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Abstract. Consider a computer user who needs to update a piece of software installed on their
computing device. To do so securely, a commonly accepted ad-hoc method stipulates that the
old software version first retrieves the update information from the vendor’s public repository,
then checks that a cryptographic signature embedded into it verifies with the vendor’s public
key, and finally replaces itself with the new version. This updating method seems to be robust
and lightweight, and to reliably ensure that no malicious third party (e.g., a distribution mirror)
can inject harmful code into the update process. Unfortunately, recent prominent news reports
(SolarWinds, Stuxnet, TikTok, Zoom, . . . ) suggest that nation state adversaries are broadening
their efforts related to attacking software supply chains. This calls for a critical re-evaluation of
the described signature based updating method with respect to the real-world security it provides
against particularly powerful adversaries.

We approach the setting by formalizing a cryptographic primitive that addresses specifically the
secure software updating problem. We define strong, rigorous security models that capture forward
security (stealing a vendor’s key today doesn’t allow modifying yesterday’s software version) as
well as a form of self-enforcement that helps protecting vendors against coercion attacks in which
they are forced, e.g. by nation state actors, to misuse or disclose their keys. We note that the
common signature based software authentication method described above meets neither the one
nor the other goal, and thus represents a suboptimal solution. Hence, after formalizing the syntax
and security of the new primitive, we propose novel, efficient, and provably secure constructions.

1 Introduction

In August 2020, the US president signed an executive order requiring TikTok, a social media app of
Chinese origin, to either be made unavailable on the US market or to be transferred to a new non-
Chinese owner. The corresponding press statement reports that “credible evidence” indicates that the
original producer of the app “might take action that threatens to impair the national security of the
United States”.3 Four months later, the US Department of Justice publicly accused an executive of the
company behind the telecommunication service Zoom to have, on behalf of the Chinese government,
misused the Zoom app to “willingly commit crimes [... and ...] unlawful conspiracy [...] against US-
based individuals”, and concluded that “no company with significant business interests in China is
immune from the coercive power of the Chinese Communist Party”.4 Opinions on the appropriateness
of the press statements, and the actions taken, may be split, but the steps make a recent tendency
of nation states evident, namely to question the harmlessness and innocence of software originating
from other countries. The main perceived threat seems to be that another country’s government might
coerce its legitimate software vendors to embed backdoors or hidden espionage tools into their products
that could be used against the own country. Without going into details, we mention two more attacks
(with different configurations of attacking and attacked countries) where users received manipulated
software over seemingly regular distribution channels: The well-known Stuxnet attack was conducted
by manipulating the driver distribution scheme of the Windows operating system,5 and the recently
uncovered SolarWinds attacks centrally and explicitly involved the malicious manipulation of a software
supply chain.6

3 https://home.treasury.gov/system/files/136/EO-on-TikTok-8-14-20.pdf
4 https://www.justice.gov/usao-edny/pr/china-based-executive-us-telecommunications-company-charged-disrupting-video-

meetings
5 https://www.welivesecurity.com/media_files/white-papers/Stuxnet_Under_the_Microscope.pdf
6 https://www.fireeye.com/blog/products-and-services/2020/12/global-intrusion-campaign-leverages-software-supply-chain-

compromise.html
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The above events indicate that re-evaluating the security of current software distribution methods
against particularly powerful adversaries is a necessary and timely task. Some academics suggest that
advanced code-signing primitives might ameliorate the situation.7 In this article we focus on such a
primitive.

State of the art. An established approach to the authentic distribution of software updates builds
on digital signature schemes. If a software version Si is updated to the next version Si+1, the update
information is signed by the original vendor so that its authenticity can be checked by the user before
installing the update. This prevents malicious modifications by outsiders, including software repositories,
Internet providers, etc. Unfortunately, the method provides little resilience against insider attacks in
which, for instance, the vendor is coerced by a government agency to authenticate not only the legitimate
Si → Si+1 update, but in addition also a malicious Si → S′

i+1 update. If the malicious update is
distributed to only a small set of high-value targets (while regular users continue to receive the legitimate
version), it is unlikely that the attack is ever noticed by the victim or picked up by security researchers.
The wording of the US Department of Justice, when stating that few international vendors are immune
to governmental coercion attempts, suggests that such attacks are highly realistic.

Our approach. We challenge the assumption that standard signature schemes are the right tool to
securely distribute software updates, and we develop a signature variant that, we argue, is better suited
for the task. We start with the observation that software versions are strictly ordered (suggesting our
notation S1 → S2 → S3 → . . .), meaning that any update Si → Si+1 occurs in the context of all prior
updates. This sequential property is not matched by standard signature schemes which allow signing and
verifying in arbitrary order. This mismatch has at least two problematic consequences: (a) Even if the
signer authenticates software versions in the correct order, precautions have to be taken to avoid that
a verifier accepts updates in a wrong order (e.g., S1 → S2 → S3 → S2), for instance in the context of
a software downgrade attack; and (b) The solution does not provide forward security: If the signer first
authenticates S1 → S2 → S3 and is then coerced to reveal its key material to an adversary, the latter
can use the key material to authenticate false updates S1 → S′

2 or S1 → S′
3. A solution that provides

forward security (like ours, see below) would ensure that the adversary is limited to forging on succeeding
versions.

Even a signature variant that requires strictly sequential operations and provides forward security
is not sufficient to protect software supply chains against state actors that coerce signers early. In the
extreme case, if the signer has to reveal its keys before authenticating the very first software version, the
adversary can forge on any (because ‘following’) software version. We address this by proposing a public
self-enforcement mechanism: We expect of a secure solution that from any two conflicting authentications
Si → Si+1 and Si → S′

i+1 the key material that was current after authenticating Si can be recovered
by invoking an efficient extraction algorithm. That is, if both S1 → S2 and S1 → S′

2 validate correctly,
then everybody gets into the position to also authenticate S1 → S′′

2 for any S′′
2 . From the perspective of

both the software vendor and the coercing state actor, getting into this situation has to be avoided by all
means. (The state actor would transfer its unique privilege on to everybody else, including to competing
governments, thus not only losing the priviledge but also putting its own citizens at risk.) Concretely,
our mechanism (1) strongly incentivizes a benign signer to make its implementation as secure and robust
as possible, e.g., by out-sourcing the signing operations into a Hardware Security Module; (2) strongly
disincentivizes a tempted signer to selectively forge signatures to its own advantage; and (3) strongly
disincentivizes state actors to coerce honest signers to reveal their keys. These properties are not met by
the classic signature based software distribution method (even when enhanced by an auxiliary “detection
mechanism”).

Contributions and structure. We introduce, in Sect. 4, a new cryptographic primitive—a sequential
digital signature (SDS) scheme—as a solution in the context of software authentication. We rigorously
define suitable security properties (unforgeability with forward security, double-signing key extractabil-
ity, . . . ), using game based models. Then, in Sect. 5, we propose generic constructions of SDS from a
loosely related, simpler type of signature scheme (strictly one-time signature, SOT-DS, Sect. 3.2) that
appeared in prior work. We implemented, tested, and evaluated our SDS scheme, and report on its
efficiency in Sect. 6.
7 https://www.scmagazine.com/perspective/encryption/can-advanced-code-signing-help-end-supply-chain-attacks
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We paid special attention to ensuring that our construction can serve as a long-term solution for
the secure software distribution problem. This included ensuring that it promises security also against
quantum adversaries. Our SDS offers this type of security, but only if its building block, the SOT-DS
scheme, does as well. Unfortunately, we found that all SOT-DS constructions proposed in prior work are
based on number-theoretic assumptions like DLP and are thus not quantum resilient. Thus, in Sect. 5.1,
as an additional contribution we construct a novel SOT-DS that is built solely from hash functions and
thus represents the only known quantum-resilient candidate. We note that Germany’s Federal Office
for Information Security (BSI), with similar arguments, suggests prioritizing hash-based signatures for
firmware authentication [4, Sect. 6.7].

Related work. Digital signature schemes were first proposed in the late 70’s, and since then, hundreds
of flavours enriched the cryptographic literature. Regular signature schemes allow the secret key owners
to sign arbitrary messages in arbitrary order. In the following we discuss publications that put forward
signature variants that limit this freedom and require specific relations between the signed messages to
hold.

Some digital signature schemes come with self-enforcement properties. For instance, in the e-cash
setting, the anonymous cryptocurrency users should not be allowed to spend the same coin twice by
signing two different transactions. As a countermeasure, Chaum, Fiat and Naor [6] proposed a scheme
that penalizes such act by automatically revealing the identity of a double-spending user.

Analogously, in a public-key infrastructure (PKI) setting, certificate authorities (CAs) generate cer-
tificates that bind keys and identities together. However, law enforcement agencies or nation states can
intimidate CAs to secretly issue certificates that bind unauthentic keys to the same identities, opening
the path for impersonation attacks. Poettering and Stebila proposed a self-enforcement scheme that de-
fends against such attacks [12]. Specifically, their scheme provides the double-authentication-preventing
(DAP) security property that allows certifying pairs of identities and keys, and penalizes the CA if it ever
certifies different keys for the same identity. This notion was followed by later publications proposing
new schemes and improving the state of the art [13,14,3,11,1,7,8].

We note that DAP signatures (from [12]) and SDS (this work) are similar in spirit in the sense
that both are self-enforcing signature schemes that penalize malicious signers by leaking their key. How-
ever, SDS are strictly sequential (which fits the linearity of software updates) where DAP signatures
are ‘random access’ (which fits the PKI application). By consequence also the security guarantees given
by the two primitives are crucially different. (E.g., there cannot be forward security for DAP signa-
tures.) Construction-wise it seems that neither are DAP signatures implied by SDS (how to remove the
sequentiality?) nor are SDS implied by DAP signatures (how to add forward security?).

2 Notation

We write T and F for the two Boolean constants. We formalize correctness and security properties
with games written in pseudo-code. The game body invokes an adversary A and provides it with access
to zero or more oracles. A game terminates when executing a Stop with C instruction, where C is a
Boolean expression. The truth value of C is taken as the output of the game. We write Pr[G(A)] for
the probability that game G invoked with adversary A outputs T. We assume three conditional game-
terminating macros: If C is a Boolean expression, the game instruction Require C expands to ‘If not C:
Stop with F’, the instruction Reward C expands to ‘If C: Stop with T’, and the instruction Promise C
expands to ‘If not C: Stop with T’. The reader will appreciate how the macros’ names correspond with
their semantics in the games, where the macros are used to require a specific behaviour of the adversary,
to reward the adversary for triggering a specific event, or to ensure that a specific promised property is
indeed met by the scheme.

Game variables with attached brackets represent associative arrays (i.e., the dictionary data struc-
ture). For instance, the instruction ‘B[4] ← 2’ assigns the value 2 to the element indexed by 4 in the
array B, and the expression ‘B[·]← 2’ initializes the entries at all indices to the value 2. If X, Y are set
variables we write X ∪← Y shorthand for X ← X ∪ Y , and if x, y are vector variables we write x

q← y
shorthand for x← x q y, where q is the append operation. We assume the # function returns the length
of a vector; for instance, if v = (7, 8, 9) then #v = 3.
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To keep our games compact, we use the alias-creating operator := where convenient. The instruction
‘A := B’ introduces A as a symbolic alias for the expression B. (This crucially differs from A← B which
is an assignment that evaluates expression B and stores the result in variable A.) For instance, if B[ ]
is an array and B[7] an integer entry, and an alias is created as per A := B[7], then the instruction
A ← A + 1 expands to B[7] ← B[7] + 1 and thus modifies the value of B[7] (while A itself is not a
variable).

Some of the schemes that we formalize have stateful algorithms. A generic notation for the stateful
execution of an algorithm α is (ρ, y) ← α(ρ, x) where x is the algorithm’s input, y is the algorithm’s
output, and ρ is the state that is updated by the execution (and thus both input and output). For
compactness we use the notation y ← α⟨ρ⟩(x) as a shortcut for the (ρ, y)← α(ρ, x) instruction.

3 Stateless Signatures

We recall core principles of digital signature (DS) schemes. Our definitions are equivalent to those of
prior work, but employ a slightly non-standard notation for algorithms and games. (For instance, we
specify our games with an explicit verification oracle.) This will allow for an easier comparison with our
definitions of stateful signatures in Sect. 4.

3.1 Digital Signatures: DS

Syntax. A digital signature (DS) scheme S for a message space M consists of a signing key space SK,
a verification key space VK, a signature space S, and three efficient algorithms gen, sig, ver as follows.
The key generation algorithm gen takes no input and outputs a signing key sk ∈ SK and a verification
key vk ∈ VK. The signing algorithm sig is parameterized by a signing key sk ∈ SK, takes a message
m ∈ M on input, and outputs a signature σ ∈ S. The verification algorithm ver is parameterized by
a verification key vk ∈ VK, takes a message m ∈ M and a signature σ ∈ S on input, and outputs a
Boolean value v ∈ {T, F}. Depending on whether algorithm ver outputs T or F we say that it accepts
or rejects. Written more compactly, a DS has the following API.

gen out−−→ SK × VK
M in−→ sig(SK; ·) out−−→ S

M×S in−→ ver(VK; ·, ·) out−−→ {T, F} .

Correctness. For T ∈ N∪{∞} we define the T -time correctness of a DS scheme via the game COR-DS
in Fig. 1 (top), where lines 00,05,07 formalize the requirement that the signer issues at most T signa-
tures and lines 01,08,11,12 formalize the promise that all authentic signatures be accepted. Intuitively,
DS scheme S is T -time correct if the advantage Advcor-ds

S (A) := Pr[COR-DS(A)] is negligible for all
efficient adversaries A.

Game COR-DS(A)
00 t← 0
01 AC← ∅
02 (sk, vk)← gen
03 A(vk)
04 Stop with F

Oracle Sig(m)
05 Require t < T
06 σ ← sig(sk; m)
07 t← t + 1
08 AC ∪← {(m, σ)}
09 Return σ

Oracle Ver(m, σ)
10 v ← ver(vk; m, σ)
11 If (m, σ) ∈ AC:
12 Promise v
13 Return v

Game SUF-DS(A)
14 t← 0
15 AC← ∅
16 (sk, vk)← gen
17 A(vk)
18 Stop with F

Oracle Sig(m)
19 Require t < T
20 σ ← sig(sk; m)
21 t← t + 1
22 AC ∪← {(m, σ)}
23 Return σ

Oracle Ver(m, σ)
24 v ← ver(vk; m, σ)
25 If (m, σ) /∈ AC:
26 Reward v
27 Return v

Fig. 1. Games COR-DS and SUF-DS for defining the correctness and strong unforgeability, respectively, of a DS
scheme. Set AC indicates the authentic message-signature pairs.
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Unforgeability. With respect to security we define what it means for a DS scheme to provide (T -time)
strong unforgeability. A scheme meets this property if all valid signatures that an adversary can come up
with are replays of signatures priorly generated by the signer. This is formalized via the game SUF-DS
in Fig. 1 (bottom), where lines 15,22,25,26 reward the adversary if it delivers a message-signature pair
that is accepted despite being non-authentic. Intuitively, DS scheme S is T -time strongly unforgeable if
the advantage Advsuf-ds

S (A) := Pr[SUF-DS(A)] is negligible for all efficient adversaries A.

3.2 Strictly one-time digital signatures: SOT-DS

If more than T messages are signed with a T -time signature scheme instance, then the instance is not
anymore guaranteed to be secure. However, this does not imply that the instance’s security collapses
completely, i.e., that forging signatures on arbitrary messages suddenly becomes easy. In the following we
recall the definition of a stronger form of DS that for the special case of one-time signatures guarantees
that signing twice unavoidably leads to a maximum loss of security: A strictly one-time digital signature
(SOT-DS, [11]) scheme is a 1-time DS scheme where any two signatures created with the same signing
key immediately fully expose that signing key and thus enable universal forging. Note that [11] provides
SOT-DS constructions that leverage on zero-knowledge proof systems over number-theoretic assumptions
(like DLP). In Sect. 5.1 we specify two novel constructions that are based on hash functions.

Syntax. A SOT-DS scheme [11, Sect. 3.2] consists of the algorithms gen, sig, ver of a regular DS scheme,
plus an additional key extraction algorithm that recovers the signing key from any two valid signatures.
Precisely, the ext algorithm is parameterized by a verification key vk ∈ VK, takes two message-signature
pairs (m0, σ0), (m1, σ1) ∈M× S on input, and outputs a signing key sk ∈ SK. More compactly,

(M×S)× (M×S) in−→ ext(VK; ·, ·) out−−→ SK .

Extractability. The key extractability feature of a SOT-DS is formalized via the game KEX-DS in
Fig. 2. In the game, a malicious signer that outputs two message-signature pairs (line 01) such that both
signatures are valid (lines 02,03) yet the message-signature pairs are different (line 04) is rewarded if the
key extraction (line 05) recovers a wrong key (line 06). Intuitively, SOT-DS scheme S is (one-time) key
extractable if the advantage Advkex-ds

S (A) := Pr[KEX-DS(A)] is negligible for all efficient adversaries A.

Game KEX-DS(A)
00 (sk, vk)← gen
01 (m0, σ0), (m1, σ1)← A(sk, vk)
02 Require ver(vk; m0, σ0) = T
03 Require ver(vk; m1, σ1) = T
04 Require (m0, σ0) ̸= (m1, σ1)
05 sk∗ ← ext(vk; m0, σ0, m1, σ1)
06 Reward sk∗ ̸= sk
07 Stop with F

Fig. 2. Game KEX-DS for defining the key extractability of a SOT-DS scheme. Adversary A takes the role of a
malicious signer and thus, in line 01, receives direct access to the signing key. (A consequence of this is that the
game doesn’t need to provide a signing oracle.)

4 Sequential Digital Signatures: SDS

A sequential digital signature (SDS) is a variant of a regular digital signature (DS) where both the signer
and the verifier are stateful. In SDS, message-signature pairs have to be verified in the same order as they
are generated. This restriction of functionality is paired with a strengthening of security, and we argue
that the latter makes the option of replacing a DS by an SDS, in applications where this is possible,
attractive. In particular, we argue that using an SDS is advantageous over using a DS for the purpose
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of authenticating program code. This is both because an SDS provides forward security (i.e., maintains,
after a signing key corruption, as much security as possible) and because an SDS may come with a
self-enforcement mechanism that penalizes a signer that offends the rule of signing strictly sequentially.

In the following we formalize the SDS notion. We took efforts to align the syntax of DS and SDS as
much as possible, and to also let the security notions and games correspond to each other. (This explains
why in Sect. 3 we decided to use the slightly non-standard notation.)

Syntax. A sequential digital signature (SDS) scheme S for a message space M consists of a signing
state space SST , a verification state space VST , a signature space S, and three efficient algorithms
gen, sig, ver as follows. The initialization algorithm gen takes no input and outputs an initial signing
state sst ∈ SST and an initial verification state vst ∈ VST . The signing algorithm sig depends on a
signing state sst ∈ SST which it may update, takes a message m ∈M on input, and outputs a signature
σ ∈ S. The verification algorithm ver depends on a verification state vst ∈ VST which it may update,
takes a message m ∈ M and a signature σ ∈ S on input, and outputs a Boolean value v ∈ {T, F}.
Depending on whether algorithm ver outputs T or F we say that it accepts or rejects. More compactly,
using the state-update notation from Sect. 2,

gen out−−→ SST × VST
M in−→ sig⟨SST ⟩(·) out−−→ S

M×S in−→ ver⟨VST ⟩(·, ·) out−−→ {T, F} .

Before proceeding with defining the correctness and security properties of SDS, we introduce the
notions of signing history and verification history, explain why useful security definitions for SDS have
to consider the existence of multiple independent verifiers, and indicate how our models capture forward
security.

Signing/Verification History. Once an initial SDS signing state sst was created, a series m1, m2, . . .
of messages can be authenticated by iteratively invoking σi ← sig⟨sst⟩(mi) (where each invocation of sig
may update sst). By the sequentiality of this process, the signing state sst can be assumed to always
reflect, explicitly or implicitly, the signing history (m1, σ1) q (m2, σ2) q . . . processed so far. Similarly,
a verification history consists of the messages and signatures that a verifier accepted as authentic when
iteratively invoked as per vi ← ver⟨vst⟩(mi, σi). (If ver is invoked with a message-signature pair that is
rejected, this pair is not recorded in the verification history.8) In our SDS games, the Sig and Ver oracles
record signing and verification histories by appending generated or accepted message-signature pairs to
game variables sh and vh, respectively.

Multiple Verifiers. A real-world characteristic of (stateless or stateful) signature schemes is that
signers are typically matched by multiple independent verifiers that check their signatures. However, as
in the stateless case there is no component that could individualize different verifiers (all verifiers receive
the same input and cannot memorize anything), when formalizing the correctness and security of such
schemes it is sufficient, without loss of generality, to consider a single verifier. The same is not possible
for SDS where verifiers that are exposed to different sequences of valid or invalid message-signature
pairs may end up in different states.9 Our games hence explicitly model a setup where a single signer is
matched by an unlimited number of independent verifiers. This is implemented by requiring the adversary
to explicitly indicate, for each of its Ver queries, the identifier id of the verifier instance that is meant
to process the provided message-signature pair. We use the array variable VST[·] (see Sect. 2) to store
the states of all verifiers so that its entry VST[id] represents the state of the verifier with identifier id.
Similarly our games use the variable VH[·] to store the verification histories of all verifiers so that entry
VH[id] represents the verification history of verifier id. Note that the values of id are chosen at the
discretion of the adversary. The identifiers are only used to implement the game logics while the SDS
algorithms themselves will never learn them.

8 This does not preclude that information about the rejected message-signature pair is reflected in vst which can
be updated even if the verification fails.

9 If an SDS verification algorithm is randomized then the verification states of different verifiers might diverge
even when provided with the same sequence of message-signature pairs.
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Forward Security. Our models capture the forward security aspect by giving the adversary the option
to corrupt the signer by invoking a dedicated oracle that returns a copy of the signer’s current state.10

Intuitively, before such a corruption happens, exclusively the signer is able to create valid signatures,
i.e., is the only authoritative party. However, by invoking the Corrupt oracle also the adversary gets into
the position to craft valid signatures (by applying the regular signing algorithm to the retrieved state),
making the signer lose its authoritativeness. The notion of authoritativeness will appear explicitly in our
security games.

Correctness of SDS. For T ∈ N ∪ {∞} we define the T -time correctness of an SDS scheme via
the game COR-SDS in Fig. 3, where lines 00,09,11 formalize the requirement that the signer issues
at most T signatures and lines 01,13,19,20 formalize the promise that all authentic signing histories be
accepted. Intuitively, SDS scheme S is T -time correct if the advantage Advcor-sds

S (A) := Pr[COR-SDS(A)]
is negligible for all efficient adversaries A.

Game COR-SDS(A)
00 t← 0
01 AC← ∅
02 sh ← ϵ
03 VH[·]← ϵ
04 (sst0, vst0)← gen
05 sst ← sst0
06 VST[·]← vst0
07 A(vst0)
08 Stop with F

Oracle Sig(m)
09 Require t < T
10 σ ← sig⟨sst⟩(m)
11 t← t + 1
12 sh q← (m, σ)
13 AC ∪← {sh}
14 Return σ

Oracle Corrupt
15 Return sst

Oracle Ver(id, m, σ)
16 vh := VH[id]
17 vst := VST[id]
18 v ← ver⟨vst⟩(m, σ)
19 If vh q (m, σ) ∈ AC:
20 Promise v
21 If v: vh q← (m, σ)
22 Return v, vst

Fig. 3. Game COR-SDS for defining the correctness of an SDS scheme. Set AC indicates the authentic signing
histories. Vector sh indicates the (signer’s) signing history. For any verifier identity id, vector VH[id] indicates
that verifier’s verification history and VST[id] represents its verification state. (Recall from Sect. 2 that the
instructions in lines 03,06 assign the same initial value to all array entries while the instructions in lines 16,17
create symbolic aliases.)

Unforgeability of SDS. Our security models capture forward security. Corrupting a signer unavoidably
brings the adversary into the position to forge signatures on messages associated with points in time
following the corruption, but if a scheme is forward secure then signatures for points in time preceding
the corruption remain unforgeable. We start with making the concepts of the past and the future of a
signer more precise.

In the correctness game of Fig. 3, a signing history is represented by a string sh ∈ X ∗ over the
alphabet X =M×S which is the universe of all message-signature pairs. Given a signing history sh, its
past Past(sh) consists of the signing histories that it developed from, and its future Future(sh) consists
of the signing histories that it could develop into. Formally, if ≺ denotes the (anti-reflexive) is-prefix-of
relation on strings in X ∗, we let:

Past(sh) = {sh′ ∈ X ∗ : sh′ ≺ sh}
Future(sh) = {sh′ ∈ X ∗ : sh ≺ sh′}

Note that we have Past(ϵ) = ∅ and Future(ϵ) = X+. (“Not having a past means having all options for
the future.”)

Recalling the concept of authoritativeness discussed above, let us now observe that (1) initially,
until a signer is corrupted, it is authoritative for its entire future; and (2) corrupting a signer means
that its authoritativeness is revoked for what follows the corruption. In our security games for SDS,
game variable AE indicates for which signing histories the signer is authoritative. We implement the two
observations by (1) starting the games with AE = Future(ϵ) = X+; and (2) letting AE← AE\Future(sh)
whenever a corruption query is posed.
10 Our verification oracles return copies of the verifier states right away, fully removing the need of having to

think about also adding a corruption oracle for verifiers.
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We are now ready to state our unforgeability definition for SDS schemes. For T ∈ N∪{∞} we define
the T -time strong unforgeability of an SDS scheme via the game SUF-SDS in Fig. 4, where lines 02,16
implement the tracking of the signer’s authoritativeness and lines 01,14,21,22 reward the adversary if
it makes a verifier accept a non-authentic verification history, and this happens for a point where the
signer should be authoritative. Intuitively, SDS scheme S is T -time strongly unforgeable (with forward
security) if the advantage Advsuf-sds

S (A) := Pr[SUF-SDS(A)] is negligible for all efficient adversaries A.

Game SUF-SDS(A)
00 t← 0
01 AC← ∅
02 AE← Future(ϵ)
03 sh ← ϵ
04 VH[·]← ϵ
05 (sst0, vst0)← gen
06 sst ← sst0
07 VST[·]← vst0
08 A(vst0)
09 Stop with F

Oracle Sig(m)
10 Require t < T
11 σ ← sig⟨sst⟩(m)
12 t← t + 1
13 sh q← (m, σ)
14 AC ∪← {sh}
15 Return σ

Oracle Corrupt
16 AE← AE \ Future(sh)
17 Return sst

Oracle Ver(id, m, σ)
18 vh := VH[id]
19 vst := VST[id]
20 v ← ver⟨vst⟩(m, σ)
21 If vh q (m, σ) ∈ AE \AC:
22 Reward v
23 If v: vh q← (m, σ)
24 Return v, vst

Fig. 4. Game SUF-SDS for defining the strong unforgeability of an SDS scheme. Set AE indicates the signing
histories for which the signer is authoritative. See the caption of Fig. 3 for the meaning of other variables and
symbols.

Extractability of SDS. We formalize two self-enforcement properties for SDS: double-signature forge-
ability and double-signature extractability. Observe that, assuming regular operations, for the verification
histories vh1, vh2 of any two verifiers we have either vh1 ⪯ vh2 or vh2 ⪯ vh1, that is, the verification
histories are identical modulo one of them possibly lagging behind. We refer to verification histories that
don’t follow this pattern as ‘conflicting’.

Definition 1. Two verification histories vh1, vh2 ∈ X+ are conflicting if they diverge, i.e., if vh1 =
vh′ q P1 q vh′′ and vh2 = vh′ q P2 q vh′′′ where vh′ ∈ X ∗ is a (possibly empty) common prefix, P1 =
(m1, σ1) ∈ X and P2 = (m2, σ2) ∈ X are different message-signature pairs, and vh′′, vh′′′ ∈ X ∗ are
arbitrary (possibly empty) suffixes.

In the following we consider irregular operations, i.e., the case where conflicting verification histories
do emerge in the games. Reasons for conflicting histories include that the signer is not honest or is
impersonated after being corrupted. Our aim is to disincentivize irregular behavior as much as possible,
and we do this by demanding that from any conflicting pair of verification histories it be possible to forge
signatures on arbitrary (future) messages with the same ease as if the forger knew the correct keys.

The security goal of double-signature forgeability (DSF) demands that from any conflicting pair of
verification histories one can forge signatures using a dedicated algorithm forge with the following API:

VST × X ∗ ×X × X ×M+ in−→ forge out−−→ S+ .

Using the notation from the above definition, if forge is invoked as σ̄ ← forge(vst0, vh′, P1, P2, m̄1 q . . . q
m̄l), where vst0 is the initial verification key, then the signatures in σ̄ = σ̄1 q . . . q σ̄l shall be valid in the
sense that vh∗ = vh′ q (m̄1, σ̄1) q . . . q (m̄l, σ̄l) is a verification history accepted by any verifier.

For T ∈ N ∪ {∞} we define the T -time double-signature forgeability of an SDS scheme via the game
DSF-SDS in Fig. 5, where lines 00–08 prepare the inputs for the forge algorithm and lines 10–15 declare
the forge-crafted signatures to be as authentic as real ones by adding them to the set AC (so that they
can be tested in the Ver oracle). Intuitively, SDS scheme S is T -time double-signature forgeable if the
advantage Advdsf-sds

S (A) := Pr[DSF-SDS(A)] is negligible for all efficient adversaries A.

Our second security goal of double-signature extractability (DSE) is strictly stronger than DSF and
demands that from any conflicting pair of verification histories the signing state that was current when
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Game DSF-SDS(A)
as in Fig. 3

Oracle Sig(m)
as in Fig. 3

Oracle Corrupt
as in Fig. 3

Oracle Ver(id, m, σ)
as in Fig. 3

Oracle Forge(id1, id2, m̄)
00 H1 := VH[id1]
01 H2 := VH[id2]
02 Require H1 ⪯̸ H2
03 Require H2 ⪯̸ H1
04 Find H, P1, P2 s.t.
05 - H q P1 ⪯ H1
06 - H q P2 ⪯ H2
07 - P1 ̸= P2
08 Require #H + #m̄ ≤ T

09 σ̄ ← forge(vst0, H, P1, P2, m̄)
10 Promise #m̄ = #σ̄
11 m̄1 . . . m̄l ← m̄
12 σ̄1 . . . σ̄l ← σ̄
13 For i← 1 to l:
14 H

q← (m̄i, σ̄i)
15 AC ∪← {H}
16 Return σ̄1, . . . , σ̄l

Fig. 5. Game DSF-SDS for defining the double-signature forgeability of an SDS scheme. See also the caption of
Fig. 3 for the meaning of game variables.

the double-signing happened can be extracted. Specifically, we demand that an extraction algorithm ext
exists with the following API:

VST × X ∗ ×X × X in−→ ext out−−→ SST .

For instance, if in the above example we have vh′ = ϵ then invoking sst′ ← ext(vst0, vh′, P1, P2) shall
extract sst′ = sst0. It is easy to see that extractability implies forgeability. Demanding that the signing
state is extracted makes sense only if there is at most one possible candidate. While not every SDS
scheme meets this requirement (e.g., if the sig algorithm is randomized), our constructions from Sect. 5
do. We will thus analyze them in the stronger model (DSE).

For T ∈ N ∪ {∞} we define the T -time double-signature extractability of an SDS scheme via the
game DSE-SDS in Fig. 6, where lines 00–08 prepare the inputs for the ext algorithm and lines 10–14
test that the extracted state is correct. Intuitively, SDS scheme S is T -time double-signature extractable
if the advantage Advdse-sds

S (A) := Pr[DSE-SDS(A)] is negligible for all efficient adversaries A.

Game DSE-SDS(A)
as in Fig. 3

Oracle Sig(m)
as in Fig. 3

Oracle Corrupt
as in Fig. 3

Oracle Ver(id, m, σ)
as in Fig. 3

Oracle Ext(id1, id2)
00 H1 := VH[id1]
01 H2 := VH[id2]
02 Require H1 ⪯̸ H2
03 Require H2 ⪯̸ H1
04 Find H, P1, P2 s.t.
05 - H q P1 ⪯ H1
06 - H q P2 ⪯ H2
07 - P1 ̸= P2
08 Require #H < T

09 sst∗ ← ext(vst0, H, P1, P2)
10 (m1, σ1) . . . (ml, σl)← H
11 sst′ ← sst0
12 For i← 1 to l:
13 ← sig⟨sst′⟩(mi)
14 Promise sst∗ = sst′

Fig. 6. Game DSE-SDS for defining the double-signature extractability of an SDS scheme. The notation in line 13
means that the output of sig is ignored. See also the caption of Fig. 3 for the meaning of game variables.

5 Constructions

We construct an SDS that provably fulfills the security properties defined in Sect. 4. The scheme leverages
on a strictly one-time digital signature scheme (SOT-DS, see Sect. 3.2) as a building block. Prior work [11]
succeeded with constructing SOT-DS, and any of these constructions can be used in our context. However,
as they are based on number-theoretic assumptions like the DLP, which are known not to withstand
quantum adversaries, we also propose two variants of a novel SOT-DS construction that is based solely
on hash functions.
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5.1 Hash function based SOT-DS

Recall the classic hash function based (one-time) signature scheme by Lamport [10] where the signing
key is a matrix (xb

i )b∈{0,1},1≤i≤n of randomly picked hash function pre-images xb
i , the verification key

is the matrix (yb
i )b∈{0,1},1≤i≤n of hash function images yb

i = H(xb
i ), and signing the n-bit message

m = m1 . . . mn corresponds with releasing the pre-images (xmi
i )1≤i≤n as the signature. Recall further

from Sect. 3.2 that a SOT-DS scheme is a one-time signature scheme where double-signing, i.e., signing
two different messages with the same key, implies losing the signing key to the public by means of a
dedicated ext algorithm. While Lamport’s scheme releases key components as part of the signing process,
and double-signing revokes its existential unforgeability property, double-signing does not release enough
information to create signatures on arbitrary messages. The scheme is thus not a SOT-DS instance.

We propose to turn Lamport’s scheme into a SOT-DS as follows. The first step is to generate the
b = 0 half of the pre-images xb

i deterministically from a seed k using a pseudo-random generator (PRG),
i.e., we let (x0

1, . . . , x0
n) ← G(k).11 Instead of choosing the b = 1 half uniformly distributed as well

(either by random assignment or by using a PRG), we assign the x1
i values such that any pair (x0

i , x1
i )

allows extracting the seed k. Concretely we let x1
i ← k ⊕ x0

i for all i, where ⊕ denotes XOR. Double-
signing in Lamport’s scheme corresponds with releasing, for at least one index i, the preimage x0

i in the
one signature and the preimage x1

i in the other signature. That is, if we consider k the signing key of
the scheme, the extractability goal is attained. We still need to confirm that the scheme also provides
unforgeability, but an analysis in the random oracle model for G, H will show that this is indeed the
case.

We derive two different yet closely-related SOT-DS constructions from the above intuition. The
difference between the schemes is how verification keys and signatures are represented. The sizes of
signing keys, verification keys, and signatures are 1, 2n, and n elements, respectively, for our first SOT-
DS scheme, and are 1, 1, 2n, respectively, for the second. That is, the latter has considerably smaller
verification keys at the cost of a doubled signature length.

Algo gen
00 k ← $({0, 1}l)
01 (sk0

1, . . . , sk0
n)← G(k)

02 For i ∈ {1, . . . , n}:
03 sk1

i ← k ⊕ sk0
i

04 For b ∈ {0, 1}:
05 vkb

i ← Hb
i (skb

i )
06 sk := k
07 vk := (vkb

i )b,i

08 Return sk, vk

Algo sig(sk; m)
09 m1, . . . , mn ← m
10 (sk0

1, . . . , sk0
n)← G(k)

11 For i ∈ {1, . . . , n}:
12 sk1

i ← k ⊕ sk0
i

13 b← mi

14 σi ← skb
i

15 σ := (σi)i

16 Return σ

Algo ver(vk; m, σ)
17 m1, . . . , mn ← m
18 For i ∈ {1, . . . , n}:
19 b← mi

20 If vkb
i ̸= Hb

i (σi):
21 Reject
22 Accept

Algo ext(vk; m0, σ0, m1, σ1)
23 Require m0 ̸= m1

24 m0
1, . . . , m0

n ← m0

25 m1
1, . . . , m1

n ← m1

26 Find i s.t. m0
i ̸= m1

i

27 W.l.o.g. m0
i = 0 ∧m1

i = 1
28 sk0

i ← σ0
i ; sk1

i ← σ1
i

29 k ← sk1
i ⊕ sk0

i

30 sk := k
31 Return sk

Fig. 7. First SOT-DS construction. We write k ← $({0, 1}l) for randomly sampling an l-bit seed k. We write
Hb

i (x) shorthand for H(b, i, x). We write Accept for Return T and Reject for Return F. Algorithm ext assumes
for its inputs that ver(vk; m0, σ0) = T and ver(vk; m1, σ1) = T and (m0, σ0) ̸= (m1, σ1), as it is promised by
lines 02,03,04 of Fig. 2. As the third condition effectively implies m0 ̸= m1 if H is collision resistant, the algorithm
will not abort in line 23 and the instruction of line 26 is guaranteed to succeed.

Details of first construction. This scheme is defined for a message space M = {0, 1}n and a
security parameter l ∈ N (think of l = 256). Let SK = {0, 1}l and VK = {0, 1}2×n×l and S = {0, 1}n×l.
Let G : {0, 1}l → {0, 1}n×l be a PRG and H : {0, 1} × {1, . . . , n} × {0, 1}l → {0, 1}l a hash function.
Both G and H will be modeled as random oracles and can be easily constructed from, say, SHA256. Our
SOT-DS algorithms gen, sig, ver , ext are then defined as in Fig. 7.

It is straightforward to verify that the scheme provides correctness and extractability by the definitions
of Sect. 3. With respect to (one-time, strong) unforgeability, observe that all employed cryptographic
primitives are random oracles, that is, the security argument will be combinatoric in nature. Specifically,
note that any strong forgery (m∗, σ∗) that the adversary can come up with includes at least one fresh
pre-image x such that Hb

i (x) = vkb
i , for some b, i. Finding such a pre-image from the random oracle alone

11 Other hash-based signature schemes like SPHINCS+ use similar techniques [2,5].

10



is effectively infeasible: each attempt succeeds with probability 2−l. The other approach would involve
guessing value k (given just random oracle images), and again this succeeds only with probability 2−l per
attempt. Even if the adversary makes polynomially many queries to the random oracles, the resulting
security bound will be of the type p/2−l, for a polynomial p, which is negligible.

Details of second construction. Our second construction is very much like the first but it has
VK = {0, 1}l and S = {0, 1}2×n×l. It is based on the observation that the skb

i components included
in the signatures of Fig. 7 allow the verifier to recover the vkb

i components of the verification key. The
idea is thus to replace the verification key vk by a value H#(vk), where H# : {0, 1}2×n×l → {0, 1}l is an
auxiliary collision resistant hash function, to include in each signature the verification key components
missing to recover the complete verification key, and to then recover the key and verify it based on the
present hash value. The algorithms of our scheme appear in Fig. 8. The security arguments are analogues
of the ones given above, with the collision resistance of H# added to the list of assumptions.

Algo gen
00 k ← $({0, 1}l)
01 (sk0

1, . . . , sk0
n)← G(k)

02 For i ∈ {1, . . . , n}:
03 sk1

i ← k ⊕ sk0
i

04 For b ∈ {0, 1}:
05 vkb

i ← Hb
i (skb

i )
06 vk′ ← (vkb

i )b,i

07 sk := k
08 vk ← H#(vk′)
09 Return sk, vk

Algo sig(sk; m)
10 m1, . . . , mn ← m
11 (sk0

1, . . . , sk0
n)← G(k)

12 For i ∈ {1, . . . , n}:
13 sk1

i ← k ⊕ sk0
i

14 b← mi

15 d← 1−mi

16 vkd
i ← Hd

i (skd
i )

17 σi ← (skb
i , vkd

i )
18 σ := (σi)i

19 Return σ

Algo ver(vk; m, σ)
20 m1, . . . , mn ← m
21 For i ∈ {1, . . . , n}:
22 b← mi

23 d← 1−mi

24 (skb
i , vkd

i )← σi

25 vkb
i ← Hb

i (skb
i )

26 vk′ ← (vkb
i )b,i

27 If vk ̸= H#(vk′):
28 Reject
29 Accept

Algo ext(vk; m0, σ0, m1, σ1)
30 Require m0 ̸= m1

31 m0
1, . . . , m0

n ← m0

32 m1
1, . . . , m1

n ← m1

33 Find i s.t. m0
i ̸= m1

i

34 (sk0
i , )← σ0

i

35 (sk1
i , )← σ1

i

36 k ← sk0
i ⊕ sk1

i

37 sk := k
38 Return sk

Fig. 8. Second SOT-DS construction. We denote with H# an auxiliary collision-resistant hash function. See also
the caption of Fig. 7.

5.2 SDS from SOT-DS

We use a SOT-DS scheme as a building block to construct a sequential digital signature (SDS) scheme
that fulfills the security properties defined in Sect. 4. In the following we use the notation gen, sıg, ver , ext
for SOT-DS algorithms and gen, sig, ver , ext for SDS algorithms. For gen we assume that its randomness
space is {0, 1}l for some l ∈ N. Our construction works by chaining multiple SOT-DS instances together.
It supports a maximum of T periods for a configurable T ∈ N and generates a total of T SOT-DS instances
as follows: While the first SOT-DS is generated regularly by invoking gen with fresh randomness, the
remaining T − 1 instances are generated by invoking gen with explicitly specified randomness that is
derived with a random oracle H : S̄ → {0, 1}l from the preceeding SOT-DS signing key: If (ski, vki) is the
SOT-DS key pair of the i-th epoch, then the SOT-DS key pair (ski+1, vki+1) of the next epoch is derived
by letting k ← H(ski) and (ski+1, vki+1)← gen[k], where the bracket notation means the algorithm uses
the explicitly specified randomness k.12 The SDS signing state of the first epoch is (sk1, 1). The signing
state deterministically evolves by one position after each signing operation. To achieve forward security,
switching to the next SDS epoch also involves securely erasing the old SOT-DS signing key. The SDS
verification state is the vector of all SOT-DS verification keys, plus an indication of the current epoch.
(We also clear verification state elements that become redundant over time, but this is for efficiency and
not for security.) The explicit specification of the scheme algorithms is in Fig. 9.

The correctness of the SDS scheme follows immediately from the correctness of the SOT-DS scheme.
The (strong) unforgeability is easily reduced to the SOT-DS unforgeability: If the verifier’s initial state is
authentic, then any SDS forgery immediately translates to an SOT-DS forgery or the evaluation of the
random oracle H on input the previous signing key (in which case the reduction goes to the unforgeability
of the previous SOT-DS instance). By the strict sequentiality of the construction, the forward security
12 The random oracle H used here should of course be independent of the random oracle with the same name of

Sect. 5.1.
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Algo genT

00 k ← $({0, 1}l)
01 For t← 1 to T :
02 (skt, vkt)← gen[k]
03 k ← H(skt)
04 sst ← (sk1, 1)
05 vk := (vk1, . . . , vkT )
06 vst ← (vk, 1)
07 Return (sst, vst)

Algo sigT ⟨sst⟩(m)
08 (skt, t)← sst
09 Require 1 ≤ t ≤ T
10 σ ← sıg(skt; m)
11 k ← H(skt)
12 Securely erase skt

13 (skt+1, )← gen[k]
14 sst ← (skt+1, t + 1)
15 Return σ

Algo verT ⟨vst⟩(m, σ)
16 (vk, t)← vst
17 Require 1 ≤ t ≤ T
18 v ← ver(vkt; m, σ)
19 Require v
20 vkt ← ⊥
21 vst ← (vk, t + 1)
22 Return v

Algo extT (vst0; vh′, P1, P2)
23 (vk, 1)← vst0
24 t← #vh′ + 1
25 skt ← ext(vkt; P1, P2)
26 sst ← (skt, t)
27 Return sst

Fig. 9. SDS construction. Parameter T ∈ N indicates the number of supported epochs and can be fixed arbitrarily.
In line 02, gen is invoked with explicit randomness. Extraction algorithm ext assumes for its inputs P1, P2 what
it is promised by the DSE game in Fig. 6.

basically comes for free. Let’s finally consider the extractability property. Two conflicting SDS verification
histories translate immediately to two conflicting SOT-DS message-signature pairs, allowing for the
recovery of the SOT-DS signing key of that epoch. The latter is precisely the SDS signing state that is
to be recovered.

6 Implementation and evaluation

In order to experimentally evaluate our SDS construction from Sect. 5.2, we implemented its algorithms
in the C programming language. We made experiments using both SOT-DS candidates from Sect. 5.1 as
underlying building blocks. We tested the performance of our implementations on an Intel Core i7 8th
generation CPU, using the hash functions SHA-2, SHA-3, and HARAKA [9].13 Table 1 shows the time
consumption of the different algorithms.

Table 1. Efficiency of SDS (Fig. 9) based on two different SOT-DS (left: Fig. 7; right: Fig. 8) using three different
hash functions. The entries indicate the number of µs per algorithm invocation, for a setting with T = 100 epochs.

SHA-2 SHA-3 HARAKA
gen 67834 78227 80166
sig 528 557 545
ver 82 117 120
ext 162 276 239

SHA-2 SHA-3 HARAKA
gen 75341 84401 88193
sig 643 699 664
ver 147 186 124
ext 283 373 239

When comparing the results associated with the two underlying SOT-DS schemes, the extra costs
caused by the additional hash function operations of the second SOT-DS construction are clearly visible.
Beyond that, we see that using SHA-2 is more efficient than using SHA-3. As HARAKA is specifically
designed for handling fixed-length short inputs, it should be well suited for our application. However,
HARAKA is also designed for modern platforms that support the AES-NI instruction set for AES [9].
Our implementation is generic and doesn’t make use of such instructions, which makes it slower than our
SHA-based candidates. We expect, however, that HARAKA will clearly outperform SHA-2 and SHA-3
with specifically optimized implementations.
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