

Definition 3.13. For a reactive functionality F , we say a RAM machine CF is an honest-but-
curious (1− δ)-oblivious implementation of a reactive functionality F if Definition 3.11 holds with
parameter (1− δ), except that Condition 1 is required to hold only against honest-but-curious PPT
A (instead of arbitrary PPT A).

Definition 3.3 of [AKL+20] gives a similar definition of honest-but-curious obliviousness, with the
main difference being that the adversary only observes the addresses being accessed, not any of
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the data values. When combined with symmetric-key encryption in a straightforward way, their
definition is equivalent to Definition 3.13, with an extra additive negl(λ) loss in obliviousness.

Second, we note that our definition of maliciously secure ORAM is also a strengthening of online
memory checking [BEG+91] (as defined in Definition 4.1), as we require the client to satisfy the
completeness condition and either abort or return the correct answer with high probability.

Input and output tapes. In our security definitions, when (x, cmd) ← A(1λ) is chosen adap-
tively by A and x is given to C, it is often the case that x is long and cannot be stored locally by the
client in small space. Similarly, out may also be long and unable to stored locally in small space.

To handle this, we assume that C is given two special tapes, specified as follows:

• Tin is a read-only RAM tape that can never be modified by A after x is initially written to it
by A. The adversary A can see the access pattern for this tape (i.e., the addresses read by C)
as they occur, and each read to Tin counts as a query as part of the query complexity of C.

• Tout is a write-once, write-only RAM tape for C to write out. The adversary A cannot modify
the contents of this tape, but it can see the access pattern (i.e., the addresses written to by
C) as they occur, and each write to Tout counts as a query as part of the query complexity of
C. (In the security game, out = ⊥ is just syntactic shorthand for the C saying it is not yet
finished. It is possible that some of Tout may be written to while out = ⊥ still holds.)

Crucially, as is standard in the setting of low-space computation, we do not consider the size of
either tape as part of the local space complexity of C.

Input assumptions. Just like in [AKL+20], we sometimes assume that inputs to commands of
functionalities satisfy certain assumptions (e.g., having no duplicates, being sorted according to
some key, or being randomly shuffled). This can be formalized as a (potentially randomized) map
X , where now (cmd, x)← A(1λ) is mapped to (cmd,X (cmd, x)) before being given to C.

Hybrid model and composition. In Appendix A, we define a hybrid model and prove a con-
current composition theorem for our security notion following the universal composability (UC)
framework of Canetti [Can20] since our simulations are straight-line and universal. This allows us
to modularly compose maliciously secure oblivious implementations with each other safely.

4 Memory Checking

4.1 Definitions

We recall the notion of memory checking from Blum et al. [BEG+91]. A memory checker M can
be defined as a probablistic RAM program that interacts with a user C and server A, where C is
performing a RAM computation with memory held by A. Specifically, without a memory checker,
C sends queryC = (cmd, addr, data) ∈ {read,write} × [N ] × ({0, 1}w ∪ {⊥}) to A, who may or may
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not correctly follow the RAM command, i.e., may send the wrong word back to C when cmd = read.
With memory checker M , M now serves as an intermediary between C and A that takes in each
queryC from C and generates and sends (possibly multiple and adaptive) queries to A. Whenever
cmd = read, C once again generates and sends (possibly multiple and adaptive) queries to A, and
M is then required to either respond to C with some word or abort by sending ⊥ to indicate a
malicious A. Once the memory checker aborts, the protocol is done. This continues in rounds until
C is done sending queries, of which there are at most poly(λ).

Definition 4.1 (Online Memory Checker). We say that M is an online memory checker for C if
the following two properties hold:

1. Completeness: If A is honest (i.e., behaves according to FRAM), then M never aborts and
the responses that M sends to C are all correct with probability 1− negl(λ).

2. Soundness: For all PPT A, the probability that M ever sends some incorrect response to C
is negl(λ). That is, for each request from C, if A sends an incorrect response to M , M can
either independently recover the correct answer and send it to C, or it can abort by sending ⊥
to C.

We call this memory checker “online” because the memory checker must be able to catch incorrect
responses from M as soon they are sent. On the other hand, one can define the notion of an “offline”
memory checker:

Definition 4.2 (Offline Memory Checker). We say that M is an offline memory checker for C if
the following two properties hold:

1. Completeness: If A is honest (i.e., behaves according to FRAM), then M never aborts, and
the responses that M sends to C are all correct with probability 1− negl(λ).

2. Soundness: For all PPT A, if M ever sends an incorrect response to C, it must abort by the
end of the last request made by C with probably at least 1− negl(λ).5

That is, M may send many incorrect responses to C, but if it does, by the end of the computation,
M detects that there was an error at some point. We emphasize that M does not need to know
where or when an error occurred.

Note that when we say M is an online or offline memory checker for an implementation C, we mean
this is true against adversaries that can both tamper with the server and adaptively feed commands
and inputs into C.
There are two main complexity measures we associate with (both online and offline) memory check-
ers: (local) space complexity and query complexity (or overhead). Space complexity is simply the
amount of space (in words) used by the memory checker M , and worst-case (or amortized) query
complexity is the worst-case (or amortized, respectively) number of requests made by M per request
of C throughout the computation. We also sometimes explicitly consider the server space complexity
of memory checkers, which refers to how many physical words are needed to be stored on the server.
Unless specified otherwise, for a user C generating queries according to a RAM of size N , the server
space complexity of memory checkers will be O(N).

5More formally, for the last request, the user C must send some “last request” symbol along with its query to
indicate to M that it is the final request. We omit this technicality for simplicity.
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4.2 Online Memory Checking and Time-Stamping

Definition 4.3 (Definition 2.3.3.1 of [GO96]). Let C be a RAM program on a memory of size N ,
and let count be a global counter of the number of RAM queries made by C. We say that C is time-
stampable if there exists a function TS(·, ·) locally computable in O(1) space and word operations
such that for addr ∈ [N ], TS(count, addr) ∈ N is exactly the number of times that addr has been
written to among the client’s first count queries.

In particular, when we say an implementation C is time-stampable, we mean there is a time-stamp
function that holds against any adversary issuing commands and inputs given to C.
We note that the lemma below is essentially already implicit in Theorem 3.2.1 of [GO96]. We give
the proof for completeness and to show compatibility with our definitions.

Lemma 4.4. If C is time-stampable on a memory of size N , then there exists an online memory
checker for C with worst-case query complexity 1, local space complexity O(1) (and one PRF key),
and server space complexity O(N).

The proof of this lemma has been deferred to Appendix B.

We now show that online memory checkers are sufficient to compile honest-but-curious oblivious
implementations to maliciously secure oblivious implementations. For generality and for our appli-
cations, we show this holds in the G-hybrid model for an arbitrary functionality G, but for intuition,
one can consider G to be the empty functionality and ignore the hybrid model throughout. (For
more details about the hybrid model, see Appendix A.)

Theorem 4.5. Suppose that C is an honest-but-curious (1 − δ)-oblivious implementation of F in
the G-hybrid model with client space complexity c and query complexity q, and suppose that C has
an online memory checker M with local space complexity cM and query complexity qM . Then, the
composition of M and C is a (1− δ − negl(λ))-maliciously secure oblivious implementation of F in
the G-hybrid model with client space complexity c+ cM and query complexity q · qM .

The proof of this theorem has been deferred to Appendix B.

Now, combining Lemma 4.4 and Theorem 4.5, we immediately get the following:

Corollary 4.6. Assuming there exist one-way functions, if C is a time-stampable honest-but-curious
oblivious implementation of F in the G-hybrid model with client space complexity sC and query
complexity qC, then there exists a maliciously secure oblivious implementation C′ of F in the G-
hybrid model with client space complexity sC +O(1) words (and one PRF key) and query complexity
qC.

We also use the fact that online memory checkers exist with O(logN) overhead without any need
for time-stampability (e.g., [BEG+91, DNRV09]).

Theorem 4.7 (Section 5.1.2 in [BEG+91]). Assuming there exist one-way functions, for word size
ω(log λ), there is an online memory checker for RAM databases with N words with query complexity
O(logN), local space complexity O(1) (and one PRF key), and server space complexity O(N).
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With this online memory checker and Theorem 4.5, we now get the following:

Corollary 4.8. If C is an honest-but-curious (1− δ)-oblivious implementation of F in the G-hybrid
model with client space complexity sC and query complexity qC for a RAM server with N words, then
there exists a (1− δ − negl(λ))-maliciously secure oblivious implementation C′ of F in the G-hybrid
model with query complexity O(qC · log(N)), client space complexity sC +O(1) words (and one PRF
key), and server space complexity O(N).

4.3 Offline Memory Checking

Here, we present an offline memory checker that can be seen as an adaptation of the offline memory
checker of Blum et al. [BEG+91]. While we assume the existence of one-way functions (which we
independently need for our ORAM construction), we believe our construction is simpler because we
use a simple counting argument and MACs instead of ϵ-biased hash functions. We also show how
we can make our algorithm post-verifiable using MACs.

Post-verifiability. For our usage of offline memory checkers, it will be useful to be able to verify
later reads in an online way after an offline check. That is, after an offline memory checker either
aborts or confirms that the responses to C are correct, as long as no writes are made after that, it
will be useful to have an O(1)-query complexity way to online check the reads. We give a formal
definition below.

Definition 4.9 (Post-Verifiable Offline Memory Checker). Suppose that C can be split chronologi-
cally into two phases, with the first phase happening before the second:

• Read/Write Phase: An arbitrary sequence of read and write queries.
• Read-Only Phase: An arbitrary sequence of read queries.

We say that M is a post-verifiable offline memory checker for C if the following two properties hold:

1. Completeness: If A is honest (i.e., behaves according to FRAM), then M never aborts, and
the responses that M sends to C are all correct with probability 1− negl(λ). (If it does so with
probability 1 instead of 1− negl(λ), we say M satisfies perfect completeness.)

2. Soundness: For all PPT A, if M ever sends an incorrect response to C during the Read/Write
Phase, it must abort by the end of the read/write phase with probably at least 1 − negl(λ).6

Furthermore, the probability that M ever sends C an incorrect response during the Read-Only
Phase write is negl(λ).

We describe the algorithm in Algorithm 4.10 in Appendix B. For the Read/Write Phase, for simplic-
ity of notation, let P denote the adaptive sequence of operations. We can model this by considering
a trusted tape I with an associated online memory checker, and a work tape W where the all writes
in P will be executed. For example, one can think of I as the input tape to a client or a portion of
distinct online-checkable memory.

6More formally, at the end of the Read/Write Phase, the user C must send some “end of phase” symbol along with
its query to indicate to M that there will be no more writes. We omit this technicality for simplicity. Any writes
after this point will be considered an inadmissible user.
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Algorithm 4.10 Offline memory checker.
Initial State:

• I: Trusted tape with an associated online memory checker M (e.g., holding an input x).

Final State:

• W : Work tape is left in a verifiable read-only state.

Local State: Counters T and T ′, a MAC secret key k, and a Read-Only Phase MAC secret key
k′.
Algorithm: Read/Write Phase.

• Sample a key k ← MACGen(1λ) for a MAC. Iterate over W , initialize every W [addr] to
(∅, addr, 0) with authentication key k. Initialize T ← 0.

• When the user sends the request (op, addr, data):

– If addr ∈ I:
∗ If op = write, output ⊥ .
∗ If op = read:

· Send query = (read, addr,⊥) to A.
· Run M on A(1λ, query) and output ⊥ if M aborts.
· Otherwise, if M responds with data from A(1λ, query), return data to C.

– If addr ∈W :
∗ Send query = (read, addr,⊥) to A to receive (data∗, σ)
∗ Compute MACVerk(data

∗, σ). If verification fails, output ⊥.
∗ Unpack (dataold, addr

′, count)← data∗.
∗ If addr′ ̸= addr, output ⊥.
∗ If op = read, set data′ = (dataold, addr, count+ 1).
∗ If op = write, set data′ = (data, addr, count+ 1).
∗ Compute σ′ ← MACk(data

′).
∗ Send query = (write, addr, (data′, σ′)) to A.
∗ Send dataold to C if op = read.
∗ Increment T .

• At the very end of the Read/Write Phase, initialize a counter T ′ = 0. Generate a new MAC
key k′ ← MACGen(1λ). Iterate over addr ∈W and do the following:

– Obtain (data∗, σ)← A(1λ, query).
– If MACVerk(data

∗, σ) = ⊥, output ⊥.
– Unpack (data, addr′, count)← data∗.
– If addr′ ̸= addr, output ⊥.
– Set data′ = (data, addr) and compute σ′ ← MACk′(data

′).
– Send query = (write, addr, (data′, σ′)) to A.
– Increment T ′ ← T ′ + count.

• At the end, accept if and only if T = T ′.

Algorithm: Read-Only Phase.

• When the user sends the request (read, addr,⊥), send the identical query (read, addr,⊥) to
A to receive (data′, σ′), where data′ = (data, addr′).

• If addr′ ̸= addr or MACVerk′(data
′, σ′) = ⊥, output ⊥.
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• Otherwise, send data to C.

Theorem 4.11. There is a post-verifiable offline memory checker with perfect completeness for any
C (controlled adaptively by A) with amortized query complexity O(1 + |W |/|P |) in the Read/Write
Phase and worst-case query complexity 1 in the Read-Only Phase. In particular, if |W | = O(|P |), the
Read/Write Phase has amortized query complexity O(1). Moreover, the local space of this memory
checker is O(1) words (and one PRF key), and the server space complexity (ignoring I) is O(|W |).

Proof. First, we prove the following lemma.

Lemma 4.12. For the Read/Write Phase of Algorithm 4.10, if the memory functions correctly (i.e.,
the server is honest), then T = T ′. Otherwise, T ̸= T ′ with probability 1− negl(λ).

Proof. Let waddr denote the number of times the memory checking algorithm sends a write query to
A at addr, and let caddr denote the value of count associated to addr during the final iteration over
W . Note that T = T ′ if and only if

∑
addr waddr =

∑
addr caddr.

By unforgeability of MACs, every read must correspond to some authenticated write by the memory
checker with probability 1 − negl(λ). For the remainder of the argument, suppose that every read
does in fact correspond to some authenticated write.

Fix some addr, and let α = waddr. Let counti denote the count associated to the ith write to addr.
Define c0 = 0, and for 1 ≤ i ≤ α, and let ci denote the largest value of count associated to addr
after the ith write across all the writes so far, i.e., ci = maxj≤i countj .

Clearly, the sequence c0, c1, . . . , cα is nondecreasing. Moreover, for every write, since counti is
determined by the previous count value read, it has the form counti = countj + 1 for some j < i.
Therefore, it is easy to see that ci ≤ ci−1 + 1. Moreover, equality holds only if and only if the read
immediately preceding the ith write has count countj = ci−1 for j < i.

By repeatedly applying this inequality, we have that

ci ≤ ci−1 + 1 ≤ · · · ≤ c0 + i = i,

where equality holds if and only if cj = j for all 0 ≤ j ≤ i. In particular, cα ≤ α.

Since ci = maxj≤i countj ≤ i, note that ci+1 = maxj≤i+1 countj = i+1 if and only if counti+1 = i+1.
Suppose cα = α. Then, we must have ci = i for all i ≤ α, and in particular, counti = i for all i ≤ α.
Therefore, every read to addr must in fact correspond to the most recent contents of addr.

Suppose caddr = waddr = α. Since caddr must correspond to some counti, we have that caddr ≤ cα = α,
where equality holds if and only if caddr = countα = α. In particular, the memory functioned
correctly on addr.

Now, note that
∑

caddr ≤
∑

waddr, where equality holds if and only if caddr = waddr for all addr. In
particular, the memory functioned correctly on all addr, as desired.

Now, we consider the completeness of the memory checker. If the memory functions correctly, then
all of authentication checks will pass. Moreover, by Lemma 4.12, we have that T = T ′ at the end
of the algorithm. Therefore, the memory checker will always accept in this case.
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Now, we consider the soundness of the checker. Since the memory checker in Algorithm 4.10 accepts
only if T = T ′, by Lemma 4.12, the checker aborts with probability 1− negl(λ) if the memory does
not function correctly. Therefore, this gives us that the memory checker is in fact sound in the
Read/Write Phase. Soundness of the Read-Only Phase (with probability 1 − negl(λ)) directly
follows from MAC unforgeability with key k′, as each address gets at most one tag from the MAC.

Now, for efficiency, note that the total number of queries is O(P ) to execute the commands of
C, and then the memory checker does an additional linear time iteration over W . Therefore, the
overall number of queries in the Read/Write Phase is O(|P | + |W |), making the amortized query
complexity O(1) + O(|P |/|W |). The query complexity of the Read-Only Phase is clearly 1 since
the algorithm just makes one read to A. Moreover, O(1) words are sufficient for the counters, and
both MACs can be implemented with one joint PRF key.

5 Separated Memory Checkers

In this section, we define a variant of online memory checking that we show is both necessary and
sufficient for generically compiling honest-but-curious ORAM clients into maliciously secure ones.
At a high level, such an online memory checker M will be secure for arbitrary small-space RAM
users C that do not interactively collude with the tampering server. As such, we call such memory
checkers separated memory checkers. We give a formal definition below:

Definition 5.1 (Separated Memory Checker). We say that M is a separated memory checker for
users with space c (measured in words) if the following two properties hold:

1. Completeness: If A is honest (i.e., behaves according to FRAM), then for all requests gen-
erated by a user C with space c, where C cannot see physical queries made by M , M never
aborts with probability 1− negl(λ).

2. Soundness: For all PPT A and all c-space users C, where A and C do not communicate
throughout the entire protocol, the probability that M ever sends some incorrect response to C
is negl(λ). That is, for each request from C, if A sends an incorrect response to M , M can
either independently recover the correct answer and send it to C, or it can abort by sending ⊥
to C.

The differences between this definition and the earlier memory checking definitions (Definitions 4.1
and 4.2) are as follows:

• While online memory checkers according to Definition 4.1 are defined in terms of specific users
C, as is convenient when describing time-stamping, in Definition 5.1, these memory checkers
are defined for general low-space users C.

• While offline memory checkers according to Definition 4.2 are phrased in terms of users C that
are adaptively controlled by the server A, here we explicitly separate C and A throughout the
interactive protocol. However, since we quantify over all low-space C and PPT A, the user and
server can effectively collude beforehand to try to break the memory checker. (Looking ahead,
for any M that does not satisfy this new definition, this separation condition will allow us to
isolate the malicious user and embed it inside an honest-but-curious ORAM construction.)
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• We need completeness and soundness only against users with space c, as we only consider
applying these memory checkers where the users are ORAM clients that have low space com-
plexity.

Remark 5.2. We note that the lower bound of Dwork et al. [DNRV09] can be adapted to show
that that deterministic, non-adaptive separated memory checkers must also have Ω(logN/ log logN)
overhead. Since we restrict the adversary to be separated, this definition is weaker than general
purpose online memory checking, e.g., as in Blum et al. [BEG+91].

Throughout this section, for simplicity, we will consider ORAMs for a database of size N to have
physical server space O(N), as constructions with optimal overhead achieve this server space com-
plexity. First, we show that a generic compiler from honest-but-curious ORAM to maliciously secure
ORAM must be a separated memory checker.

Theorem 5.3. Suppose RAM program Π is such that that for all honest-but-curious ORAM C for
a database of size N with local space at most c, the composition of Π and C is a maliciously secure
ORAM size N . If Π has worst-case blowup in query complexity ℓ, then there is a separated memory
checker for users with space O(c) for a database of size N that has worst-case query complexity
O(ℓ).

In particular, if there does not exist a separated memory checker for users with space O(1) (and
a PRF key) with worst-case blowup in query complexity O(1), then there is no worst-case O(1)-
blowup Π such that composing an arbitrary honest-but-curious, O(1) local space ORAM with Π will
be maliciously secure.

For intuition, we first provide a sketch of the proof.

Proof sketch. We fix an honest-but-curious ORAM C with local space at most c and query complexity
ℓ, and we construct a family of honest-but-curious ORAMs {C′P}P by interleaving C with arbitrary
RAM users P that use space c, so that each C′P has local space complexity O(c) and query complexity
O(ℓ) (as shown in Algorithm 5.4). Furthermore, we augment C′P so that it detects any incorrect
responses to queries from P with non-negligible probability, at which point it behaves arbitrarily
(e.g., gives an incorrect response). We then construct a separated memory checker for O(c) space
users Π′ by combining Π and C (as shown in Algorithm 5.6). We argue that if there is some P for
which Π′ is not a memory checker, then composing Π with C′P is not maliciously secure, which is a
contradiction.

Now, we provide a formal proof.

Proof of Theorem 5.3. Fix an arbitrary program P with space at most c. Consider C′P defined as
follows which runs C and P locally as described in Algorithm 5.4.

Algorithm 5.4 Honest-but-curious ORAM C′P constructed using C and P as sub-routines.

• Allocate logical server spaces SC and SP each of size N for C and P, respectively.
• Choose a uniformly random address addrtest ← SP . Throughout the algorithm, C′P will use
O(1) local space to additionally locally keep track of all updates that P makes to addrtest.
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• For every logical query (op, addr, data) to C′P ,

– Feed (op, addr, data) to C.
– While C generates access (op′, addr′, data′):

∗ Conduct the access (op′, addr′, data′), while treating addr′ as an address in SC .
∗ If P is not finished, continue running P to generate a new physical query
(op′′, addr′′, data′′). Conduct access (op′′, addr′′, data′′) while treating addr′′ as an
address in SP . If addr′′ = addrtest:

· If the operation was (write, addrtest, data
′′) from program P, update the locally

stored value of addrtest with data′′.
· If the operation was (read, addrtest,⊥), compare the value from the server with

the locally stored value. If the values are not equal, return 1w to the user.
– When C outputs out, C′P also returns out to the user.

Claim 5.5. If C is an honest-but-curious ORAM with space complexity c and overhead q, then C′P
is an honest-but-curious ORAM with space complexity O(c) and overhead 2q.

Proof. It suffices to give a simulator S ′P . Define S ′P to be C′P , where all uses of C are replaced with the
simulator S for C. First, note that for honest servers, C′P has no abort condition. Indistinguishability
between the real and ideal worlds directly follows because honest-but-curious security of C because
usage of C is black-box, because program P has no access to user requests (op, addr, data), and
because the value locally stored for addrtest will always be correct when interacting with an honest
server.

Suppose Π compiles all honest-but-curious ORAMs with space at most O(c) into one that is mali-
ciously secure. In particular, for all programs P with space at most c, the composition of Π and C′P
is maliciously secure.

Let C̃ be C where the logical queries are fixed to first feeding it the query (write, 1, 0w) and then
repeatedly feeding it the fixed queries (read, 1,⊥). (As an aside, we remark that C̃ is a simulator
for C, although we will not need this fact.) Consider the following program Π′ that uses Π and C̃
as sub-routines:

Algorithm 5.6 Candidate separated memory checker Π′ with blow-up O(ℓ).

• Allocate logical server spaces SC̃ and SU for C̃ and the user U , respectively.
• For every logical query (op, addr, data) to Π′,

– Run C̃ to generate a new physical query (op′, addr′, data′).
– Feed (op′, addr′, data′) from C̃ into Π, and perform the corresponding physical accesses of

Π to server space SC̃ . Return the output of Π to C̃.
– Feed (op, addr, data) from the user U into Π, and perform corresponding accesses of Π to

server space SU . Return the output of Π to the user.
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To give some intuition, the composition of Π′ with user P is identical to the composition of Π
and C′P , where the user queries to C′P are fixed and the outputs of C′P are possibly incorrect. We
will think of Π′ as a separated memory checker and P as its user, and we will think of C′P as an
honest-but-curious ORAM that Π compiles into a malicious one. The equivalence between these
compositions allows us to reason back and forth between memory checking and ORAM security.
We illustrate this pictorially in Figure 1.

C

C′P

P

Π A

(a) Pictorial depiction of C′
P from Algorithm 5.4.

Π′

C̃

P

Π A

(b) Pictorial depiction of Π′ from Algorithm 5.6.

Figure 1: Comparing interaction of C′P and Π with the interaction of P and Π′.

Claim 5.7. Π′ is a separated memory checker with blow-up O(ℓ) for all RAM programs with space
at most c.

Proof. Suppose that Π′ is not a separated memory checker for users with space O(c). Then, either
completeness or soundness does not hold for Π′ with respect to some user program P with space
at most c. We now argue that the composition of Π and C′P (as defined in Algorithm 5.4) is not a
maliciously secure ORAM despite C being an honest-but-curious ORAM.

Suppose Π′ is not complete for some c-space user program P. Then, this means that the sub-routine
Π in Π′ aborts against an honest server with non-negligible probability infinitely often.

Consider C′P on the sequence where we first feed it the logical query (write, 1, 0w) and then repeatedly
feed it queries (read, 1,⊥) (i.e., identical to C̃), and consider Π as a compiler in this setting. Note that
the distribution of queries that Π receives as a compiler is identical to the distribution of queries
that Π receives as a sub-routine of Π′. Therefore, Π will abort with non-negligible probability
infinitely often as a compiler for C′P , which contradicts the completeness of Π composed with C′P (as
a maliciously secure ORAM).

Now suppose Π′ is not sound for some c-space user program P. Then, there exists some adversarial
server A such that P and A can force Π′ to make a mistake with non-negligible probability ϵ(λ)
infinitely often.

Consider C′P on the sequence where we first feed it the logical query (write, 1, 0w) and then repeatedly
feed it queries (read, 1,⊥) (i.e., identical to C̃), and consider Π as a compiler in this setting. Up
until the first mistake that Π′ makes to P, the distribution of queries to Π is the same, so the
probability that Π makes a mistake is also at least ϵ(λ) (infinitely often). Note that addrtest,
as sampled uniformly by C′P , is equal to the logical address of the the first corrupted response
for Π′ with probability at least 1

N . Therefore, C′P detects this mistake with probability at least
ϵ(λ)/N ≥ ϵ(λ)/poly(λ), which is non-negligible in λ infinitely often. As a result, C′P outputs 1w

with non-negligible probability infinitely often. As such, a malicious ORAM adversary can run the
malicious server A, feed the ORAM (write, 1, 0w) and then repeatedly (read, 1,⊥) to distinguish
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between the real and ideal worlds, as 1w will be outputted with non-negligible probability in the
real world but not the ideal world. Therefore, the obliviousness and correctness of Π composed with
C′P (as a maliciously secure ORAM) is violated.

Since Π′ has the desired properties, the proof of Theorem 5.3 is complete.

Now, we show that separated memory checkers are also sufficient to compile any honest-but-curious
ORAM into one that is maliciously secure.

Theorem 5.8. Suppose that M is a separated memory checker for users with space O(c). Then,
for any honest-but-curious ORAM C with client space complexity c, M is an online memory checker
for C, in the sense of Definition 4.1.

For intuition, we provide a sketch of the proof.

Proof sketch. Since C has space complexity c, there exists a simulator S for C with space complexity
O(c). In particular, M is a good memory checker for S since S is separated from the ORAM
user. Hence, C with arbitrary inputs is indistinguishable from a separated RAM user, namely S.
Therefore, we argue that if M doesn’t satisfy either completeness or soundness for C, one can use
M to construct an honest-but-curious adversary A (i.e., one that does not send incorrect responses)
that distinguishes Real(C,A) and Ideal(FRAM,S,A).

Proof of Theorem 5.8. Supposing otherwise, there exists an honest-but-curious ORAM C with local
space c for which either online memory checking soundness or completeness of M does not hold for
C. Note that without loss of generality, there exists an honest-but-curious simulator S for C with
space O(c). This is due to the fact that one can define the simulator to simply be C run on a fixed
sequence, e.g. (write, addr, 0) for some fixed address addr.

Soundness. Suppose that M is not sound for C. In other words, there exists an adversary AM

that controls both the logical queries sent to C as well as the server’s responses to M that forces M
to send incorrect responses with non-negligible probability infinitely often. Consider the following
adversary AC against the implementation C:

1. Allocate server space D for C. This space will not be tampered with.
2. Independently, internally within AC , allocate physical server space to run M . Use AM to

control this server that M is interacting with.
3. Initialize flag = false.
4. Until AM aborts, generate (op, addr, data) ← AM , and send it to C. For every access

(op′, addr′, data′) from C,

(a) Perform the command honestly on server space D, and generate the honest output out
(to later send to the client).

(b) Feed (op′, addr′, data′) to M and have M interact with AM as the server.
(c) If op = read, compare the response from D with the response from M . If the responses

do not match, set flag = true, and stop running M .
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(d) Send the honest output out from Step 4a to the C.

5. If flag = true, output 1. Else, output 0.

We claim that AC breaks the honest-but-curious security of C. First, note that all responses to C are
in fact honest, and hence AC is in fact an honest-but-curious adversary. In Real(C,AC), M sends an
incorrect response with non-negligible probability infinitely often by definition of AM , i.e., AC out-
puts 1 with non-negligible probability infinitely often. On the other hand, in Ideal(FN,w

RAM,S,AC),
M is instead interacting with S, which is in fact separated from AM . By soundness of M as a
separated memory checker, M sends an incorrect with negligible probability, i.e., AC outputs 1 with
negligible probability. Therefore, AC distinguishes the two worlds with non-negligible probability
infinitely often.

Completeness. Suppose that M is not complete for C. In other words, there exists an adversary
AM that controls logical queries sent to C and sees (but does not control) physical server queries
that forces M to either abort or make a mistake with non-negligible probability infinitely often.
Consider the following adversary AC :

1. Allocate server space D for C. This space will not be tampered with.
2. Independently, internally within AC , allocate physical server space DM to run M . This space

will not be tampered with.
3. Initialize flag = false.
4. Until AM aborts, generate (op, addr, data) ← AM , and send it to C. For every access

(op′, addr′, data′) from C,

(a) Perform the command honestly on server space D, and generate the honest output out
(to later send to the client).

(b) Feed (op′, addr′, data′) to M and have M interact with DM as the server.
(c) If M aborts, set flag = true and stop running M .
(d) If op = read, compare the response from D with the response from M . If the responses

do not match, set flag = true, and stop running M .
(e) Send the honest output out from Step 4a to the C.

5. If flag = true, output 1. Else, output 0.

We claim that AC breaks the honest-but-curious security of C. First, note that all responses to C
are in fact honest, and hence AC is in fact an honest-but-curious adversary. In Real(C,AC), M
aborts or sends an incorrect response with non-negligible probability infinitely often by definition
of AM . On the other hand, in Ideal(FN,w

RAM,S,AC), M is instead interacting with S, which is in
fact separated from AM . By completeness and soundness of M as a separated memory checker, M
aborts or sends an incorrect response only with negligible probability. Therefore, AC distinguishes
the two worlds with non-negligible probability infinitely often.

Corollary 5.9. Suppose that C is an honest-but-curious ORAM with client space complexity c, and
suppose there is a separated memory checker M for users with space O(c). Then, the composition
of M and C is a maliciously secure ORAM.
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Proof. This immediately follows from combining Theorem 5.8 and Theorem 4.5.

6 Write-Deterministic Implementations

In this section, we formalize how an access-deterministic honest-but-curious oblivious algorithm can
be made oblivious against malicious servers with O(1) blowup in overhead. In fact, we only need the
writes to be deterministic, meaning that the reads can occur to arbitrary addresses. This motivates
the following definition.

Definition 6.1. We say a RAM program C is (1− ϵ)-write-deterministic if there exists a fixed set
SC of time and address pairs such that for all x, whenever C does not abort,

{(t, addr) : on input x, C makes a write to addr at time t} = SC

when C is interacting with an honest RAM server, and for all x, C aborts with probability at most
ϵ when interacting with an honest server. That is, for all x, the timing and locations of writes that
C makes are deterministic and completely independent of x. (This definition says nothing about the
content of the writes or the contents or addresses of the reads, but it does implicitly fix the timing
of the reads.) Whenever ϵ is unspecified, we take it to mean ϵ = 0.

Since the writes are deterministic, this definition can be seen as asserting the existence of a time-
stamp function (Definition 4.3), or “time-labeling” in the sense of Goldreich and Ostrovsky [GO96],
but without any requirement that such a function is computable in low space. We now show that
this notion (without any efficiency requirements) is sufficient to get malicious security.

As mentioned in Section 2, offline memory checking a write-deterministic honest-but-curious obliv-
ious algorithm directly may not be maliciously secure. We circumvent this by first running the
honest-but-curious algorithm on some fixed dummy input (independent of the real input) to essen-
tially build a time-stamp array. By offline-checking up until the array is built, we ensure correctness
of the time-stamp array. Note that obliviousness is guaranteed throughout the offline check be-
cause nothing about the real input is used when building the array. After this check is finished,
the algorithm now runs on the real input, using the post-verifiability of the time-stamp array to
verify time-stamps in MACs in an online way. This allows one to catch any replay attacks by the
adversarial server immediately. This is detailed in Algorithm 6.3.

Theorem 6.2. Suppose CF is a (1 − δ)-honest-but-curious oblivious, (1 − ϵ)-write-deterministic
implementation for a stateless functionality F with client space complexity c, server space s and
query complexity q. Then, there exists a (1 − O(δ) − O(ϵ) − negl(λ))-maliciously secure oblivious
implementation C′F for F with query complexity O(q + s), server space complexity O(q + s), and
client space complexity O(c) (and one PRF key).

Proof. We claim that C′F in Algorithm 6.3 is a maliciously secure implementation of F with the
desired efficiency.

Algorithm 6.3 Maliciously secure implementation C′F .

Input: x.
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Output: F(x).
Memory checking: In the grayed-out portion of the algorithm, we use the post-verifiable offline
memory checker from Theorem 4.11. If the memory checker aborts, so does this algorithm.
Everything in the grayed-out box constitutes the Read/Write Phase, and Line 5 is the Read-Only
Phase.
Authentication: Outside the grayed-out portion of the algorithm, for every write query
(write, addr, data′) generated by our algorithm C′F , data′ is replaced with data′′ := (data′, σ ←
MACsk(data

′, addr)). Every read query (read, addr,⊥) is passed through authentication, namely
unpacking data′′ = (data′, σ∗), checking MACVersk((data

′, addr), σ∗) = 1, aborting if verification
fails, and returning data′ if not. For readability, we do not explicitly write these authentication
tags and checks.
The algorithm.

1. Initialize the following arrays:

• Array N containing q elements, initialized to ∅. If the offline check passes, for a write
at time ctr to addr, N [ctr] will contain the subsequent time addr is written to (if such a
time exists), and otherwise N [ctr] = ∅.

• Array W of size s initialized to (∅,∅). This will be used as the work-space for CF .
2. Make copies Noff and W off of N and W respectively.
3. Initialize a counter ctr = 0 locally (this will be used to keep track of the number of reads

and writes).
4. Let C0 be a modification of CF where the input is hard-coded to some fixed, well-formed

dummy input (e.g., 0n), independent of the real input x. Run C0 using W off as its designated
work space on the server, aborting if it ever makes more than q queries. Now, we convert a
query (op, addr, data) generated by C0 (interpreting all addr to be in W off) into the following
sequence queries:

• If op = write :

– Retrieve W off [addr] from A.
– Let data′ ← A(1λ, query). Unpack (dataold, ctr

′)← data′.
– Set Noff [ctr′] = ctr.
– Write data to W off [addr].

• If op = read :

– Retrieve W off [addr] from A and send it to C0.
• Increment ctr.

5. Copy the contents of Noff to N using the post-verifiability of the offline checker. Note that
W is still all (∅,∅).

6. Re-initialize counter ctr = 0, and keep track of this locally.
7. Now, we run CF on input x. For every (op, addr, data) sent by CF :

• If op = write:
– Write (data, ctr)→W [addr].

• If op = read:
– Read W [addr] to retrieve (data′, ctr′) from A.
– Read N [ctr′] to verify that N [ctr′] > ctr, and abort if this does not hold.
– Send data′ to CF .
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• Increment ctr.
8. Output whatever CF outputs.

Consider the following simulator S that is identical to C′F , except it runs SF instead of CF at Step 7,
where SF is the honest-but-curious simulator for CF . Now we show that no PPT A can distinguish
between Real(C′F ,A) and Ideal(F ,S,A) with probability greater than δ + negl(λ).

Experiment Hybrid0: The real world Real(C′F ,A).
Experiment Hybrid1: The experiment is the same as the previous hybrid, except we replace the
offline memory checker M with an idealized version M ′. Specifically, M ′ behaves identically to M ,
except ensures with probability 1 (instead of 1 − negl(λ)) that the soundness property holds, i.e.,
if M ′ doesn’t abort after the first phase (Read/Write), then all responses M ′ has previously given
are correct, and all data∗ sent back to C′F by M ′ in the second phase (Read-Only) are correct.

Claim 6.4. |Pr[Hybrid1 = 1]− Pr[Hybrid0 = 1]| ≤ negl(λ).

Proof. This directly follows from soundness of the offline memory checker M .

Experiment Hybrid2: In this hybrid, we modify the client and augment it with additional space to
check that all ciphertexts passing the authentication verification have been generated by the MAC
before, aborting if this is not the case. (Note that in the real world, a client cannot generally do
this because this takes Ω(N) space.)

Claim 6.5. |Pr[Hybrid2 = 1]− Pr[Hybrid1 = 1]| ≤ negl(λ).

Proof. This directly follows from unforgeability of MACs, as any data passing the verification check
must have been queried to the MACsk(·) oracle (with 1− negl(λ) probability).

Experiment Hybrid3: In this hybrid, we ensure with probability 1 that in Step 7, any data′ sent
back to CF is correct. (This can be checked in the hybrid by keeping an auxiliary, honest version of
W .)

Claim 6.6. Pr[Hybrid3 = 1] = Pr[Hybrid2 = 1].

Proof. If C′F aborts before Step 7, then the hybrids are identical. If C′F does not abort before
Step 7, by perfect unforgeability of the MAC and perfect soundness of the memory checker (from
the previous hybrids), we know that the contents of N are correct with respect to C0, i.e., if addr
is written to at time ctr, N [ctr] contains the subsequent time addr is written to (if one exists) with
respect to C0.
Now, we proceed by induction on each step of the execution of CF on input x. The base case is that
no data′ is returned incorrectly before the first read, which immediately holds. For the inductive
step, at a given time ctr, by write-determinism of CF and by the inductive hypothesis, we know that
the write sequences of C0 and CF are identical since the inductive hypothesis asserts that all data′

so far have been correct, so it is interacting with an honest server. Therefore, N (up to time ctr)
must be correct for CF as well. Now, by perfect unforgeability of the MAC, we know that the only
possible way data′ could be wrong for a read to addr is via a replay attack, where some incorrect
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(data∗, ctr∗) is returned by A for ctr∗ < ctr′, where ctr∗ is an old time of a write to addr and ctr′ is
the true time of the most recent write to addr before the current time ctr. However, by correctness
of N , since there was a write to addr at time ctr′, we know N [ctr∗] ≤ ctr′ < ctr, so C′F must have
aborted within Step 7 before sending back data∗. This completes the inductive argument, showing
that all data′ sent back to CF are correct.

Experiment Hybrid4: Replace CF in Step 7 with SF , and replace the output of CF (and hence C′F )
with the output of the functionality F .

Claim 6.7. |Pr[Hybrid4 = 1]− Pr[Hybrid3 = 1]| ≤ δ.

Proof. Since all data′ sent back to CF (in Hybrid3) or SF (in Hybrid4) are correct by Hybrid3,
by invoking the honest-but-curious (1 − δ)-obliviousness of CF , the two hybrids are (1 − δ)-
indistinguishable.

Experiment Hybrid5: In this hybrid, we unravel the hybrids 0-3, namely:

• Remove the perfect data′ verification in Hybrid3.
• Conduct the MAC check rather than saving all the tags for authentication.
• Replace the idealized offline checker M ′ with the original version M .

Claim 6.8. |Pr[Hybrid5 = 1]− Pr[Hybrid4 = 1]| ≤ negl(λ).

Note that Hybrid5 is in fact exactly Ideal(F ,S,A), thereby completing the proof.

Next, we show completeness. Since the algorithm is (1− ϵ)-write-deterministic, we know that both
C0 and C each abort with probability at most ϵ against an honest server. Therefore, by a union
bound, with probability at least 1 − 2ϵ, neither of them abort against an honest server. Since our
offline memory checker has completeness 1− negl(λ) (in fact, completeness 1), this implies that C′F
overall has completeness 1− 2ϵ− negl(λ).

Lastly, we argue that C′F has the desired efficiency. The server space complexity is now O(q + s),
since we use O(q) space to store the array N (see Remark 6.9) and O(s) space to store the work
space of C0 and CF . Furthermore, the total number of queries made by our offline memory checker
is O(q+ (q+ s)) = O(q+ s), since the number of queries is O(q) and the total work-tape size being
offline-checked is O(q+ s). The number of queries made by running C0 and CF is O(q), bringing the
total query complexity of C′F to O((q+ s) + q) = O(q+ s). Lastly, the client local space complexity
is O(c) since we run C0 and CF , and we can run the memory checker and MAC with one PRF key
(and O(1) words to store all necessary counters).

Remark 6.9. The server space complexity of C′F in Theorem 6.2 can be reduced to O(s) generating
the data structure N on the fly by re-running Steps 4 through 7 every O(s) steps. In our case, the
bound of O(q + s) on the server space complexity is sufficient to achieve our O(N) server space
ORAM construction, so we give the simpler construction and proof for readability.

In Section 7, we argue that many of our ORAM building blocks such as sorting, tight compaction
and Cuckoo hashing are in fact access-deterministic and therefore write-deterministic. Therefore,
these can be made maliciously secure with low overhead by directly applying Theorem 6.2.
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7 Overview of Maliciously Secure Building Blocks

Our ORAM construction relies on several oblivious building blocks. We describe how we modify ex-
isting algorithms for these building blocks to be maliciously secure with small (usually O(1)) blowup,
i.e., multiplicative increase in query complexity, relative to the honest-but-curious counterparts. For
the explicit constructions and proofs, see Appendix C.

• Maliciously Secure Oblivious RAM with O(log4 n) overhead (Appendix C.1)

We modify the existing perfectly secure honest-but-curious ORAM with O(log3 n) overhead
due to Chan et al. [CNS18] to obtain a maliciously secure ORAM with O(log4 n) overhead
with only a negl(λ) security loss independently of n, as long as n ≤ poly(λ).

• Oblivious Sorting Algorithms (Appendix C.2)

We argue that the sorting algorithm of Ajtai et al. [AKS83] and the packed sorting algorithm
of Asharov et al. [Bat68, AKLS21] are access-deterministic, and thus can be made maliciously
secure with O(1) blowup in query complexity.

• Oblivious Two-Key Dictionary (Appendix C.3)

Similarly to Asharov et al. [AKLS21], we give a maliciously secure implementation of a dic-
tionary where each element has two keys such that one can pop elements with respect to
either key. We do this by constructing a non-oblivious data structure and then composing our
maliciously secure ORAM from C.1 with this data structure.

• Oblivious Random Permutation (Appendix C.4)

We modify the random shuffling algorithm of Chan et al. [CCS17] to be maliciously secure
with O(1) blowup using offline checking.

• Oblivious Bin Placement (Appendix C.5)

A placement algorithm was proposed by Chan et al. [CGLS17] to obliviously route elements
in an array. We show that this can be made maliciously secure with O(1) blowup by arguing
that it is time-stampable.

• Oblivious Balls-into-Bins Sampling (Appendix C.6)

We adapt the algorithm of Asharov et al. [AKL+20] by applying online memory checking
techniques to provide a maliciously secure algorithm for sampling balls-in-bins loads efficiently.

• Tight Compaction (Appendix C.7)

Tight compaction takes as input an array where some elements are marked and outputs
a permutation of the array so that all the marked elements appear before the unmarked
elements. Since the linear-time algorithm of Asharov et al. [AKL+20] is access-deterministic,
we can apply Theorem 6.2.

• Intersperse (Appendix C.7)

Intersperse is an algorithm which, given two randomly shuffled arrays, outputs a random shuffle
of the concatenation of the two arrays. Asharov et al. [AKL+20] give a access-deterministic
linear-time algorithm to do this, so we apply Theorem 6.2 to argue that it can be made
maliciously secure.
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• Perfect Random Permutation (Appendix C.7)

Asharov et al. [AKL+20] give an algorithm to randomly shuffle lists with O(n log n) queries
with no failure probability. Since the algorithm is access-deterministic, we can once again
apply Theorem 6.2 to make it maliciously secure with negl(λ) security loss, independent of
the size of n.

• Oblivious Cuckoo Hashing (Appendix C.8)

Chan et al. [CGLS17] give an oblivious algorithm to compute Cuckoo hash tables with essen-
tially O(1) lookup time. We argue this algorithm can be made maliciously secure with O(1)
blowup because it is access-deterministic.

• Deduplication (Appendix C.9)

Asharov et al. [AKLS21] give a linear-time oblivious algorithm to take a union of two randomly
shuffled arrays while removing duplicates. We make this maliciously secure with O(1) blowup
using our maliciously secure hash table construction as given in Section 8.

8 Maliciously Secure Oblivious Hash Table

In this section, we construct an efficient maliciously secure oblivious implementation of the hash
table functionality FHT (Functionality 8.1). Following previous works, in our ORAM construction,
we use this hash table implementation to implement each layer of the hierarchical ORAM.

The works of Asharov et al. [AKL+20, AKLS21] provide an implementation CombHT of FHT with
the following properties:

• The input array of size n satisfies log11 λ ≤ n ≤ poly(λ).
• Both CombHT.Build() and CombHT.Extract() run in O(n) time.
• Each CombHT.Lookup() call takes O(1) time ignoring linear scans over a O(log λ)-sized stash,

which in the final ORAM construction will end up being amortized over many lookups.

At a high level, this is achieved by hashing in two levels: the first level of hashing is a standard balls
and bins hashing into n

polylog(λ) bins (which they call BigHT), and each bin is then implemented as
a polylog(λ) size Cuckoo hash table (called SmallHT). In particular, they present CombHT in the
SmallHT-hybrid model.

However, as presented, it is not clear how the CombHT construction in [AKL+20, AKLS21] can be
made obliviously secure with O(1) multiplicative overhead. If each SmallHT instance is used in a
black-box way, by a variant of the marking lower bound in Section 2.2.2, online memory checking
which indices were accessed in each SmallHT instance (as needed to remove accessed elements when
implementing SmallHT.Extract()) is not possible in low space.

Therefore, to make a maliciously secure version of CombHT with small local space, we combine the
SmallHT instances in a non-black-box way. Specifically, in MalHT, we time-stamp a list of all ac-
cessed elements across SmallHT instances as the lookups occur, and then to support MalHT.Extract(),
we do an offline memory check, as the access pattern will be conditionally write-deterministic on
the time-stamped list of lookups.
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Functionality 8.1 Fn
HT: Hash Table Functionality for Non-Recurrent Lookups

Command Fn
HT.Build():

• Input: An array I = (a1, . . . , an) containing n elements, where each ai is either dummy or
a (key, value) pair denoted (ki, vi) ∈ {0, 1}D × {0, 1}D where D := O(1) · w where w is the
plaintext word size.

• Input assumptions: The elements in the array are uniformly shuffled, and all real keys
contained in {k1, k2, . . . , kn} are distinct.

• The procedure:

– Initialize a list P ← ∅.
– Initialize the internal state := (I,P ).

Command Fn
HT.Lookup():

• Input: a key k ∈ {0, 1}D ∪ {⊥}.
• The procedure:

– Parse the internal state as state = (I,P ).
– If k ∈ P , set v∗ = ⊥.
– If k = ⊥ or k /∈ I, set v∗ = ⊥.
– Otherwise, set v∗ = v where v is the value that corresponds to the key k in I ′.
– Update P ← P ∪ {(k, v)}.

• Output: The element v∗.

Command Fn
HT.Extract():

• Input: There is no input to this command.
• The procedure:

– Parse the internal state state = (I,P ).
– Define an array J = {a′1, a′2, . . . , a′n} from I as follows: For i ∈ [n], set a′i = ai if ai /∈ P ,

otherwise set a′i = dummy.
– Shuffle J uniformly.

• Output: The array J .

Now, we present MalHT, a maliciously secure implementation of Functionality 8.1.

Algorithm 8.2 MalHT.Build(): Hash table for shuffled inputs.

Input: An array I = (a1, . . . , an) containing n elements, where each ai is either dummy or a
(key, value) pair denoted (ki, vi) where both the key k and the value v are D-bit strings, where
D := O(1) · w.
Input assumptions: The elements in the array are uniformly shuffled, and all real keys contained
in {k1, k2, . . . , kn} are distinct.
Secret key: Sample a random PRF secret key sk. Use PRFsk(“Enc”||·) for all ciphertexts, and
use PRFsk(“MAC”||·) for all MACs, where we now abuse notation and overload sk to denote the
secret key for both.
Authenticated Encryption: Unless otherwise specified, for every write query
(write, addr, data), data is replaced with data′ := (ct ← Encsk(data), σ ← MACsk(ct, addr)).
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Reads are passed through authenticated decryption, namely unpacking data′ = (ct∗, σ∗),
checking MACVersk((ct

∗, addr), σ∗) = 1, aborting if verification fails, and otherwise returning
data∗ = Decsk(ct

∗).
Memory checking: To make the algorithm maliciously obliviously secure, we combine both
online and offline memory checking components. All portions that are post-verifiably offline
memory checked are boxed out in gray (corresponding to the Read/Write phase), and all portions
of memory that are not online-checkable via time-stamping will be indicated with superscript off.
When offline memory checking, after the Read/Write phase, for simplicity we use post-verifiability
to immediately copy the contents of memory sequentially to fresh “online checkable” portions of
memory with corresponding time-stamps. We time-stamp all other parts of this implementation.
The algorithm:

1. Let µ := log9 λ, ϵ := 1
log2 λ

, δ := e− log λ·log log λ, and B := ⌈n/µ⌉.
2. Initialize arrays Binoff1 ,Binoff2 , . . . ,BinoffB of size µ+ 0.5 · ϵµ to ∅.
3. Initialize counters coff1 , . . . , coffB := 0.
4. Balls in bins hashing to leave results in a post-verifiable state:

• For i = 1, 2, . . . , n, throw real items ai = (ki, vi) into bin Binoffj where j = PRFsk(0||ki)
(mod B). If ai = dummy, throw it into a uniformly random bin. Concretely:
– Every bin Binoffj has an associated counter coffj .
– Retrieve counter coffj . If coffj > |Binoffj |, output ⊥.
– Place ai in position Binoffj [coffj ].
– Increment coffj .

• Initialize lists Bin1, . . . ,BinB to ∅.
• For i = 1, . . . , B, using the post-verifiability of the offline memory checker, copy over

the contents of Binoffi into Bini sequentially with appropriate timestamps.
5. Sampling secret loads:

• Sample (L1, . . . , LB)← SampleBinLoadsB,δ(n
′), where n′ = n · (1− ϵ).

• For any i ∈ [B], if ||Bini| − µ| > 0.5ϵµ or
∣∣∣Li − n′

B

∣∣∣ > 0.5ϵµ, output ⊥.

6. Creating major bins:

• Initialize new bins Bin′1, . . . ,Bin
′
B, each of size µ.

• For each 1 ≤ i ≤ B, iterate in parallel over all of Bini and Bin′i, and copy over the first
Li elements from Bini to Bin′i, and fill the remaining µ− Li slots of Bin′i with dummy.

7. Creating overflow pile.

• Iterate over all of Bini, and replace the first Li positions with dummy, and rewrite the
unmodified contents.

• Concatenate X = Bin1||Bin2|| . . . ||BinB.
• Run Y ← TightCompaction(X) to move real elements to the front.
• Truncate Y to length 2ϵ · n.

8. Prepare Cuckoo hash tables for efficient lookup: For each i = 1, 2, . . . , B:

• Obtain the Cuckoo hashing initialized array Xi ← CuckooInit(Bin′i) by calling the sub-
routine in Algorithm C.35 (note that this is not a hybrid call; we instead separate the
pseudocode for readability). This subroutine intersperses dummies to pad the array to
length ccuckoo · |Bini|+ log λ.
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• Iterate over indices j in Xi and create the metadata array MDXi and do the following:
– If Xi[j] = (kj , vj) is a real element, let MDXi [j] := (choice1,j , choice2,j) where

(choice1,j , choice2,j)← PRFsk(i||kj).
– If Xi[j] is a dummy, let MDXi [j] := (⊥,⊥).

• Call the subroutine AssignXi
← CuckooMD(MDXi) (Algorithm C.37) to obtain the

Cuckoo hashing assignment, where we use the packed cuckooAssign algorithm from
Corollary C.34.

• Initialize CBinoffi to be an empty array of size µ · ccuckoo, and initialize Soffi to be the
stash of size log λ associated with CBinoffi .

• Route the elements of Xi according to AssignXi
to CBinoffi ∪ Soffi in the clear. More

concretely, for j = 1, 2, . . . , |Xi| :
– Let (k, v)←Xi[j] (note that k may be a dummy).
– Let addr← AssignXi

[j].
– If addr ∈ CBinoffi , then write CBinoffi [addr] := (k, v).
– If addr ∈ Soffi , then write Soffi [addr] := (k, v).

• Initialize CBini to be an empty array of size µ · ccuckoo, and initialize Si to be the stash
of size log λ associated with CBini.

• Using the post-verifiability of the offline memory checker, copy CBinoffi ∪Soffi into CBini∪
Si sequentially with appropriate timestamps.

9. Prepare Overflow Cuckoo hash table for efficient lookup:

• Run cuckooAssign(Y ) (without packed sorting) from Theorem C.31 with parameter δ
and PRFsk(“OF”||·) to obtain the table and stash (OF,OFS). Since |Y | ≤ 2ϵ · n = 2n

log2 λ
,

we have that the query and space complexity of this step is O(|Y | log |Y |) = O(n) since
n ≤ poly(λ).

10. Prepare Stash Cuckoo hash table for efficient lookup:

• Let S =
⋃B

i=1 Si, i.e., the union of all stashes. Note that |S| ≤ |B| · log λ ≤ O
(

n
log8 λ

)
.

• Run cuckooAssign(S) (without packed sorting) from Theorem C.31 with parameter δ and
PRFsk(“SecS”||·) to obtain the table and stash (SecS,SecSS). Since |S| = O

(
n

log8 λ

)
,

we have that the query and space complexity of this step is O(|S| log |S|) = O(n).
Output: This command has no output.
State on Server:

• Bins

– Main Cuckoo bins: CBin1, . . . ,CBinB.
– Cuckoo hash table for overflow pile: OF.
– Cuckoo hash table for combined stash: SecS.

• Two lists OFS and SecSS to lookup elements in the leftover stash.
• Array P of size n initialized ∅. This array will be used to track all lookups made to
CBin1, . . . ,CBinB,OF,SecS.

Local State:

• Secret key: sk.
• Counter c initialized to 0. This counter will be used to track the number of lookups made.
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Algorithm 8.3 MalHT.Lookup(k)

State on Server:

• Bins: (CBin1, . . . ,CBinB,OF,SecS,OFS, SecSS).
• Array P of all lookups made.

Local State: Counter c and secret key sk.
Input: Key k to look for (which might be ⊥ for dummy lookups).
Input Assumption: The key k has not been previously looked up, i.e., k /∈ P .
The algorithm:

1. Initialize v := ⊥ and list Ak ← ∅.
2. If k = ⊥:

• Iterate linearly over OFS, and write every element back unmodified.
• Iterate linearly over SecSS, and write every element back unmodified.
• Lookup two random locations in OF, and add the locations to Ak.
• Lookup two random locations in S, and add the locations to Ak.
• Choose random bin i ← [B], and lookup two random locations in CBini, and add the

locations to Ak.
3. If k ̸= ⊥:

• Lookup in the stashes:
– Iterate linearly over OFS. If OFS[j] contains k, write ⊥ back at OFS[j], and store

the value of v. Otherwise, perform a dummy write to OFS[j].
– Iterate linearly over SecSS. If SecSS[j] contains k, write ⊥ back at SecSS[j], and

store the value of v. Otherwise, perform a dummy write to SecSS[j].
– Update the value of v.

• Lookup in overflow pile:
– If v ̸= ⊥ (i.e., v was found in the stashes), look up two random locations in OF.
– If v = ⊥, let choice1,OF, choice2,OF ← PRFsk(“OF”||k). Lookup OF[choice1,OF] and

OF[choice2,OF]. If key k lies in either of them, set v to be the corresponding value.
Add both addresses to Ak.

• Lookup in combined stash:
– If v ̸= ⊥, look up two random locations in SecS. Add the locations to Ak.
– If v = ⊥, compute choice1,SecS, choice2,SecS ← PRFsk(“SecS”||k). Lookup

SecS[choice1,SecS] and SecS[choice2,SecS]. If key k lies in either of them, set v to
be the corresponding value. Add both addresses to Ak.

• Lookup in bins:
– If v ̸= ⊥, choose a random bin i← [B] and look up two random locations in CBini.

Add both addresses to Ak.
– If v = ⊥,

∗ Compute i← PRFsk(0||k).
∗ Let choice1, choice2 ← PRFsk(i||k).
∗ Lookup CBini[choice1] and CBini[choice2]. If key k lies in either of them, set v to

be the corresponding value. Add both addresses to Ak.

Output: The value v.
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Final State on Server:

• Bins: (CBin1, . . . ,CBinB,OF,SecS). Note that these remain unchanged.
• Two lists OFS and SecSS to look up elements in the leftover stash.
• Update P [c] ← (k,Ak). Here, Ak is a list of all 6 addresses (two addresses in OF, two

addresses in SecS, and two addresses in CBini for some i) that were looked up in the table.

Final Local State: Increment c← c+ 1.

Algorithm 8.4 MalHT.Extract()

State on Server:

• Bins: (CBin1, . . . ,CBinB,OF,SecS,OFS, SecSS).
• Array P of all lookups made.

Local State: Counter c and secret key sk.
Input: This command has no input.
The algorithm:

1. Let L = CBin1||CBin2|| . . . ||CBinB||OF||SecS.
2. Initialize T off to be an array of size |L|.
3. Copy the elements from L into T off .
4. Iterate over P , and sequentially do following:

• If P [i] = (⊥, Ak), then access all addresses in Ak, and write back the contents without
modifications.

• If P [i] = (k,Ak) where k ̸= ⊥, access every addr ∈ Ak:
– If key k lies in T off [addr], rewrite the entry within T off to ⊥.
– If key k does not lie in T off [addr], write back the contents within T off without

modifications.
5. Initialize an array T of size |L| to ∅.

6. Using the post-verifiability of the offline memory checker, copy the contents of T off into T
sequentially with appropriate timestamps.

7. Let C||OF′||SecS′ := T , where C, OF′ and SecS′ correspond to the marked versions of
CBin1, · · · ,CBinB, OF and SecS respectively.

8. Let R← PerfectORP(OF′||SecS′).
9. Let T ← Intersperse(C||R; |C|, |R|).

10. Let TS ← PerfectORP(OFS||SecSS).
11. Let T ′ ← Intersperse(T ||TS; |T |, |TS|).
12. Let T ′′ ← TightCompaction(T ′) considering all entries overwritten with ⊥ as 0-balls (i.e.,

moved to end of array), and truncate the array to size n.
13. Let X ← IntersperseRDn(T

′′).

Output: The array X.
Final State on Server: Reset the state on the server to ∅.

46



Malicious security. To make the algorithm maliciously obliviously secure, we combine both
online and offline memory checking components. All portions that are offline memory checked are
boxed out in gray, and all portions of memory that are not online-checkable via time-stamping will
be indicated with superscript off. All such portions of memory are left in a post-verifiable state at
the end of the offline checking portions after Algorithm 4.10. We then immediately copy the contents
of this memory sequentially to fresh “online checkable” portions of memory with corresponding time-
stamps. All other parts of this implementation can be time-stamped in the hybrid model. To see
this, note that in both MalHT.Build() and MalHT.Extract(), all portions which are not offline-checked
are linear scans over contiguous portions of memory. In MalHT.Lookup(), all of OFS and SecSS is
updated every time, and hence can be time-stamped with just the knowledge of the number of
lookups c. Moreover, only P [c] is modified in P . Therefore, P can also be time-stamped.

We highlight the main reasons why it is safe to offline-check various portions of the algorithm.

• Step 4 of MalHT.Build(), as discussed in Section 2.2.2, does not seem time-stampable. Nonethe-
less, offline checking is safe because the values leaked are either of the form PRFsk(0||ki) (with
no duplicates) or uniformly random.

• In Step 8 of MalHT.Build(), we use the fact that AssignXi
is time-stamped and tamper-proof.

Moreover, since the values of AssignXi
are safe to leak (because the input to MalHT.Build()

is randomly shuffled), routing according to AssignXi
is conditionally offline-safe, as discussed

in Section 2.3.
• Note that the array P was time-stamped as it was constructed during MalHT.Lookup() calls.

Therefore, in Steps 3 and 4 of MalHT.Extract(), we use the fact that P is time-stamped and
safe to leak (since P contains known addresses) to once again argue that it is conditionally
offline-safe. Note that time-stamping P was not directly possible in the CombHT construction
of Asharov et al. [AKL+20] since accesses to the small bins were abstracted out with SmallHT
calls.

Theorem 8.5. Suppose log11 λ ≤ n ≤ poly(λ). MalHT is a maliciously secure implementation of
FHT. Moreover, the run-time of the algorithm is O(n) for Build, O(log λ) for Lookup and O(n) for
Extract.

Proof. We describe the simulator S for MalHT in the (Intersperse, IntersperseRD,TightCompaction,
PerfectORP,SampleBinLoads, cuckooAssign, packedcuckooAssign, FSort,FPlacement)-hybrid.

1. Simulating Build: Run the real algorithm on input I of only dummies and generates the
initial state on the server.

2. Simulating Lookup: Run the real lookup algorithm on input ⊥ with the simulator’s state
on the server.

3. Simulating Extract: Run the real algorithm on the simulator’s state on the server.

We show that an adversary A cannot distinguish Real(CMalHT,A) and Ideal(FHT,S,A).
Experiment Hybrid0: The real view Real(CMalHT,A).
Experiment Hybrid1: This experiment is the same as Hybrid0, except every invocation of PRFsk(·)
is replaced with a random oracle call O(sk||·).
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Claim 8.6. |Pr[Hybrid1 = 1]− Pr[Hybrid0 = 1]| ≤ negl(λ).

This holds by PRF security.

Experiment Hybrid2: This experiment is the same as the previous hybrid, except we replace the
online checker M with an idealized version M ′ which behaves identically to M , except ensures (with
probability 1) that any data∗ sent back by M is correct.

Claim 8.7. |Pr[Hybrid2 = 1]− Pr[Hybrid1 = 1]| ≤ negl(λ).

This follows directly from the soundness guarantee of online memory checkers.

Experiment Hybrid3: This experiment is the same as the previous hybrid, except we replace the
post-verifiable offline checker Moff with an idealized version M ′off which behaves identically to Moff

except has soundness 1 instead of 1− negl(λ).

Claim 8.8. |Pr[Hybrid3 = 1]− Pr[Hybrid2 = 1]| ≤ negl(λ).

This follows directly from the soundness guarantee of the post-verifiable offline memory checker.

Experiment Hybrid4: In this hybrid, we modify the client and augment it with additional space to
check that all ciphertexts passing the authentication verification have been generated by the MAC
before, aborting if this is not the case.

Claim 8.9. |Pr[Hybrid4 = 1]− Pr[Hybrid3 = 1]| ≤ negl(λ).

This follows from the unforgeability of our MAC scheme.

Experiment Hybrid5: In this hybrid, we replace decryption with a local database D. Specifically,
for each ciphertext ct generated with underlying message m, we locally store D[ct]← m, and upon
retrieving a ciphertext ct from the memory checker, instead of decrypting, we retrieve the message
from the locally stored D[ct].

Claim 8.10. |Pr[Hybrid5 = 1]− Pr[Hybrid4 = 1]| = 0.

Proof. This follows by perfect correctness of our encryption scheme and the perfect unforgeability
of the MAC.

Experiment Hybrid6: In this hybrid, we replace all cti corresponding to datai with encryptions
of 0 as sent to the memory checkers. However, we still read and write to the local database D as
before using the true value of the messages (i.e., not all 0s).

Claim 8.11. |Pr[Hybrid6 = 1]− Pr[Hybrid5 = 1]| ≤ negl(λ).

Proof. Suppose an adversary can distinguish the two views. We construct an adversary A′ against
the adaptive IND-CPA game, as defined in Section 3.2. Specifically, we will let A′ be the client in
Hybrid5 and Hybrid6 as follows:

• For each write operation (write, addri, datai), the A′ sends m0 = datai and m1 = 0 to the
adaptive IND-CPA challenger to get back a ciphertext cti. A′ updates its dictionary D[cti] =
datai.
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• For each read operation, upon receiving cti, we let data← D[ct] be the result of the decryption
as given to C in Hybrid5. Note that ct must exist in D by the assumption in Hybrid5 that all
ciphertexts that passed the authentication check have already been seen before.

The case b = 0 corresponds exactly to Hybrid5 and the case b = 1 is exactly Hybrid6. Therefore, an
adversary that distinguishes the two hybrids in fact breaks the IND-CPA security of the encryption
scheme.

Experiment Hybrid7: In this experiment, the outputs of the commands come from the true func-
tionality instead of C.

Claim 8.12. Pr[Hybrid7 = 1] = Pr[Hybrid6 = 1].

Proof. Note that the view after MalHT.Build() is identical since MalHT.Build() has no output.

If MalHT.Lookup(k) is called, if C aborts before reaching the end of the algorithm, the view is
identical. Otherwise, by invoking the perfect soundness of the online checker M ′ and the offline
checker M ′off , we know that both MalHT.Build() and MalHT.Lookup() must have been executed
honestly. Therefore, by the correctness of the algorithm, the output in fact corresponds to the value
of key k.

If MalHT.Extract() is called, if C aborts before reaching the end of the algorithm, the view is identical.
Otherwise, by the perfect soundness of the online checker M ′ and the offline checker M ′off , it suffices
to consider the case where A honestly answers the queries of C.
In particular, it suffices to argue that an honest-but-curious execution of the implementation results
in an output which is a uniform permutation of the unvisited items that is independent of the
(content-less) access pattern. This follows from combining the proofs of Claim C.5 and C.10 of
[AKL+20].

Experiment Hybrid8: The experiment is the same as the previous hybrid, except in
MalHT.Extract(), arrays L, OFS, SecSS are all now replaced with arrays of dummies. Recall that
all encryptions are of 0 and that the output crucially comes from the functionality rather than the
implementation. Therefore, it suffices to argue that the distribution of the sequence of addresses
accessed does not change.

Claim 8.13. Pr[Hybrid8 = 1] = Pr[Hybrid7 = 1].

Proof. Note that the access pattern of MalHT.Extract() is determined entirely by the address values
of P . Note that by replacing the contents of L with dummies, T off is also replaced with dummies.
Clearly, if P = (⊥, Ak) or if P = (k,Ak) where k was not found, the accesses corresponding to P
are identical. If P = (k,Ak) where k was found during MalHT.Lookup(k) at address addr, then the
only difference is that the key k will not be found at T off [addr]. Thus, the contents are still written
back to the same addresses without modifications. Therefore, the access patterns in Hybrid7 and
Hybrid8 are identical.
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Experiment Hybrid9: The experiment is the same as the previous hybrid, except that we modify
it so that in MalHT.Lookup(), we replace every call MalHT.Lookup(k) for some real key k with a
dummy lookup MalHT.Lookup(⊥).

Claim 8.14. |Pr[Hybrid9 = 1]− Pr[Hybrid8 = 1]| ≤ n · e−Ω(log5 λ).

Proof. If C aborts during MalHT.Build(), the view is identical. Suppose MalHT.Build() is executed
to completion. Note that if A does not execute Build() honestly, the memory checkers M ′ and
M ′off would have aborted because they have perfect soundness. Therefore, we may assume that
MalHT.Build() was honestly implemented.

Since we showed in the previous claim that the access pattern in MalHT.Extract() is determined
entirely by the access pattern in MalHT.Lookup(), it suffices to consider the joint distribution of the
access patterns in Build and Lookup in the two hybrids. This was shown to be close up to a factor
of n · e−Ω(log5 λ) in Claim C.6 of Asharov et al. [AKL+20].

Experiment Hybrid10: The experiment is the same as the previous hybrid, except the client C runs
MalHT.Build() on input I consisting only dummies.

Claim 8.15. Pr[Hybrid10 = 1] = Pr[Hybrid9 = 1].

Proof. Suppose that C does not abort before Step 4 of MalHT.Build(). Note that since we replaced
PRFsk(0||·) with O(sk||0||·), and because there are no duplicate keys in the input, the view of Hybrid9
at Step 4 corresponds to placing balls into bins sampled using independent randomness. This is the
exact view in Hybrid10, and therefore, the views of Step 4 are identical in both hybrids.

After Step 4, until Step 8, none of the access patterns are determined by the contents of the bins.
Hence, the view until Step 8 is identical.

In each iteration of Step 8 of MalHT.Build(), until the offline memory checking portion, all access
patterns are linear scans over portions of memory. In the offline memory checking portion, since
AssignXi

is in an online-checkable portion of memory which can be verified with probability 1
by the idealized online checker M ′, the access pattern is determined entirely by AssignXi

. Hence,
since AssignXi

was obtained through an indiscriminate hashing scheme, this access pattern looks
identical in both worlds. Steps 9 and 10 are simply hybrid calls and are hence secure.

Since the remainder of the algorithm once again simply consists of linear scans of portions of memory,
the view of the adversary in both worlds is identical.

Experiment Hybrid11: This experiment is the same as the previous hybrid, except that the C does
the following:

• Encrypt the true datai (but still using dummy inputs) corresponding to the execution rather
than only encrypting 0.

• Use the decryption algorithm rather than maintaining a dictionary of ciphertexts.
• Check the MAC verifications rather than keeping a list of all ciphertexts and MACs.
• Replace the idealized offline memory checker M ′off with the actual checker Moff .
• Replace the idealized online memory checker M ′ with the actual checker M .
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• Replace every invocation of O(sk||·) with PRFsk(·).

Claim 8.16. |Pr[Hybrid11 = 1]− Pr[Hybrid10 = 1]| ≤ negl(λ).

Since this is simply unraveling Hybrids 0-6 in reverse, this claim follows by repeating the same
arguments. Note that this view corresponds exactly to the view in Ideal(FHT,S,A), thereby
completing the proof.

Completeness. In the hybrid model, the probability of failure when interacting with an honest
server comes only from Step 5 of Build. The probability of aborting is at most n·e−Ω(log5 λ) = negl(λ)
since n ≤ poly(λ).

Efficiency. MalHT.Lookup() takes O(log λ) time since it involves two linear scans over O(log λ)
size stashes, and six lookups. In Build,

• In Step 4, the algorithm takes O(n), and the workspace that needs to be offline checked has
length ⌈nµ⌉ · (µ+ 0.5ϵµ) ≤ 2n. Therefore, the run-time of the offline check is O(n).

• The subroutine SampleBinLoadsB,δ(n
′) takes O(B · log5(1/δ) log log(1/δ)) ≤ O(⌈n/ log9 λ⌉ ·

log6 λ · log log λ⌉) = O(n/ log2 λ) time by Claim C.22.
• In Step 8, first note that Algorithms C.35 and C.37 are implemented using packed sorting on

blocks of size O(log log λ) (because the PRF values are in the range O(log9 λ)) on O(log9 λ)
elements the run-time is linear in each bucket.

• In the offline checked portion of Step 8, the size of the work space is O(µ+ log λ), and hence
the whole offline check can be done in O(µ + log λ) query complexity per bin. Overall, this
comes to O(n) query complexity.

• In Step 9, the size of the overflow pile is O(ϵn). Therefore, applying the parameters of
Corollary C.34, we see that since we apply δ = e− log λ·log log λ, the algorithm is (1− negl(λ))-
maliciously secure. Moreover, the query complexity and space complexity is O(ϵn · log(ϵn)) =
O(n) since n ≤ poly(λ) and ϵ = 1

log2 λ
.

• Similarly, in Step 10, the size of S is O(n/µ · log λ) = O(n/ log8 λ). Therefore, applying the
same argument as for the overflow pile, this query complexity and space complexity is bounded
by O(n).

In Extract, the query complexity is clearly linear in the size of L everywhere, except when we ran-
domly shuffle to obtain R and TS. However, since we are shuffling lists of size and |R| = O(n/ log2 n)
and |TS| = O(log λ), these steps take at most O(n) query complexity and space complexity.

9 Maliciously Secure Optimal ORAM Construction

In this section, we put together our building blocks from Section 7 as well as our MalHT construction
in Section 8 to obtain our final construction.
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9.1 A Warm-Up Construction

As a warm-up, we first propose a less efficient maliciously secure ORAM which achieves O(logN ·
log λ + poly(log log λ)) overhead and argue that it is secure. Then, we argue how to modify this
to reduce the overhead to O(logN + poly(log log λ)). We present our final ORAM construction in
Algorithm D.3 in Appendix D.

The overall structure of the algorithm follows the hierarchical paradigm, with the main difference
being that there are multiple copies of each level in order to de-amortize the reshuffling work. At a
high level, there are “active layers” where lookups are conducted while the other layers are rebuilt.

Structure of construction. We set ℓ = ⌈11 log log λ⌉ and L = ⌈logN⌉. Our Oblivious RAM
will have the following data structures.

• Two F2KeyDict (as discussed in Theorem C.8) instances Aℓ and Bℓ with capacity 2ℓ+1 elements.
• For each level i ∈ {ℓ+1, . . . , L} contains four white-box FHT instances. We denote the levels as
(AHF

ℓ+1, . . . ,A
HF
L ), (AF

ℓ+1, . . . ,A
F
L), (B

HF
ℓ+1, . . . ,B

HF
L ) and (BF

ℓ+1, . . . ,B
F
L). Here, the superscriptsF

and HF are used to denote that the corresponding hash-tables are either full or half-full
respectively. For more details, see Asharov et al. [AKLS21].

• Pointers Aℓ+1, . . . ,AL and Bℓ+1, . . . ,BL, where each Ai points to either {AHF
i ,AF

i , Null} and
each Bi points to {BHF

i ,BF
i , Null}, where Null is a null pointer.

• A global counter ctr initialized to 0.

The algorithm will also maintain a running task list calls tasks Tasks. At the end of each access, it
will perform part roughly O(1) steps of computation for each task in the list.

Algorithm 9.1 A Less Efficient Oblivious RAM: Access(op, addr, data). This algorithm is directly
adapted from Construction 5.2 of [AKLS21].

Input: op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w.
Initialization: Initialize ctr ← 0, and initialize all data structures to be empty. Initialize 0 to
keep track of the number of writes.
Secret key: Sample a random PRF secret key sk. Use PRFsk(“Enc”||·) for all encryptions, and
use PRFsk(“MAC”||·) for all MACs.
Authenticated Encryption: For every write query (write, addr, data), data is replaced with
data′ := (ct = Encsk(data), σ = MACsk(ct, addr)). Reads are passed through authenticated de-
cryption, namely unpacking data′ = (ct∗, σ∗), checking MACVersk((ct

∗, addr), σ∗) = 1, aborting if
verification fails, and otherwise returning data∗ = Decsk(ct

∗).
Memory checking: Note that the algorithm only makes hybrid calls, and updates three values
regularly: fetched, found and data∗. Therefore, the client can simply locally store the variables.
All other operations involve copying and writing memory from hybrid input and output tapes,
which can be time-stamped.
The algorithm:
Lookup:

• Initialize found = false, data∗ = ⊥.
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• Perform fetched← Aℓ.PopKey(addr).
• If fetched ̸= ⊥: then call Bℓ.PopKey(⊥). Otherwise, fetched := Bℓ.PopKey(addr).

• If fetched ̸= ⊥, set found = true.
• For each i ∈ {ℓ+ 1, . . . , L} in increasing order:

– If Ai is Null, let the output of Ai.Lookup() be ⊥.
– If Bi is Null, let the output of Bi.Lookup() be ⊥.
– If found = false :

∗ Set fetched := Ai.Lookup(addr).
∗ If fetched ̸= ⊥, then set found := true and data∗ := fetched.

– Else, perform Ai.Lookup(⊥).
– If found = false:

∗ Set fetched := Bi.Lookup(addr).
∗ If fetched ̸= ⊥ then set found := true and data∗ := fetched.

– Else, perform Bi.Lookup(⊥).
Update:

• If found = false, i.e., this is the first time addr is being accessed, set data∗ = 0.
• Let (k, v) := (addr, data∗) if this is a read operation; else let (k, v) := (addr, data).
• Insert (k, v) into Aℓ and Bℓ using Insert(k, ctr (mod 2ℓ+1), v).

Rebuild:

• Increment ctr by 1.
• For i ∈ {ℓ+ 1, . . . , L}:

– If ctr ≡ 0 mod 2i−2, then continue to 1 of the 4 following cases:

If ctr ≡ 0 mod 2i 2i−2 mod 2i 2 · 2i−2 mod 2i 3 · 2i−2 mod 2i

Set Ai := Null AHF
i Null AHF

i

Set Bi := BF
i BF

i BHF
i Null

Start RebuildHF(AHF
i ) RebuildHF(BHF

i ) RebuildF(AF
i ) RebuildF(BF

i )

Here, starting a task means that we will add the task to the list Tasks. Refer to Algo-
rithms 9.2 and 9.3 for RebuildF and RebuildHF respectively.

• For every task t ∈ Tasks, execute t.eachEpoch steps of the task.
• Return v.

Algorithm 9.2 Warm-up RebuildF(CF
i )

Input: The task has input CF
i ∈ {AF

i ,B
F
i }.

Property eachEpoch : The total time allocated to this task is 2i−2.

• If i = ℓ + 1: Let W ∈ O(2ℓ+1 · poly(log logN)) bound the work done by this rebuild. Set
eachEpoch = W/2i−2.

• If i > ℓ+1: Let W ∈ O(2i) bound the work done by this rebuild algorithm. Set eachEpoch =
W/2i−2.

The algorithm:
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• If i = ℓ+ 1:

– Run Ci−1.PopTime(0, 2ℓ − 1) repeatedly for 2ℓ times. Call the output list X′.
– Obtain X← Shuffle(X′).

• If ℓ+ 2 ≤ i ≤ L: Obtain X← CF
i−1.Extract().

• Call Z← Dedup(X,Y).

• Call CF
i .Build(Z).

Algorithm 9.3 Warm-up RebuildHF(CHF
i )

Input: The task gets as input a table CHF
i ∈ {AHF

i ,BHF
i }, for some index i ∈ {ℓ+ 1, . . . , L}.

Property eachEpoch: The total time allocated to this task is 2i−2.

• If i = ℓ + 1: Let W ∈ O(2ℓ+1 · poly(log logN)) bound the work done by this rebuild. Set
eachEpoch = W/2i−2.

• If i > ℓ+1: Let W ∈ O(2i) bound the work done by this rebuild algorithm. Set eachEpoch =
W/2i−2.

The algorithm:

• If i = L:

– Run X← CF
L−1.Extract() and Y ← CF

L.Extract().
– Let Z← Dedup(X,Y).
– Run CHF

L .Build(Z).
• If ℓ+ 1 ≤ i ≤ L− 1:

– If i = ℓ+ 1:
∗ Run Cℓ.PopTime(2ℓ, 2ℓ−1) repeatedly for 2ℓ iterations. Call the output list X′.
∗ Obtain X← Shuffle(X′).

– If ℓ+ 2 ≤ i ≤ L− 1:
∗ Let X← CF

i−1.Extract().
– Initialize an array Y of 2i−1 dummies.
– Obtain Z← IntersperseRD(X,Y).
– Call CHF

i .Build(Z).

Theorem 9.4. Let N be the capacity of the database, and let λ ∈ N be a security parameter such
that N ≤ poly(λ). Then, Algorithm 9.1 is a maliciously secure oblivious implementation of FRAM,
and each Access has worst-case query complexity O(logN · log λ+ log5 log λ).

Proof. Asharov et al. [AKLS21] show (in Theorem 5.3) that Access is an honest-but-curious oblivi-
ous implementation of FRAM. Since the implementation is time-stampable in the (F2KeyDict, FDedup,
FShuffle, FHT, Intersperse)-hybrid model, by Corollary 4.6, Access is in fact maliciously secure.7

Completeness. In the hybrid model, it is easy to see that the algorithm has perfect completeness.
7Technically, since we pause and resume hybrid computations, we have to modify the functionality descriptions

to handle these pauses in a black-box way. This can be easily handled, but for simplicity, we ignore this technicality.
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Efficiency. Each lookup phase makes two calls to F2KeyDict with O(log12 λ) elements. Therefore,
by applying Theorem C.8, we see that this takes O(log5 log λ) time. Moreover, we make O(logN)
lookups to MalHT hash tables Ai and Bi, and each lookup takes O(1)+O(log λ) time, where the O(1)
lookup comes from the lookups to Cuckoo hash tables, and the O(log λ) comes from scanning the
corresponding OFS and SecSS stashes. Therefore, this gives us O(logN ·log λ+log5 log λ) time. Each
write back phase takes O(log5 log λ) time since it includes two writes to the dictionaries. Finally,
each task t ∈ Tasks, t.eachEpoch = O(1) except for RebuildF(CF

ℓ ), and RebuildHF(CHF
ℓ ), which take

O(log5 log λ) time (since each dictionary pop takes O(log5 log λ) time). Hence, the overall run-time
is O(logN · log λ+ log5 log λ), as desired.

9.2 Final Construction

Theorem 9.5 (Restatement of Theorem 1.3). Let N be the capacity of the database, and let λ ∈ N
be a security parameter such that N ≤ poly(λ). Then, for word size w = ω(log λ), Algorithm D.3
is a maliciously secure oblivious implementation of FN,w

RAM, and each Access has worst-case query
complexity O(logN + log5 log λ). The local space complexity is O(1) (and one PRF key), and the
server space complexity is O(N). Moreover, if the client (but not the adversary) has access to a
random oracle, this implementation is statistically secure, even against computationally unbounded
adversaries.

The construction and proof have been deferred to Appendix D.
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A Additional Preliminaries

A.1 Hybrid Model

To more formally state and prove our composition theorem that allows us to prove malicious security
in a modular way, we define a hybrid model for our computations. Let G = (G1, · · · ,Gℓ) be a sequence
of reactive functionalities. In the G-hybrid model, the client can perform computations assuming it
has oracle access to each functionality Gi for i ∈ [ℓ]. More formally, in the real world, we have the
following model. Each query can now either be (op, addr, data) as before, or a command and input
for some Gi, denoted (i, cmdGi , xGi).

Experiment A.1 Real(C,A)G Hybrid.

(cmd, x)← A
(
1λ
)

while cmd ̸= ⊥ do
out← ⊥
data∗ ← ⊥
outG = (outGi)i∈[ℓ] ← {⊥}

ℓ

while out = ⊥ do

(query, flag, out)← C
(
1λ, cmd, x, data∗, outG

)
if flag = true then return b← A

(
1λ
)

if query = (i, cmdGi , xGi) then
A
(
1λ, i, cmdGi

)
outGi ← Gi(cmdGi , xGi)

data∗ ← ⊥
else

data∗ ← A
(
1λ, query

)
end if

end while
(cmd, x)← A

(
1λ, out

)
end while
return b← A

(
1λ
)

Experiment A.2 Ideal(F ,S,A)G Hybrid.

(cmd, x)← A
(
1λ
)

while cmd ̸= ⊥ do
done← false
data∗ ← ⊥
while done = false do

(query, flag, done)← S
(
1λ, cmd, data∗

)
if flag = true then return b← A

(
1λ
)

if query = (i, cmdGi) then
A
(
1λ, i, cmdGi

)
data∗ ← ⊥

else
data∗ ← A

(
1λ, query

)
end if

end while
(cmd, x)← A

(
1λ, F(cmd, x)

)
end while
return b← A

(
1λ
)

Hybrid input and output tapes. When in the hybrid model, we assume there are designated
hybrid input and output tapes for each functionality Gi where i ∈ [ℓ], specified as follows:

• Hi
in is a write-once, write-only RAM tape that CF can write xGi on. (By write-once, we mean

that each address of the RAM tape is written to at most once.) The adversary A cannot
see or modify the contents of this tape, but it can see the access pattern (i.e., the addresses
written to by CF ) as they occur.

• Hi
out is a read-only RAM tape on which CF can access outGi = Gi(cmdGi , xGi). The adversary
A cannot see or modify the contents of this tape, but it can see the access pattern (i.e., the
addresses read by CF ) as they occur.
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None of these tapes count towards the local space complexity of CF .

Hybrid input assumptions. Just as stated before, inputs to F can have input assumptions.
Now, however, since implementations CGF of F in the G-hybrid model generate inputs xGi to Gi, it
must be the case that each XGi ’s input assumption is satisfied for xGi .

Definition A.3. For a reactive RAM functionality F and a sequence of RAM functionalities G =
(G1, · · · ,Gℓ) with input assumptions X = (X1, · · · ,Xℓ), we say a RAM machine CGF is a (1 − δ)-
maliciously secure oblivious implementation of a reactive functionality F in the G-hybrid model if
calls to G satisfy their respective input assumptions and the following conditions hold:

1. Obliviousness & Correctness: There is a (stateful) PPT simulator S such that for all
(stateful) PPT A, the adversary A distinguishes between the Real(CGF ,A)G (Experiment A.1)
and Ideal (F ,S,A)G (Experiment A.2) experiments with advantage at most δ.

2. Completeness: For all (stateful) honest-but-curious PPT A, with probability 1−δ, the client
CF never aborts, i.e., never sets flag to true throughout the whole execution of the real experi-
ment.

With this definition in hand, we now show how to combine an implementation of F in the G-hybrid
model with an implementation of G to get an implementation of F in the plain model (i.e., no hybrid
functionalities). At a high level, the construction is directly compositing the implementations, with
the only modification being that the hybrid input and output tapes now live on the server under
authenticated encryption instead of being separate tapes. This change is necessary because an
implementation in the plain model (as opposed to the hybrid model) does not have hybrid tapes,
and the implementation cannot afford to store the contents of the hybrid input and output tapes
locally.

Theorem A.4 (Concurrent Composition). Assume there exist one-way functions. Let G =
(G1, · · · ,Gℓ) be a sequence of functionalities, where ℓ = poly(λ). Suppose that CGF is a (1 − δ)-
maliciously secure oblivious implementation of F in the G-hybrid model, and suppose that for each
i ∈ [ℓ], CGi is a (1−δi)-maliciously secure oblivious implementation of Gi (in the plain model). Then,
there is a client CF that is a (1− negl(λ)− δ −

∑
i δi)-maliciously secure oblivious implementation

of F (in the plain model) with the following properties:

• The query complexity of CF is the query complexity of CGF , where each (single) hybrid call to
(i, cmdGi) is replaced with the query complexity of CGi for cmdGi .

• The local space complexity of CF is the sum of the local space complexities of CGF and the sum
of the local space complexities of CGi over i ∈ [ℓ], as well as the size of ℓ PRF keys.

• The server space complexity of CF is the sum of the server space needed for CF , the sum of
the server space needed for CGi , and the sum of the size of the hybrid tapes Hi

in and Hi
out.

Remark A.5. The need for one-way functions here is only for space efficiency, to get rid of Hin,Hout

as used in the G-hybrid model. Specifically, in CF , these tapes between CGF and CG are no longer an
input or output tape for F , so it would count towards the space complexity of CF . Therefore, it
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will now live in public memory and will have contents encrypted with authentication. Besides this
change, the composition theorem is fully syntactic, following the UC framework of Canetti [Can20]
since our simulations are straight-line and universal.

Remark A.6. As long as ℓ ≤ poly(λ), one can replace the ℓ PRF keys with 1 PRF key as long as
for each i ∈ [l] and t, it is possible to determine how many times hybrid Gi has been invoked up to
time t. To see this, let T (i, t) be this quantity. Then, for a single PRF key k, the ith hybrid at time
t can use PRFk(i||T (i, t)||·) as its effective PRF to generate the ciphertexts and MACs.

Proof of Theorem A.4. For simplicity, we give the proof for the case where ℓ = 1 and abuse notation
so that G = G1 is the only hybrid functionality. We define CF by composing CGF and CG in the
natural way, as follows. With the exception of the Hin,Hout tapes, which we will describe later, CF
begins by running CGF and replaces each hybrid query = (cmdG , xG) with a stateful invocation of
CG(1λ, cmdG , xG). If CG ever sets flag = true, CF also sets flag = true (i.e., the whole client aborts).
When CG sets outG ̸= ⊥, it continues CF with outG (and the previous (cmd, x) for CGF unchanged).

Now we describe how Hin = TGin and Hout = TGout are handled, as we can no longer afford to have
special tapes that are hidden from the adversary that do not count towards space complexity.
Instead, we put Hin and Hout as part of the public tape (so that A can view and modify it), but
with authenticated encryption. We define some part of the public tape (held by A) to correspond
to each addr ∈ Hin ∪ Hout in a natural way, denoted addrA.

Replacing Hin. For each call to G, the client CF locally stores and samples fresh k ← Gen(1λ) and
k′ ← MACGen(1λ). For each (write, addr, data) for addr ∈ Hin in this hybrid call from CGF , the client
CF computes ct← Enck(data) and σ ← MACk′(addr, ct), and sends the query (write, addrA, (ct, σ))
to A instead of the write call to Hin. Then, for each (read, addr) to xG for addr ∈ TGin = Hin from
CG , the client CF instead queries (read, addrA) to A, and on receiving data∗ = (ct, σ), the client
CF first checks MACVerk′((addr, ct), σ) = 1 (setting flag = true to abort if not) and gives back
data← Deck(ct) to CG as the result of the read.

Replacing Hout. For each (write, addr, data) for addr ∈ TGout = Hout to generate outG , the client
CF computes ct← Enck(data) and σ ← MACk′(addr, ct), and sends the query (write, addrA, (ct, σ))
to A instead of the write call to Hout. Then, for each (read, addr) to outG for addr ∈ Hout from
CGF , the client CF instead queries (read, addrA) to A, and on receiving data∗ = (ct, σ), the client
CF first checks MACVerk′((addr, ct), σ) = 1 (setting flag = true to abort if not) and gives back
data← Deck(ct) to CF as the result of the read.

This completes the description of CF . The description of the universal simulator SF , in terms
of universal simulators SGF and SG , is very similar to the description of CF in terms of CGF and
CG . The only meaningful difference is for accesses to Hin,Hout. Each simulated (write, addr) to
addr ∈ Hin ∪ Hout (by SGF or SG) is now given by sampling ct← Enck(0), σ ← MACk′(addr, ct), and
the resulting query is (write, addrA, (ct, σ)), where keys k, k′ are sampled just like in CF . Reading
from Hin,Hout is identical to CF , except that the resulting data is not needed to keep running the
simulators.

Now, we prove that CF is a maliciously secure oblivious implementation of F . To see completeness,
observe that CGF and CG are (1 − δ)- and (1 − δ1)-complete respectively, and since decryption and
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authentication have perfect correctness, (1 − δ − δ1)-completeness of the whole implementation
follows.

To see obliviousness and correctness, we argue indistinguishability between the real and ideal worlds
through following hybrids.

Experiment Hybrid0: Real(CF ,A), the real experiment.

Experiment Hybrid1: In this hybrid, we assume no forgeries occur (say, by overwriting the responses
from A to never forge). Note that since tapes Hin,Hout were write-once, and since addresses were
included in the MAC, the adversary now cannot have changed any ciphertexts on the hybrid tapes
without a client abort.

Claim A.7. |Pr[Hybrid1 = 1]− Pr[Hybrid0 = 1]| ≤ negl(λ).

Proof. This directly follows from unforgeability of MACs.

Experiment Hybrid2: In this hybrid, we replace CG with SG and the corresponding outputs of
CG with G(cmdG , xG). At this point, the contents of the Hin tape are not used since we are using
the simulator SG instead of CG , and the contents written to Hout are now generated directly from
G(cmdG , xG) instead of CG .

Claim A.8. |Pr[Hybrid2 = 1]− Pr[Hybrid1 = 1]| ≤ δ1.

Proof. We do this via a reduction to security of CG . Suppose there exists some adversary A distin-
guishing this and the previous hybrid. Now, we can construct an adversary A′ breaking security of
CG . Specifically, adversary A′ will run both A and CGF , where the input tape TGin and output tape
TGout of CG are given by decrypting the version of Hin,Hout in the public tape. Since CGF is write-once
to Hin and A never modifies Hin, the input tape to CG is unmodified by A′ after the initial xG
is written to it. Similarly, since CGF has read-only access to Hout and A never modifies Hout, the
output tape to CG is never modified by A′. Furthermore, since CGF must satisfy input assumption
XG , we know the input assumption for CG is satisfied. Therefore, A′ is a well-formed adversary that
distinguishes between Real(CG ,A′) and Ideal(G,SG ,A′), completing the reduction.

Experiment Hybrid3: In this hybrid, the client CF now stores xG and corresponding output
G(cmdG , xG) locally (in addition to being encrypted with authentication on the hybrid tapes). While
CF still makes the identical read and write queries to the hybrid tapes as before, the decrypted data
returned from any reads to Hout is ignored, and instead, the data of the corresponding address is
read locally from the local version stored by the client.

Claim A.9. Pr[Hybrid3 = 1] = Pr[Hybrid2 = 1].

Proof. By perfect unforgeability of the MAC from an earlier hybrid and the write-once property
on the hybrid output tape, the versions of G(cmdG , xG) stored on Hout and locally will always be
identical (if no abort has already occurred).

Experiment Hybrid4: In this hybrid, we replace each ciphertext given to A on either of the hybrid
tapes with a fresh encryption of 0. Note that due to the previous hybrids, none of the values on the
hybrid tapes are used.
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Claim A.10. |Pr[Hybrid4 = 1]− Pr[Hybrid3 = 1]| ≤ negl(λ).

Proof. This directly follows from adaptive IND-CPA security, as none of the program logic in these
hybrids depends on any of the contents that are encrypted. In particular, decryption is not necessary
as the output G(cmdG , xG) is stored locally in plaintext.

Experiment Hybrid5: Now, we swap CGF with SGF and corresponding outputs of CGF with F(cmd, x).
We no longer locally store xG or G(cmdG , xG) because they are not generated or necessary for the
simulators SGF or SG .

Claim A.11. |Pr[Hybrid5 = 1]− Pr[Hybrid4 = 1]| ≤ δ.

Proof. We do this via a reduction to security of CGF . Suppose there exists some adversary A distin-
guishing this and the previous hybrid. Then, we can construct an adversary A′ breaking security
of CGF (in the G-hybrid model). Specifically, the adversary A′ will combine A and SG , and whenever
A needs a value from Hin or Hout, it can generate it on its own by encrypting 0 and authenticating
it. Since the content-less accesses of Hin and Hout are visible to A′ in the security game, A′ can
successfully run A internally. Moreover, A′ cannot change any contents of the ciphertexts since we
assume no MAC forgeries happen.

Experiment Hybrid6: Lastly, we can assume that forgeries can happen once again. Moreover, this
is exactly the ideal model Ideal(F ,SF ,A).

Claim A.12. |Pr[Hybrid6 = 1]− Pr[Hybrid5 = 1]| ≤ negl(λ).

Proof. This is indistinguishable from the previous hybrid by unforgeability of the MAC.

B Deferred proofs from Section 4

Proof of Lemma 4.4. Let (MACGen,MAC,MACVer) be a MAC scheme. Before receiving any
queries, the checker M initializes a counter count ← 0 and generates k ← MACGen(1λ). After
each query from C, M increments count by 1.

Write Queries: For each query = (write, addr, data) from C, M sends the modified query′ =
(write, addr, data′) to the adversary A, where

tag← MACk(addr, data, TS(count, addr)),

data′ = (data, tag) .

Read Queries: For each query = (read, addr,⊥) from C, M sends the query as is to A, and on
response data′ = (data∗, tag∗) from A, the checker M ensures

MACVerk(tag
∗, (addr, data∗, TS(count, addr))) = 1,
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and if so, passes on data∗ to C. If the verification fails, M sends ⊥ to C and aborts.

Clearly, M has worst-case query complexity 1, and M can use one word to store count so its local
space complexity is O(1) (ignoring the PRF key).

We now show that M satisfies the completeness and soundness conditions as required by Defini-
tion 4.1. Completeness is as follows. By perfect correctness of our MAC scheme, it suffices to show
that TS(countold, addr) = TS(countnew, addr), where countold was the time of the most recent write
to addr up until time countnew. This holds by the definition of TS being a time-stamp function, as
no writes to addr occur between countold and countnew.

Soundness follows from unforgeability of the MAC scheme and properties of TS. Specifically, if the
adversary ever forces the memory checker to output some incorrect data∗ at some addr, it must be
the case that data′ = (data∗, tag∗) from A satisfies

MACVerk(tag
∗, (addr, data∗, TS(count, addr))) = 1

where data∗ ̸= data (where data is correct). Then, (tag∗, (addr, data∗, TS(count, addr))) is a forgery,
as TS(·, addr) increments by 1 for each write to addr, so we can construct a MAC adversary where
the only oracle query of the form MACk(addr, z, TS(count, addr)) (for the fixed count and addr but
varying z) is for the unique value z = data ̸= data∗. Therefore, by MAC unforgeability, soundness
holds.

Proof of Theorem 4.5. We define C′ to be the composition of M and C. That is, for each non-hybrid
query that C generates, it is sent to M , and the resulting qM queries generated from M will be sent
to A′, the adversarial server interacting with C′. (For simplicity of notation, we assume that M
always makes exactly qM queries to the untrusted memory per client request.) For each response
from A′, M will either abort or not. If M aborts, C′ will set flag = true and immediately abort, but
if M instead sends back some data∗ (which must be correct with high probability by soundness of
online memory checking), then data∗ is sent back to C. All hybrid reads and writes in C′ will be the
same as in C as hybrid tapes cannot be modified by the adversary. That is, the memory checker
does not modify any hybrid calls.

First, it is easy to see that the query complexity of C′ is at most q · qM , and it is also immediate to
see that the local space complexity of C′ will have an additive client space overhead of cM .

Next, we show completeness of C′ (in the sense of Definition 3.11). By the completeness condition
of M (in the sense of Definition 4.1), for honest A′, it follows that M never aborts and always
sends C the correct word data∗ back to C with 1 − negl(λ) probability. Now, by a simple hybrid
argument, we can invoke the completeness of C (in the sense of Definition 3.13), as the effective
adversary A (namely the composition of A′ and M) is honest-but-curious, so we know that C will
only abort with negl(λ) probability. Therefore, C′ only aborts with negl(λ) probability against an
honest-but-curious A′.
Finally, we argue obliviousness and correctness of C′ by a hybrid argument as follows.

Experiment Hybrid0: The real world Real(C′,A′)G .
Experiment Hybrid1: In this hybrid, we replace the online memory checker M with an idealized
version M ′ which behaves identically to M , except ensures with probability 1 (instead of 1−negl(λ))
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that any data∗ sent back to C by M is correct. (Note that such an M ′ exists with run-time and
space at most poly(N) ≤ poly(λ).)

Claim B.1. |Pr[Hybrid1 = 1]− Pr[Hybrid0 = 1]| ≤ negl(λ).

Proof. This directly follows from the soundness of M . That is, any poly(λ)-time adversary distin-
guishing Hybrid1 and Hybrid0 can be used to break soundness of M with the same advantage.

Experiment Hybrid2: In this hybrid, we replace C with S and also replace any out generated by
C with F(cmd, x). Note that this implicitly defines a universal simulator S ′ for C′, making this
experiment identical to Ideal(F ,S ′,A′)G .

Claim B.2. |Pr[Hybrid2 = 1]− Pr[Hybrid1 = 1]| ≤ δ.

Proof. We prove this by reduction to honest-but-curious obliviousness and correctness of C with
simulator S. Specifically, suppose poly(λ)-time A′ distinguishes between Hybrid2 and Hybrid1. Then,
combining A′ with our idealized memory checker M ′ gives a poly(λ′) adversary against C and S.

Let A be the composition of A′ and M ′. Since the previous hybrid uses an idealized memory
checker M ′, we know that A always either aborts on its own or gives the correct answer to C or
S. Therefore, A is a (possibly aborting) honest-but-curious adversary against C and S.8 In other
words, Hybrid1 = Real(C,A)G and Hybrid2 = Ideal(S,F ,A)G . Therefore, the claim follows by
honest-but-curious obliviousness and correctness of C with simulator S.

C Maliciously Secure Building Blocks

In this section, we describe the building blocks that we use to construct our ORAM. While the
implementations presented were shown to be oblivious in the honest-but-curious model in [AKL+20],
we modify them to be secure in the malicious setting.

Throughout this section, we assume that the client always encrypts and authenticates its writes to
the adversary with its own key (independent of any memory checkers). Similarly, the client passes
all reads through the verification and decryption, and outputs ⊥ if any authentication fails.

C.1 Maliciously Secure Oblivious RAM with O
(
log4N

)
Overhead

As a first building block, we need a maliciously secure oblivious RAM with worst-case polylog(N)
overhead per access.

8Any abort behavior from A can be emulated by simply running the rest of the protocol honestly and ignoring
everything after the abort.
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Theorem C.1 ([OS97, CNS18], Theorem 4.8 of [AKL+20], Theorem 3.4 of [AKL+20]). For RAM
databases of size n, there is a perfectly honest-but-curious secure ORAM with O(log3 n) worst-
case bandwidth, where the adversary does not have access to any data (i.e., only the commands,
inputs, outputs, and access pattern), or equivalently perfectly secure in the sense of Definition 3.3
of [AKL+20].

By adding symmetric-key encryption to make it honest-but-curious according to Definition 3.13, we
go from perfect loss to negl(λ) loss independent of n, as long as n ≤ poly(λ). Lastly, we combine
with Corollary 4.8 to get a maliciously secure ORAM with an additional O(log n) overhead.

Corollary C.2. For RAM databases of size n, there is a (1 − negl(λ))-maliciously secure ORAM
with O(log4 n) worst-case overhead in the sense of Definition 3.13, as long as n ≤ poly(λ).

C.2 Oblivious Sorting

The work of Ajtai, Komlós, and Szemerédi [AKS83] showed that there is a comparator-based circuit
with O(n log n) comparators that can sort an array of length n.

Theorem C.3 ([AKS83]). There is a deterministic oblivious sorting algorithm that sorts n elements
in O(n log n) time.

Since this algorithm can be described using a comparison-based circuit, the list of comparisons is
entirely determined by the circuit, and therefore the algorithm is access-deterministic. Therefore,
applying Theorem 6.2 gives us an immediate corollary.

Corollary C.4. There is a maliciously secure oblivious implementation of FSort with query com-
plexity and server space complexity O(n log n).

Similarly, [AKL+20] show a modified version Batcher’s bitonic sort [Bat68] which gives a more
efficient run-time when each memory word can hold up to B > 1 elements.

Theorem C.5 ([AKL+20]). There is a deterministic packed oblivious sorting algorithm that sorts
n elements in O( nB log2 n) time, where B denotes the number of elements each memory word can
pack.

Once again, this algorithm can be described using a circuit, so it is also implicitly access-
deterministic. Therefore, by Theorem 6.2 we have the following corollary.

Corollary C.6. There is a maliciously secure oblivious implementation of FSort with query complex-
ity and server space complexity O( nB log2 n), where B denotes the number of elements each memory
word can pack.

C.3 Oblivious Two-Key Dictionary

In this section, we construct a maliciously secure two-key dictionary similarly to Asharov et
al. [AKL+20], where an element is keyed by pair of keys from [K]× [T ]. At a high level, it supports
popping elements according to either key. We give the full functionality description in Functional-
ity C.7.
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Functionality C.7 F2KeyDict (Description from Functionality 3.3 of [AKLS21].)

F2KeyDict.Init():

• Input: This operation has no input.
• The procedure: Allocate an empty list M indexed by k ∈ [K], where all M [k] are initialized

to ⊥.
• Output: This operation has no output.

F2KeyDict.Insert(k, t, v):

• Input: A key k, time t ∈ N, and a value v where k might be ⊥, i.e., a dummy.
• The procedure: If k ̸= ⊥, set M [k] := (t, v).
• Output: This operation has no output.

F2KeyDict.PopKey(k):

• Input: A key k (which might be ⊥, i.e., dummy).
• The procedure: Set (t∗, v∗)←M [k], and set M [k] := ⊥.
• Output: The value v∗.

F2KeyDict.PopTime(t1, t2):

• Input: Times t1, t2 ∈ [T ] such that t1 ≤ t2.
• The procedure:

– Let k be the smallest index such that M [k] = (t∗, v∗) for some t∗ ∈ [t1, t2] and set
M [k] = ⊥ if such a k exists. Otherwise, if no such k exists, set v∗ := ⊥.

• Output: The value v∗.

Theorem C.8 (Modification of Theorem 3.4 of [AKLS21]). For all n ≤ poly(λ), there exists
a (1 − negl(λ))-maliciously secure oblivious implementation of Fn

Dict such that Insert,PopKey and
PopTime take O(log5 n) time in the worst case.

Proof. Note that we can non-obliviously implement F2KeyDict by instantiating two balanced binary
search trees, where the first tree orders elements according to k, and the second tree orders elements
according to t. Each of these operations can be done with O(log n) overhead. Now, we can apply
the maliciously secure ORAM of Corollary C.2 to obtain a maliciously secure implementation with
overall O(log5 n) multiplicative overhead in the operations.

C.4 Oblivious Random Permutation

Let Fn
Shuffle be the functionality that randomly permutes a given array.
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Functionality C.9 Fn
Shuffle(I) : Randomly permute a given array.

Input: An array I of size n.
The procedure:

• Choose a permutation π : [n]→ [n] uniformly at random.
• Initialize an array B of size n. Assign B[i] = I[π(i)] for all i ∈ [n].

Output: The array B.

We give an implementation of Fn
Shuffle in Algorithm C.10. This algorithm was given in [AKL+20] and

is an adaptation of an algorithm from [CCS17], but we add memory checking to make it maliciously
secure.

Algorithm C.10 ORP: Oblivious Random Permutation. This algorithm is adapted from
Theorem 4.3 of Asharov et al. [AKL+20].

Input: An input array I containing n balls, each encoded with D bits.
Memory checking: All portions which are grayed out will be offline memory checked. All
other operations can be time-stamped and online-checked since they only involve linear scans
of contiguous memory. The portions of memory that are not online checked are denoted by
superscript off.
The algorithm.

1. Iterate over I and assign each element an 8 log n-bit random label drawn uniformly from
{0, 1}8 logn.

2. Run R← Sort(I), where the sort is according to the random labels assigned to the elements.
We break ties between balls xi and xj with the same random label according to whether
i < j, where i, j ∈ [n] are the indices of the balls in I. We stress that this does not depend
on the values of either xi or xj .

3. Initialize empty lists Joff and Xoff of size n.
4. Linearly scan R, writing two arrays as follows. (Note that this can be done in linear time

because leakage of the indices of colliding elements does not break obliviousness.)

• A list Joff of the indices of all elements in R that have collisions in the random labels.
• A list Xoff containing all the colliding elements in R.

5. If the number of elements r in Xoff is greater than
√
n, output Overflow and abort.

6. Initialize an array Y off of size r.
7. Run a naïve quadratic oblivious shuffle algorithm on Xoff to obtain a shuffled array Y off .

To do this, iterate over i ∈ [r]:

• Assign Xoff [i] a tag uniformly from t← [r − i+ 1].
• Iterate over all of Y off , and write Xoff [i] at the t-th unoccupied location of Y off (while

performing dummy writes to all other indices of Y off).
8. Initialize an array Roff of size |R|.
9. Copy the contents of R to Roff sequentially.

10. Iterate over Joff and route element Y off [i] to address Roff [Joff [i]].
11. Copy the contents of Roff to R sequentially, using the post-verifiability of Roff from our

offline memory checker. (As usual, the writes to R are time-stamped.)
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12. Iterate over R, and remove the random labels we had assigned at Step 1.

Output: The array R.

Theorem C.11 (Theorem 4.3 of [AKL+20]). Let D denote the number of bits it takes to encode
an element. Then, Algorithm C.10 (without memory checking) is a (1 − e−

√
n)-oblivious honest-

but-curious implementation of Fn
Shuffle, and runs in time O(TD+8 logn

Sort (n) + n), where T ℓ
Sort(n) is the

upper bound on the time it takes to sort n elements of size ℓ bits.

Theorem C.12. Algorithm C.10 is a (1− e−
√
n − negl(λ))-maliciously secure oblivious implemen-

tation of Fn
Shuffle with query complexity O(n + TD+8 logn

Sort (n)), where T ℓ
Sort(n) is the upper bound on

the time it takes to sort n elements of size ℓ bits. In particular, for n ≥ log3(λ), Algorithm C.10 is
(1− negl(λ))-maliciously secure.

Proof. To see completeness (in the sense of Definition 3.6), we defer to honest-but-curious secu-
rity C.11 to see that it aborts with probability at most e−

√
n against an honest-but-curious adver-

sary.

To see correctness and obliviousness, consider the simulator which simply runs ORP on an input of
n dummies. We show that no adversary can distinguish Real(CORP,A) and Ideal(Fn

Shuffle,S,A),
where CORP runs the implementation of ORP as in Algorithm C.10.

Experiment Hybrid0: The view Real(CORP,A).
Experiment Hybrid1: We replace the online memory checker M with an idealized version M ′

which behaves identically to M , except ensures (with probability 1) that any data∗ sent back to C
is correct and aborts otherwise. Note that this can be achieved by simply having M ′ store a copy
of the database which it updates locally (M has a sublinear space restriction while M ′ does not).

This is negligibly close to Hybrid0 by the soundness guarantee of the online memory checker.

Experiment Hybrid2: We replace the offline memory checker Moff with an idealized version M ′off
which rejects any executions with errors with probability 1.

This is negligibly close to Hybrid1 by the soundness guarantee of the offline memory checker.

Experiment Hybrid3: We modify the client to augment it with additional space to check that all
ciphertexts passing the authentication verfication have been generated by the MAC before, aborting
if this is not the case.

This is negligibly close to Hybrid2 by unforgeability of the MAC scheme.

Experiment Hybrid4: In this hybrid, the client keeps a local dictionary D that keeps track of all
the ciphertexts cti and the corresponding plaintexts, i.e., sets D[cti]← datai. Now, instead of using
the decryption algorithm, the client looks up the dictionary D[cti] instead (note that the client only
decrypts the data after checking the MAC against the ciphertext and address).

Claim C.13. |Pr[Hybrid4 = 1]− Pr[Hybrid3 = 1]| = 0.

Proof. By perfect MAC unforgeability after Hybrid3 and perfect correctness of encryption, the view
of the adversary in both worlds is identical.
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Experiment Hybrid5: This hybrid is identical to Hybrid4 except we replace all ciphertexts cti
corresponding to datai with encryptions of 0, still keeping track of the dictionary D[cti]← datai.

Claim C.14. |Pr[Hybrid5 = 1]− Pr[Hybrid4 = 1]| ≤ negl(λ).

Proof. We construct an adversary A′ against the adaptive IND-CPA game, as defined in Section 3.2.
Specifically, we let A′ be everything besides the encryption layer in Hybrid4 and Hybrid5 except with
the encryptions chosen as follows:

• For encryptions, instead of encrypting datai, it sends m0 = datai and m1 = 0 to the adaptive
IND-CPA challenger to get back a ciphertext cti ← Enck(mb), which it passes through Hybrid4
in the usual way. As before, we keep track of a dictionary D and set D[cti]← datai for each
ciphertext generated by the challenger.

• For decryptions, as before, when receiving cti, we let datai ← D[cti] be the result of the
decryption as given to the client. Note that cti must exist in D by the assumption in Hybrid3
that all ciphertexts that passed the authentication check have already been seen before. (The
reason for this D is that the IND-CPA security game does not give access to a decryption
oracle. This is why we use authenticated encryption as opposed to just encryption.)

When b = 0, this is exactly the view of Hybrid4. When b = 1, this is exactly the view of Hybrid5.

Experiment Hybrid6: The same as Hybrid5, except we replace the input to the algorithm with
dummies, and we replace the output to come directly from Fn

Shuffle rather than from the algorithm.

Claim C.15. Pr[Hybrid6 = 1] = Pr[Hybrid5 = 1].

Since the datai component of the accesses no longer have any dependence on the input I due
to Hybrid5, it suffices to show the joint distribution of the real access pattern and the output
permutation is close to the joint distribution of the dummy access pattern and an independent
random permutation. Since the access pattern has no dependence on I, the behavior up to and
including the abort conditions are identical between the two hybrids. Therefore, it suffices to
consider the case when there is no abort. In that case, the perfect soundness of our idealized memory
checkers allows us consider the honest-but-curious case, as the algorithm must have been executed
honestly with probability 1. We invoke the honest-but-curious security argument from Lemma 11
of [CCS17] to see that the joint distribution of the real access pattern and output permutation is
equal to the joint distribution of the dummy access pattern and independent random permutation.

Experiment Hybrid7: In this hybrid, we essentially unravel Hybrids 0-5.

• Replace the encryptions of zero with the encryptions of the true values.
• Conduct the MAC check rather than saving all the ciphertexts passing through for authenti-

cation verification.
• Replace the idealized online and offline checkers M ′ and M ′off with the original versions, M

and Moff .

Claim C.16. |Pr[Hybrid7 = 1]− Pr[Hybrid6 = 1]| ≤ negl(λ).
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Note that Hybrid7 is in fact exactly Ideal(FShuffle,S,A), therefore completing the proof.

Since all offline memory checks are conducted over O(n) memory, the query complexity of the
algorithm simply has an additive factor of O(n).

C.5 Oblivious Bin Placement

In this section, we consider the functionality FPlacement where we are given an array I of n real and
dummy elements such that each element has a tag from {1, 2, . . . , n} ∪ {⊥}, and we have to output
an array O such that the real elements are at the index corresponding to their tag.

Chan et al. [CGLS17] show in Section 3.2 of their paper that a more generalized version of this
algorithm can be implemented with O(1) oblivious sorts, and we explicitly state a special case of
their algorithm, Algorithm C.17, for completeness.

Algorithm C.17 Placement: An algorithm to obliviously route elements in an array. This
algorithm is a special case of the oblivious bin placement algorithm from [CGLS17].

Input: An array I of n real and dummy elements such that each element has a tag from
{1, 2, . . . , n} ∪ {⊥}. Every real element is guaranteed to have a distinct tag, and every dummy
element is tagged with ⊥.
Memory checking: Since the algorithm only consists of linear iterations over contiguous memory
and hybrid calls to FSort, it is time-stampable. Hence, we online check every query.
The algorithm:

• Create an array of length n of filler elements F where F [i] := (fill, i), i.e., the tag of this
filler element is i.

• Let A = I||F .
• Let A′ ← Sort(A), where the elements are sorted by increasing order of tag, treating ⊥ as

largest (i.e., all dummy elements appear at the end). Ties among tags are broken so that
the real elements appear before fillers.

• Iterate over A′ linearly, and do the following:
– If A′[j] is a real element, mark it as “good”.
– If A′[j] = (fill, i),

∗ If A′[j − 1] was tagged with i, mark A′[j] as “excess”.
∗ Otherwise, mark A′[j] as “good”.

– If A′[j] = dummy, mark it as “excess”.
• Let J ′ ← Sort(A′), where we sort by prioritizing elements marked as “good” over elements

marked as “excess” and among them breaking ties according to the tags.
• Obtain J by truncating J ′ to length n.

Output: Output array J .

Claim C.18. Placement (Algorithm C.17) is a maliciously secure oblivious implementation of
FPlacement. Using a standard oblivious implementation of Sort, we obtain a query and server space
complexity of O(n log n). Moreover, by using a packed implementation of Sort as in Corollary C.6,
we obtain a query and server space complexity of O(nDw · log

2 n + n), where D denotes the number
of bits to encode a single element.
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Proof. As shown by Chan et al. [CGLS17], this algorithm is an honest-but-curious oblivious imple-
mentation of FPlacement. Moreover, since the algorithm comprises of hybrid calls to Sort and linear
scans of A and A′, it is time-stampable in the FSort-hybrid model. Therefore, by Corollary 4.6, we
have the desired result.

C.6 Oblivious Balls-into-Bins Sampling

In this section, we consider the functionality Fn,m
throw-balls which throws n balls into m bins uniformly

at random and outputs the bin loads. To obtain an efficient oblivious implementation, Asharov et
al. [AKL+20] use the following approximation for Fn

binomial, the functionality that outputs a sample
from Binomial(n, 1/2).

Theorem C.19 (Theorem 4.18 of [AKL+20], Theorem 5 of [BKP+14]). For any n = 2O(w), there
is a (1−n ·δ)-oblivious algorithm SampleApproxBinomialδ that implements the functionality Fn

binomial

in time O(log5(1/δ)).

By generically applying an online memory checker as in Corollary 4.8, this can be made maliciously
secure with an extra log log(1/δ) factor blowup.

Corollary C.20. For any n = 2O(w), there is a (1 − n · δ − negl(λ))-maliciously secure oblivious
algorithm SampleApproxBinomialδ that implements the functionality Fn

binomial in time O(log5(1/δ) ·
log log(1/δ)).

From now on, when we refer to SampleApproxBinomialδ, we refer to the maliciously secure oblivious
implementation.

Now, we can implement Fn,m
throw-balls using Algorithm 4.19 of Asharov et al. [AKL+20].

Algorithm C.21 SampleBinLoadsm,δ(n). This is Algorithm 4.19 in [AKL+20].

Input: A secret number of balls n ∈ N.
Public parameters: The number of bins m ∈ N, which is a power of 2.
Memory checking: Since the algorithm only consists of linear iterations over contiguous mem-
ory, it is time-stampable. Hence, we online check every query.
The algorithm:

• (Base case.) If m = 1, output n. Otherwise, continue with the following.
• Sample a binomial random variable X ← SampleApproxBinomialδ(n), where X is the total

number of balls in the first m/2 bins. Recursively call L1 ← SampleBinLoadsm/2,δ(X) and
L2 ← SampleBinLoadsm/2,δ(n−X).

• Output the concatenated array L1||L2.

Claim C.22 (Adaptation of Theorem 4.20 of [AKL+20]). For any integer n = 2O(w), m a power
of 2, and m ≤ poly(λ), SampleBinLoadsm,δ is a (1−m · n · δ − negl(λ))-maliciously secure oblivious
implementation of the functionality Fn,m

throw-balls, with query complexity O(m · log5(1/δ) · log log(1/δ)).
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Proof. By Theorem 4.20 in [AKL+20], we know that this is an honest-but-curious implementation
of Fn,m

throw-balls. When m = 1, the implementation is clearly secure. Now, suppose the implementation
is secure for all m ≤ m′. Consider m = 2m′. Then, note that in the SampleBinLoadsm/2,δ-hybrid
model, the algorithm only consists of linear scans and is therefore time-stampable. Therefore, by
Corollary 4.6, we have that SampleBinLoadsm,δ is a maliciously secure oblivious implementation
of Fn,m

throw-balls in the Fbinomial-hybrid model. Now, we apply Corollary C.20 to give us the desired
run-time.

C.7 Tight Compaction, Intersperse and Perfect Random Permutation

Tight compaction. Suppose we are given an input array given n balls, each of which are labelled
either 0 or 1. The problem of outputting a permutation of the input array such that the 1-balls
are moved to the front of the array is known as tight compaction. Asharov et al. [AKL+20] given a
deterministic linear-time oblivious implementation of tight compaction.

Theorem C.23 (Theorem 1.2 in [AKL+20]). Algorithm 5.3 in [AKL+20] is an access-deterministic,
honest-but-curious oblivious algorithm for tight compaction with query complexity O(n) which com-
pacts any input array of n elements.

We now argue that this algorithm can be made maliciously obliviously secure.

Corollary C.24. There is a maliciously secure oblivious algorithm TightCompactionn(I) for tight
compaction with query and server space complexity O(n).

Proof. By Theorem C.23, we know there exists an access-deterministic, honest-but-curious oblivious
algorithm with the desired efficiency. Therefore, by applying Theorem 6.2, we have a maliciously
secure oblivious algorithm with the same efficiency.

Intersperse. Now, we consider the intersperse algorithm from OptORAMa [AKL+20]. Informally,
intersperse does the following:

• Input: An array I := I0||I1 of size n, where |Ib| = nb and n = n0+n1. Note that n := n0+n1,
but both n0 and n1 are hidden.

• Output: An array B of size n that contains all elements of I0 and I1. Each position in B
holds an element from either I0 or I1, chosen uniformly at random (and these random choices
are hidden from the adversary).

In the special case where the inputs I0 and I1 are randomly shuffled, this algorithm realizes Fn
Shuffle.

Asharov et al. [AKL+20] give such an algorithm.

Theorem C.25 (Claim 6.3 in [AKL+20]). There exists an access-deterministic, honest-but-curious
oblivious intersperse algorithm (Algorithm 6.1, [AKL+20]) with O(n) query complexity and server
space complexity.

Since the algorithm is write-deterministic, by applying Theorem 6.2, we have the following corollary.
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Corollary C.26. There is a maliciously secure oblivious algorithm Interspersen(I0||I1;n0, n1) for
interspersing arrays with O(n) query complexity and O(n) server space complexity.

Another useful building block is a related algorithm called real-dummy intersperse. Informally,
real-dummy intersperse does the following:

• Input: An array I of n elements, where each element is tagged either real or dummy.
• Output: The output is an array B of size |I| that is a permutation of I. If the real elements

in I are randomly shuffled, then B will also be randomly shuffled.

Theorem C.27 (Claim 6.7 of [AKL+20]). There is an access-deterministic, honest-but-curious
oblivious algorithm for real-dummy intersperse with O(n) query complexity and server space com-
plexity.

Since the algorithm is access-deterministic, by applying Theorem 6.2, we have the following corollary.

Corollary C.28. There is a maliciously secure oblivious algorithm IntersperseRDn(I) for inter-
spersing reals and dummies with O(n) query complexity and server space complexity.

Perfect oblivious random permutation. Asharov et al. [AKL+20] give a divide-and-conquer
approach to generate a random permutation π : [n] → [n] array with perfect obliviousness. With
encryption to hide the data, this becomes honest-but-curious (1−negl(λ))-oblivious, independently
of n as long as n ≤ poly(λ).

Theorem C.29 (Theorem 4.6 of [AKL+20]). There is an access-deterministic, honest-but-curious
oblivious implementation (Algorithm 6.8 in [AKL+20]) of Fn

Shuffle with O(n log n) query complexity
and O(n) server space complexity.

Now, we again apply Theorem 6.2 to obtain the following corollary.

Corollary C.30. There is a maliciously secure oblivious implementation PerfectORPn(I) of Fn
Shuffle

with query complexity O(n log n) and server space complexity O(n log n).

Note that the server space complexity is now O(n log n) instead of O(n) because of Theorem 6.2
and the fact that the query complexity of the underlying honest-but-curious algorithm is O(n log n).

C.8 Oblivious Cuckoo Hashing

Cuckoo hashing [PR04] is a hashing technique with O(1) blow-up in space complexity and essentially
O(1) lookup time. In this section, we outline an oblivious way to construct these Cuckoo hash tables
following the works of Chan et al. [CGLS17] and Asharov et al. [AKL+20], and we show how to
make the construction maliciously secure.

At a high level, in the general Cuckoo hashing problem, we would like to place n balls into a table
of size ccuckoo · n, where ccuckoo > 1 is some fixed constant. Each ball receives two independent bin
choices in the range [ccuckoo · n]. During the build phase, the algorithm picks either a bin-choice for
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each ball, or places it in an overflow stash S. If we allow a stash of size s, Kirsch et al. [KMW10]
show that one can successfully find a cuckoo hashing assignment without collisions with probability
1−n−Ω(s). For the rest of this section, let ncuckoo = ccuckoo ·n+log λ. In other words, we are setting
the stash size s = log λ.

In general, the output of a Cuckoo hashing table could have bin assignments which depend on the
keys of the balls, not just the bin-choice metadata array. Asharov et al. [AKL+20] define a notion
of indiscriminate hashing, where the location of any real ball does not depend on the key, and is
fully determined by its relative index in the input array as well as the bin-choice metadata array I.
This additional property is required for obliviousness of MalHT.

As discussed in Appendix B in [AKL+20], finding a Cuckoo hash assignment can be implemented
through a constant number of rounds of oblivious BFS which in turn just use (access-deterministic)
oblivious sorts. Therefore, by inspection, it is clear that these algorithms are access-deterministic.
We recap the theorems here.

Theorem C.31 (Corollary 4.11 in [AKL+20]). Suppose that δ > 0, n ≥ log8(1/δ), and the stash
size s satisfies s ≥ log(1/δ)/n. Then, there is an indiscriminate Cuckoo hashing assignment algo-
rithm which is (1−O(δ))-access-deterministic and honest-but-curious oblivious with query complexity
O(n log n) when w = Ω(log n).

Since the algorithm is write-deterministic, we obtain the following corollary by applying Theo-
rem 6.2.

Corollary C.32. Suppose that δ > 0, n ≥ log8(1/δ), and the stash size s satisfies s ≥ log(1/δ)/n.
Then, there is an oblivious indiscriminate Cuckoo hashing algorithm cuckooAssign which is (1 −
O(δ) − negl(λ))-maliciously secure with query and server space complexity O(n log n) when w =
Ω(log n).

If a single plaintext word can contain many elements of length ℓ := 8 log2 ncuckoo bits, Asharov et al.
[AKL+20] use packed oblivious sorting in the cuckoo assignment algorithm to obtain the following
run-time.

Theorem C.33 (Packed oblivious Cuckoo assignment, Corollary 4.12 in [AKL+20]). Suppose that
δ > 0, n ≥ log8(1/δ), and the stash size s satisfies s ≥ log(1/δ)/n. Suppose each element can be
expressed in ℓ := 8 · log2 ncuckoo bits. Then, there is an indiscriminate packed Cuckoo hashing algo-
rithm which is (1 − O(δ))-access-deterministic, honest-but-curious oblivious with query complexity
O(ncuckoo + (ncuckoo/w) · log3 ncuckoo).

Once again, since the algorithm is write-deterministic, we obtain the following corollary by applying
Theorem 6.2.

Corollary C.34. Suppose that δ > 0, n ≥ log8(1/δ), and the stash size s satisfies s ≥ log(1/δ)/n.
Suppose each element can be expressed in ℓ := 8 · log2 ncuckoo bits. Then, there is an oblivious
indiscriminate packed Cuckoo hashing algorithm which we denote by packedcuckooAssign which is
(1−O(δ)−negl(λ))-maliciously secure with query and server space complexity O(ncuckoo+(ncuckoo/w)·
log3 ncuckoo).
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C.8.1 Oblivious Cuckoo Hashing Subroutines

In order to achieve essentially linear-time Cuckoo hashing, Asharov et al. [AKL+20] give subroutines
that capitalize on packed sorting. We give the subroutines in this section. Note that both of these
algorithms are clearly time-stampable in their respective hybrids. We emphasize that we use these
as subroutines (not hybrid calls) in our MalHT construction.

At a high level, we are given n balls, and we first randomly shuffle it with ncuckoo−n dummy elements.
Then, we abstract out a “metadata array” corresponding to the bin choices, given by MD =
{(ui, vi)}i∈ncuckoo

. For real balls, the pair (ui, vi) contains two bin choices from [ncuckoo]. For dummy
balls, (ui, vi) = (⊥,⊥). This subroutine, CuckooInit, is concretely described in Algorithm C.35.

Then, we compute a valid Cuckoo hashing assignment for all the real balls in the input by calling
packedcuckooAssign as in Corollary C.34. And then, we allocate the dummy elements in a random
order to the empty slots in the assignment. This subroutine, CuckooMD, is described concretely in
Algorithm C.37.

Algorithm C.35 CuckooInitn: Initializing and shuffling the array to be the correct length for
Cuckoo Hashing. This is Algorithm 8.1 in [AKL+20].

Input: An input array I of length n consisting of real and dummy elements.
Memory checking: It is clear that the following pseudocode can be time-stamped in the
(ORPn,TightCompaction, Intersperse)-hybrid model. As a subroutine in MalHT (Algorithm 8.2),
we therefore time-stamp the following subroutine.
The algorithm:

• Count the number of real elements in I. Let nR be the result.
• Write down a metadata array MD of length ncuckoo, where the first nR elements contain

only a symbol real, and the remaining ncuckoo−nR elements are of the form (⊥, 1), (⊥, 2), . . . ,
(⊥, ncuckoo − nR) to represent dummies.

• Call MD′ ← ORPn(MD), packing O
(

w
logn

)
elements into a single memory word.

• Run TightCompactionncuckoo
(MD′) to move the real elements to the front and the dummy

elements to the end.
• Run I ′ ← TightCompactionncuckoo

(I) to move the real elements of the original array (with
the values from the input) to the front.

• Initialize an array J of size ncuckoo.

• For i = 1, 2, . . . , ncuckoo:

– If i ≤ nR, read data← I ′[i], access MD′[i], and write data to J [i].
– If i > nR, access I ′[i], read data←MD′[i] (with w bits), and write data to J [i].

• Run J ′ ← Interspersencuckoo
(J , nR, ncuckoo − nR).

Output: The array J ′.

Claim C.36 (Claim 8.2 of [AKL+20]). Algorithm C.35 fails with probability at most e−Ω(
√
n) and

runs in O(n + n
w · log

3 n) time. When n = log9 λ and w ≥ log3 log λ, the algorithm runs in time
O(n) time and fails with probability e−Ω(log9/2 λ) = negl(λ).
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Algorithm C.37 CuckooMD : Compute the bucket assignment of a Cuckoo hashing instance.
This algorithm is Algorithm 8.3 in [AKL+20].

Input: An array MDX of length ncuckoo = ccuckoo ·n+log λ, where each element is either dummy
or a pair (choicei,1, choicei,2) where choicei,b ∈ [ccuckoo · n] for all b ∈ {1, 2}, and the number of
real pairs is at most n.
Memory checking: It is clear that the following pseudocode can be time-stamped in the
(cuckooAssign,Placement, Sort)-hybrid model. As a subroutine in MalHT (Algorithm 8.2), we
can therefore time-stamp this subroutine.
The algorithm.

1. Run packedcuckooAssign as promised in Corollary C.34 with parameter δ = e− log λ log log λ,
and let AssignX be the result. In particular AssignX has the following properties:

• If MDX [i] = (choicei,1, choicei,2), then AssignX [i] ∈ {choicei,1, choicei,2} ∪ Sstash.
• If MDX [i] = dummy, we have that AssignX [i] = ⊥.

2. Run Occupied← Placement(AssignX). In other words, Occupied[j] = i if AssignX [i] =
j, and Occupied[j] = ⊥ otherwise.

3. Iterate over AssignX , and tag the ith element with tag i.
4. Run Ãssign← Sort(AssignX) where we sort so that the real elements are in the front, and

the dummy elements appear at the end ordered by the dummy index (where the dummy
indices were computed in Algorithm C.35).

5. Iterate over Occupied and label the ith element with tag i.
6. Run ˜Occupied ← Sort(Occupied), where we sort so that the occupied bins appear first,

and the empty bins appear at the end.
7. For j = 1, 2, . . . , ncuckoo:

• If Ãssign[j] is a real element, perform a dummy access to ˜Occupied[j] and a dummy
write back to Ãssign[j] same contents.

• If Ãssign[j] is a dummy, update the bin for Ãssign[j] to be the corresponding tag of
˜Occupied[j].

8. Run AssignX ← Sort(Ãssign) where we sort according to the label in Step 3.
9. Output: The array AssignX .

Claim C.38 (Claim 8.4 in [AKL+20]). For n ≥ log9 λ, Algorithm C.37 fails with probability at
most e−Ω(log λ·log log λ) = negl(λ), and completes in O

(
n ·

(
1 + log3 n

w

))
time. For n = log9 λ and

w ≥ log3 log λ, it runs in O(n) time.

C.9 Deduplication

One additional building block that we need is linear-time deduplication, as constructed by Asharov
et al. [AKLS21]. We first describe the functionality FDedup.
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Functionality C.39 Fn
Dedup(X1, X2)

Input: Arrays X1, X2 of size n and 2n respectively. At least half of the elements of X2 are
dummies.
Input Assumptions: The arrays X1 and X2 are randomly shuffled, and the real elements among
each Xb have no duplicate keys.
Output: A randomly shuffled output array of length 2n containing all the real elements of X1

and X2 with no duplicates. When there are duplicates, the copy in X1 is preferred.

A first attempt at doing this obliviously would be to hash one table using FHT, and iterate over
the second table and perform lookups to the first table while removing any duplicates. However,
our hash table functionality MalHT does not have constant lookup time, so this algorithm would
have a run-time of O(n · log λ). In order to obtain a truly linear time algorithm, we use MalHT
in a white-box way, similarly to how the deduplication algorithm in Asharov et al. [AKL+20] uses
CombHT in a white-box way.

Algorithm C.40 Dedup(X1, X2). This algorithm is adapted from Theorem 4.1 of Asharov et
al. [AKLS21].

Input Assumption: Arrays X1 and X2 have size n and 2n respectively, and they are indepen-
dently, randomly shuffled. The keys within each array are unique (but crucially, there may be
duplicates between X1 and X2). At least n elements in X2 are dummies.
Secret key: Sample a random PRF secret key sk. Use PRFsk(“Enc”||·) for all encryptions, and
use PRFsk(“MAC”||·) for all MACs.
Authenticated Encryption: For every write query (write, addr, data), data is replaced with
data′ := (ct = Encsk(data), σ = MACsk(ct, addr)). Reads are passed through authenticated de-
cryption, namely unpacking data′ = (ct∗, σ∗), checking MACVersk((ct

∗, addr), σ∗) = 1, aborting if
verification fails, and otherwise returning data∗ = Decsk(ct

∗).
The algorithm.

1. Initialize T1 to be a MalHT instance. Perform T1.Build(X1). (We call this a MalHT instance
for ease of understanding, but in reality, this is a black-box hybrid call to FHT.)

2. Initialize Twhitebox
2 to be a white-box MalHT instance. Here, we will not be accessing MalHT

in the hybrid model, but rather we use it in a white-box way. In particular, we have access
to the secret state of Twhitebox

2 Call Twhitebox
2 .Build(X2), and let OF2,S,SecS2,S denote the

overflow and the additional stashes of Twhitebox
2 respectively.

3. Initialize an empty array L.
4. Linearly scan OF2,S and SecS2,S, and for each (k, v):

• Perform (k′, v′)← T1.Lookup(k).
• If k is found in T1, mark the element as ⊥ in OF2,S or SecS2,S accordingly. Otherwise,

perform a dummy write (with unmodified contents).
• Write (k′, v′) (even if k′ = ⊥) in the next slot of L, along with the tag “OF” or “SecS”

depending on where k is from.
5. Run L′ ← PerfectORP(L).
6. Run S′1 ← T1.Extract(), and run S1 ← Intersperse(S′1||L′).
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7. Linearly scan S1, and for each (k, v) perform the following lookups in T2. Note that here,
we perform Twhitebox

2 .Lookup() as described in MalHT.Lookup(), except we do not perform
the lookups in the overflow stash OF2,S and SecS2,S.

• If k is marked as “OF”, we pretend that k was in fact found in OF2,S and proceed with
the remainder of the usual Twhitebox

2 .Lookup(k) call.
• If k is marked as “SecS”, we pretend that k was in fact found in SecS2,S and proceed

with the remainder of the usual Twhitebox
2 .Lookup(k) call.

• If k is not marked, then we pretend that k was not found in either of OF2,S and SecS2,S,
and proceed with the rest of the real lookup (k′, v′)← Twhitebox

2 .Lookup(k).
8. Perform S2 ← Twhitebox

2 .Extract() (including OF2,S and SecS2,S, treating the elements marked
as ⊥ in Step 4 as accessed).

9. Run Z ′ ← Intersperse(S1||S2).
10. Run Z ′′ ← TightCompaction(Z ′) to move all dummy elements to the end. Truncate the

array to be of size 2n.
11. Run Z ← IntersperseRD(Z ′′) to randomly shuffle Z ′′.
12. Output Z.

Malicious security. Other than the white-box calls to MalHT, every operation is either a linear
scan over a portion of memory, or a hybrid call. Therefore, the non-hybrid calls can be time-stamped
and thus checked in an online way. We refer to this memory checker as M . For the white-box calls
to MalHT, we use online and offline memory checking just as described in MalHT. We refer to this
combined memory checker for MalHT as MHT.

Theorem C.41. Suppose log9 λ ≤ n ≤ poly(λ). Dedup is a maliciously secure oblivious implemen-
tation of FDedup with query complexity O(n).

Proof. Consider the simulator S which works as follows in the (FShuffle,FIntersperse,
FIntersperseRD,FHT)-hybrid model: S simulates the access pattern of Dedup on inputs X1 and X2

consisting of only dummies. For every call to Twhitebox
2 , we do the following:

• When Dedup calls Twhitebox
2 .Build(), run the code of MalHT.Build() on 2n dummies.

• When Dedup calls Twhitebox
2 .Lookup(), run the code of MalHT.Lookup(⊥) while skipping the

linear scan over the stashes.
• When Dedup calls Twhitebox

2 .Extract(), run the code of MalHT.Extract() on a secret state of
only dummies.

We argue that Real(CDedup,A) and Ideal(FDedup,S,A) are computationally indistinguishable.

The sequence of hybrids in proving obliviousness and correctness are the same as in Theorem 8.5,
with the following modifications:

• We time-stamp all non-hybrid portions of our algorithm that do not deal with Twhitebox
2 or its

stashes. We combine this time-stamping with the online memory checker (via time-stamping)
as used in Theorem 8.5.
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• Similarly, we time-stamp the linear scans of OF2,S,SecS2,S. We also combine this time-
stamping with the online memory checker (via time-stamping) as used in Theorem 8.5.

• In Step 7, the combined lookups of the linear scans of the stashes and Twhitebox
2 (without the

stashes) look exactly like a MalHT.Lookup call.
• We invoke the Intersperse,TightCompaction, IntersperseRD hybrid calls to ensure that the out-

put looks randomly shuffled.
• When we replace the output of the algorithm with the output of the real functionality,

we invoke the honest-but-curious correctness argument from Theorem 4.1 of Asharov et
al. [AKLS21].

Completeness. In the hybrid model, the probability of failure when interacting with an honest
server comes only from white-box use of Twhitebox

2 in Step 5 of MalHT.Build(). The probability of
aborting is at most n · e−Ω(log5 λ) = negl(λ) since n ≤ poly(λ).

Efficiency. The run-time of Step 4 is O(log λ · log λ) = O(log2 λ). The run-time of Step 7 is
O(n) · O(1) = O(n) since we are only doing the cuckoo hash lookups of MalHT.Lookup(). Finally,
the run-time of Step 8 is also O(n). By plugging in the run-times of MalHT, Intersperse, PerfectORP
and TightCompaction, we get an overall run-time of O(n).

D Final ORAM Construction

In this section, we give the construction of an optimal ORAM which is maliciously secure, very
closely following the construction of Asharov et al. [AKLS21]. The main bottleneck in our warm-up
construction was the extra O(log λ) factor incurred from every lookup in FHT. To avoid this, we
combine all the stashes to amortize the lookup time across all the stashes.

D.1 Oblivious Leveled Dictionary

To help amortize the cost of searching the stashes, we follow the construction of Asharov et al.
[AKLS21] and use a leveled dictionary. We use this leveled dictionary to find a copy of an index k
residing in the smallest “level”. It also supports popping elements from a specific level.

Theorem D.2. Assume the tuple (k, level,whichStash, data) can be stored in O(1) memory words.
Suppose n ≤ poly(λ). Then, there exists a maliciously secure oblivious implementation of FLevelDict

that supports n elements such that Insert, Lookup, and PopLevel can be done in O(log5 n) time in
the worst-case.

The proof of this fact follows similarly to the proof of Theorem C.8.
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Functionality D.1 FLevelDict : Leveled dictionary
FLevelDict.Init():

• Input: This operation has no input.
• The procedure: Initialize a 2-dimensional list indexed by (k, level) ∈ [K]× [L] for the given

key space K and level space L. Initialize all M [k, level] = ⊥.
• Output: This operation has no output.

FLevelDict.Insert(k, level,whichStash, data):

• Input: Key k, a level level, flag whichStash ∈ {“OF”, “Stash”}, and a value data. Note that
k can be ⊥ (i.e., dummy).

• The procedure: If k ̸= ⊥, set M [k, level] := (whichStash, data).

• Output: The Insert operation has no output.

FLevelDict.Lookup(k) :

• Input: A key k that might be ⊥ (i.e., dummy).
• The procedure:

– Let level be the smallest index such that M [k, level] ̸= ⊥.
– If no such level exists, output ⊥.
– Otherwise, set (whichStash∗, data∗) := M [k, level].

• Output: The tuple (level,whichStash∗, data∗).

FLevelDict.PopLevel(level,whichStash):

• Input: A level level and a flag whichStash.
• The procedure:

– Let k ∈ K be the smallest index such that M [k, level] = (whichStash, ·).
– If no such k exists, set data∗ := ⊥.
– Otherwise, set data∗ ←M [k, level] and then set M [k, level] := ⊥.

• Output: The tuple (k, data∗).

D.2 Algorithm Description

In this section, we present our optimal ORAM construction, with the differences from the warm-up
construction boxed and highlighted in purple. At a high level, the main difference is that we now
use MalHT in a white-box way and amortize the cost of scanning the stashes by combining all the
stashes from all of the levels. This algorithm is directly adapted from [AKLS21].

Structure. The structure of the ORAM is quite similar to the warm-up ORAM, except now we
use our MalHT construction in a white-box way. In particular, we have access to the overflow stash
and the combined stash, OFS and SecSS. We combine all such stashes into leveled dictionaries,
and amortize the cost of searching through them over all hash tables. Therefore, instead of paying
O(log λ) time per MalHT.Lookup() call, we search all overflow piles at once. Our setup is as follows:

• Two F2KeyDict instances Aℓ and Bℓ with capacity 2ℓ+1 elements.

84



• Four FLevelDict instances StashXC for C ∈ {A,B} and X ∈ {HF,F}. This functionality is described
in Appendix D.1.

• For each level i ∈ {ℓ + 1, . . . , L} contains four white-box MalHT instances. We denote the
levels as (AHF

ℓ+1, . . . ,A
HF
L ), (AF

ℓ+1, . . . ,A
F
L), (B

HF
ℓ+1, . . . ,B

HF
L ) and (BF

ℓ+1, . . . ,B
F
L).

• Pointers Aℓ, . . . ,AL and Bℓ, . . . ,BL, where each Ai points to either {AHF
i ,AF

i , Null} and each
Bi points to {BHF

i ,BF
i , Null}, where Null is a null pointer.

• A global counter ctr initialized to 0.

The algorithm will also maintain a running task list calls tasks Tasks. At the end of each access, it
will perform part roughly O(1) computation for each task in the list.

Algorithm D.3 Oblivious RAM: Access(op, addr, data). This algorithm is directly adapted from
[AKLS21], except we replace CombHT calls with MalHT calls.

Input: op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w.
Initialization: Initialize ctr← 0, and initialize all data structures to be empty.
Secret key: Sample a random PRF secret key sk. Use PRFsk(“Enc”||·) for all encryptions, and
use PRFsk(“MAC”||·) for all MACs.
Authenticated Encryption: For every write query (write, addr, data), data is replaced with
data′ := (ct = Encsk(data), σ = MACsk(ct, addr)). Reads are passed through authenticated de-
cryption, namely unpacking data′ = (ct∗, σ∗), checking MACVersk((ct

∗, addr), σ∗) = 1, aborting if
verification fails, and otherwise returning data∗ = Decsk(ct

∗).
Memory checking: Note that the algorithm only makes hybrid calls and updates the following
O(1) values regularly: inStash values, fetched values, found, and data∗. Therefore, the client can
simply locally store the variables.
The algorithm:
Lookup:

• Initialize found = false, data∗ = ⊥.
• Perform fetchedA := Aℓ.PopKey(addr).

– If fetchedA ̸= ⊥, then set found = true, data∗ = fetchedA, and perform Bℓ.PopKey(⊥).
– Otherwise, perform fetchedB := Bℓ.PopKey(addr). If fetchedB ̸= ⊥, the set found = true,

and data∗ = fetchedB.

• Perform:

– inStashHFA ← StashHFA .Lookup(k).
– inStashFA ← StashFA.Lookup(k).
– inStashHFB ← StashHFB .Lookup(k).
– inStashFB ← StashFB.Lookup(k).

• For each i ∈ {ℓ+ 1, . . . , L} in increasing order:

– If Ai is Null, let the output of Ai.Lookup() be ⊥.
– If Bi is Null, let the output of Bi.Lookup() be ⊥.
– If found = false :

∗ If Ai = AHF
i , and inStashHFA .level = i, then set inStash = inStashHFA .

∗ If Ai = AF
i and inStashFA.level = i, then set inStash = inStashFA.

∗ Otherwise, set inStash = ⊥.
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∗ Set fetched := Ai.Lookup(addr) with the following modifications:
· Do not scan OFS or SecSS.
· Instead, when the lookup visits OFS, if inStash.whichStash = “OF”, then use
inStash.data as found in OF. Otherwise, proceed with the lookup as if it was
not found in OFS.

· Similarly, when the lookup visits SecSS, if inStash.whichStash =
“SecS”, then use inStash.data as found in SecS. Otherwise, proceed
with the lookup as if it was not found in SecSS.

∗ If fetched ̸= ⊥, then set found := true and data∗ := fetched.
– Else, perform Ai.Lookup(⊥).
– If found = false:

∗ Repeat the same for Bi.Lookup(addr) just as in Ai.Lookup(addr),
while simulating the lookup in the stashes according to inStashHF

B

and inStashFB.

– Else, perform Bi.Lookup(⊥).
Update:

• If found = false, i.e., this is the first time addr is being accessed, set data∗ = 0.
• Let (k, v) := (addr, data∗) if this is a read operation; else let (k, v) := (addr, data).
• Insert (k, v) into Aℓ and Bℓ using Insert(k, ctr (mod 2ℓ+1), v).

Rebuild:

• Increment ctr by 1.
• For i ∈ {ℓ+ 1, . . . , L}:

– If ctr ≡ 0 mod 2i−2, then continue to 1-out-of-4 case:

If ctr ≡ 0 mod 2i 2i−2 mod 2i 2 · 2i−2 mod 2i 3 · 2i−2 mod 2i

Set Ai := Null AHF
i Null AHF

i .
Set Bi := BF

i BF
i BHF

i Null
Start RebuildHF(AHF

i ) RebuildHF(BHF
i ) RebuildF(AF

i ) RebuildF(BF
i )

Here, starting a task means that we will add the task to the list Tasks.
– For every task t ∈ Tasks, execute t.eachEpoch steps of the task.
– Return v.

Algorithm D.4 RebuildF(CF
i )

Input: The task has input CF
i ∈ {AF

i ,B
F
i }.

Property eachEpoch : The total time allocated to this task is 2i−2.

• If i = ℓ + 1: Let W ∈ O(2ℓ+1 · poly(log logN)) bound the work done by this rebuild. Set
eachEpoch = W/2i−2.

• If i > ℓ+1: Let W ∈ O(2i) bound the work done by this rebuild algorithm. Set eachEpoch =
W/2i−2.

The algorithm:

• If i = ℓ+ 1:
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– Run Ci−1.PopTime(0, 2ℓ − 1) repeatedly for 2ℓ times. Call the output list X′.
– Obtain X← Shuffle(X′).

• If ℓ+ 2 ≤ i ≤ L: Obtain X← CF
i−1.Extract().

• Call Z← Dedup(X,Y).

• Create a new table OFS,SecSS ← CF
i .Build(Z). Here, we are using MalHT in a white-box

way, and accessing the portion of the secret states corresponding to the overflow stash and
the combined stash).

• For all (addr, data) ∈ OFS, call StashFC.Insert(addr, i, “OF”, data).
• For all (addr, data) ∈ SecSS, call StashFC.Insert(addr, i, “SecS”, data).

Algorithm D.5 RebuildHF(CHF
i )

Input: The task gets as input a table CHF
i ∈ {AHF

i ,BHF
i }, for some index i ∈ {ℓ+ 1, . . . , L}.

Property eachEpoch: The total time allocated to this task is 2i−2.

• If i = ℓ + 1: Let W ∈ O(2ℓ+1 · poly(log logN)) bound the work done by this rebuild. Set
eachEpoch = W/2i−2.

• If i > ℓ+1: Let W ∈ O(2i) bound the work done by this rebuild algorithm. Set eachEpoch =
W/2i−2.

The algorithm.

• If i = L:
– For both j = L − 1 and j = L, for O(log λ) iterations, run StashFC.PopLevel(j, “OF”).

Call the output list OFS,j .
– For both j = L − 1 and j = L, for O(log λ) iterations, run StashFC.PopLevel(j, “SecS”).

Call the output list SecSS,j .
– Run X ← CF

L−1.Extract() and Y ← CF
L.Extract(). Here, we include OFS,j and SecSS,j in

the extract functionality.
– Let Z← Dedup(X′,Y′).
– Run OFS, SecSS ← CHF

L .Build(Z).
– For all (addr, data) ∈ OFS, call StashHFC .Insert(addr, L, “OF”, data).
– For all (addr, data) ∈ SecSS, call StashHFC .Insert(addr, L, “SecS”, data).

• For ℓ+ 1 ≤ i ≤ L− 1:
– If i = ℓ+ 1:

∗ Run Cℓ.PopTime(2ℓ, 2ℓ−1) repeatedly for 2ℓ iterations. Call the output list X.
∗ Obtain X′ ← Shuffle(X).

– If ℓ+ 2 ≤ i ≤ L− 1:
∗ For O(log λ) iterations, run StashFC.PopLevel(i− 1, “OF”). Call the output list OFS.
∗ For O(log λ) iterations, run StashFC.PopLevel(i − 1, “SecS”). Call the output list
SecSS.

∗ Let L = CF
i−1.Extract() (including OFS and SecSS).

– Initialize an array Y of 2i−1 dummies.
– Obtain Z← IntersperseRD(X||Y).
– Create a new table OFS,SecSS ← CHF

i .Build(Z).
– For all (addr, data) ∈ OFS, call StashHFC .Insert(addr, i, “OF”, data).
– For all (addr, data) ∈ SecSS, call StashHFC .Insert(addr, i, “SecS”, data).
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Malicious security. Other than the white-box calls to MalHT, every operation is either a linear
scan over a portion of memory, or a hybrid call. Therefore, these can be time-stamped, and checked
in an online way. We refer to this memory checker as M . For the white-box calls to MalHT, we use
online and offline memory checking just as described in MalHT. We refer to this combined memory
checker for MalHT as MHT.

Proof of Theorem 9.5. In the (FLevelDict,F2KeyDict,FShuffle)-hybrid model (we treat the MalHT in-
stances as “white-box”), the observed access pattern is a deterministic change in the lookup phase
(i.e., skipping the online-checkable linear scan of the stashes in MalHT.Lookup()) from the warm-up
construction. Moreover, in the rebuild phases, we first extract the elements from the stashes of
the corresponding layers, and then proceed with the rest of MalHT.Extract() as per usual. Since
MalHT.Lookup() is online checked, the access pattern of MalHT.Extract() as used in this white-box
way is identical to the black-box use of MalHT.Extract() in the warm-up construction.

Completeness. In the hybrid model, the probability of failure when interacting with an honest
server comes only from white-box use of MalHT at each level. The probability of aborting in any of
the O(logN) instances is at most O(logN) ·N · e−Ω(log5 λ) = negl(λ) since N ≤ poly(λ).

Efficiency. The efficiency analysis of the is algorithm is very similar to that in Theorem 9.1. At
a high level, the main difference in the lookup phase are that we additionally scan O(1) leveled-
dictionaries, so this adds a factor of O(log5 log λ). Also, each MalHT lookup now only takes O(1)
time rather than O(log λ) since we skip the linear scan over the stashes. Hence, the lookup phase
now takes time O(logN + log5 log λ) rather than O(logN · log λ+ log5 log λ).

In each RebuildF(CF
i ) call, we add O(log λ) insert calls to the leveled dictionary, which each take

O(log5 log λ). Asymptotically, this does not increase the run-time of RebuildF by more than an O(1)
multiplicative factor.

In RebuildHF(CHF
i ), we additionally also call PopLevel to the leveled dictionary O(log λ) time. This

also adds a factor of O(log λ · log5 log λ), which does not increase the run-time of RebuildHF by more
than an O(1) multiplicative factor.

D.3 Reducing Client Space

Here, we show how to implement our ORAM while using only O(1) words of local storage. A priori,
this is not the case for a few reasons:

1. Concurrent composition (Theorem A.4) stores a different PRF key for each hybrid being
invoked.

2. Concurrent composition (Theorem A.4) adds up the space complexities of each implementa-
tion.

Thankfully, both of these issues can be remedied by the fact that the timing of which hybrids are
called and when is computable in low space given only the global counter (note that this is not
true for OptORAMa, see Remark D.6). Item 1 can immediately be salvaged by Remark A.6 as

88



the timing of when we call hybrids is always easily computable given the current global counter.
For Item 2, first notice that each implementation on its own when viewed as a node in the hybrid
dependency tree has O(1) space, ignoring PRF keys. Second, since the schedule of hybrid calls is
easily computable, the PRF keys can be consolidated into one global PRF key easily.

Lastly, we explain how to effectively use the untrusted server as a way to store what would be
the local space of each of these implementations (specifically, using encryption and authentication).
Consider some node in the hybrid dependency tree that has O(1) space on its own. This node
will have O(1) dedicated server space to encrypt and authenticate its local space contents. When
starting or resuming a computation, this node will download these O(1) words from the server
(assuming authentication passes), perform the computation, and then re-encrypt and authenticate
its space contents to the server. Because the hybrid call scheduling is easily computable given the
current counter, these authentications can be time-stamped, ensuring that there are no possible
replay attacks. Moreover, IND-CPA security guarantees that nothing about the space contents is
revealed to the adversary. Since there are o(n) total nodes in the hybrid dependency tree, the total
amount of additional server storage this would require is o(n).

Remark D.6. The hybrid dependency tree for OptORAMa [AKL+20] cannot be determined in low
space because the SmallHT hybrid calls are in an arbitrary order. However, achieving O(1) overall
space complexity is still possible in their setting because the adversary cannot tamper with the server.
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