
Quantum Attacks on Lai-Massey Structure⋆

Shuping Mao1,2, Tingting Guo1,2, Peng Wang1,2(�) and Lei Hu1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering, CAS
2 School of Cyber Security, University of Chinese Academy of Sciences

w.rocking@gmail.com

Abstract. Aaram Yun et al. considered that Lai-Massey structure has the same
security as Feistel structure. However, Luo et al. showed that 3-round Lai-Massey
structure can resist quantum attacks of Simon’s algorithm, which is different from
Feistel structure. We give quantum attacks against a typical Lai-Massey struc-
ture. The result shows that there exists a quantum CPA distinguisher against 3-
round Lai-Massey structure and a quantum CCA distinguisher against 4-round
Lai-Massey Structure, which is the same as Feistel structure. We extend the
attack on Lai-Massey structure to quasi-Feistel structure. We show that if the
combiner of quasi-Feistel structure is linear, there exists a quantum CPA dis-
tinguisher against 3-round balanced quasi-Feistel structure and a quantum CCA
distinguisher against 4-round balanced quasi-Feistel Structure.
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1 Introduction

Quantum attacks With the rapid development of quantum computers, the security
of classic algorithms has been challenged. Shor [31] found that both the large number
decomposition problem and the discrete logarithm problem have quantum polynomial-
time algorithms, which pose a serious threat to RSA and other mainstream asymmetric
crypto algorithms. In symmetric cryptography, it has always been considered that the
biggest threat comes from Grover’s quantum search algorithm [12]. It can reduce the
complexity of 𝑘 bits exhaustive algorithm to 𝑂

(︀
2𝑘/2

)︀
.

In his seminal paper, Simon [32] answered the question of how to find the period
of a periodic function in 𝑂(𝑛) quantum queries. Many structures and the most widely
used modes of operation for authentication and authenticated encryption were attacked
by using Simon’s algorithm. For example, the attacks of 3-round [21], 4-round [17]
Feistel structures, 3-round MISTY-L structure, 3-round MISTY-R structure [29], Even-
Mansour structure, LRW structure, CBC-MAC, PMAC, GMAC, GCM, and OCB [19].

Leander and May combined Simon’s Algorithm with Gover’s algorithm, giving a
quantum key-recovery attack on FX-construction [24], which caused a quantum CPA
attack on 5-round Feistel structure [8], quantum CCA attack on 7-round Feistel-KF
structure and 9-round Feistel-FK structure [17].
⋆ Supported by the NSFC of China (61732021) and the National Key RD Program of China

(2018YFB0803801 and 2018YFA0704704).
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Lai-Massey Structure IDEA algorithm [22,23] was designed by Lai and Massey. Vau-
denay [35] generalized the structure adopted by IDEA algorithm and proposed the Lai-
Massey structure. Lai-Massey structure uses general addition and subtraction opera-
tions in a finite abelian group 𝐺 and has an orthomorphism permutation 𝜎 : 𝐺 → 𝐺.
𝜎 has the orthomorphism property: 𝜎 and 𝑥 ↦→ 𝜎(𝑥)− 𝑥 are both permutations. Based
on Lai-Massey structure, FOX [18] (also known as “IDEA NXT”) was produced. FOX
uses XOR operation instead of general addition and subtraction operations, and it reifies
𝜎 as 𝜎 (𝑥𝐿, 𝑥𝑅) = (𝑥𝑅, 𝑥𝐿 ⊕ 𝑥𝑅). In this paper, we attack the instantiated Lai-Massey
structure used in FOX. The 𝑖th-round of Lai-Massey structure is shown in Figure 1.

Fig. 1. The 𝑖th-round of Lai-Massey structure

Let LM𝑖(𝑎𝑖−1, 𝑏𝑖−1) = (𝜎(𝑎𝑖−1 ⊕ 𝑓𝑖(𝛥𝑖)), 𝑏𝑖−1 ⊕ 𝑓𝑖(𝛥𝑖)), LM′𝑖(𝑎𝑖−1, 𝑏𝑖−1) =
(𝑎𝑖−1 ⊕ 𝑓𝑖(𝛥𝑖), 𝑏𝑖−1 ⊕ 𝑓𝑖(𝛥𝑖)). Then 𝑟-round Lai-Massey structure can be written as:

FrLM
def
= (𝑎𝑟, 𝑏𝑟) = LM′𝑟 ∘ LM𝑟−1 ∘ · · · ∘ LM1.

3-round and 4-round Lai-Massey structures are proven to be secure against chosen-
plaintext attacks (CPAs) and chosen-ciphertext attacks (CCAs), respectively by Vau-
denay et al. [35], like Feistel structure [9]. Luo, et al. [27] proved that 3 rounds (4
rounds) are necessary for CPA secure (CCA secure). Sui et al. [34] proved that 4-round
Lai-Massey structure is CCA secure even if the adversary extra access to two internal
rounds. Luo, et al. [28] proved beyond-birthday-bound for the CCA-security of many-
round Lai-Massey scheme. Attacks like integral attacks [38,37], impossible differential
cryptanalysis [39,7,13], collision-integral attacks [36], fault attacks [25], differential
cryptanalysis [10,11], linear cryptanalysis [10], all-subkeys recovery attacks [16], im-
primitivity attacks [3] were applied to block ciphers with Lai-Massey structure.

Quasi-Feistel structure Feistel structure is one of the most important block-cipher
structures. Many block ciphers are designed by this scheme like DES [33], FEAL [30],
SKIPJACK [1] and SIMON [4]. Michael Luby and Charles Rackoff [26] proved that
3-round Feistel structure is CPA secure, and 4-round Feistel structure is CCA secure if
round functions are independent random functions. Zhang Liting et al. [41] extended
those conclusions and proved that 𝑘 + 1 rounds unbalanced Feistel networks with
contracting functions(UFN-C) is CPA secure, 𝑘 + 2 rounds UFN-C is CCA secure.

In [40], Aaram Yun et.al proposed quasi-Feistel structure and proved that Feistel
structure and Lai-Massey structure are quasi-Feistel structures. They shown that the
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birthday security of (2𝑏−1)-round and (3𝑏−2)-round unbalanced quasi-Feistel ciphers
with 𝑏 branches against CPA and CCA attacks respectively.

In [29], Luo, et al. shown that 3-round Lai-Massey structure can resist the attacks
of Simon’s algorithm in quantum, which is different from Feistel structure. This leads
to natural questions:

Do Lai-Massey structure and Feistel structure have the same number of rounds
that can be attacked in quantum? Can the attacks be extended to quasi-Feistel struc-
tures?

Our Contributions The contributions of this paper are listed as follows:

1. We show a quantum CPA distinguisher against 3-round Lai-Massey structure and a
quantum CCA distinguisher against 4-round Lai-Massey structure with 𝑂(𝑛) quan-
tum queries, where the input length of Lai-Massey structure is 2𝑛 bits. So Lai-
Massey structure and Feistel structure have the same number of rounds that can be
attacked efficiently in quantum, this makes it possible for quasi-Feistel structures
to have similar security strength in quantum.

2. we give a quantum Grover-meet-Simon attack on 4-round Lai-Massey structure
with 𝑂(𝑛2𝑚/2) quantum queries, where 𝑚 is the length of the key 𝑘4 of the fourth
round function 𝑓4.

3. We extend the quantum attack on Lai-Massey structure to quasi-Feistel structure.
We show that 3-rounds (4-round) balanced quasi-Feistel structure including Feis-
tel structure and Lai-Massey structure with linear combiners can be attacked with
𝑂(𝑛) quantum queries in quantum CPA (CCA).

2 Preliminaries

2.1 Notation

Let 𝒳 be a finite set. Let Perm(𝒳 ) be the set of all permutations on 𝒳 . Let 𝑥 $←
𝒳 denote selecting an element 𝑥 from the set 𝒳 uniformly and randomly. Let 𝜋 $←
Perm(𝒳 ) be a random permutation on 𝒳 . 𝒳 𝑘 denotes the set of all 𝑘-tuples of elements
from 𝒳 . A block cipher keyed by 𝐾 is a function 𝐸𝐾 ∈ Perm(𝒳 ). We call the input
and output of 𝐸𝐾 as plaintext and ciphertext respectively. Let Func(𝒳 ,𝒴) be the set of
all functions 𝑓 : 𝒳 → 𝒴 . We write Func(𝒳 ) def

= Func(𝒳 ,𝒳 ).
Let 𝒜 be an adversary. Let 𝒜𝑓(·) ⇒ 𝑏 (resp. 𝒜𝑓(⊙) ⇒ 𝑏

)︀
denote an algorithm

performs classical queries (resp. quantum queries) to oracle 𝑓 and outputs 𝑏.

2.2 Pseudo-random Permutation

In this paper, we consider the adversary 𝒜 making chosen-plaintext attack (CPA), i.e.,
𝒜 queries with plaintexts and get corresponding ciphertexts, or chosen-ciphertext attack
(CCA), i.e., 𝒜 queries with plaintexts or ciphertexts and get corresponding cipher-
texts or plaintexts. Let PRP-CPA and PRP-CPA denote the pseudo-random permutation
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(PRP) security under CPA and CCA respectively. Let qPRP-CPA and qPRP-CPA de-
note the quantum PRP security under CPA and CCA respectively. We put the formal
definitions as follows.

Definition 1. (PRP-CPA/qPRP-CPA) Let 𝐸 : 𝒦×𝒳 → 𝒳 be a family of permutations
indexed by the elements in 𝒦, 𝑔 : 𝒳 → 𝒳 . Let 𝒜 be a adversary. The PRP-CPA/qPRP-
CPA advantage of 𝒜 is defined as:

Advprp-cpa/qprp-cpa
𝐸 (𝒜) =

⃒⃒⃒⃒
⃒ Pr
𝐾

$←𝒦

[︁
𝒜𝐸𝐾(*) ⇒ 1

]︁
− Pr

𝑔
$←Perm(𝒳 )

[︁
𝒜𝑔(*) ⇒ 1

]︁⃒⃒⃒⃒⃒ ,
where we replace the * symbol by · (classical) or ⊙ (quantum).

Definition 2. (PRP-CCA/qPRP-CCA) Let 𝐸 : 𝒦×𝒳 → 𝒳 be a family of permutations
indexed by the elements in 𝒦, 𝑔 : 𝒳 → 𝒳 . Let𝒜 be a adversary. The PRP-CCA/qPRP-
CCA advantage of 𝒜 is defined as:

Advprp-cca/qprp-cca
𝐸 (𝒜) =

⃒⃒⃒⃒
⃒ Pr
𝐾

$←𝒦

[︁
𝒜𝐸𝐾(*),𝐸−1

𝐾 (*) ⇒ 1
]︁
− Pr

𝑔
$←Perm(𝒳 )

[︁
𝒜𝑔(*),𝑔−1(*) ⇒ 1

]︁⃒⃒⃒⃒⃒ ,
where we replace the * symbol by · (classical) or ⊙ (quantum).

2.3 Quantum Algorithms

In this section, we present some quantum algorithms that will be applied in our attacks.

Simon’s Algorithm Simon’s algorithm is a quantum algorithm to recover the period
of a periodic function with polynomial queries. It solves the Simon’s problem.
Simon’s problem [32] Given a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚, 𝑥, 𝑦 ∈
{0, 1}𝑛. 𝑥, 𝑦 satisfied the condition [𝑓(𝑥) = 𝑓(𝑦)] ⇔ [𝑥⊕ 𝑦 ∈ {0𝑛, 𝑠}], 𝑠 is non-zero
and 𝑠 ∈ {0, 1}𝑛, the goal is to find 𝑠.
The steps of Simon’s algorithm: [32]

1. Initialize the state of 2𝑛 qubits to |0⟩⊗𝑛|0⟩⊗𝑚;

2. Apply Hadamard transformation 𝐻⊗𝑛 to the first 𝑛 qubits to obtain quantum su-
perposition 1√

2𝑛

∑︀
𝑥∈{0,1}𝑛 |𝑥⟩|0⟩⊗𝑚;

3. A quantum query to the function 𝑓 maps this to the state: 1√
2𝑛

∑︀
𝑥∈{0,1}𝑛 |𝑥⟩|𝑓(𝑥)⟩;

4. Measure the last 𝑚 qubits to get the output 𝑧 of 𝑓(𝑥), and the first 𝑛 qubits collapse
to 1√

2
(|𝑧⟩+ |𝑧 ⊕ 𝑠⟩);

5. Apply the Hadamard transform to the first 𝑛 quantum again 𝐻⊗𝑛, we can get
1√
2

1√
2𝑛

∑︀
𝑦∈{0,1}𝑛(−1)𝑦·𝑧 (1 + (−1)𝑦·𝑠) |𝑦⟩. If 𝑦 · 𝑠 = 1 then the amplitude of

|𝑦⟩ is 0. So measuring the state in the computational basis yields a random vector 𝑦
such that 𝑦 · 𝑠 = 0, which means that 𝑦 must be orthogonal to 𝑠.
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By repeating this step 𝑂(𝑛) times, 𝑛− 1 independent vectors 𝑦 orthogonal to 𝑠 can be
obtained with high probability, then we can recover 𝑠 with high probability by using
linear algebra.

For 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 and 𝑓(𝑥⊕ 𝑠) = 𝑓(𝑥), Kaplan [19] define:

𝜀(𝑓, 𝑠) = max
𝑡∈{0,1}𝑛∖{0,𝑠}

Pr𝑥[𝑓(𝑥) = 𝑓(𝑥⊕ 𝑡)].

𝜀 represents max probability of unwanted additional collisions that 𝑓(𝑥) = 𝑓(𝑥 ⊕ 𝑡)
where 𝑡 ̸∈ {0, 1}𝑛∖{0, 𝑠}. The following theorem shows that Simon’s algorithm can
succeed even with additional collisions.

Theorem 1. [19] If 𝑚 = 𝑛 and 𝜀(𝑓, 𝑠) ≤ 𝑝0 < 1, then Simon’s algorithm returns 𝑠

with 𝑐𝑛 queries, with probability at least 1−
(︁
2
(︀
1+𝑝0

2

)︀𝑐)︁𝑛

.

Guo et al. [14] shows Simon’s conclusion holds for 𝑚 ̸= 𝑛 as well.

Grover’s Algorithm Grover’s Algorithm can find a marked element from a set with an
acceleration of the square root compared to classical computing. It solves the Grover’s
problem.
Grover’s problem Given a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}. Find a marked
element 𝑥0 from {0, 1}𝑛 such that 𝑓(𝑥0) = 1.
The steps of Grover’s Algorithm [12]:

1. Initializing a 𝑛-bit register |0⟩⊗𝑛.
2. Apply Hadamard transformation 𝐻⊗𝑛 to the first register to obtain quantum super-

position 𝐻⊗𝑛|0⟩ = 1√
2𝑛

∑︀
𝑥∈{0,1}𝑛 |𝑥⟩ = |𝜙⟩.

3. Construct an Oracle𝒪 : |𝑥⟩ 𝒪→ (−1)𝑓(𝑥)|𝑥⟩, if 𝑥 is the correct state then 𝑓(𝑥) = 1,
otherwise 𝑓(𝑥) = 0.

4. Apply Grover iteration for 𝑅 ≈ 𝜋
4

√
2𝑛 times: [(2|𝜙⟩⟨𝜙| − 𝐼)𝒪]𝑅|𝜙⟩ ≈ |𝑥0⟩ .

5. Return 𝑥0.

Grover-meet-Simon Algorithm In 2017, Leander and May [24] combined Grover’s
algorithm with Simon’s algorithm to attack FX construction [20]. Their main idea is
to construct a function with two inputs based on FX, say 𝑓(𝑢, 𝑥). When the first input
𝑢 equals to a special value 𝑘, the function has a hidden period 𝑠 such that 𝑓(𝑘, 𝑥) =
𝑓(𝑘, 𝑥 ⊕ 𝑠) for all 𝑥. Their combined algorithm use Grover’s algorithm to search 𝑘,
by running many independent Simon’s algorithms to check whether the function is
periodic or not, and recover both 𝑘 and 𝑠 in the end. The attack only costs𝒪(2𝑚/2(𝑚+

𝑛)) quantum queries to FX, which is much less than the proved security up to 2
𝑚+𝑛

2

queries [20], where 𝑚 is the bit length of 𝑢, which is the key length of the underlying
block cipher and 𝑛 is the bit length of 𝑠, which is the block size.
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3 Quantum Attacks on Lai-Massey Structures

3.1 Quantum Chosen-Plaintext Attack Against 3-round Lai-Massey Structure

Figure 2 shows the 3-round Lai-Massey Structure, where 𝑓1, 𝑓2, 𝑓3 are round functions
and 𝜎 (𝑥𝐿, 𝑥𝑅) = (𝑥𝑅, 𝑥𝐿 ⊕ 𝑥𝑅). We define [𝑎, 𝑏] ∈ {0, 1}𝑛, where 𝑎, 𝑏 represent
the highest 𝑛/2 bits and the lowest 𝑛/2 bits respectively. Let 𝑥𝑖, 𝑦𝑖 ∈ {0, 1}𝑛/2, 𝑖 =
1, 2, 3, 4. The inputs of 3-round Lai-Massey structure can be written as [𝑥1, 𝑥2], [𝑥3, 𝑥4],
the outputs can be written as [𝑦1, 𝑦2],[𝑦3, 𝑦4]. 𝑎𝑖, 𝑏𝑖 and 𝛥𝑖, 𝑖 = 1, 2, 3 are intermediate
parameters as shown in Figure 2.

Fig. 2. 3-round Lai-Massey structure

Theorem 2. If 𝑓𝑖, 𝑖 = 1, 2, 3 are random functions, we can construct a quantum CPA
distinguisher against 3-round Lai-Massey structure with 𝜎 (𝑥𝐿, 𝑥𝑅) = (𝑥𝑅, 𝑥𝐿 ⊕ 𝑥𝑅)
in 𝑂(𝑛) quantum queries by using Simon’s algorithm.

We first give some lemmas before proving Theorem 2. To attack 3-round Lai-
Massey structure with Simon’s algorithm, we will find a periodic function. Due to the
complex structure of Lai-Massey, first we write the values of intermediate parameters.

For the 3-round Lai-Massey structure shown in the figure 2, the intermediate pa-
rameters are as follows

𝑎1 = [𝑥2 ⊕ 𝑓1𝑅(𝛥), 𝑥1 ⊕ 𝑥2 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓1𝑅 (𝛥1)] ,

𝑏1 = [𝑥3 ⊕ 𝑓1𝐿 (𝛥1) , 𝑥4 ⊕ 𝑓1𝑅 (𝛥1)] ,

𝑎2 = [𝑥1 ⊕ 𝑥2 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓1𝑅 (𝛥1)⊕ 𝑓2𝑅 (𝛥2) ,

𝑥1 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓2𝐿 (𝛥2)⊕ 𝑓2𝑅 (𝛥2)] ,

𝑏2 = [𝑥3 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓2𝐿 (𝛥2) , 𝑥4 ⊕ 𝑓1𝑅 (𝛥1)⊕ 𝑓2𝑅 (𝛥2)] ,

𝑎3 =[𝑦1, 𝑦2]

= [𝑥1 ⊕ 𝑥2 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓1𝑅 (𝛥1)⊕ 𝑓2𝑅 (𝛥2)⊕ 𝑓3𝐿 (𝛥3) ,

𝑥1 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓2𝐿 (𝛥2)⊕ 𝑓2𝑅 (𝛥2)⊕ 𝑓3𝑅 (𝛥3)]

𝑏3 =[𝑦3, 𝑦4]

= [𝑥3 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓2𝐿 (𝛥2)⊕ 𝑓3𝐿 (𝛥3) , 𝑥4 ⊕ 𝑓1𝑅 (𝛥1)⊕ 𝑓2𝑅 (𝛥2)⊕ 𝑓3𝑅 (𝛥3)] ,
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where

𝛥1 = [𝑥1 ⊕ 𝑥3, 𝑥2 ⊕ 𝑥4] ,

𝛥2 = [𝑥2 ⊕ 𝑥3 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓1𝑅 (𝛥1) , 𝑥1 ⊕ 𝑥2 ⊕ 𝑥4 ⊕ 𝑓1𝐿 (𝛥1)] ,

𝛥3 = [𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑓1𝑅 (𝛥1)⊕ 𝑓2𝐿 (𝛥2)⊕ 𝑓2𝑅 (𝛥2) ,

𝑥1 ⊕ 𝑥4 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓1𝑅 (𝛥1)⊕ 𝑓2𝐿 (𝛥2)] .

Lemma 1. Let 𝑥, 𝑥′ ∈ {0, 1}𝑛/2, 𝑏 ∈ {0, 1} and 𝛼0, 𝛼1 be arbitrary two fixed different

numbers in {0, 1}𝑛/2. Let ([𝑥𝛼𝑏
1 , 𝑥𝛼𝑏

2 ], [𝑥𝛼𝑏
3 , 𝑥𝛼𝑏

4 ])
def
= ([𝑥⊕𝛼𝑏, 𝑥

′], [𝑥, 𝑥′⊕𝛼𝑏]) being the
input of 3-round Lai-Massey structure with corresponding output ([𝑦𝛼𝑏

1 , 𝑦𝛼𝑏
2 ], [𝑦𝛼𝑏

3 , 𝑦𝛼𝑏
4 ]).

We can construct a periodic function 𝑔1 from 3-round Lai-Massey structure with period
𝑠 = 𝑓1[𝛼0, 𝛼0]⊕ 𝑓1[𝛼1, 𝛼1] by letting

𝑔1 : {0, 1}𝑛 →{0, 1}𝑛/2

[𝑥, 𝑥′] ↦→𝑥𝛼0
1 ⊕ 𝑥𝛼0

2 ⊕ 𝑥𝛼0
3 ⊕ 𝑦𝛼0

1 ⊕ 𝑦𝛼0
3 ⊕ 𝑥𝛼1

1 ⊕ 𝑥𝛼1
2 ⊕ 𝑥𝛼1

3 ⊕ 𝑦𝛼1
1 ⊕ 𝑦𝛼1

3

𝑔1([𝑥, 𝑥
′]) =𝑓1𝑅[𝛼0, 𝛼0]⊕ 𝑓2𝐿(𝛥

𝛼0
2 ([𝑥, 𝑥′]))⊕ 𝑓2𝑅(𝛥

𝛼0
2 ([𝑥, 𝑥′]))

⊕ 𝑓1𝑅[𝛼1, 𝛼1]⊕ 𝑓2𝐿(𝛥
𝛼1
2 ([𝑥, 𝑥′]))⊕ 𝑓2𝑅(𝛥

𝛼1
2 ([𝑥, 𝑥′])), (1)

where 𝛥𝛼𝑏
2 ([𝑥, 𝑥′]) denotes the value of intermediate parameter 𝛥2 when the input of

3-round Lai-Massey structure is ([𝑥𝛼𝑏
1 , 𝑥𝛼𝑏

2 ], [𝑥𝛼𝑏
3 , 𝑥𝛼𝑏

4 ]) and

𝛥𝛼𝑏
2 ([𝑥, 𝑥′]) = [𝑥′ ⊕ 𝑥⊕ 𝑓1𝐿[𝛼𝑏, 𝛼𝑏]⊕ 𝑓1𝑅[𝛼𝑏, 𝛼𝑏], 𝑥⊕ 𝑓1𝐿[𝛼𝑏, 𝛼𝑏]] .

Proof. we show that 𝑔1 is obviously a periodic function.

(a) 𝛥𝛼𝑏
2 ([𝑥, 𝑥′]) = 𝛥

𝛼𝑏⊕1

2 ([𝑥, 𝑥′]⊕ 𝑠) holds for all 𝑥, 𝑥′ ∈ {0, 1}𝑛/2.
(b) 𝑔1 ([𝑥, 𝑥

′]) has a period 𝑠 deriving from (a).

Proof. (Proof of Theorem 2) Now we have a periodic function 𝑔1 with period 𝑠 =
𝑓1[𝛼0, 𝛼0] ⊕ 𝑓1[𝛼1, 𝛼1]. Actually, other 𝑡’s (𝑡 ̸= 𝑠) may occur due to collisions, which
may lead to misjudgments. Theorem 1 guarantees that Simon’s algorithm can still suc-
ceed with probability 1 −

(︀
2
(︀
3
4

)︀𝑐)︀𝑛
if 𝜀(𝑓, 𝑠) ≤ 𝑝0 < 1. For 3-round Lai-Massey

structure, the following certificate 𝜀(𝑔1, 𝑠) <
1
2 :

Assuming 𝜀(𝑔1, 𝑠) ≥ 1
2 , then there is at least one 𝑡 /∈ {0, 𝑠} such that Pr[𝑔1([𝑥, 𝑥′]) =

𝑔1([𝑥, 𝑥
′] ⊕ 𝑡]) ≥ 1/2. We denote 𝑓2𝐿 or 𝑓2𝑅 as 𝑓2*. From equation (1) we have

Pr{𝑓2* [𝑥′ ⊕ 𝑥⊕ 𝑢′, 𝑥⊕ 𝑣′] = 𝑓2* [𝑥
′ ⊕ 𝑡𝑅 ⊕ 𝑥⊕ 𝑡𝐿 ⊕ 𝑢′, 𝑥⊕ 𝑡𝐿 ⊕ 𝑣′]} ≥ 1

2 , where
𝑢′, 𝑣′ are some parameters. That is, if 𝜀(𝑔1, 𝑠) ≥ 1

2 , then the probability that the per-
mutation 𝑓2* [𝑥

′ ⊕ 𝑥⊕ 𝑢, 𝑥⊕ 𝑣] has a collision is greater than 1
2 . For different 𝑚1,𝑚2,

Pr{𝑓2* [𝑚′1 ⊕𝑚1 ⊕ 𝑢,𝑚1 ⊕ 𝑣] = 𝑓2* [𝑚2′ ⊕𝑚2 ⊕ 𝑢,𝑚2 ⊕ 𝑣]} = 1
2𝑛 , which is con-

tradictory. Therefore 𝜀(𝑔1, 𝑠) <
1
2 .

let 𝒜 be an adversary, we write 3-round Lai-Massey structure as 3LM. For 3-
round Lai-Massey structure, we can construct a period function 𝑔1 with period 𝑠, and
𝑔1 ([𝑥, 𝑥

′]) = 𝑔1 ([𝑥, 𝑥
′]⊕ 𝑠). In the first query we ask 𝑥, and then we ask 𝑥 ⊕ 𝑠. If

𝒜 is asking about 3-round Lai-Massey structure, then the outputs are the same. If 𝒜 is
asking about random permutation, then the outputs are different. So Adv qprp-cpa

3LM (𝒜) =
1−

(︀
2
(︀
3
4

)︀𝑐)︀𝑛 − 1
2𝑛/2 . If we choose 𝑐 ≥ 3/(1− 𝑝0), the error decreases exponentially

with 𝑛. So if 𝑐 ≥ 6, Adv qprp-cpa
3LM (𝒜) = 1− 1

2𝑛/2 .
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3.2 Quantum Chosen-Ciphertext Attack Against 4 round Lai-Massey Structure

For 4-round Lai-Massey Structure, let 𝑓1, 𝑓2, 𝑓3, 𝑓4 be round functions and 𝜎 (𝑥𝐿, 𝑥𝑅) =
(𝑥𝑅, 𝑥𝐿 ⊕ 𝑥𝑅). Let 𝑥𝑖, 𝑦𝑖, 𝑛𝑖, 𝑧𝑖, 𝑥

′
𝑖 ∈ {0, 1}𝑛/2, 𝑖 = 1, 2, 3, 4. To attack 4-round Lai-

Massey Structure in CCA model, our attack strategy is as follows.

– Query the 4-round Lai- Massey structure with inputs ([𝑥1, 𝑥2], [𝑥3, 𝑥4])s and get
corresponding outputs ([𝑦1, 𝑦2], [𝑦3, 𝑦4])s;

– Xor ([𝑦1, 𝑦2], [𝑦3, 𝑦4])s with ([𝑛1, 𝑛2], [𝑛3, 𝑛4]) and get ([𝑧3, 𝑧4], [𝑧1, 𝑧2]);
– Query the inverse of 4-round Lai- Massey structure with inputs ([𝑧1, 𝑧2], [𝑧3, 𝑧4])s

and get corresponding outputs ([𝑥′1, 𝑥
′
2], [𝑥

′
3, 𝑥
′
4])s;

– Construct a periodic function 𝑔2 based on 𝑥′1, 𝑥
′
2, 𝑥
′
3, 𝑥
′
4s.

– Apply the periodicity of 𝑔2 to distinguish 4-round Lai-Massey structure from a
random permutation.

Let 𝑎𝑖, 𝑏𝑖, 𝑎′𝑖, 𝑏
′
𝑖 and 𝛥𝑖, 𝛥

′
𝑖, 𝑖 = 1, 2, 3, 4 be intermediate parameters as shown in Fig-

ure.3. In the following, we show the formulation.

Fig. 3. The encryption and decryption process of 4-round Lai-Massey structure

Theorem 3. If 𝑓𝑖, 𝑖 = 1, 2, 3, 4 are random functions, we can construct a quantum CCA
distinguisher against 4-round Lai-Massey Structure with 𝜎 (𝑥𝐿, 𝑥𝑅) = (𝑥𝑅, 𝑥𝐿 ⊕ 𝑥𝑅)
in 𝑂(𝑛) quantum queries by using Simon’s algorithm.

We first give a lemma before proving Theorem 3. To show a quantum CCA distin-
guisher against 4-round Lai-Massey Structure with Simon’s algorithm, we will find a
periodic function based the function showed in Figture.3.

Intermediate parameters 𝑎𝑖, 𝑏𝑖, 𝛥𝑗 , 𝑖 = 1, 2; 𝑗 = 1, 2, 3 are the same as Section
3.1. Intermediate parameters 𝑎3, 𝑏3, 𝑎4, 𝑏4, 𝛥4 are shown as follows. Other intermediate
parameters 𝑎′𝑖, 𝑏

′
𝑖, 𝛥

′
𝑖, 𝑖 = 1, 2, 3, 4 with respect to [𝑧1, 𝑧2], [𝑧3, 𝑧4] are showed in in

Appendix A.

𝑎3 =[𝑥1 ⊕ 𝑓1𝐿(𝛥1)⊕ 𝑓2𝐿(𝛥2)⊕ 𝑓2𝑅(𝛥2)⊕ 𝑓3𝑅(𝛥3),

𝑥2 ⊕ 𝑓1𝑅(𝛥1)⊕ 𝑓2𝐿(𝛥2)⊕ 𝑓3𝐿(𝛥3)⊕ 𝑓3𝑅(𝛥3)],
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𝑏3 =[𝑥3 ⊕ 𝑓1𝐿(𝛥1)⊕ 𝑓2𝐿(𝛥2)⊕ 𝑓3𝐿(𝛥3), 𝑥4 ⊕ 𝑓1𝑅(𝛥1)⊕ 𝑓2𝑅(𝛥2)⊕ 𝑓3𝑅(𝛥3)],

𝑎4 =[𝑦1, 𝑦2]

=[𝑥1 ⊕ 𝑓1𝐿(𝛥1)⊕ 𝑓2𝐿(𝛥2)⊕ 𝑓2𝑅(𝛥2)⊕ 𝑓3𝑅(𝛥3)⊕ 𝑓4𝐿(𝛥4),

𝑥2 ⊕ 𝑓1𝑅(𝛥1)⊕ 𝑓2𝐿(𝛥2)⊕ 𝑓3𝑅(𝛥3)⊕ 𝑓3𝐿(𝛥3)⊕ 𝑓4𝑅(𝛥4)],

𝑏4 =[𝑦3, 𝑦4]

=[𝑥3 ⊕ 𝑓1𝐿(𝛥1)⊕ 𝑓2𝐿(𝛥2)⊕ 𝑓3𝐿(𝛥3)⊕ 𝑓4𝐿(𝛥4),

𝑥4 ⊕ 𝑓1𝑅(𝛥1)⊕ 𝑓2𝑅(𝛥2)⊕ 𝑓3𝑅(𝛥3)⊕ 𝑓4𝑅(𝛥4)].

where

𝛥4 =[𝑥1 ⊕ 𝑥3 ⊕ 𝑓2𝑅 (𝛥2)⊕ 𝑓3𝐿 (𝛥3)⊕ 𝑓3𝑅 (𝛥3) ,

𝑥2 ⊕ 𝑥4 ⊕ 𝑓2𝐿 (𝛥2)⊕ 𝑓2𝑅 (𝛥2)⊕ 𝑓3𝐿 (𝛥3)].

Let 𝑛1 ⊕ 𝑛3 = 0, 𝑛2 ⊕ 𝑛4 = 0. After the whole process of 4-round Lai-Massey
structure shown in the Figure 3, the outputs [𝑥′1, 𝑥

′
2], [𝑥

′
3, 𝑥
′
4] can be expressed with

[𝑥1, 𝑥2], [𝑥3, 𝑥4]:

𝑥′1 =𝑥1 ⊕ 𝑛1 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓2𝐿 (𝛥2)⊕ 𝑓2𝑅 (𝛥2)⊕ 𝑓3𝑅 (𝛥3)⊕
𝑓1𝐿 (𝛥′1)⊕ 𝑓2𝐿 (𝛥′2)⊕ 𝑓2𝑅 (𝛥′2)⊕ 𝑓3𝑅 (𝛥′3) ,

𝑥′2 =𝑥2 ⊕ 𝑛2 ⊕ 𝑓1𝑅 (𝛥1)⊕ 𝑓2𝐿 (𝛥2)⊕ 𝑓3𝑅 (𝛥3)⊕ 𝑓3𝐿 (𝛥3)⊕
𝑓1𝑅 (𝛥′1)⊕ 𝑓2𝐿 (𝛥′2)⊕ 𝑓3𝑅 (𝛥′3)⊕ 𝑓3𝐿 (𝛥′3) ,

𝑥′3 =𝑥3 ⊕ 𝑛3 ⊕ 𝑓1𝐿 (𝛥1)⊕ 𝑓2𝐿 (𝛥2)⊕ 𝑓3𝐿 (𝛥3)⊕ 𝑓1𝐿 (𝛥′1)⊕ 𝑓2𝐿 (𝛥′2)⊕ 𝑓3𝐿 (𝛥′3) ,

𝑥′4 =𝑥4 ⊕ 𝑛4 ⊕ 𝑓1𝑅 (𝛥1)⊕ 𝑓2𝑅 (𝛥2)⊕ 𝑓3𝑅 (𝛥3)⊕ 𝑓1𝑅 (𝛥′1)⊕ 𝑓2𝑅 (𝛥′2)⊕ 𝑓3𝑅 (𝛥′3) ,

where

𝛥′3 =𝛥3 ⊕ [𝑛2, 𝑛1 ⊕ 𝑛4] ,

𝛥′2 =𝛥2 ⊕ [𝑓3𝑅 (𝛥3)⊕ 𝑓3𝑅 (𝛥′3)⊕ 𝑛2 ⊕ 𝑛3,

𝑓3𝐿 (𝛥3)⊕ 𝑓3𝑅 (𝛥3)⊕ 𝑓3𝐿 (𝛥′3)⊕ 𝑓3𝑅 (𝛥′3)⊕ 𝑛1] ,

𝛥′1 =𝛥1 ⊕ [𝑓2𝑅 (𝛥2)⊕ 𝑓3𝑅 (𝛥3)⊕ 𝑓3𝐿 (𝛥3)⊕ 𝑓2𝑅 (𝛥′2)⊕ 𝑓3𝐿 (𝛥′3)⊕ 𝑓3𝑅 (𝛥′3) ,

𝑓2𝑅 (𝛥2)⊕ 𝑓2𝐿 (𝛥2)⊕ 𝑓3𝐿 (𝛥3)⊕ 𝑓2𝐿 (𝛥′2)⊕ 𝑓2𝑅 (𝛥′2)⊕ 𝑓3𝐿 (𝛥′3)] .

Lemma 2. Let 𝑥, 𝑥′ ∈ {0, 1}𝑛/2, 𝑏 ∈ {0, 1} and 𝛼0, 𝛼1 be arbitrary two fixed different

numbers in {0, 1}𝑛/2. Let ([𝑥𝛼𝑏
1 , 𝑥𝛼𝑏

2 ], [𝑥𝛼𝑏
3 , 𝑥𝛼𝑏

4 ])
def
= ([𝑥⊕𝛼𝑏, 𝑥

′], [𝑥, 𝑥′⊕𝛼𝑏]) being the
input of the function in Figure.3 based on 4-round Lai-Massey structure and its inverse
with corresponding output ([𝑥′1

𝛼𝑏 , 𝑥′2
𝛼𝑏 ], [𝑥′3

𝛼𝑏 , 𝑥′4
𝛼𝑏 ]) when 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 =

𝛼0 ⊕ 𝛼1. We an construct a periodic function 𝑔2 from 4-round Lai-Massey structure
with period 𝑠 = 𝑓1[𝛼0, 𝛼0]⊕ 𝑓1[𝛼1, 𝛼1] by letting

𝑔2 : {0, 1}𝑛 →{0, 1}𝑛/2

[𝑥, 𝑥′] ↦→𝑥′1
𝛼0 ⊕ 𝑥′3

𝛼0 ⊕ 𝑥′1
𝛼1 ⊕ 𝑥′3

𝛼1

𝑔2([𝑥, 𝑥
′]) =𝑓2𝑅 (𝛥𝛼0

2 ([𝑥, 𝑥′]))⊕ 𝑓2𝑅
(︀
𝛥′2

𝛼0([𝑥, 𝑥′])
)︀
⊕ 𝑓2𝑅 (𝛥𝛼1

2 ([𝑥, 𝑥′]))⊕
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𝑓2𝑅
(︀
𝛥′2

𝛼1([𝑥, 𝑥′])
)︀
⊕ 𝑓3𝑅 (𝛥𝛼0

3 ([𝑥, 𝑥′]))⊕ 𝑓3𝑅
(︀
𝛥′3

𝛼0([𝑥, 𝑥′])
)︀
⊕

𝑓3𝑅 (𝛥𝛼1
3 ([𝑥, 𝑥′]))⊕ 𝑓3𝑅

(︀
𝛥′3

𝛼1([𝑥, 𝑥′])
)︀
⊕ 𝑓3𝐿 (𝛥𝛼0

3 ([𝑥, 𝑥′]))⊕
𝑓3𝐿

(︀
𝛥′3

𝛼0([𝑥, 𝑥′])
)︀
⊕ 𝑓3𝐿 (𝛥𝛼1

3 ([𝑥, 𝑥′]))⊕ 𝑓3𝐿
(︀
𝛥′3

𝛼1([𝑥, 𝑥′])
)︀
⊕

𝛼0 ⊕ 𝛼1,

where 𝛥𝛼𝑏
2 ([𝑥, 𝑥′]), 𝛥′2

𝛼𝑏([𝑥, 𝑥′]), 𝛥𝛼𝑏
3 ([𝑥, 𝑥′]), and 𝛥′3

𝛼𝑏([𝑥, 𝑥′]) denote the values of
intermediate parameters 𝛥2, 𝛥

′
2, 𝛥3, and 𝛥′3 respectively when the input of the func-

tion in Figure.3 is ([𝑥𝛼𝑏
1 , 𝑥𝛼𝑏

2 ], [𝑥𝛼𝑏
3 , 𝑥𝛼𝑏

4 ]).

Proof. For 𝑖 = 2, 3, we let

ℎ𝑖([𝑥, 𝑥
′])

def
=𝑓𝑖 (𝛥

𝛼0
𝑖 ([𝑥, 𝑥′]))⊕ 𝑓𝑖

(︀
𝛥′𝑖

𝛼0([𝑥, 𝑥′])
)︀
⊕ 𝑓𝑖 (𝛥

𝛼1
𝑖 ([𝑥, 𝑥′]))⊕ 𝑓𝑖

(︀
𝛥′𝑖

𝛼1([𝑥, 𝑥′])
)︀
.

Then we will clearly show that 𝑔2 is a periodic function step by step.

(a) 𝛥𝛼𝑏
2 ([𝑥, 𝑥′]) = 𝛥

𝛼𝑏⊕1

2 ([𝑥, 𝑥′] ⊕ 𝑠) holds for all 𝑥, 𝑥′ ∈ {0, 1}𝑛/2 the same as
Lemma.1.

(b) 𝛥𝛼𝑏
3 ([𝑥, 𝑥′]) = 𝛥′3

𝛼𝑏⊕1([𝑥, 𝑥′]⊕ 𝑠) holds for all 𝑥, 𝑥′ ∈ {0, 1}𝑛/2. We have

𝛥𝛼𝑏
3 ([𝑥, 𝑥′]) = [𝑥′ ⊕ 𝛼𝑏 ⊕ 𝑓1𝑅[𝛼𝑏, 𝛼𝑏]⊕ 𝑓2𝐿(𝛥

𝛼𝑏
2 ([𝑥, 𝑥′]))⊕ 𝑓2𝑅(𝛥

𝛼𝑏
2 ([𝑥, 𝑥′])),

𝑥⊕ 𝑥′ ⊕ 𝑓1𝐿[𝛼𝑏, 𝛼𝑏]⊕ 𝑓1𝑅[𝛼𝑏, 𝛼𝑏]⊕ 𝑓2𝐿(𝛥
𝛼𝑏
2 ([𝑥, 𝑥′]))],

𝛥′3
𝛼𝑏([𝑥, 𝑥′]) = 𝛥𝛼𝑏

3 ([𝑥, 𝑥′])⊕ [𝛼0 ⊕ 𝛼1, 0].

Thus we get 𝛥𝛼𝑏
3 ([𝑥, 𝑥′]) = 𝛥′3

𝛼𝑏⊕1([𝑥, 𝑥′]⊕ 𝑠) deriving from (a).
(c) ℎ3([𝑥, 𝑥

′]) has a period 𝑠 deriving from (b).
(d) 𝛥′2

𝛼𝑏([𝑥, 𝑥′]) = 𝛥′2
𝛼𝑏⊕1([𝑥, 𝑥′]⊕ 𝑠) holds for all 𝑥, 𝑥′ ∈ {0, 1}𝑛/2. We have

𝛥′2
𝛼𝑏([𝑥, 𝑥′]) =𝛥𝛼𝑏

2 ([𝑥, 𝑥′])⊕ [𝑓3𝑅 (𝛥𝛼𝑏
3 ([𝑥, 𝑥′]))⊕ 𝑓3𝑅

(︀
𝛥′3

𝛼𝑏([𝑥, 𝑥′])
)︀
,

𝑓3𝐿 (𝛥𝛼𝑏
3 ([𝑥, 𝑥′]))⊕ 𝑓3𝐿

(︀
𝛥′3

𝛼𝑏([𝑥, 𝑥′])
)︀
⊕ 𝑓3𝑅 (𝛥𝛼𝑏

3 ([𝑥, 𝑥′]))

⊕ 𝑓3𝑅
(︀
𝛥′3

𝛼𝑏([𝑥, 𝑥′])
)︀
⊕ 𝛼0 ⊕ 𝛼1].

Thus 𝛥′2
𝛼𝑏([𝑥, 𝑥′]) = 𝛥′2

𝛼𝑏⊕1([𝑥, 𝑥′]⊕ 𝑠) deriving from (a) and (b).
(e) ℎ2([𝑥, 𝑥

′]) has a period 𝑠 deriving from (d).
(f) 𝑔2([𝑥, 𝑥

′]) has a period 𝑠. We have

𝑔2([𝑥, 𝑥
′]) = ℎ2𝑅([𝑥, 𝑥

′])⊕ ℎ3𝑅([𝑥, 𝑥
′])⊕ ℎ3𝐿([𝑥, 𝑥

′])⊕ 𝛼0 ⊕ 𝛼1.

Thus we get 𝑔2([𝑥, 𝑥′]) has a period 𝑠 deriving from (c) and (e).

Proof. (Proof of Theorem 3) When the period is not unique, that is, Simon’s algorithm
satisfies the approximate commitment, there is 𝜀(𝑔2, 𝑠) < 1

2 , the probability of getting
the correct 𝑠 is at least 1−

(︀
2
(︀
3
4

)︀𝑐)︀𝑛
.

let 𝒜 be an Adversary, we write 4-round Lai-Massey structure as 4LM. Similar to
the proof of Theorem 2, We have Adv qprp-cpa

4LM (𝒜) = 1 −
(︀
2
(︀
3
4

)︀𝑐)︀𝑛 − 1
2𝑛/2 . If we

choose 𝑐 ≥ 6, Adv qprp-cpa
4LM (𝒜) = 1− 1

2𝑛/2 .
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3.3 Quantum Key-recovery Attack on 4-round Lai-Massey Structure

Figure 4 shows the 4-round Lai-Massey Structure, where 𝑓1, 𝑓2, 𝑓3, 𝑓4 are round func-
tions and 𝜎 (𝑥𝐿, 𝑥𝑅) = (𝑥𝑅, 𝑥𝐿 ⊕ 𝑥𝑅). 𝑎𝑖, 𝑏𝑖 and 𝛥𝑖, 𝑖 = 1, 2, 3, 4 are intermediate
parameters as shown in Figure 4. Let 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ∈ {0, 1}𝑛/2, 𝑖 = 1, 2, 3, 4. Let the inputs
of 4-round Lai-Massey Structure be [𝑥1, 𝑥2], [𝑥3, 𝑥4], the outputs be [𝑧1, 𝑧2], [𝑧3, 𝑧4],
and the immediate parameters after 3-round Lai-Massey be [𝑦1, 𝑦2], [𝑦3, 𝑦4].

Fig. 4. 4-round Lai-Massey structure

To recover the partial key of 4-round Lai-Massey structure in CPA model, our strat-
egy is as follows.

– Query the 4-round Lai- Massey structure with inputs ([𝑥1, 𝑥2], [𝑥3, 𝑥4])s and get
corresponding outputs ([𝑧1, 𝑧2], [𝑧3, 𝑧4])s;

– Guess the key 𝑘4 of 𝑓4 as 𝑘;
– Given the value of the outputs ([𝑧1, 𝑧2], [𝑧3, 𝑧4])s of 4-round Lai- Massey structure

and key 𝑘, compute the value of immediate parameters after 3-round Lai-Massey
([𝑦1, 𝑦2], [𝑦3, 𝑦4])s as ([𝑦1(𝑘), 𝑦2(𝑘)], [𝑦3(𝑘), 𝑦4(𝑘)])s through the reverse of the
last round Lai-Massey;

– Construct function 𝑔3(𝑘, ·) based on 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦1(𝑘), 𝑦2(𝑘), 𝑦3(𝑘), 𝑦4(𝑘)s the
same as 𝑔1 in Lemma 1 when attacking 3-round Lai-Massey.

– If 𝑔3(𝑘, ·) is a periodic function, then 𝑘 is the correct key 𝑘4 of 𝑓4; Or it doesn’t
hold by the randomness of 𝑓4.

Thus we can recover key 𝑘4 and 𝑔3(𝑘4, ·) is a periodic function. However, when replac-
ing above 4-round Lai- Massey structure with random permutation, 𝑔3 isn’t a periodic
any more. So we can distinguish 4-round Lai-Massey Structure from a random permu-
tation. In the following, we show the formulation.

Theorem 4. If 𝑓𝑖, 𝑖 = 1, 2, 3, 4 are random functions, the length of the key 𝑘4 of 𝑓4 is 𝑚
bits. We can give a quantum Grover-meet-Simon attack on 4-round Lai- Massey struc-
ture with 𝜎 (𝑥𝐿, 𝑥𝑅) = (𝑥𝑅, 𝑥𝐿 ⊕ 𝑥𝑅) with 𝑂(𝑛2𝑚/2) quantum queries in quantum
CPA.

We first give a lemma before proving Theorem 4.
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Lemma 3. If 𝑓𝑖, 𝑖 = 1, 2, 3, 4 are random functions, the length of the key 𝑘4 of 𝑓4 is 𝑚
bits. Let 𝑥, 𝑥′ ∈ {0, 1}𝑛/2, 𝑏 ∈ {0, 1} and 𝛼0, 𝛼1 be arbitrary two fixed different num-

bers in {0, 1}𝑛/2. Let ([𝑥𝛼𝑏
1 , 𝑥𝛼𝑏

2 ], [𝑥𝛼𝑏
3 , 𝑥𝛼𝑏

4 ])
def
= ([𝑥⊕𝛼𝑏, 𝑥

′], [𝑥, 𝑥′⊕𝛼𝑏]) being the in-
put of 4-round Lai-Massey structure with corresponding output ([𝑧𝛼𝑏

1 , 𝑧𝛼𝑏
2 ], [𝑧𝛼𝑏

3 , 𝑧𝛼𝑏
4 ]).

And let ([𝑦𝛼𝑏
1 (𝑘), 𝑦𝛼𝑏

2 (𝑘)], [𝑦𝛼𝑏
3 (𝑘), 𝑦𝛼𝑏

4 (𝑘)]) be the immediate parameters when reverse
the last round of 4-round Lai-Massey with a guessed key 𝑘 of 𝑓4. We construct a function
𝑔3 from 4-round Lai-Massey structure by letting

𝑔3 : {0, 1}𝑚 × {0, 1}𝑛 →{0, 1}𝑛/2

𝑘, [𝑥, 𝑥′] ↦→𝑥𝛼0
1 ⊕ 𝑥𝛼0

2 ⊕ 𝑥𝛼0
3 ⊕ 𝑦𝛼0

1 (𝑘)⊕ 𝑦𝛼0
3 (𝑘)⊕

𝑥𝛼1
1 ⊕ 𝑥𝛼1

2 ⊕ 𝑥𝛼1
3 ⊕ 𝑦𝛼1

1 (𝑘)⊕ 𝑦𝛼1
3 (𝑘)

𝑔3(𝑘, [𝑥, 𝑥
′]) =𝑧𝛼0

1 ⊕ 𝑧𝛼0
2 ⊕ 𝑧𝛼0

3 ⊕ 𝑓4𝑅([𝑧
𝛼0
1 ⊕ 𝑧𝛼0

3 , 𝑧𝛼0
2 ⊕ 𝑧𝛼0

4 ])

⊕ 𝑧𝛼1
1 ⊕ 𝑧𝛼1

2 ⊕ 𝑧𝛼1
3 ⊕ 𝑓4𝑅([𝑧

𝛼1
1 ⊕ 𝑧𝛼1

3 , 𝑧𝛼1
2 ⊕ 𝑧𝛼1

4 ])

⊕ 𝛼0 ⊕ 𝛼1.

Then 𝑔3(𝑘4, ·) is a periodic function with period 𝑠 = 𝑓1[𝛼0, 𝛼0] ⊕ 𝑓1[𝛼1, 𝛼1] in its
second component.

It is obviously that 𝑔3(𝑘4, [𝑥, 𝑥′]) = 𝑔1([𝑥, 𝑥
′]). By Lemma 1 we get the Lemma 3.

Proof. (Proof of Theorem 4) Given quantum oracle to 𝑔3 , 𝑘4 and 𝑓1[𝛼0, 𝛼0]⊕𝑓1[𝛼1, 𝛼1]
could be computed with 𝑂(𝑛2) qubits and about 2𝑛/2 quantum queries. The details are
provided in Appendix B. And Theorem 4 is proved.

4 Lai-Massey and Quasi-Feistel structures

4.1 Quasi-Feistel structure

Aaram Yun et.al [40] proposed the notion of quasi-Feistel structure, which is an exten-
sion of Feistel structure and Lai-Massey structure. Combiner is an important notion in
quasi-Feistel structure, we briefly recall the definitions.

Definition 3. [40](Combiner) A function 𝛤 : 𝒳 × 𝒳 × 𝒴 → 𝒳 is a combiner over
(𝒳 ,𝒴), if for 𝑦 ∈ 𝒳 , 𝑧 ∈ 𝒴 , 𝑥 ↦→ 𝛤 (𝑥, 𝑦, 𝑧) is a permutation, and for 𝑥 ∈ 𝒳 , 𝑧 ∈ 𝒴 ,

𝑦 ↦→ 𝛤 (𝑥, 𝑦, 𝑧) is a permutation. We denote 𝛤 [[𝑥 ⋆ 𝑦 | 𝑧]] def
= 𝛤 (𝑥, 𝑦, 𝑧).

Definition 4. [40](𝑏-branched, 𝑟-round quasi-Feistel structure) Let 𝑏 > 1 and 𝑟 ≥ 1
be fixed integers, and fix a 𝑏-combiner 𝛤 over 𝒳 . Suppose that 𝑃,𝑄 : 𝒳 𝑏 → 𝒳 𝑏

are permutations. Given 𝑟 functions 𝑓1, . . . , 𝑓𝑟 : 𝒳 𝑏−1 → 𝒳 , we define a function
𝛹 = 𝛹 𝑏,𝑟

𝑃,𝑄 (𝑓1, . . . , 𝑓𝑟) : 𝒳 𝑏 → 𝒳 𝑏 as follows; for 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑏) ∈ 𝒳 𝑏,we
compute 𝑦 = 𝛹(𝑥) by

1. (𝑧0, 𝑧1, . . . , 𝑧𝑏−1)← 𝑃 (𝑥),
2. 𝑧𝑖+𝑏−1 ← 𝛤 [[𝑧𝑖−1 ⋆ 𝑓𝑖 (𝑧𝑖 · · · 𝑧𝑖+𝑏−2) | 𝑧𝑖 · · · 𝑧𝑖+𝑏−2]] for 𝑖 = 1, . . . , 𝑟.
3. 𝑦 ← 𝑄−1 (𝑧𝑟, 𝑧𝑟+1, . . . , 𝑧𝑟+𝑏−1).
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Then 𝛹 is a permutation. For integer 𝑏 > 1, we call 𝛹 a 𝑏-branched, 𝑟-round quasi-
Feistel permutation for 𝑓1, . . . , 𝑓𝑟 with respect to (𝑃,𝑄, 𝛤 ). If 𝛹 𝑏,𝑟 : Func

(︀
𝒳 𝑏−1,𝒳

)︀𝑟 →
Perm

(︀
𝒳 𝑏

)︀
. We call 𝛹 a 𝑏-branched, 𝑟-round quasi-Feistel structure for 𝑓1, . . . , 𝑓𝑟 with

respect to (𝑃,𝑄, 𝛤 ).

Note 1. Quasi-Feistel structure is balanced when 𝑏 = 2, and unbalanced when 𝑏 >
2. In our subsequent discussion, Feistel and Lai-Massey structures are both under the
condition of 𝑏 = 2.

Aaram Yun et.al [40] showed that Feistel and Lai-Massey structures are quasi-
Feistel structures with different combiners when 𝑏 = 2. The Lai-Massey structure ver-
sion they used is given by Vaudenay [35].

Lemma 4. [40] (Unbalanced) Feistel structure is a special case of the quasi-Feistel
structure, and the combiner is 𝛤 [[𝑥 ⋆ 𝑦 | 𝑧]] = 𝑥⊕ 𝑦.

Lemma 5. [40] Lai-Massey structure is an instance of the quasi-Feistel structure.
Let 𝐺 be a finite abelian group, 𝜎 : 𝐺 → 𝐺. The underlying set 𝒳 is the group 𝐺.
𝜏(𝑥) = 𝜎(𝑥)− 𝑥. The combiner is 𝛤 [[𝑥 ⋆ 𝑦 | 𝑧]] = 𝑧 + 𝜏(𝑧 − 𝑥+ 𝑦 + 𝜏−1(𝑧 − 𝑥)).

4.2 Lai-Massey and Quasi-Feistel structures

Fig. 5. The 𝑖th-round of Lai-Massey structure

First we write the combiner of Lai-Massey structure with 𝜎 (𝑥𝐿, 𝑥𝑅) = (𝑥𝑅, 𝑥𝐿 ⊕ 𝑥𝑅).
Note that our notation is slightly different from the above in order to match the defini-
tion of quasi-Feistel (Figure 5).

Theorem 5. The 𝑟-round Lai-Massey structure with 𝜎 (𝑥𝐿, 𝑥𝑅) = (𝑥𝑅, 𝑥𝐿 ⊕ 𝑥𝑅) can
be written as:

𝛼1 ← [𝑥1, 𝑥2], 𝛽1 ← [𝑥3, 𝑥4].

𝛼𝑖+1 ← [𝛼𝑖𝑅 ⊕ 𝑓𝑖𝑅(𝛼𝑖 ⊕ 𝛽𝑖), 𝛼𝑖𝐿 ⊕ 𝛼𝑖𝑅 ⊕ 𝑓𝑖𝐿(𝛼𝑖 ⊕ 𝛽𝑖)⊕ 𝑓𝑖𝑅(𝛼𝑖 ⊕ 𝛽𝑖)],

𝛽𝑖+1 ← [𝛽𝑖𝐿 ⊕ 𝑓𝑖𝐿(𝛼𝑖 ⊕ 𝛽𝑖), 𝛽𝑖𝑅 ⊕ 𝑓𝑖𝑅(𝛼𝑖 ⊕ 𝛽𝑖)], 𝑖 = 1...𝑟,

𝑦𝐿 ← 𝛼𝑟+1, 𝑦𝑅 ← 𝛽𝑟+1,

Return 𝑦 = (𝑦𝐿, 𝑦𝑅).

The combiner of Lai-Massey structure is 𝛤 [[𝑥 ⋆ 𝑦 | 𝑧]] = 𝜎(𝑥)⊕ 𝜎−1(𝑦)⊕ 𝜎−1(𝑧).
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Proof. Let 𝑥 = 𝛼𝑖−1⊕𝛽𝑖−1, 𝑦 = 𝑓𝑖(𝛼𝑖⊕𝛽𝑖), 𝑧𝑖 = 𝛼𝑖⊕𝛽𝑖, 𝑧𝑖+1 = 𝛼𝑖+1⊕𝛽𝑖+1. Then

𝛼𝑖+1 ⊕ 𝛽𝑖+1 =[𝛼𝑖𝑅 ⊕ 𝛽𝑖𝐿 ⊕ 𝑓𝑖𝐿(𝛼𝑖 ⊕ 𝛽𝑖)⊕ 𝑓𝑖𝑅(𝛼𝑖 ⊕ 𝛽𝑖), 𝛼𝑖𝐿 ⊕ 𝛼𝑖𝑅 ⊕ 𝛽𝑖𝑅 ⊕ 𝑓𝑖𝐿(𝛼𝑖 ⊕ 𝛽𝑖)].

Similarly, we can get 𝛼𝑖 ⊕ 𝛽𝑖, which means that

𝑧𝑖+1 =[𝑥𝐿 ⊕ 𝛼𝑖−1𝑅 ⊕ 𝑓𝑖−1𝑅(𝛼𝑖−1 ⊕ 𝛽𝑖−1)⊕ 𝑦𝐿 ⊕ 𝑦𝑅,

𝛼𝑖−1𝐿 ⊕ 𝛽𝑖−1𝑅 ⊕ 𝑓𝑖−1𝐿(𝛼𝑖−1 ⊕ 𝛽𝑖−1)⊕ 𝑓𝑖−1𝑅(𝛼𝑖−1 ⊕ 𝛽𝑖−1)⊕ 𝑦𝐿]

=[𝑧𝑖𝐿 ⊕ 𝑧𝑖𝑅 ⊕ 𝑥𝑅 ⊕ 𝑦𝐿 ⊕ 𝑦𝑅, 𝑧𝑖𝐿 ⊕ 𝑥𝐿 ⊕ 𝑥𝑅 ⊕ 𝑦𝐿].

Hence, we may define the combiner by

𝛤 [[𝑥 ⋆ 𝑦 | 𝑧]] =[𝑧𝐿 ⊕ 𝑧𝑅 ⊕ 𝑥𝑅 ⊕ 𝑦𝐿 ⊕ 𝑦𝑅, 𝑧𝐿 ⊕ 𝑥𝐿 ⊕ 𝑥𝑅 ⊕ 𝑦𝐿] = 𝜎(𝑥)⊕ 𝜎−1(𝑦)⊕ 𝜎−1(𝑧).

We can see that 𝑥 ↦→ 𝛤 [[𝑥 ⋆ 𝑦 | 𝑧]] and 𝑦 ↦→ 𝛤 [[𝑥 ⋆ 𝑦 | 𝑧]] are permutations.
We give the following equivalent description of Lai-Massey structure: given the input
𝑥 = (𝛼1, 𝛽1).

Let 𝐻(𝑥, 𝑦) =
(︀
𝜎−1(𝑥)⊕ 𝑦, 𝑥⊕ 𝑦

)︀
and we can compute (𝑧0, 𝑧1) = 𝐻 (𝛼1, 𝛽1).

We calculate 𝑧2, ..., 𝑧𝑟+1 by

𝑧𝑖+1 = 𝜎(𝑧𝑖−1)⊕ 𝜎−1(𝑓𝑖(𝑧𝑖))⊕ 𝜎−1(𝑧𝑖) = 𝛤 [[𝑧𝑖−1 ⋆ 𝑓𝑖(𝑧𝑖) | 𝑧𝑖]].

We compute the output (𝛼𝑟+1, 𝛽𝑟+1) by (𝛼𝑟+1, 𝛽𝑟+1) = 𝐻−1 (𝑧𝑟, 𝑧𝑟+1).

The result of Theorem 5 is consistent with Lemma 5.

5 Quantum attacks against Quasi-Feistel structures

Since Feistel structure and Lai-Massey structure are quasi-Feistel structures, a problem
of much interest is whether it is possible to directly perform quantum attacks on quasi-
Feistel structures. Here we consider 𝑏 = 2. The 𝑖th-round of quasi-Feistel structure is
shown in Figure 6.

Fig. 6. 𝑖th-round of quasi-Feistel structure with
𝑏 = 2.

Fig. 7. 𝑖th-round of quasi-Feistel structure with
linear combiner and 𝑏 = 2.

We only consider the case where the combiner 𝛤 of quasi-Feistel structure is linear.
Let 𝐴 be a matrix of linear transformation. Then we write

𝛤 (𝑥, 𝑦, 𝑧) = 𝐴 ·

⎡⎣𝑥
𝑦
𝑧

⎤⎦ = [𝐴1 𝐴2 𝐴3 ] ·

⎡⎣𝑥
𝑦
𝑧

⎤⎦ def
= 𝐿1(𝑥)⊕ 𝐿2(𝑦)⊕ 𝐿3(𝑧),
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According to Definition 3, 𝐿1, 𝐿2 are reversible. The 𝑖th-round of quasi-Feistel struc-
ture with linear combiner and 𝑏 = 2 is shown in Figure 7.

5.1 Quantum Chosen-Plaintext Attack Against 3-round quasi-Feistel Structure

Figure 8 shows the 3-round quasi-Feistel Structure with linear combiner and 𝑏 = 2,
where 𝑓1, 𝑓2, 𝑓3 are round functions. For 𝑏 = 2, the inputs are 𝑧0, 𝑧1 and the outputs are
𝑧3, 𝑧4 as we shown in Definition 4.

Fig. 8. 3-round quasi-Feistel structure with linear combiner and 𝑏 = 2

Theorem 6. If 𝑓𝑖, 𝑖 = 1, 2, 3 are random functions, we can construct a quantum CPA
distinguisher against 3-round balanced quasi-Feistel Structure in 𝑂(𝑛) queries by us-
ing Simon’s algorithm.

Proof. For inputs 𝑧0, 𝑧1, 𝑧𝑖 = 𝐿1(𝑧𝑖−2) ⊕ 𝐿2(𝑓𝑖−1(𝑧𝑖−1)) ⊕ 𝐿3(𝑧𝑖−1), 𝑖 = 2, 3, 4. let
𝑧0 = 𝑥, 𝑧1 = 𝛼𝑏. We have

𝑧𝛼𝑏
2 (𝑥) =𝐿1(𝑥)⊕ 𝐿2(𝑓1(𝛼𝑏))⊕ 𝐿3(𝛼𝑏) = 𝐿1[𝑥⊕ 𝐿−11 𝐿2(𝑓1(𝛼𝑏))⊕ 𝐿−11 𝐿3(𝛼𝑏)],

Then 𝑧𝛼𝑏
3 (𝑥) = 𝐿1(𝛼𝑏)⊕ 𝐿2(𝑓2(𝑧

𝛼𝑏
2 ))⊕ 𝐿3(𝑧

𝛼𝑏
2 ).

Lemma 6. Let 𝑥 ∈ {0, 1}𝑛, 𝑏 ∈ {0, 1} and 𝛼0, 𝛼1 be arbitrary two fixed differ-

ent numbers in {0, 1}𝑛. Let (𝑧𝛼𝑏
0 , 𝑧𝛼𝑏

1 )
def
= (𝑥, 𝛼𝑏) being the input of 3-round bal-

anced quasi-Feistel structure with corresponding output (𝑧𝛼𝑏
3 , 𝑧𝛼𝑏

4 ). We can construct
a periodic function 𝑔4 from 3-round balanced quasi-Feistel structure with period 𝑠 =
𝐿−11 𝐿2(𝑓1(𝛼0))⊕ 𝐿−11 𝐿2(𝑓1(𝛼1))⊕ 𝐿−11 𝐿3(𝛼0)⊕ 𝐿−11 𝐿3(𝛼1) by letting

𝑔4 : {0, 1}𝑛 →{0, 1}𝑛

𝑥 ↦→𝑧𝛼0
3 (𝑥)⊕ 𝑧𝛼1

3 (𝑥)

𝑔4(𝑥) =𝐿1(𝛼0)⊕ 𝐿2(𝑓2(𝑧
𝛼0
2 (𝑥)))⊕ 𝐿3(𝑧

𝛼0
2 (𝑥))⊕

𝐿1(𝛼1)⊕ 𝐿2(𝑓2(𝑧
𝛼1
2 (𝑥)))⊕ 𝐿3(𝑧

𝛼1
2 (𝑥)),

where 𝑧𝛼𝑏
2 (𝑥) denotes the value of 𝑧2 when the input of 3-round balanced quasi-Feistel

structure is (𝑧𝛼𝑏
0 , 𝑧𝛼𝑏

1 ).
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Proof. we show that 𝑔4 is obviously a periodic function.

(a) 𝑧𝛼𝑏
2 (𝑥) = 𝑧

𝛼𝑏⊕1

2 (𝑥⊕ 𝑠) holds for all 𝑥 ∈ {0, 1}𝑛.
(b) 𝑔4(𝑥) has a period 𝑠 deriving from (a).

When the period is not unique, that is, Simon’s algorithm satisfies the approximate
commitment, there is 𝜀(𝑔4, 𝑠) < 1

2 , the probability of getting the correct 𝑠 is at least
1 −

(︀
2
(︀
3
4

)︀𝑐)︀𝑛
. Let 𝐴 be an Adversary, we write 3-round balanced quasi-Feistel struc-

ture as 3qF. We have Adv qprp-cpa
3qF (𝒜) = 1 −

(︀
2
(︀
3
4

)︀𝑐)︀𝑛 − 1
2𝑛 . If we choose 𝑐 ≥ 6,

Adv qprp-cpa
3qF (𝒜) = 1− 1

2𝑛 .

5.2 Quantum Chosen-Ciphertext Attack Against 4-round quasi-Feistel
Structure

Figure 9 shows the attack progress of 4-round quasi-Feistel Structure with linear com-
biner and 𝑏 = 2, where 𝑓1, 𝑓2, 𝑓3, 𝑓4 are round functions. 𝑧𝑖, 𝑧′𝑖, 𝑖 = 0, ..., 4 follow the
definition in Definition 4.

Let the inputs of the encryption process be 𝑧0, 𝑧1, and the outputs be 𝑧4, 𝑧5. Let the
inputs of the decryption process be 𝑧′4, 𝑧

′
5, and the outputs be 𝑧′0, 𝑧

′
1. 𝑧′4 = 𝑧4 ⊕𝑚1 and

𝑧′5 = 𝑧5 ⊕𝑚5, where 𝑚𝑗 , 𝑗 = 1, 2 and 𝑧𝑖 have the same length.

Fig. 9. The encryption and decryption progress of 4-round quasi-Feistel structure with linear com-
biner and 𝑏 = 2

Theorem 7. If 𝑓𝑖, 𝑖 = 1, 2, 3 are random functions, 4-round balanced quasi-Feistel
Structure can be attacked in 𝑂(𝑛) queries by using Simon’s algorithm in quantum CCA.

Proof. For the encryption process we have

𝑧𝑖 = 𝐿1(𝑧𝑖−2)⊕ 𝐿2(𝑓𝑖−1(𝑧𝑖−1))⊕ 𝐿3(𝑧𝑖−1), 𝑖 = 2, 3, 4, 5.

And for the decryption process we have

𝑧′𝑗 = 𝐿−11 [𝑧′𝑗+2 ⊕ 𝐿2(𝑓𝑗+1(𝑧
′
𝑗+1))⊕ 𝐿3(𝑧

′
𝑗+1)], 𝑗 = 0, 1, 2, 3.



Quantum Attacks on Lai-Massey Structure 17

Let 𝑚1 = 0. Let 𝑚2 = 𝐿1𝐿1(𝛼0)⊕ 𝐿1𝐿1(𝛼1). So we can get

𝑧′3 =𝑧3 ⊕ 𝐿1(𝛼0 ⊕ 𝛼1),

𝑧′2 =𝑧2 ⊕ 𝐿−11 𝐿2(𝑓3(𝑧3)⊕ 𝑓3(𝑧
′
3))⊕ 𝐿−11 𝐿3𝐿1(𝛼0 ⊕ 𝛼1),

𝑧′1 =𝑧1 ⊕ 𝐿−11 𝐿2(𝑓2(𝑧2)⊕ 𝑓2(𝑧
′
2))⊕ 𝐿−11 𝐿3𝐿

−1
1 𝐿2(𝑓3(𝑧3)⊕ 𝑓3(𝑧

′
3))⊕

𝛼0 ⊕ 𝛼1 ⊕ 𝐿−11 𝐿3𝐿
−1
1 𝐿3𝐿1(𝛼0 ⊕ 𝛼1).

Lemma 7. Let 𝑥 ∈ {0, 1}𝑛, 𝑏 ∈ {0, 1} and 𝛼0, 𝛼1 be arbitrary two fixed different

numbers in {0, 1}𝑛. Let (𝑧𝛼𝑏
0 , 𝑧𝛼𝑏

1 )
def
= (𝑥, 𝛼𝑏) being the input of the function in Figure.9

based on 4-round balanced quasi-Feistel structure and its inverse with corresponding
output (𝑧′𝛼𝑏

0 , 𝑧′
𝛼𝑏

1 ) when 𝑚1 = 0,𝑚2 = 𝐿1𝐿1(𝛼0) ⊕ 𝐿1𝐿1(𝛼1). We an construct a
periodic function 𝑔5 from 4-round round balanced quasi-Feistel structure with period
𝑠 = 𝐿−11 𝐿2(𝑓1(𝛼0))⊕ 𝐿−11 𝐿2(𝑓1(𝛼1))⊕ 𝐿−11 𝐿3(𝛼0)⊕ 𝐿−11 𝐿3(𝛼1) by letting

𝑔5 : {0, 1}𝑛 →{0, 1}𝑛

𝑥 ↦→𝑧′
𝛼0

1 (𝑥)⊕ 𝑧′
𝛼1

1 (𝑥)⊕ 𝛼0 ⊕ 𝛼1

𝑔5(𝑥) =𝐿−11 𝐿2(𝑓2(𝑧
𝛼0
2 (𝑥))⊕ 𝑓2(𝑧

′𝛼0

2 (𝑥))⊕ 𝑓2(𝑧
𝛼1
2 (𝑥))⊕ 𝑓2(𝑧

′𝛼1

2 (𝑥)))⊕
𝐿−11 𝐿3𝐿

−1
1 𝐿2(𝑓3(𝑧

𝛼0
3 (𝑥))⊕ 𝑓3(𝑧

′𝛼0

3 (𝑥))⊕ 𝑓3(𝑧
𝛼1
3 (𝑥))⊕ 𝑓3(𝑧

′𝛼1

3 (𝑥))),

where 𝑧𝛼𝑏
2 (𝑥), 𝑧′

𝛼𝑏

2 (𝑥), 𝑧𝛼𝑏
3 (𝑥), and 𝑧′

𝛼𝑏

3 (𝑥) denote the values of intermediate parame-
ters 𝑧2, 𝑧′2, 𝑧3, and 𝑧′3 respectively when the input of the function in Figure.9 is (𝑧′𝛼𝑏

0 , 𝑧′
𝛼𝑏

1 ).

Proof. For 𝑖 = 2, 3, we let ℎ′𝑖(𝑥)
def
= 𝑓𝑖 (𝑧

𝛼0
𝑖 (𝑥)) ⊕ 𝑓𝑖

(︀
𝑧′𝑖

𝛼0(𝑥)
)︀
⊕ 𝑓𝑖 (𝑧

𝛼1
𝑖 (𝑥)) ⊕

𝑓𝑖
(︀
𝑧′𝑖

𝛼1(𝑥)
)︀
. Then we will clearly show that 𝑔5 is a periodic function step by step.

(a) 𝑧𝛼𝑏
2 (𝑥) = 𝑧

𝛼𝑏⊕1

2 (𝑥⊕ 𝑠) holds for all 𝑥 ∈ {0, 1}𝑛 the same as Lemma.6.
(b) 𝑧𝛼𝑏

3 (𝑥) = 𝑧′3
𝛼𝑏⊕1(𝑥⊕ 𝑠) holds for all 𝑥 ∈ {0, 1}𝑛. We have

𝑧𝛼𝑏
3 (𝑥) = 𝐿1(𝛼𝑏)⊕ 𝐿2(𝑓2(𝑧

𝛼𝑏
2 ))⊕ 𝐿3(𝑧

𝛼𝑏
2 ),

𝑧′3
𝛼𝑏(𝑥) = 𝐿1(𝛼𝑏⊕1)⊕ 𝐿2(𝑓2(𝑧

𝛼𝑏
2 ))⊕ 𝐿3(𝑧

𝛼𝑏
2 ).

Thus we get 𝑧𝛼𝑏
3 (𝑥) = 𝑧′3

𝛼𝑏⊕1(𝑥⊕ 𝑠) deriving from (a).
(c) ℎ′3(𝑥) has a period 𝑠 deriving from (b).
(d) 𝑧′2

𝛼𝑏(𝑥) = 𝑧′2
𝛼𝑏⊕1(𝑥⊕ 𝑠) holds for all 𝑥 ∈ {0, 1}𝑛. We have

𝑧′2
𝛼𝑏(𝑥) =𝑧𝛼𝑏

2 (𝑥)⊕ 𝐿−11 𝐿2(𝑓3(𝑧
𝛼𝑏
3 (𝑥))⊕ 𝑓3(𝑧

′𝛼𝑏

3 (𝑥)))⊕ 𝐿−11 𝐿3𝐿1(𝛼0 ⊕ 𝛼1).

Thus 𝑧′2
𝛼𝑏(𝑥) = 𝑧′2

𝛼𝑏⊕1(𝑥⊕ 𝑠) deriving from (a) and (b).
(e) ℎ′2(𝑥) has a period 𝑠 deriving from (d).
(f) 𝑔5(𝑥) has a period 𝑠. We have 𝑔5(𝑥) = 𝐿−11 𝐿2(ℎ

′
2(𝑥)) ⊕ 𝐿−11 𝐿3𝐿

−1
1 𝐿2(ℎ

′
3(𝑥)).

Thus we get 𝑔5(𝑥) has a period 𝑠 deriving from (c) and (e).

Proof. (Proof of Theorem 7) Now we have 𝑔5(𝑥) = 𝑔5(𝑥 ⊕ 𝑠) with period 𝑠 =
𝐿−11 𝐿2(𝑓1(𝛼0)) ⊕ 𝐿−11 𝐿2(𝑓1(𝛼1)) ⊕ 𝐿−11 𝐿3(𝛼0) ⊕ 𝐿−11 𝐿3(𝛼1). When the period is
not unique, that is, Simon’s algorithm satisfies the approximate commitment, there is
𝜀(𝑔5, 𝑠) < 1

2 , the probability of getting the correct 𝑠 is at least 1 −
(︀
2
(︀
3
4

)︀𝑐)︀𝑛
. Let 𝐴

be an Adversary, we write 4-round balanced quasi-Feistel structure as 4qF. We have
Adv qprp-cpa

4qF (𝒜) = 1 −
(︀
2
(︀
3
4

)︀𝑐)︀𝑛 − 1
2𝑛 . If we choose 𝑐 ≥ 6, Adv qprp-cpa

4qF (𝒜) =

1− 1
2𝑛 .
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6 Conclusion and Discussion

There has been a discussion about whether the security of Lai-Massey structure and
Feistel structure are the same. Aaram Yun et.al [40] proved that Feistel structure and
Lai-Massey structure are quasi-Feistel structures and proved the birthday security of
(2𝑏− 1) and (3𝑏− 2)-round unbalanced quasi-Feistel networks with 𝑏 branches against
CPA and CCA attacks in classical. In [29], Luo, et al. shown that 3-round Lai-Massey
structure can resist the attacks of Simon’s algorithm in quantum, which is different from
Feistel structure. According to Luo, this means that Lai-Massey structure and Feistel
structure have a different number of rounds for CPA attacks in quantum, which also
means that quasi-Feistel structures do not have similar security strength in quantum.

We first give quantum attacks on Lai-Massey structure used in FOX. We show that
3-round Lai-Massey structure can be attacked by using Simon’s algorithm in 𝑂(𝑛)
quantum queries against quantum CPA attacks, which is the same as Feistel structure.
Then we give quantum CCA attacks on 4-round Lai-Massey structure, 𝑂(𝑛) quantum
queries are sufficient to distinguish 4-round Lai-Massey structure from random per-
mutation, which is the same as Feistel structure too. This makes us realize that quasi-
Feistel structures may have similar security strength in quantum. So we give quantum
attacks on quasi-Feistel structures and show that 3-round (4-round) balanced quasi-
Feistel structure with linear combiners can be attacked with 𝑂(𝑛) quantum queries in
quantum CPA(CCA).

For Lai-Massey structure, the version given by Vaudenay [35] used general oper-
ations in a finite group, and the version given by FOX [18] used XOR operation. In
both versions, the operation used in 𝜎 and the remainder of Lai-Massey structure are
the same. We consider that 𝜎 and the remainder of Lai-Massey structure use different
operations, i.e., we use XOR operation in 𝜎 and general operations in the remainder of
Lai-Massey structure. A problem of much interest is whether different operations can
improve the security of Lai-Massey structure. If the security can be improved, another
problem has been whether it is possible to resist quantum attacks as shown in [2].

Here we use quantum attacks that can make superposition queries. Quantum attacks
work with classical queries and offline quantum computations can be further consid-
ered, as Bonnetain et.al did in [5].

Hosoyamada and Iwata [15] show that 4-round Feistel structure against sufficient
qCPAs. More precisely, they prove that 4-round Feistel structure is secure up to 𝑂(2𝑛/3)
quantum queries if the input length is 2𝑛 bits. We guess that the quantum security bound
of 4-round Lai-Massey structure maybe 𝑂(2𝑛/3), too. But this still needs to be proved
in the future.
Acknowledgement Many thanks to the reviewers for their constructive comments dur-
ing the review process. One of reviewers pointed out that the combiner 𝛤 of balanced
quasi-Feistel structure in section 5 does not need to be all linear. After our verification,
only 𝐿1 needs to be linear. Specifically, if the combiner of quasi-Feistel structure is
like 𝛤 (𝑥, 𝑦, 𝑧) = 𝐿1(𝑥) ⊕ 𝐹 (𝑦, 𝑧), where 𝐿1 is linear and 𝐹 is a function, there ex-
ists a quantum CPA distinguisher against 3-round balanced quasi-Feistel structure and
a quantum CCA distinguisher against 4-round balanced quasi-Feistel Structure.
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A Intermediate Parameters in the Decryption Process of 4-round
Lai-Massey Structure in Section 3.2

For the decryption process of 4-round Lai-Massey structure shown in the figure 3, we
write the inputs as [𝑧1, 𝑧2], [𝑧3, 𝑧4] and the outputs as [𝑥′1, 𝑥

′
2], [𝑥

′
3, 𝑥
′
4]. Intermediate

parameters are as follows.

𝑎′4 =[𝑧1, 𝑧2], 𝑏
′
4 = [𝑧3, 𝑧4],

𝑎′3 =[𝑧1 ⊕ 𝑓4𝐿(𝛥
′
4), 𝑧2 ⊕ 𝑓4𝑅(𝛥

′
4)], 𝑏

′
3 = [𝑧3 ⊕ 𝑓4𝐿(𝛥

′
4), 𝑧4 ⊕ 𝑓4𝑅(𝛥

′
4)],

𝑎′2 =[𝑧1 ⊕ 𝑧2 ⊕ 𝑓3𝐿(𝛥
′
3)⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4), 𝑧1 ⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4)],

𝑏′2 =[𝑧3 ⊕ 𝑓3𝐿(𝛥
′
3)⊕ 𝑓4𝐿(𝛥

′
4), 𝑧4 ⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4)],

𝑎′1 =[𝑧2 ⊕ 𝑓2𝐿(𝛥
′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4),

𝑧1 ⊕ 𝑧2 ⊕ 𝑓2𝑅(𝛥
′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4)],

𝑏′1 =[𝑧3 ⊕ 𝑓2𝐿(𝛥
′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4), 𝑧4 ⊕ 𝑓2𝑅(𝛥

′
2)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4)],

where

𝛥′4 =[𝑧1 ⊕ 𝑧3, 𝑧2 ⊕ 𝑧4],

𝛥′3 =[𝑧1 ⊕ 𝑧2 ⊕ 𝑧3 ⊕ 𝑓4𝑅(𝛥
′
4), 𝑧1 ⊕ 𝑧4 ⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4)],

𝛥′2 =[𝑧2 ⊕ 𝑧3 ⊕ 𝑓3𝑅(𝛥
′
3)⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4),

𝑧1 ⊕ 𝑧2 ⊕ 𝑧4 ⊕ 𝑓3𝐿(𝛥
′
3)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4)],

𝛥′1 =[𝑧1 ⊕ 𝑧3 ⊕ 𝑓2𝑅(𝛥
′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓3𝑅(𝛥

′
3),

𝑧2 ⊕ 𝑧4 ⊕ 𝑓2𝐿(𝛥
′
2)⊕ 𝑓2𝑅(𝛥

′
2)⊕ 𝑓3𝐿(𝛥

′
3)].

Proof. Let 𝑎′4 = [𝑧1, 𝑧2], 𝑏
′
4 = [𝑧3, 𝑧4]. Intermediate parameters 𝑎𝑖, 𝑏𝑖, 𝛥𝑗 , 𝑖 = 1, 2, 3, 4

are the same as section 3.1 and section 3.2.

Fig. 10. The fourth round of the decryption progress of 4-round Lai-Massey structure

Lemma 8. For the fourth round of the decryption progress of 4-round Lai-Massey
structure (Figure 10), intermediate parameters 𝛥′4, 𝑎

′
3, 𝑏
′
3 can be expressed as:

𝛥′4 =[𝑧1 ⊕ 𝑧3, 𝑧2 ⊕ 𝑧4],
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𝑎′3 =[𝑧1 ⊕ 𝑓4𝐿(𝛥
′
4), 𝑧2 ⊕ 𝑓4𝑅(𝛥

′
4)],

𝑏′3 =[𝑧3 ⊕ 𝑓4𝐿(𝛥
′
4), 𝑧4 ⊕ 𝑓4𝑅(𝛥

′
4)].

Proof. According to the decryption progress of 4-round Lai-Massey structure, we can
get the following system of equations⎧⎪⎨⎪⎩

𝛥′4 = 𝑎′3 ⊕ 𝑏′3,

𝑎′3 ⊕ 𝑓4(𝛥
′
4) = 𝑎′4,

𝑏′3 ⊕ 𝑓4(𝛥
′
4) = 𝑏′4.

Solving the system of equations gives the result.

Fig. 11. The third round of the decryption progress of 4-round Lai-Massey structure

Lemma 9. For the third round of the decryption progress of 4-round Lai-Massey struc-
ture (Figure 11), intermediate parameters 𝛥′3, 𝑎

′
2, 𝑏
′
2 can be expressed as:

𝛥′3 = 𝑎′2 ⊕ 𝑏′2 = [𝑧1 ⊕ 𝑧2 ⊕ 𝑧3 ⊕ 𝑓4𝑅(𝛥
′
4), 𝑧1 ⊕ 𝑧4 ⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4)],

𝑎′2 = [𝑧1 ⊕ 𝑧2 ⊕ 𝑓3𝐿(𝛥
′
3)⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4), 𝑧1 ⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4)],

𝑏′2 = [𝑧3 ⊕ 𝑓3𝐿(𝛥
′
3)⊕ 𝑓4𝐿(𝛥

′
4), 𝑧4 ⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4)].

Proof. According to the decryption progress of 4-round Lai-Massey structure, we can
get the following system of equations⎧⎪⎨⎪⎩

𝛥′3 = 𝑎′2 ⊕ 𝑏′2,

𝑎′3 = [𝑎′2𝑅 ⊕ 𝑓3𝑅(𝛥
′
3), 𝑎

′
2𝐿 ⊕ 𝑎′2𝑅 ⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓3𝑅(𝛥

′
3)],

𝑏′3 = [𝑏′2𝐿 ⊕ 𝑓3𝐿(𝛥
′
3), 𝑏

′
2𝑅 ⊕ 𝑓3𝑅(𝛥

′
3)].

From Lemma 8 we can get:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎′2𝑅 ⊕ 𝑓3𝑅(𝛥

′
3) = 𝑧1 ⊕ 𝑓4𝐿(𝛥

′
4),

𝑎′2𝐿 ⊕ 𝑎′2𝑅 ⊕ 𝑓3𝐿(𝛥
′
3)⊕ 𝑓3𝑅(𝛥

′
3) = 𝑧2 ⊕ 𝑓4𝑅(𝛥

′
4),

𝑏′2𝐿 ⊕ 𝑓3𝐿(𝛥
′
3) = 𝑧3 ⊕ 𝑓4𝐿(𝛥

′
4),

𝑏′2𝑅 ⊕ 𝑓3𝑅(𝛥
′
3) = 𝑧4 ⊕ 𝑓4𝑅(𝛥

′
4).

Solving the system of equations gives the result.



24 Shuping Mao, Tingting Guo, Peng Wang, Lei Hu

Lemma 10. For the second round of the decryption progress of 4-round Lai-Massey
structure, intermediate parameters 𝛥′2, 𝑎

′
1, 𝑏
′
1 can be expressed as:

𝛥′2 =[𝑧2 ⊕ 𝑧3 ⊕ 𝑓3𝑅(𝛥
′
3)⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4),

𝑧1 ⊕ 𝑧2 ⊕ 𝑧4 ⊕ 𝑓3𝐿(𝛥
′
3)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4)],

𝑎′1 =[𝑧2 ⊕ 𝑓2𝐿(𝛥
′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4),

𝑧1 ⊕ 𝑧2 ⊕ 𝑓2𝑅(𝛥
′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4)],

𝑏′1 =[𝑧3 ⊕ 𝑓2𝐿(𝛥
′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4), 𝑧4 ⊕ 𝑓2𝑅(𝛥

′
2)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4)].

Proof. According to the decryption progress of 4-round Lai-Massey structure, we can
get the following system of equations⎧⎪⎨⎪⎩

𝛥′2 = 𝑎′1 ⊕ 𝑏′1,

𝑎′2 = [𝑎′1𝑅 ⊕ 𝑓2𝑅(𝛥
′
2), 𝑎

′
1𝐿 ⊕ 𝑎′1𝑅 ⊕ 𝑓2𝐿(𝛥

′
2)⊕ 𝑓2𝑅(𝛥

′
2)],

𝑏′2 = [𝑏′1𝐿 ⊕ 𝑓2𝐿(𝛥
′
2), 𝑏1𝑅 ⊕ 𝑓2𝑅(𝛥

′
2)].

From Lemma 9 we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎′1𝑅 ⊕ 𝑓2𝑅(𝛥

′
2) = 𝑧1 ⊕ 𝑧2 ⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4),

𝑎′1𝐿 ⊕ 𝑎′1𝑅 ⊕ 𝑓2𝐿(𝛥
′
2)⊕ 𝑓2𝑅(𝛥

′
2) = 𝑧1 ⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4),

𝑏′1𝐿 ⊕ 𝑓2𝐿(𝛥
′
2) = 𝑧3 ⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4),

𝑏′1𝑅 ⊕ 𝑓2𝑅(𝛥
′
2) = 𝑧4 ⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4).

Solving the system of equations gives the result.

Lemma 11. For the first round of the decryption progress of 4-round Lai-Massey struc-
ture, intermediate parameters 𝛥′1, [𝑥

′
1, 𝑥
′
2], [𝑥

′
3, 𝑥
′
4] can be expressed as:

𝛥′1 =[𝑧1 ⊕ 𝑧3 ⊕ 𝑓2𝑅(𝛥
′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓3𝑅(𝛥

′
3),

𝑧2 ⊕ 𝑧4 ⊕ 𝑓2𝐿(𝛥
′
2)⊕ 𝑓2𝑅(𝛥

′
2)⊕ 𝑓3𝐿(𝛥

′
3)],

[𝑥′1, 𝑥
′
2] =[𝑧1 ⊕ 𝑓1𝐿(𝛥

′
1)⊕ 𝑓2𝐿(𝛥

′
2)⊕ 𝑓2𝑅(𝛥

′
2)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4),

𝑧2 ⊕ 𝑓1𝑅(𝛥
′
1)⊕ 𝑓2𝐿(𝛥

′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4),

[𝑥′3, 𝑥
′
4] =[𝑧3 ⊕ 𝑓1𝐿(𝛥

′
1)⊕ 𝑓2𝐿(𝛥

′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4),

𝑧4 ⊕ 𝑓1𝑅(𝛥
′
1)⊕ 𝑓2𝑅(𝛥

′
2)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4)].

Proof. According to the decryption progress of 4-round Lai-Massey structure, we can
get the following system of equations⎧⎪⎨⎪⎩

𝛥′1 = [𝑥′1, 𝑥
′
2]⊕ [𝑥′3, 𝑥

′
4],

𝑎′1 = [𝑥′2 ⊕ 𝑓1𝑅(𝛥
′
1), 𝑥

′
1 ⊕ 𝑥′2 ⊕ 𝑓1𝐿(𝛥

′
1)⊕ 𝑓1𝑅(𝛥

′
1)],

𝑏′1 = 𝑏′0 ⊕ 𝑓1(𝛥
′
1) = [𝑥′3 ⊕ 𝑓1𝐿(𝛥

′
1), 𝑥

′
4 ⊕ 𝑓1𝑅(𝛥

′
1)].

From Lemma 11 we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥′2 ⊕ 𝑓1𝑅(𝛥

′
1) = 𝑧2 ⊕ 𝑓2𝐿(𝛥

′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4),

𝑥′1 ⊕ 𝑥′2 ⊕ 𝑓1𝐿(𝛥
′
1)⊕ 𝑓1𝑅(𝛥

′
1) = 𝑧1 ⊕ 𝑧2 ⊕ 𝑓2𝑅(𝛥

′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4)⊕ 𝑓4𝑅(𝛥

′
4),

𝑥′3 ⊕ 𝑓1𝐿(𝛥
′
1) = 𝑧3 ⊕ 𝑓2𝐿(𝛥

′
2)⊕ 𝑓3𝐿(𝛥

′
3)⊕ 𝑓4𝐿(𝛥

′
4),

𝑥′4 ⊕ 𝑓1𝑅(𝛥
′
1) = 𝑧4 ⊕ 𝑓2𝑅(𝛥

′
2)⊕ 𝑓3𝑅(𝛥

′
3)⊕ 𝑓4𝑅(𝛥

′
4).



Quantum Attacks on Lai-Massey Structure 25

Solving the system of equations gives the result.

B Proof of Theorem 4

Proof. First, we introduce a Theorem and a Lemma for subsequent proofs.

Theorem 8. [6] (Brassard, Hoyer, Mosca and Tapp). Let𝒜 be any quantum algorithm
on 𝑞 qubits that uses no measurement. Let ℬ : F𝑞

2 → {0, 1} be a function that classifies
outcomes of 𝒜 as good or bad. Let 𝑝 > 0 be the initial success probability that a mea-
surement of 𝒜|0⟩ is good. Set 𝑡 = ⌈ 𝜋

4𝜃 ⌉, where 𝜃 is defined via 𝑠𝑖𝑛2(𝜃) = 𝑝. Moreover,
define the unitary operator 𝑄 = −𝒜𝑆0𝒜−1𝑆ℬ, where the operator 𝑆ℬ changes the
sign of the good state:

|𝑥⟩ ↦→
{︂
−|𝑥⟩ if ℬ(𝑥) = 1
|𝑥⟩ if ℬ(𝑥) = 0

while 𝑆0 changes the sign of the amplitude only for the zero state |0⟩. Then after the
computation of 𝑄𝑡𝒜|0⟩, a measurement yields well with probability a least max{1 −
𝑝, 𝑝}.

Lemma 12. [24] Any state |𝑧𝑖⟩ = (−1)⟨𝑢𝑖,𝑥𝑖⟩|𝑢𝑖⟩ is proper with probability at least
1
2 . Any set of ℓ = 2(𝑛+

√
𝑛) states contains at least 𝑛−1 proper states with probability

greater than 4
5 .

Let 𝑈ℎ be a quantum oracle as |𝑥1, ..., 𝑥𝑙, 0⟩ ↦→ |𝑥1, ..., 𝑥𝑙, ℎ(𝑥1, ..., 𝑥𝑙)⟩. If 𝑘4

guessed right, then 𝑔3(𝑘4, [𝑥, 𝑥
′]) = 𝑔3(𝑘4, [𝑥, 𝑥

′] ⊕ 𝑠). Let ℎ : F𝑚
2 × F𝑛𝑙

2 → F(𝑛/2)𝑙

2

with: (𝑘, [𝑥1, 𝑥
′
1], ..., [𝑥𝑙, 𝑥

′
𝑙]) ↦→ 𝑔3(𝑘, [𝑥1, 𝑥

′
1])||...||𝑔3(𝑘, [𝑥𝑙, 𝑥

′
𝑙]). Then we can con-

struct the following quantum algorithm 𝒜 :

1. Initializing a 𝑚+ 𝑛𝑙 + 𝑛𝑙/2-qubit register |0⟩⊗𝑚+𝑛𝑙+𝑛𝑙/2.
2. Apply Hadamard transformation 𝐻⊗𝑚+𝑛𝑙 to the first 𝑚+𝑛𝑙 qubits to obtain quan-

tum superposition

𝐻⊗𝑚+𝑛𝑙|0⟩ = 1√
2𝑚+𝑛𝑙

∑︁
𝑘∈F𝑚

2 ,[𝑥1,𝑥′
1],...,[𝑥𝑙,𝑥′

𝑙]∈F
𝑛
2

|𝑘⟩|[𝑥1, 𝑥
′
1]⟩...|[𝑥𝑙, 𝑥

′
𝑙]⟩|0, ..., 0⟩.

3. Applying 𝑈ℎ:

1√
2𝑚+𝑛𝑙

∑︁
𝑘∈F𝑚

2 ,[𝑥1,𝑥′
1],...,[𝑥𝑙,𝑥′

𝑙]∈F
𝑛
2

|𝑘⟩|[𝑥1, 𝑥
′
1]⟩...|[𝑥𝑙, 𝑥

′
𝑙]⟩|ℎ(𝑘, [𝑥1, 𝑥

′
1], ..., [𝑥𝑙, 𝑥

′
𝑙])⟩.

4. Apply Hadamard transformation to the qubits |[𝑥1, 𝑥
′
1]⟩...|[𝑥𝑙, 𝑥

′
𝑙]⟩:

|𝜙⟩ = 1√
2𝑚+2𝑛𝑙

∑︁
𝑘∈F𝑚

2 ,𝑢1,...,𝑢𝑙,[𝑥1,𝑥′
1],...,[𝑥𝑙,𝑥′

𝑙]∈F
𝑛
2

|𝑘⟩(−1)⟨𝑢1,[𝑥1,𝑥
′
1]⟩|𝑢1⟩ · · · (−1)⟨𝑢1,[𝑥𝑙,𝑥

′
𝑙]⟩

|𝑢𝑙⟩|ℎ(𝑘, [𝑥1, 𝑥
′
1], ..., [𝑥𝑙, 𝑥

′
𝑙])⟩.
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If 𝑘4 is guessed right, the period 𝑠 will orthogonal to all the 𝑢𝑖, 𝑖 = 1...𝑙. From
lemma 12, we choose 𝑙 = 2(𝑛+

√
𝑛). Then we can construct a classifier ℬ : F𝑚+𝑛𝑙

2 →
{0, 1} with a good subspace |𝜙1⟩ and a bad subspace |𝜙0⟩ as Definition 5. |𝑥⟩ in the
good subspace if ℬ(𝑥) = 1. Let |𝜙⟩ = |𝜙1⟩ + |𝜙0⟩. |𝜙1⟩ is the sum of basis states for
which the right 𝑘4. We can check it by whether 𝑔3(𝑘, [𝑥, 𝑥′]) = 𝑔3(𝑘, [𝑥, 𝑥

′]⊕ 𝑠):

Definition 5. Let 𝑈̃ = ⟨𝑢1, ..., 𝑢𝑙⟩ be the linear span of all 𝑢𝑖. We define Classifier
ℬ : F𝑚+𝑛𝑙

2 ↦→ {0, 1} which maps (𝑘, 𝑢1, ..., 𝑢𝑙) ↦→ {0, 1}.

1. If dim(𝑈̃) ̸= 𝑛 − 1, output 0. Otherwise compute the unique period 𝑠 by using
Lemma 2 in [24].

2. For random [𝑥, 𝑥′], if 𝑔3(𝑘, [𝑥, 𝑥′]) = 𝑔3(𝑘, [𝑥, 𝑥
′] ⊕ 𝑠), then output 1, otherwise

output 0.

Mearsure |𝜙⟩ and the initial probability of the good state is:

𝑝 = Pr[|𝑘⟩|𝑢1⟩...|𝑢𝑙⟩ is good] = Pr[𝑘 = 𝑘4] · Pr[ℬ(𝑘, 𝑢1, ..., 𝑢𝑙) = 1|𝑘 = 𝑘4] ≈
1

2𝑛
.

Set 𝑡 = ⌈ 𝜋
4𝜃 ⌉, where 𝜃 is defined via 𝑠𝑖𝑛2(𝜃) = 𝑝. Then 𝜃 ≈ arcsin(2−𝑛/2) ≈

2−𝑛/2, 𝑡 ≈ ⌈ 𝜋
4×2−𝑛/2 ⌉ ≈ 2𝑛/2. We define the unitary operator 𝑄 = −𝒜𝑆0𝒜−1𝑆ℬ,

where the operator 𝑆ℬ changes the sign of the good state:

|𝑘⟩|𝑢1⟩...|𝑢𝑙⟩ ↦→
{︂
−|𝑘⟩|𝑢1⟩...|𝑢𝑙⟩ if 𝐵(𝑘, 𝑢1, ..., 𝑢𝑙) = 1
|𝑘⟩|𝑢1⟩...|𝑢𝑙⟩ if 𝐵(𝑘, 𝑢1, ..., 𝑢𝑙) = 0.

𝑆0 changes the sign of the amplitude only for the zero state |0⟩. Then after the
computation of 𝑄𝑡𝒜|0⟩, according to the Theorem 8, a measurement yields good with
probability a least max{1− 𝑝, 𝑝} ≈ 1− 1

2𝑛 .
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