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A B S T R A C T

Pairing-friendly curves with the lack of twists, such as BW13-P310 and BW19-P286, have been
receiving attention in pairing-based cryptographic protocols as they provide fast operation in the
first pairing subgroup 𝔾1 at the 128-bit security level. However, they also incur a performance
penalty for hashing to 𝔾2 simultaneously since 𝔾2 is totally defined over a full extension field.
Furthermore, the previous methods for hashing to 𝔾2 focus on pairing-friendly curves admitting
a twist, which can not be employed for our selected curves.

In this paper, we propose a general method for hashing to 𝔾2 on curves with the lack
of twists. More importantly, we further optimize the general algorithm on curves with non-
trival automorphisms, which is certainly suitable for BW13-P310 and BW19-P286. Theoretical
estimations show that the latter would be more efficient than the former. For comparing the
performance of the two proposed algorithms in detail, high speed software implementation over
BW13-P310 is also provided on a 64-bit processor. Experimental results show that the general
algorithm can be sped up by up to 88% if the computational cost of cofactor multiplication for
𝔾2 is only considered, while the improved method is up to 71% faster than the general one for
the whole process.

1. Introduction
Pairings are a powerful mathematical tool to construct various cryptographic protocols with novel properties,

such as identity-based encryption [5], direct anonymous attestation (DAA) [8, 9], and zero-knowledge succinct non-
interactive argument of knowledge (zk-SNARK) [28, 14]. Cryptographic pairings are built on elliptic curves over finite
fields. The following standard notation and settings are used throughout the paper. Let 𝑝 be a large prime and 𝐸 an
elliptic curve over 𝔽𝑝 defined by an equation of the form 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. Assume that 𝑟 is a large prime with
𝑟 ∥ #𝐸(𝔽𝑝) (the notation 𝑎 ∥ 𝑏 means 𝑎 ∣ 𝑏 but 𝑎2 ∤ 𝑏). Let 𝑘 be the smallest positive integer such that 𝑟 divides 𝑝𝑘 − 1.
If 𝑘 > 1, then the subgroup 𝐸[𝑟] is contained in 𝐸(𝔽𝑝𝑘 ) [3]. Denote by 𝜋 ∶ (𝑥, 𝑦) → (𝑥𝑝, 𝑦𝑝) the 𝑝-th power Frobenius
endomorphism on 𝐸. A pairing 𝑒 ∶ 𝔾1 × 𝔾2 → 𝔾𝑇 is a bilinear and non-degenerate function, where 𝔾1 = 𝐸(𝔽𝑝)[𝑟],
𝔾2 = 𝐸[𝑟] ∩ Ker(𝜋 − [𝑝]) and 𝔾𝑇 is a subgroup of order 𝑟 of 𝔽 ∗

𝑝𝑘
.

In implementations of pairing-based protocols, the selection of pairing-friendly curves is closely related to
particular requirements given by specifications of the considered application [12, 2, 13]. For example, pairing-friendly
curves with fast group exponentiation in 𝔾1 are attractive to the DAA schemes. Before 2015, a 3072-bit finite field
𝔽𝑝𝑘 with non-small characteristic offers the 128-bit security level under the attack of the number field sieve [27]. In
this case, the Barreto-Naehrig (BN) curve [4] with embedding degree 12 over a 256-bit prime field provides optimal
performance for both group exponentiation in 𝔾1 and pairing computation. However, with the propose of the tower
number field sieve [32, 33], the difficulty of solving the discrete logarithm problem in finite fields with composite
extension degrees decreased significantly. Therefore, many mainstream curves can not reach the desired security level
anymore. Accodring to the estimate in [29], the size of prime field on BN curves must increase to 446 bits for achieving
the updated 128-bit security level, which leads to low performance of group exponentiation in 𝔾1. In 2022, Clarisse
𝑒𝑡 𝑎𝑙. [12] recommended two curves with fast group exponentiation in 𝔾1 at the updated 128-bit security level: BW13-
P310 with embedding degree 13 over a 310-bit prime field, and BW19-P286 with embedding degree 19 over a 286-bit
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prime field. In addition, since the embedding degrees of the two curves are prime, they are immune to the attacks of
the tower number field sieve. In other words, the two curves are potential for long-term security.

It is often necessary to hash binary strings to 𝔾1 or 𝔾2 in pairing-based cryptographic protocols. The standard
approach for hashing to 𝔾1 is to hash to a random point of 𝐸(𝔽𝑝) [40, 19, 42], followed by a scalar multiplication by
the cofactor ℎ1 = #𝐸(𝔽𝑝)∕𝑟. The computational cost of the cofactor multiplication is not expensive since the size of
ℎ1 is typically small on most of pairing-friendly curves. Recently, a more efficient method for clearing the cofactor is
proposed in [15], which may further reduce the computational cost for hashing to 𝔾1.

By contrast, hashing to 𝔾2 is relatively complicated. Denote by Aut(𝐸) the automorphism group of 𝐸 and let
𝑑 = gcd(𝑘, #Aut(𝐸)). If 𝑑 > 1 and 𝑟2 ∥ 𝐸(𝔽𝑝𝑘 ), there exists a unique 𝑑-twist 𝐸′ of 𝐸 such that 𝑟 ∥ #𝐸′(𝔽𝑝𝑒 ) [30,
Section 4], where 𝑒 = 𝑘∕𝑑. In this situation, the group 𝔾2 can be represented as 𝐸′(𝔽𝑝𝑒 )[𝑟]. As such, the procedure of
hashing to 𝔾2 consists of two phases: first hashing an arbitrary string to 𝐸′(𝔽𝑝𝑒 ), followed by a scalar multiplication by
ℎ2 = #𝐸′(𝔽𝑝𝑒 )∕𝑟. In the case 𝑒 ≠ 1, the size of ℎ2 is large and thus leads to an expensive cost for cofactor multiplication.
In 2009, Scott 𝑒𝑡 𝑎𝑙. [39] proposed an efficient method to reduce the computational cost of the cofactor multiplication.
This method was further optimized by Fuentes 𝑒𝑡 𝑎𝑙. [22]. Detailed comparisons of the two methods on different curves
were given in [10, 18].

Unfortunately, we find that gcd(𝑘, #Aut(𝐸)) = 1 on the BW13-P310 and BW19-P286 curves. It implies that 𝔾2 can
be only represented as 𝐸[𝑟] ∩ Ker(𝜋 − [𝑝]). Following Enge and Milan [17], we refer to this type of curves as curves
with the lack of twists. In fact, if 𝑝 ≥ 5, then #Aut(𝐸) ∈ {2, 4, 6} [41, Theorem III.10.1]. In this case, we can see that
𝐸 is a curve with the lack of twists if and only if gcd(𝑘, 6) = 1. It indicates that the extra effort is required for adapting
the above two approaches for hashing to 𝔾2 to pairing-friendly curves with the lack of twists.

Our contributions. In this paper, we investigate the problem of hashing to 𝔾2 on pairing-friendly curves with the
lack of twists. Our contributions are mainly divided into the following two parts:

∙ A general approach for hashing to 𝔾2 is given for curves with the lack of twists. To this end, we first show how to
efficiently map a random point of 𝐸(𝔽𝑝𝑘 ) into a certain cyclic subgroup 𝐻 . Explicit formulas are also proposed
for determining the order of 𝐻 . We then determine the eigenvalue of the endomorphism 𝜋 on this subgroup.
After tackling these problems, we successfully extend the previous techniques of hashing to 𝔾2 to curves with
the lack of twists. After that, an optimized approach is presented tailored to curves equipped with non-trivial
automorphisms. Note that the series of BW curves used in this paper exactly meet this condition.

∙ We describe explicit steps for hashing to 𝔾2 on BW13-P310 and BW19-P286 based on the above two methods.
High speed software implementation on BW13-P310 is also presented to evaluate the performance of the
proposed algorithms. Experimental results show that, using the lower prime field operations provided in the
RELIC cryptographic toolkit [1] with Assembly language, the hash function built on the improved method is up
to 71% faster than that on the general one. To the best of our knowledge, this is the first software implementation
of hashing to 𝔾2 on BW13-P310.

Outline of the paper. The remainder of this paper is organized as follows. Section 2 introduces the standard
approach of hashing to 𝔾2 on curves with the lack of twists, the endomorphism ring and the group structure of ordinary
elliptic curves. In Section 3, we define the cyclotomic zero subgroup of elliptic curves. The main results of hashing to𝔾2
on curves with the lack of twists are presented in Section 4. The application of the proposed technique on BW13-P310
and BW19-P286 is considered in Section 5. Finally, we draw our conclusion in Section 6.

2. Background
In this section, we first recall the standard approach for hashing to 𝔾2 on pairing-friendly curves with the lack of

twists. Then we introduce the endomorphism ring and group structure of ordinary elliptic curves, which are exploited
to improve the efficiency of hashing to 𝔾2 on the target curves.

2.1. The standard approach for hashing to 𝔾2
Let 𝐸∕𝔽𝑝 be an ordinary elliptic curve with the lack of twists. Denote by 𝐸 and 𝑗(𝐸) the identity element and

𝑗-invariant of 𝐸, respectively. For arbitrary 𝑚 ∈ ℤ+, we let 𝑡𝑚 be the trace of the 𝑝𝑚-power Frobenius on 𝐸. Then the
order of 𝐸(𝔽𝑝𝑚 ) is precisely 𝑝𝑚 + 1 − 𝑡𝑚. Given 𝑡1 = 𝑡, the value 𝑡𝑚 for any 𝑚 > 1 can be obtained by evaluation the
recursion [43, Lemma 4.13]

𝑡0 ← 2, 𝑡1 ← 𝑡, 𝑡𝑖+1 ← 𝑡 ⋅ 𝑡𝑖 − 𝑝 ⋅ 𝑡𝑖−1.
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Given a random point 𝑄 ∈ 𝐸(𝔽𝑝𝑘 ), the standard approach of hashing to 𝔾2 on this type of curves is done as follows:

𝑄→ 𝑅 = 𝑐𝑄→ Tr(𝑅) − 𝑘𝑅,

where the cofactor 𝑐 = #𝐸(𝔽𝑝𝑘 )∕𝑟2 and the mapping Tr acts as

Tr(𝑆) = 𝑆 + 𝜋(𝑆) +⋯ + 𝜋𝑘−1(𝑆)

for all 𝑆 ∈ 𝐸(𝔽𝑝𝑘 ). The cofactor multiplication maps 𝑄 into 𝐸[𝑟], and the endomorphism Tr− 𝑘 forces 𝑅 into 𝔾2 [23,
Section IX]. It is obvious that the approach is extremely inefficient and shall not be admissible in practical applications.

2.2. Endomorphism ring of ordinary elliptic curves over finite fields
Let 𝑡2 − 4𝑝 = −𝐷𝑓 2 (𝐷, 𝑓 ∈ ℤ) where 𝐷 is square free. The value 𝐷 is referred to as the CM discriminant of

𝐸. Denote by 𝐾 the imaginary quadratic field 𝑄(
√
−𝐷) and let 𝑂𝐾 be the largest subring of 𝐾 . An order in 𝐾 is a

subring 𝒪 satisfying that ℤ ⫋ 𝒪 ⊆ 𝑂𝐾 . Any order 𝒪 has the form ℤ⊕ ℤ𝑦𝛿, where 𝛿 =
√
−𝐷 or (1 +

√
−𝐷)∕2 and

𝑦 ∈ ℤ. Let 𝐷𝒪 denote the discriminant of order 𝒪, which is defined as

𝐷𝒪 =

{
− 𝑦2𝐷, if 𝐷 ≡ 3 mod 4,

− 4𝑦2𝐷, if 𝐷 ≡ 1, 2 mod 4.

Let 𝑞 be a power of the prime 𝑝. We define End𝔽𝑞 (𝐸) and End(𝐸) to be the endomorphism rings of 𝐸 over 𝔽𝑞 and 𝔽̄𝑞 ,
respectively. Since𝐸 is ordinary, the ring End(𝐸) is isomorphic to an order in𝐾 [43, Theorem 10.6]. Thus, we conclude
that End𝔽𝑞 (𝐸) ⊆ End(𝐸) ⊆ 𝑂𝐾 . Generally speaking, it is not straightforward to determine End𝔽𝑞 (𝐸). However, the
question becomes simple on some special ordinary elliptic curves. To be precise,

∙ if 𝑗(𝐸) = 0, then 𝑝 ≡ 1 mod 3 [43, Proposition 4.33]. There exists an endomorphism 𝜙 ∈ End𝔽𝑞 (𝐸) acting as
𝜙 ∶ (𝑥, 𝑦) → (𝜔 ⋅ 𝑥, 𝑦), where 𝜔 is a primitive cube root of unity in 𝔽 ∗

𝑝 . Since 𝜙 satisfies 𝜙2 + 𝜙 + 1 = 0, we

have ℤ[𝜙] = ℤ[(1 +
√
−3)∕2] = 𝑂𝐾 . It implies that End𝔽𝑞 (𝐸) = 𝑂𝐾 as ℤ[𝜙] ⊆ End𝔽𝑞 (𝐸) ⊆ 𝑂𝐾 ;

∙ if 𝑗(𝐸) = 1728, then 𝑝 ≡ 1 mod 4 [43, Theorem 4.23]. There exists an endomorphism 𝜙 ∈ End𝔽𝑞 (𝐸) acting
as 𝜙 ∶ (𝑥, 𝑦) → (−𝑥, 𝑖 ⋅ 𝑦), where 𝑖 is a primitive fourth root of unity in 𝔽 ∗

𝑝 . Since 𝜙2 + 1 = 0, it holds that

ℤ[𝜙] = ℤ[
√
−1] = 𝑂𝐾 and thus we conclude End𝔽𝑞 (𝐸) = 𝑂𝐾 .

We can see that the discriminant of End𝔽𝑞 (𝐸) for the above two classes of curves are −3 and −4, respectively. The
following subsection will illustrate the connection between the group structure of ordinary curves and the associated
endomorphism ring.

2.3. Group structure of ordinary elliptic curves over finite fields
By the basic theory of elliptic curves over finite fields [43, Thoerem 4.1], we know that 𝐸(𝔽𝑞) ≅ ℤ𝑚1

⊕ ℤ𝑚2
with

𝑚1 ∣ 𝑚2. In particular, 𝐸(𝔽𝑞) is cyclic if and only if 𝑚1 = 1. However, one can not determine the values 𝑚1 and 𝑚2
directly, even if #𝐸(𝔽𝑞) is known. Indeed, let 𝓁 be an integer such that 𝓁2 ∥ #𝐸(𝔽𝑞). There are two possibilities: (a)
𝐸[𝓁] ⊆ 𝐸(𝔽𝑞); (b) 𝐸(𝔽𝑞) has a cyclic subgroup of order 𝓁2. The following theorem provides necessary and sufficient
conditions for 𝐸[𝓁] ⊆ 𝐸(𝔽𝑞).

Theorem 1. [37, Propostition 3.7] Let 𝐸 be an ordinary elliptic curve over 𝔽𝑞 , where 𝑞 is a power of the prime 𝑝. Let
𝑡 denote the trace of the 𝑞-power Frobenius endomorphism 𝜋𝑞 ∶ (𝑥, 𝑦) → (𝑥𝑞 , 𝑦𝑞). Assume 𝓁 ∈ ℤ+ with 𝑝 ∤ 𝓁. Then

𝐸[𝓁] ⊆ 𝐸(𝔽𝑞) if and only if 𝓁2 ∣ #𝐸(𝔽𝑞), 𝓁 ∣ 𝑞 − 1 and 𝒪( 𝑡
2−4𝑞
𝓁2

) ⊆ End𝔽𝑞 (𝐸), where the notation 𝒪( 𝑡
2−4𝑞
𝓁2

) represents

the order with discriminant 𝑡
2−4𝑞
𝓁2

.

For curves with 𝑗-invariant 0 or 1728, the necessary condition of Theorem 1 can be further simplified as shown in
Corollary 1. It should be noted that the following conclusion is well known to the experts, but we have been unable to
find the relevant proof in the literature.
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Corollary 1. Let notation be as above. Assume 𝑗(𝐸) = 0 or 1728. Then 𝐸[𝓁] ⊆ 𝐸(𝔽𝑞) if and only if 𝓁2 ∣ #𝐸(𝔽𝑞) and
𝓁 ∣ 𝑞 − 1.

Proof. For the curves with 𝑗(𝐸) = 0 or 1728, it can be seen from Subsection 2.2 that End𝔽𝑞 (𝐸) = 𝑂𝐾 and thus the

condition 𝒪( 𝑡
2−4𝑞
𝓁2

) ⊆ End𝔽𝑞 (𝐸) holds. By Theorem 1, the rest of the proof is immediate.

Given the factorization of gcd(#𝐸(𝔽𝑞), 𝑞−1), Corollary 1 induces a simple method to determine the group structure
of 𝐸(𝔽𝑞) if 𝑗(𝐸) = 0 or 1728. For general cases, an alternative approach is given in [36, Algorithm 3], which is slightly
complicated. In the following sections we show how to apply the above results to improve the efficiency of hashing to
𝔾2 on pairing-friendly curves with the lack of twists.

3. Cyclotomic zero subgroup of elliptic curves
We denote by 𝐺0 the set

{𝑄 ∈ 𝐸(𝔽𝑝𝑘 ) ∣ Φ𝑘(𝜋)(𝑄) = 𝐸},
where Φ𝑘(𝜋) is the 𝑘-th cyclotomic polynomial with respect to 𝜋. One can see that𝐺0 forms a group. By the definition
of 𝐺0, we clearly have 𝐺0 ⊆ 𝑇𝑘, where 𝑇𝑘 denotes the trace zero subgroup [21] of 𝐸(𝔽𝑝𝑘 ), i.e.,

𝑇𝑘 = {𝑄 ∈ 𝐸(𝔽𝑝𝑘 ) ∣ Tr(𝑄) = 𝐸}.
In particular, the two subgroups are identical if and only if the embedding degree 𝑘 is a prime. In the following, we call
𝐺0 the cyclotomic zero subgroup of𝐸(𝔽𝑝𝑘 ). Several properties of𝐺0 are summarized in the following two propositions.

Proposition 1. Let notation be as above. Then the order of the group 𝐺0 is precisely equal to
∏
𝑑∣𝑘

#𝐸(𝔽𝑝𝑑 )𝜇(𝑘∕𝑑), where

𝜇(.) is the Moebius function. In addition, if 𝑟 ∤ Φ𝑘(1), then 𝐸[𝑟] ∩ 𝐺0 = 𝔾2.

Proof. By [35, Theorem 3.27], we have

Φ𝑘(𝜋) =
∏
𝑑∣𝑘

(𝜋𝑑 − 1)𝜇(𝑘∕𝑑). (1)

Since Φ𝑘(𝜋) and 𝜋𝑑 − 1 are separable, taking degrees of both sides of Equation (1), it yields that

#𝐺0 = #Ker(Φ𝑘(𝜋)) =
∏
𝑑∣𝑘

#Ker(𝜋𝑑 − 1)𝜇(𝑘∕𝑑). (2)

Furthermore, since 𝐸(𝔽𝑝𝑑 ) = Ker(𝜋𝑑 − 1) for any 𝑑 ∈ ℤ+, Equation (2) implies that #𝐺0 =
∏
𝑑∣𝑘

#𝐸(𝔽𝑝𝑑 )𝜇(𝑘∕𝑑).

We now prove that 𝐸[𝑟] ∩ 𝐺0 = 𝔾2 under the condition 𝑟 ∤ Φ𝑘(1). By the fact that 𝔾2 ⊆ 𝐸[𝑟] ∩ 𝐺0, we only need
to prove that 𝐸[𝑟] ∩ 𝐺0 ⊆ 𝔾2. For any 𝑅 ∈ 𝐸[𝑟] ∩ 𝐺0, we have

Φ𝑘(𝜋)𝑅 = 𝐸
by the definition of 𝐺0. It follows from 𝑅 ∈ 𝐸[𝑟] that there exist 𝑚1, 𝑚2 ∈ ℤ∕𝑟ℤ such that

𝑅 = 𝑚1𝑅1 + 𝑚2𝑅2.

where 𝑅1 and 𝑅2 are generators of 𝔾1 and 𝔾2, respectively. Since 𝑟 ∤ Φ𝑘(1) and 𝑟 ∣ Φ𝑘(𝑝), we have

Φ𝑘(𝜋)(𝑅1) = Φ𝑘(1)𝑅1 ≠ 𝐸 ,
Φ𝑘(𝜋)(𝑅2) = Φ𝑘(𝑝)𝑅2 = 𝐸 .

On the basis of the above equations, we obtain

Φ𝑘(𝜋)𝑅 =Φ𝑘(𝜋)(𝑚1𝑅1 + 𝑚2𝑅2)
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=𝑚1Φ𝑘(𝜋)(𝑅1) + 𝑚2Φ𝑘(𝜋)(𝑅2)
=𝑚1Φ𝑘(1)𝑅1 + 𝑚2Φ𝑘(𝑝)𝑅2

=𝑚1Φ𝑘(1)𝑅1

=𝐸 .
The last equality in the above equation indicates that 𝑚1 = 0. This implies that 𝑅 = 𝑚2𝑅2, i.e., 𝑅 ∈ 𝔾2 since 𝑅2 is
the generator of 𝐺2. By the arbitrary choice of 𝑅, we conclude that 𝐸[𝑟] ∩ 𝐺0 ⊆ 𝔾2, which completes the proof.

It can be seen from Proposition 1 that once the order of 𝐸(𝔽𝑝𝑑 ) is given for each 𝑑 ∣ 𝑘, it is simple to calculate
the order of 𝐺0. In addition, since 𝑟 is a large prime in pairing-based cryptographic schemes, the condition 𝑟 ∤ Φ𝑘(1)
clearly holds. Thus, we confirm that 𝔾2 is the unique subgroup of order 𝑟 contained in 𝐺0. We now consider how to
determine the group structure of 𝐺0 for curves with 𝑗-invariant 0 or 1728.

Proposition 2. Let notation be as above. Let 𝐸∕𝔽𝑝 be an ordinary elliptic curve with 𝑗(𝐸) = 0 or 1728. Assume
𝓁 ∈ ℤ+ with 𝑝 ∤ 𝓁 and 𝓁3 ∤ #𝐸(𝔽𝑝𝑘 ). Then 𝐸[𝓁] ⊆ 𝐺0 if and only if 𝓁2 ∣ #𝐺0 and 𝓁 ∣ 𝑝𝑘 − 1.

Proof. By Corollary 1, the necessity is obvious, and the hypothesis that 𝓁3 ∤ #𝐸(𝔽𝑝𝑘 ) is not necessary. Conversely,
since 𝐺0 ⊆ 𝐸(𝔽𝑝𝑘 ) and 𝓁2 ∣ #𝐺0, we have 𝓁2 ∣ #𝐸(𝔽𝑝𝑘 ). Furthermore, by the condition 𝓁 ∣ 𝑝𝑘 − 1, it can be obtained
from Corollary 1 that 𝐸[𝓁] ⊆ 𝐸(𝔽𝑝𝑘 ). On the other hand, since 𝓁3 ∤ #𝐸(𝔽𝑝𝑘 ) and 𝐺0 ⊆ 𝐸(𝔽𝑝𝑘 ), there is no cyclic
subgroup of order 𝓁2 contained in 𝐺0. By the condition that 𝓁2 ∣ #𝐺0, we get 𝐸[𝓁] ⊆ 𝐺0, which completes the
proof.

Proposition 2 induces an efficient way to determine the group structure of 𝐺0 for ordinary elliptic curves with
𝑗-invariant 0 or 1728 under a weak condition.

4. Main results
Based on the analysis in Section 3, the group 𝐺0 is isomorphic to ℤ𝑚 ⊕ ℤ𝑚𝑛𝑟 for some 𝑚, 𝑛 ∈ ℤ. We use 𝐻 to

denote 𝑚𝐺0. Then 𝐻 is a cyclic group of order 𝑛𝑟. Let the mapping 𝜏 act as

𝜏(𝑄) =
(
𝜋𝑘 − 1)∕Φ𝑘(𝜋)

)
(𝑄)

for all 𝑄 ∈ 𝐸(𝔽𝑝𝑘 ). We can see that 𝜏(𝑄) ∈ 𝐺0. To summarize, mapping a random point of 𝐸(𝔽𝑝𝑘 ) to 𝔾2 can be
performed as follows:

𝐸(𝔽𝑝𝑘 )
𝜏

⟶ 𝐺0
𝑚

⟶ 𝐻
𝑛

⟶ 𝔾2.

Since the action of 𝜏 on a random point of 𝐸(𝔽𝑝𝑘 ) only requires a few point additions and applications of the
Frobenius endomorphism 𝜋, and the size of 𝑚 is typically small, the most significant cost of hashing to 𝔾2 is the
scalar multiplication by 𝑛. In this section, we show how to perform the cofactor multiplication efficiently.

4.1. General approach for curves with the lack of twists
It is well-known that efficiently computable endomorphisms are a powerful tool to accelerate elliptic curve scalar

multiplication [26, 24]. This technique was further used by Fuentes 𝑒𝑡 𝑎𝑙. to reduce the overhead of hashing to 𝔾2 on
curves admitting a twist [22]. However, few works in the literature study the application of the technique for hashing
to 𝔾2 on curves with the lack of twists. Since the endomorphism 𝜋 on an original curve plays a similar role as the
untwist-Frobenius-twist endomorphism [25] on its twist, it seems that the Fuentes 𝑒𝑡 𝑎𝑙. method can be also applied to
pairing-friendly curves with the lack of twists. But there are a few details left to sort out in practice. First, it is necessary
to confirm that 𝜋(𝑃 ) ∈ 𝐻 for all 𝑃 ∈ 𝐻 . Moreover, one also needs to determine the value 𝑎 satisfying that 𝜋(𝑃 ) = 𝑎𝑃
if 𝜋(𝑃 ) ∈ 𝐻 . In this subsection, we solve the above two questions and thus generalize the Fuentes 𝑒𝑡 𝑎𝑙. method on
pairing-friendly curves with the lack of twists.

Lemma 1. Let notation be as above. Let 𝑔(𝜋) = 𝜋2 − 𝑡𝜋 + 𝑝 be the characteristic polynomial of the Frobenius
endomorphism 𝜋. For all 𝑃 ∈ 𝐻 , there exists an integer 𝑎 such that 𝜋(𝑃 ) = 𝑎𝑃 . Furthermore, the integer 𝑎 is one of
solutions of the linear congruence equation

𝑎0 + 𝑎1𝑥 ≡ 0 mod 𝑛𝑟, (3)
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where the integers 𝑎0 and 𝑎1 are determined by the following congruence equation

Φ𝑘(𝜋) ≡ 𝑎0 + 𝑎1𝜋 mod 𝑔(𝜋).

Proof. Without loss of generality, we regard 𝑃 as a generator of𝐻 , which means that the order of 𝑃 is 𝑛𝑟. Then we have
𝑛𝑟𝜋(𝑃 ) = 𝜋(𝑛𝑟𝑃 ) = 𝐸 and thus the order of 𝜋(𝑃 ) divides the order of 𝑃 . On the other hand, since 𝑃 = 𝜋𝑘−1(𝜋(𝑃 ))
the order of 𝑃 also divides the order of 𝜋(𝑃 ). Therefore, both 𝑃 and 𝜋(𝑃 ) are points of order 𝑛𝑟. Since

𝑃 ∈ 𝐻 ⊆ 𝐺0 ≅ ℤ𝑚 ⊕ ℤ𝑚𝑛𝑟,

then we have 𝑚𝑅 = 𝑃 for some 𝑅 ∈ 𝐺0, meaning 𝑚𝜋(𝑅) = 𝜋(𝑃 ). Furthermore,

Φ𝑘(𝜋)
(
𝜋(𝑅)

)
= 𝜋

(
Φ𝑘(𝜋)(𝑅)

)
= 𝐸 ,

which indicates that 𝜋(𝑅) ∈ 𝐺0. In total, there exists a point 𝜋(𝑅) ∈ 𝐺0 such that 𝑚𝜋(𝑅) = 𝜋(𝑃 ). By the definition
of 𝐻 , we can see that 𝜋(𝑃 ) ∈ 𝐻 and thus 𝜋(𝑃 ) is a generator of 𝐻 . It means that the endomorphism 𝜋 acting on 𝐻
corresponds to a scalar multiplication. In other words, there exists an integer 𝑎 such that 𝜋(𝑃 ) = 𝑎𝑃 for all 𝑃 ∈ 𝐻 .

By the Euclidean algorithm, there exists a polynomial 𝑢(𝜋) ∈ ℤ[𝜋] such that

Φ𝑘(𝜋) = 𝑢(𝜋) ⋅ 𝑔(𝜋) + 𝑟(𝜋), (4)

where 𝑟(𝜋) = 𝑎0 + 𝑎1𝜋. Moreover, the Frobenius endomorphism 𝜋 on 𝐻 satisfies the relations

Φ𝑘(𝜋) = 0, 𝑔(𝜋) = 0. (5)

Putting Equations (4) and (5) together, we deduce that

(𝑎0 + 𝑎1 ⋅ 𝑎)𝑃 = 𝑟(𝜋)(𝑃 ) = Φ𝑘(𝜋)(𝑃 ) − 𝑢(𝜋)
(
𝑔(𝜋)(𝑃 )

)
= 𝐸 .

Since the order of the point 𝑃 is 𝑛𝑟, we conclude that 𝑎0 + 𝑎1 ⋅ 𝑎 ≡ 0 mod 𝑛𝑟, which completes the proof.

Lemma 1 explains the effect of the endomorphism 𝜋 on the group 𝐻 . Let 𝑥0 be a particular solution of the linear
congruence equation (3) and 𝑑 = gcd(𝑎1, 𝑛𝑟). By Lemma 1, the integer 𝑎 would be one of

{𝑥0, 𝑥0 +
𝑛𝑟
𝑑
,⋯ , 𝑥0 + (𝑑 − 1)𝑛𝑟

𝑑
}.

In fact, we can search through all 𝑖 between 0 and 𝑑 −1 for an 𝑎 = 𝑥0 + 𝑖
𝑛𝑟
𝑑 such that 𝜋(𝑃 ) = (𝑥0 + 𝑖

𝑛𝑟
𝑑 )𝑃 . Now we are

in a position to generalize the Fuentes 𝑒𝑡 𝑎𝑙. method.

Theorem 2. Let 𝐸∕𝔽𝑝 be an ordinary elliptic curve with the lack of twists. Let 𝐺0 be the cyclotomic zero subgroup of
𝐸(𝔽𝑝𝑘 ), and 𝐻 the cyclic subgroup of 𝐺0 of order 𝑛𝑟. Then there exists a polynomial

ℎ(𝑧) = ℎ0 + ℎ1𝑧 +⋯ + ℎ𝜑(𝑘)−1𝑧𝜑(𝑘)−1 ∈ ℤ[𝑧]

and an efficiently computable endomorphism 𝜓 such that ℎ(𝜓)(𝑃 ) ∈ 𝔾2 for all 𝑃 ∈ 𝐻 , where |ℎ𝑖| < |𝑛|1∕𝜑(𝑘) for
𝑖 = 0,⋯ , 𝜑(𝑘) − 1.

Proof. Taking 𝜓 = 𝜋, it can be obtained from Lemma 1 that 𝜓(𝑃 ) = 𝑎𝑃 for all 𝑃 ∈ 𝐻 . Since the order of 𝜓 is
precisely 𝑘 restricted in the group 𝐻 , we conclude that

Φ𝑘(𝑎) ≡ 0 mod 𝑛𝑟.

Similar to the proof in [22, Theorem 1], there exists a polynomial in

ℎ(𝑧) = ℎ0 + ℎ1𝑧 +⋯ + ℎ𝜑(𝑘)−1𝑧𝜑(𝑘)−1 ∈ ℤ[𝑧]

such that ℎ(𝑎) is a multiple of 𝑛, where |ℎ𝑖| < |𝑛|1∕𝜑(𝑘). Therefore, we have ℎ(𝜓)𝑃 ∈ 𝔾2 for all 𝑃 ∈ 𝐻 , which
completes the proof.
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To obtain a short coefficient vector (ℎ0,⋯ , ℎ𝜑(𝑘)−1), one can apply the LLL algorithm [34] in the following 𝜑(𝑘)-
dimensional lattice: ⎡⎢⎢⎢⎢⎢⎣

𝑛 0 0 ⋯ 0
−𝑎 1 0 ⋯ 0
−𝑎2 0 1 ⋯ 0
⋮ ⋮ ⋱

−𝑎𝜑(𝑘)−1 0 ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎦
.

By Theorem 2, the number of point doublings for mapping a random point to 𝔾2 is around log 𝑛∕𝜑(𝑘)). Apparently,
this method is significantly faster than the standard one. In the following we denote this method by Method I.

4.2. Optimized version for curves with non-trivial automorphisms
If 𝑗(𝐸) = 0 or 1728, there exists another efficiently computable endomorphism 𝜙 that is given in Section 2.

Similarly, the endomorphism 𝜙 also corresponds to a scalar multiplication restricted in the group 𝐻 . We summarize
this observation as follows.

Lemma 2. Let notation be as above. Let 𝑡2 −4𝑝 = −𝐷𝑓 2, where 𝐷, 𝑓 ∈ ℤ and 𝐷 is square free. If 𝑗(𝐸) = 0 or 1728,
then 𝜙(𝑃 ) = 𝑏𝑃 for all 𝑃 ∈ 𝐻 , where

𝑏 =

⎧⎪⎨⎪⎩
−𝑓 ± (2𝑎 − 𝑡)

2𝑓
mod 𝑛𝑟 if 𝑗(𝐸) = 0,

±(2𝑎 − 𝑡)
2𝑓

mod 𝑛𝑟 if 𝑗(𝐸) = 1728.

Proof. We only give the proof for the case j(E) = 0 (The proof of the remaining case is similar). Since𝐸 is ordinary and
𝑗(𝐸) = 0, we have 𝐷 = 3. Furthermore, since the value 𝑎 in Lemma 1 is one of solutions of the quadratic congruence
equation

𝑥2 − 𝑡𝑥 + 𝑝 ≡ 0 mod 𝑛𝑟,

we get

𝑎 ≡ 1
2
(𝑡 ±

√
𝑡2 − 4𝑝) ≡ 1

2
(𝑡 ± 𝑓

√
−3) mod 𝑛𝑟,

which implies √
−3 ≡ ±(2𝑎 − 𝑡)∕𝑓 mod 𝑛𝑟.

On the other hand, since 𝜙 satisfies the quadratic relation

𝜙2 + 𝜙 + 1 = 0,

we have 𝑏2 + 𝑏 + 1 ≡ 0 mod 𝑛𝑟. It yields that

𝑏 =
−1 ±

√
−3

2
=

−𝑓 ± (2𝑎 − 𝑡)
2𝑓

mod 𝑛𝑟,

which completes the proof.

Putting Lemmas 1 and 2 together, we get the following theorem.

Theorem 3. Let 𝐸∕𝔽𝑝 be an ordinary elliptic curve with the lack of twists. Let 𝐺0 be the cyclotomic zero subgroup of
𝐸(𝔽𝑝𝑘 ), and 𝐻 the cyclic subgroup of 𝐺0 of order 𝑛𝑟. If 𝑗(𝐸) = 0 or 1728, then there exists a polynomial

ℎ(𝑧) = ℎ0 + ℎ1𝑧 +⋯ + ℎ2𝜑(𝑘)−1𝑧2𝜑(𝑘)−1 ∈ ℤ[𝑧]

and an efficiently computable endomorphism 𝜓 such that ℎ(𝜓)(𝑃 ) ∈ 𝔾2 for all 𝑃 ∈ 𝐻 , where |ℎ𝑖| < |𝑛|1∕(2𝜑(𝑘)) for
𝑖 = 0,⋯ , 2𝜑(𝑘) − 1.
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Table 1
Parameters for the BW13-P310 and BW19-P286.

Curve 𝑘 seed 𝑢 b
BW13-P310 13 −2224 −17
BW19-P286 19 −145 31

Proof. If 𝑗(𝐸) = 0 (resp.1728), we take 𝜓 = 𝜋◦𝜙, where 𝜙 is defined in Section 2. Combining Lemmas 1 and 2, we
have𝜓(𝑃 ) = 𝜆𝑃 for all 𝑃 ∈ 𝐻 , where 𝜆 = 𝑎⋅𝑏 mod 𝑛𝑟. Moreover, we can find that gcd(𝑘, 3) = 1 (resp. gcd(𝑘, 4) = 1).
Otherwise, the curve 𝐸 admits a twist of degree 3 (resp. 2). Hence, the order of 𝜓 is precisely 3𝑘 (resp. 4𝑘) restricted
in 𝐻 . It means that the integer 𝜆 satisfies that

Φ3𝑘(𝜆) ≡ 0 mod 𝑛𝑟(𝑟𝑒𝑠𝑝. Φ4𝑘(𝜆) ≡ 0 mod 𝑛𝑟).

Since the degree of the cyclotomic polynomial is 2𝜑(𝑘), there exists a polynomial

ℎ(𝑧) = ℎ0 + ℎ1𝑧 +⋯ + ℎ2𝜑(𝑘)−1𝑧2𝜑(𝑘)−1 ∈ ℤ[𝑧]

such that ℎ(𝜆) is a multiple of 𝑛, where |ℎ𝑖|< |𝑛|1∕(2𝜑(𝑘)). From this result, we conclude that ℎ(𝜓)𝑃 = ℎ(𝜆)𝑃 ∈ 𝔾2 for
all 𝑃 ∈ 𝐻 , which completes the proof.

Likewise, applying the LLL algorithm one can obtain a 2𝜑(𝑘)-dimensional coefficient vector (ℎ0,⋯ , ℎ2𝜑(𝑘)−1) for
curves with 𝑗-invariant 0 or 1728. In this situation, the number of point doublings for mapping a random point to 𝔾2
is reduced to around log 𝑛∕(2𝜑(𝑘)). This improved method is also called as Method II in the rest of this paper.

5. Applications
In this section, we give a detailed description for constructing the hashing function 𝔾2

∶ {0, 1}∗ → 𝔾2 on the
BW13-P310 and BW19-P286 curves. Both curves are defined by an equation of the form 𝑦2 = 𝑥3+𝑏 and parameterized
by 𝑢 as follows[20, Construction 6.6]:

𝑝 = 1
3
(𝑢 + 1)2(𝑢2𝑘 − 𝑢𝑘 + 1) − 𝑢2𝑘+1,

𝑟 = Φ6𝑘(𝑢),

𝑡 = −𝑢𝑘+1 + 𝑢 + 1.

In Table 1, we summarize the important parameters for the three curves. The hash function 𝔾2
is modeled as a

random oracle in security proofs. In order to resist timing side-channel attacks, it should be implemented in constant-
time [7, 31]. Specifically, it consists of the following three phases:

(1) hashing an arbitrary string to 𝔽 ∗
𝑝 using a standard cryptographic hash function;

(2) mapping a random element of 𝔽 ∗
𝑝 to 𝐸(𝔽𝑝𝑘 ) in constant-time;

(3) mapping a random element of 𝐸(𝔽𝑝𝑘 ) to 𝔾2 in constant-time.

The mapping involved in the phase (2) is also referred to as encoding function in [16], which can be constructed by the
Shallue-van de Woestijne (SVW) method [40]. A specialization of the SVW method on BN curves [4] was presented
by Fouque and Tibouchi [19]. In fact, these techniques also can be applied to the above three curves. See Algorithm 1
for details. Note that 𝜒𝑝(⋅) and 𝜒𝑝𝑘 (⋅) represent the quadratic residuosity testing functions in 𝔽𝑝 and 𝔽𝑝𝑘 , respectively.
The computational cost of Algorithm 1 is of about one quadratic residuosity testing in 𝔽𝑝, two quadratic residuosity
testings, one square root, and a few multiplications in 𝔽𝑝𝑘 . Thanks to the odd embedding degrees on the target curves,
one quadratic residuosity testing in 𝔽𝑝𝑘 can be transformed into one quadratic residuosity testing in 𝔽𝑝 and one trace
mapping in 𝔽𝑝𝑘 . This observation is summarized in the following proposition.

Proposition 3. Let 𝐴 ∈ 𝔽𝑝𝑘 . If 𝑘 is odd, then 𝜒𝑝𝑘 (𝐴) = 𝜒𝑝(Tr(𝐴)).
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Proof. If 𝐴 is a square in 𝔽𝑝𝑘 , then there exists an element 𝐵 ∈ 𝔽𝑝𝑘 such that 𝐴 = 𝐵2. As a result, we have

Tr(𝐴) = Tr(𝐵2) =
(
Tr(𝐵)

)2.
Since Tr(𝐵) ∈ 𝔽𝑝, we can see that Tr(𝐴) is a square in 𝔽𝑝. Conversely, if 𝐴 is a nonsquare in 𝔽𝑝𝑘 , we assume that Tr(𝐴)
is a square in 𝔽𝑝. Then, there exists an element 𝐶 ∈ 𝔽𝑝 such that Tr(𝐴) = 𝐶2. Since the embedding degree 𝑘 is odd,
the exponent 𝑝 + 𝑝2 +⋯ + 𝑝𝑘−1 is even, which implies that 𝐴 is a square in 𝔽𝑝𝑘 as

𝐴 = 𝐶2

𝐴𝑝+𝑝2+⋯+𝑝𝑘−1
=
( 𝐶
𝐴(𝑝+𝑝2+⋯+𝑝𝑘−1)∕2

)2
.

This is a contradiction, and so Tr(𝐴) is a nonsquare in 𝔽𝑝. Putting it all together, we conclude that 𝜒𝑝𝑘 (𝐴) = 𝜒𝑝(Tr(𝐴)),
which completes the proof of the proposition.

To map a random point of 𝐸(𝔽𝑝𝑘 ) to 𝔾2 using the proposed techniques, we first need to determine the order of the
group 𝐻 that is defined in Section 4. By Proposition 1, we have #𝐺0 = #𝐸(𝔽𝑝𝑘 )∕(#𝐸(𝔽𝑝)) on the two target curves.
Using Magma [6], one can check that gcd(𝑝𝑘−1, #𝐺0) = 𝑟 and 𝑟2 ∤ #𝐺0. Thus, it can be deduced from Proposition 2 that

Algorithm 1 Indifferentiable mapping to 𝐸(𝔽𝑝𝑘 ) for the BW13-P310 and BW19-P286 curves
Input: 𝑡 ∈ 𝔽 ∗

𝑝 , the curve parameter 𝑏 ∈ 𝔽 ∗
𝑝

Output: a point 𝑃 ∈ 𝐸(𝔽𝑝𝑘 )

1: 𝑠𝑟3 ←
√
−3 ∕∕Precomputation

2: 𝑗 ← (𝑠𝑟3 − 1)∕2
3: 𝑡0 ← 0 + 𝑡 ⋅ 𝛼 + 0 ⋅ 𝛼2 +⋯ + 0 ⋅ 𝛼𝑘−1 ∈ 𝔽𝑝𝑘
4: 𝑤← 𝑠𝑟3 ⋅ 𝑡0

1+𝑏+𝑡20
5: 𝑥1 ← 𝑗 − 𝑡0 ⋅𝑤
6: 𝑥2 ← −1 − 𝑥1
7: 𝑥3 ← 1 + 1∕𝑤2

8: 𝑟1, 𝑟2, 𝑟3
$
←←←←←←← 𝔽 ∗

𝑝
9: 𝑎1 ← 𝜒𝑝𝑘 (𝑟21 ⋅ (𝑥

3
1 + 𝑏))

10: 𝑎2 ← 𝜒𝑝𝑘 (𝑟22 ⋅ (𝑥
3
2 + 𝑏))

11: 𝑖 ← (𝑎1 − 1) ⋅ 𝑎2 mod 3 + 1

12: return 𝑃 ← (𝑥𝑖, 𝜒𝑝(𝑟22 ⋅ 𝑡) ⋅
√
𝑥3𝑖 + 𝑏)

𝐻 = 𝐺0 ≅ ℤ𝑛𝑟. Given a random point𝑄 ∈ 𝐸(𝔽𝑝𝑘 ), then 𝑃 = 𝜏(𝑄) ∈ 𝐻 and thus 𝑛𝑃 ∈ 𝔾2, where 𝜏 = (𝜋𝑘−1)∕Φ𝑘(𝜋).
In the following, we discuss how to map 𝑃 into 𝔾2 using the two methods reported in Section 4.
Method I:
We first determine the integer 𝑎 such that 𝜋(𝑄) = 𝑎𝑄 for all 𝑄 ∈ 𝐻 using Lemma 1. Constructing the lattice, we then
obtain the vector (ℎ0, ℎ1,⋯ , ℎ𝜑(𝑘)−1) such that

ℎ(𝑎) = ℎ0 + ℎ1𝑎 +⋯ + ℎ𝜑(𝑘)−1𝑎𝜑(𝑘)−1
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is a multiple of 𝑛. For the BW13-P310 or BW19-P286 curve, the value of ℎ𝑖 for each 𝑖 is given as follows

ℎ𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)𝑚
(
𝑢2𝑘−4−𝑖−𝑢2𝑘−5−𝑖+ 𝑢2𝑘−6−𝑖 + 2𝑢𝑘−4−𝑖− 2𝑢𝑘−5−𝑖−𝑢𝑘−6−𝑖

)
−𝓁𝑘−1

if 𝑖 = 3𝑚, 0 ≤ 𝑚 < 𝑠 − 1,

(−1)𝑚
(
2𝑢𝑘−4−𝑖 + 𝑢𝑘−5−𝑖 − 𝑢𝑘−6−𝑖

)
− 𝓁𝑘−1

if 𝑖 = 3𝑚 + 1, 0 ≤ 𝑚 < 𝑠 − 1,

(−1)𝑚+1
(
𝑢2𝑘−4−𝑖 − 𝑢2𝑘−5−𝑖 + 𝑢2𝑘−6−𝑖 − 3𝑢𝑘−5−𝑖

)
− 𝓁𝑘−1

if 𝑖 = 3𝑚 + 2, 0 ≤ 𝑖 < 𝑠 − 1,

− 𝑢2𝑘 + 𝑢2𝑘−1 − 𝑢2𝑘−2 + 3𝑢𝑘−1 − 3 − 𝓁𝑘−1
if 𝑖 = 3𝑠 − 3,

− 𝑢2𝑘−1 + 𝑢2𝑘−2 − 𝑢2𝑘−3 − 2𝑢𝑘−1 + 2𝑢𝑘−2 + 𝑢𝑘−3 − 𝓁𝑘−1
if 𝑖 = 3𝑠 − 2,

− 2𝑢𝑘−2 − 𝑢𝑘−3 + 𝑢𝑘−4 − 𝓁𝑘−1
if 𝑖 = 3𝑠 − 1.

where 𝑠 = (𝑘 − 1)∕3 and 𝓁𝑘−1 = 𝑢2𝑘−3 − 𝑢2𝑘−4 + 𝑢2𝑘−5 − 3𝑢𝑘−4. Since 𝑃 ∈ 𝐺0 ⊆ 𝑇𝑘, we have 𝑇 𝑟(𝑃 ) = 𝐸 . Thus,

ℎ(𝑎)𝑃 = ℎ(𝜋)𝑃 =
𝑘−2∑
𝑖=0

𝜋𝑖(ℎ𝑖𝑃 ) =
𝑘−1∑
𝑖=0

𝜋𝑖(𝓁𝑖𝑃 ),

where 𝓁𝑖 = ℎ𝑖 + 𝓁𝑘−1 for 𝑖 = 0, 1,⋯ , 𝑘 − 2.
In order to compute 𝓁𝑖𝑃 for each 𝑖, the following scalar multiplications are performed:

𝑃 → 𝑢𝑃 → 𝑢2𝑃 ⋯ → 𝑢𝑘+1𝑃 → (2𝑢2 + 𝑢)𝑃 → (2𝑢5 + 𝑢4)𝑃 ⋯ → (2𝑢𝑘−2 + 𝑢𝑘−3)𝑃

On this basis, we then calculate 𝑅𝑖 and 𝐻𝑖 for 𝑖 = 0, 1,⋯ 𝑠 − 1, where

𝑅𝑖 = (2𝑢3𝑖+2 + 𝑢3𝑖+1)𝑃 − 𝑢3𝑖𝑃 ,

𝐻𝑖 = 2𝑢3𝑖+3𝑃 − (2𝑢3𝑖+2𝑃 + 𝑢3𝑖+1)𝑃 .

The above calculation is done at a cost of 𝑘+ 1 scalar multiplications by 𝑢, 2𝑠 point doublings and 3𝑠 point additions.
We denote 𝐿𝑖 by 𝑢𝑖(𝑢𝑘+1 − 𝑢𝑘 + 𝑢𝑘−1)𝑃 for 𝑖 = 0, 1,⋯ 𝑘 − 1, which can be obtained as follows

(𝑢𝑘+1 − 𝑢𝑘 + 𝑢𝑘−1)𝑃 → 𝑢(𝑢𝑘+1 − 𝑢𝑘 + 𝑢𝑘−1)𝑃 ⋯ → 𝑢𝑘−1(𝑢𝑘+1 − 𝑢𝑘 + 𝑢𝑘−1)𝑃 .

Afterwards, we can calculate 𝓁𝑖𝑃 for 𝑖 = 0, 1,⋯ , 𝑘 − 1, where

𝓁𝑖𝑃 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−1)𝑚
(
𝐿𝑘−5−𝑖 +𝐻𝑠−2−𝑚

)
if 𝑖=3𝑚, 0 ≤ 𝑚 < 𝑠 − 1,

(−1)𝑚𝑅𝑠−2−𝑚 if 𝑖=3𝑚+1, 0 ≤ 𝑖 < 𝑠 − 1,

(−1)𝑚+1
(
𝐿𝑘−5−𝑖 − 3𝑢𝑘−5−𝑖𝑃

)
if 𝑖=3𝑚+2, 0 ≤ 𝑖 < 𝑠 − 1,

− 𝐿𝑘−1 + 3(𝑢𝑘−1𝑃 − 𝑃 ) if 𝑖=3𝑠 − 3,
− 𝐿𝑘−2 −𝐻𝑠−1 if 𝑖=3𝑠 − 2,
− 𝑅𝑠−1 if 𝑖=3𝑠 − 1,

𝐿𝑘−4 − 3𝑢𝑘−4𝑃 if 𝑖=3𝑠.

The calculations of 𝐿𝑖 and 𝓁𝑖𝑃 for 𝑖 = 0, 1,⋯ , 𝑘 − 1 require 𝑘 − 1 scalar multiplications by 𝑢, 𝑠 + 1 point doublings
and 3𝑠 + 5 point additions. Finally, the operation

ℎ(𝜋)𝑃 =
𝑘−1∑
𝑖=0

𝜋𝑖(𝓁𝑖𝑃 )
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includes the computation of 𝑘 − 1 point additions and 𝑘 − 1 applications of the endomorphism 𝜋.
Since 𝑠 = (𝑘−1)∕3, Method I requires 2𝑘 scalar multiplications by 𝑢, 𝑘 point doublings and 3𝑘+2 point additions,

one application of the endomorphism 𝜏 and 𝑘 − 1 applications of the endomorphism 𝜋 for the BW13-P310 or BW19-
P286 curve.
Method II:
Putting Lemmas 1 and 2 together, one can calculate the integer 𝜆 such that 𝜓(𝑃 ) = 𝜆𝑃 for all 𝑃 ∈ 𝐻 , where 𝜓 = 𝜋◦𝜙.
Applying LLL algorithm, we then obtain a 2𝜑(𝑘)-dimensional vector (ℎ0,⋯ , ℎ2𝜑(𝑘)−1) such that

ℎ(𝜆) = ℎ0 + ℎ1𝜆 +⋯ + ℎ2𝜑(𝑘)−1𝜆2𝜑(𝑘)−1

is a multiple of 𝑛, which implies that ℎ(𝜓)(𝑃 ) = ℎ(𝜆)𝑃 ∈ 𝔾2. Specifically, for the BW13-P310 or BW19-P286 curve,
the value of ℎ𝑖 for each 𝑖 can be expressed as follows:

ℎ𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑘 + 2 ≤ 𝑖 ≤ 2𝜑(𝑘) − 1,
2 if 𝑖 = 𝑘 + 1,

𝑢2 − 𝑢 + 1 if 𝑖 = 𝑘 − 1,
− 𝑢ℎ𝑖+1 if 2 ≤ 𝑖 ≤ 𝑘 − 2,
− 𝑢ℎ2 + 1 if 𝑖 = 1,
(𝑘−4)∕3∑
𝑗=0

ℎ3𝑗+1 −
(𝑘−1)∕3∑
𝑗=1

ℎ3𝑗 − 𝑢 if 𝑖 = 0,

(𝑘−4)∕3∑
𝑗=0

ℎ3𝑗+1 −
(𝑘−1)∕3∑
𝑗=1

ℎ3𝑗−1 − 2𝑢 + 1 if 𝑖 = 𝑘.

In order to compute ℎ(𝜓)𝑃 , we first perform the following sequence of calculations:

𝑃 → 𝑢𝑃 → (𝑢 − 1)𝑃 → 𝑢2𝑃 → (𝑢2 − 𝑢 + 1)𝑃 .

Then we have

ℎ(𝜓)𝑃 =
𝑘+1∑
𝑖=0

𝜓 𝑖(𝑅𝑖),

where 𝑅𝑖 for 𝑖 = 0,⋯ , 𝑘 + 1 satisfies

𝑅𝑘+1 = 2𝑃 ,

𝑅𝑘−1 = (𝑢2 − 𝑢 + 1)𝑃 ,
𝑅𝑖 = −𝑢𝑅𝑖+1, 2 ≤ 𝑖 ≤ 𝑘 − 2,
𝑅1 = −𝑢𝑅2 + 𝑃 ,
𝑅0 = (𝑅1 + 𝑅4 +⋯ + 𝑅𝑘−3 − 𝑢𝑃 ) − (𝑅3 + 𝑅6 +⋯ + 𝑅𝑘−1),
𝑅𝑘 = (𝑅1 + 𝑅4 +⋯ + 𝑅𝑘−3 − 𝑢𝑃 ) − (𝑅2 + 𝑅5⋯ + 𝑅𝑘−2) − (𝑢 − 1)𝑃 .

In total, it requires 𝑘+ 1 scalar multiplications by 𝑢, one point doubling, 2𝑘+ 4 point additions, one application of the
endomorphism 𝜏 and 𝑘 + 1 applications of the endomorphism 𝜓 .

Let 𝑈 , 𝐷 and 𝐴 denote the cost of a scalar multiplication by 𝑢, point doubling and point addition, respectively. In
Table 2, we present the operation counts of the two methods.

5.1. Implementation results
Magma code is first provided to verify the correctness of the proposed methods. In order to further illustrate

the performance benefits resulting from Method II, we also present high-speed software implementation for the two
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Table 2
Comparison between the operation count of Method I and Method II.

Curve Method I Method II
BW13-P310 26𝑈 + 13𝐷 + 41𝐴 + 1𝜏 + 12𝜋 14𝑈 + 1𝐷 + 30𝐴 + 1𝜏 + 14𝜓
BW19-P286 38𝑈 + 19𝐷 + 59𝐴 + 1𝜏 + 18𝜋 20𝑈 + 1𝐷 + 42𝐴 + 1𝜏 + 20𝜓

Table 3
Comparison of the running timing for the components of hashing to 𝔾2 on the BW13-P310 curve.

Phase Method Clock cycles(×104)
Hashing to 𝐸(𝔽𝑝13 ) SVW 327
Map-point-to-𝔾2 I 2586
Map-point-to-𝔾2 II 1378
Hashing to 𝔾2 SVW+I 2913
Hashing to 𝔾2 SVW+II 1705

methods on the BW13-P310 curve. The resource code is available at https://github.com/eccdaiy39/hashing.
For the lower prime field operations, we use the implementation provided in the RELIC cryptographic toolkit [1] with
Assembly language. The full extension field operations are implemented using C language. Moreover, the technique
of lazy reduction [38, 2] is also employed to reduce the number of modular reduction required for multiplication and
squaring in 𝔽𝑝13 . Our algorithms were integrated into the RELIC library. Our benchmarks were performed on a 64-bit
Intel Core i9-12900K @3.2GHz processor running Ubuntu 22.04.1 LTS with TurboBoost and hyper-threading features
disabled. Clock cycles were obtained averaged over 10,000 executions. Table 3 reports that, for mapping a random point
to 𝔾2, Method II leads to 1.88 improvement compared to Method I. For the whole procedure of hashing to 𝔾2, the hash
function built on Method II gives a factor 1.71 improvement over one based on Method I.

6. Conclusion and Future Work
Hashing to 𝔾2 is one of building blocks in many pairing-based cryptographic protocols. In this paper, we

investigated this issue focusing on pairing-friendly curves with the lack of twists. To this aim, we revisited the previous
leading work used in curves admitting a twist. Inspired by it, a general approach was first proposed. More importantly,
we found that this approach can be optimized if curves are equipped with non-trivial automorphisms, which is tailored
to BW13-P310 and BW19-P286. Finally, we implemented the two approaches over BW13-P310 on a 64-bit processor.
High-performance implementation of full extension field operations was provided such that elliptic curve operations
were efficient. Experimental results showed that the hash function built on the optimized approach is up to 71% faster
than that on the general version. Recently, a faster SVW map (SwiftEC) was proposed in in [11](ASIACRYPT 2022),
which might be used to optimize Algorithm 1. We leave the application of the new method to curves with the lacks of
twists as future work.
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