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Abstract. Misuse resilience is an important security criterion in the
evaluation of the NIST Post-quantum cryptography standardization pro-
cess. In this paper, we propose new key mismatch attacks against Kyber
and Saber, NIST's selected scheme for encryption and one of the �nal-
ists in the third round of the NIST competition, respectively. Our novel
idea is to recover partial information of multiple secret entries in each
mismatch oracle call. These multi-positional attacks greatly reduce the
expected number of oracle calls needed to fully recover the secret key.
They also have signi�cance in side-channel analysis.
From the perspective of lower bounds, our new attacks falsify the Hu�-
man bounds proposed in [Qin et al. ASIACRYPT 2021], where a one-
positional mismatch adversary is assumed. Our new attacks can be bounded
by the Shannon lower bounds, i.e., the entropy of the distribution gener-
ating each secret coe�cient times the number of secret entries. We call
the new attacks �near-optimal� since their query complexities are close
to the Shannon lower bounds.

Keywords: Lattice-based cryptography · Mismatch attacks · LWE ·

LWR · Kyber · Saber.

1 Introduction

Post-quantum cryptography (PQC) has become essential due to the rapid ad-
vances in building quantum computers. In post-quantum cryptography, researchers
investigate new cryptographic primitives that resist quantum attacks (e.g. Shor's
algorithm [41]) even when large-scale quantum computers exist. There are �ve
main branches in post-quantum cryptography, lattice-based, code-based, multi-
variate-based, isogeny-based, and symmetric-based cryptography. Lattice-based
cryptography [3,39] is arguably the most promising of them all.

In 2016, NIST (National Institute of Standards and Technology, U.S. Depart-
ment of Commerce) started a standardization process [1], referred to as the NIST
PQC project, to solicit new quantum-resistant public-key cryptographic stan-
dards. Recently the fourth round began and the Learning With Errors (LWE)-
based KEM Kyber [40] was chosen for the Public Key Encryption (PKE)/Key



Encapsulation Mechanism (KEM) category. Other than Kyber the third round
included two more lattice-based PKE/KEM �nalists, the Learning With Round-
ing (LWR)-based KEM Saber [16], as well as NTRU [12]. The last �nalist in the
third round was the code-based KEM Classic McEliece [4].

NIST de�nes �ve security levels, from NIST-I to NIST-V, characterizing the
required security level by the computational e�ort of key-search on a block cipher
(or of collision search on a hash function). For instance, the NIST-I parameter
set should resist any attack requiring computational resources less than those for
key-search on AES128. In the call-for-proposal [2], NIST also listed additional
desirable security properties, and among them, side-channel and keypair-reuse
resiliences are two attractive properties requiring extensive further investigation.

The focal point of this paper is a speci�c type of keypair-reuse attacks called
mismatch attacks [19], and we mainly target the LWE/LWR-based KEMs Kyber
and Saber. In such a mismatch attack, one communicating party's public key is
reused and the adversary will impersonate the other party and recover the secret
key by repeatedly checking whether the two shared keys match. There is a long
list of known mismatch attacks on the lattice-based KEMs, e.g. [36,7,6,35,24,37].
The main problem related to mismatch attacks in the NIST PQC project is
evaluating the candidate's key reuse resilience, i.e., how many key reuses can be
tolerated before the full secret key is recovered. Mismatch attacks are not only
signi�cant when evaluating key reuse resilience, but also in side-channel and fault
analysis, because mismatch attacks are closely connected with certain types of
chosen-ciphertext side-channel attacks [37,18,26,38,42] and a fault-injection at-
tack [43]. The authors in [37] proposed a generic method of transforming the
problem of �nding optimal mismatch attacks to �nding an optimal binary re-
covery tree (BRT), and obtained the optimal BRT and the corresponding lower
bounds by Hu�man coding.

However, the lower bounds in [37] are derived under the assumption that
the adversary only can recover partial information of one secret entry in each
mismatch oracle call. Thus, their bounds could be invalid for general adversaries
who can recover partial secret information related to multiple positions. However,
it is challenging to design a better attacking strategy to constructively beat the
lower bound proposed in [37].

1.1 Related Work

Chosen-ciphertext attacks (CCA) on IND-CPA secure schemes can be traced
back to Bleichenbacher's attacks on the RSA PKCS#1 [11]. In 1999, Hall, Gold-
berg, and Schneier [29] proposed the reaction attack model that checks if the
decryption is successful or not. This model is a weaker model than the CCA
model, and the reaction attacks of [29] can be used to recover messages for
code-based schemes like McEliece [33] and private keys for early lattice-based
schemes such as the Ajtai-Dwork [3] and the GGH [23] cryptosystems. Ho�stein
and Silverman [31] extended these attacks to NTRU [30].

These attacks can be protected against by using CCA transforms, such as the
famous Fujisaki-Okamoto (FO) transform [22]. Numerous works [27,20,15,28,17,25,10]
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Table 1: Sample complexity of the new attack v.s. lower bounds.
Shannon Lower Bound Previous Best(npb) New Attack(nna)
Bound(b1) (b2) from [37] npb from [37] npb/b1 npb/b2 nna nna/b1 nna/b2

Kyber512 1195 1216 1312 1.098 1.079 1205 1.008 0.991

Kyber768 1560 1632 1776 1.138 1.088 1588 1.018 0.973

Kyber1024 2079 2176 2368 1.139 1.088 2118 1.019 0.973

LightSaber 1386 1412 1460 1.053 1.033 1410 1.017 0.998

Saber 1954 1986 2091 1.071 1.053 1985 1.015 0.999

FireSaber 2389 2432 2624 1.098 1.079 2411 1.009 0.991

in lattice-based and code-based cryptography demonstrate that the CCA pro-
tection can fail if the decryption error rate is not su�ciently small.

In 2016, Fluhrer [21] initiated key-reuse attacks against lattice-based encryp-
tion. Later, Ding, Fluhrer, and Saraswathy [19] extended the attacks to lattice-
based key exchange and proposed a key mismatch attack. Similar attacks can
be applied to many lattice-based KEMs and the query complexities are further
improved in [8,7,36,35,24,32].

Regarding the lower bounds on the average number of queries needed to
recover the full secret key in a mismatch attack, in EUROCRYPT 2019, B etu
et al. [6] proved that this number should be larger than the Shannon entropy of
the secret distribution. This lower bound is referred to as the Shannon bound
in this paper. In ASIACRYPT 2021, Qin et al. [37] proposed sharper lower
bounds from Hu�man coding theory for CPA-secure lattice-based KEMs and
also presented improved constructive results with query complexities close to
the proposed Hu�man coding lower bounds.

1.2 Contributions

In this paper, we propose novel mismatch attacks against Kyber and Saber that
beat the Hu�man coding lower bounds proposed in [37], i.e., we falsify their lower
bounds by providing better constructive results. Our techniques include novel
attacking strategies that can recover partial information about multiple coe�-
cients of the secret key in each query. We name the new attacks multi-positional
mismatch attacks. The main contributions of the paper are the following.

1. We �rst study two-positional attacks on Kyber and Saber. We propose new
methods to split the two-dimensional plane for two secret coe�cients and
decide from the mismatch oracle call which part the two coe�cients belong
to. We propose various splitting approaches and transform the problem of
�nding the most e�cient splits into an optimization problem. For Kyber512,
Kyber768, Kyber1024, and FireSaber we search for the best two-positional
attacks manually. When the possible pairs of secret coe�cients are too large,
e.g. in the cases of LightSaber and Saber, we design a greedy algorithm
to automatically solve the optimization problem. This greedy approach is
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extended to attacking more than two positions at a time.
In Table 1 we present the new query complexities, which are compared with
the Shannon bounds and the one-dimensional Hu�man bounds proposed
in [37]. Firstly, our new methods beat the lower bounds in [37] for all the
parameter sets of Kyber and Saber. Secondly, the new attacks signi�cantly
improve the query complexities, e.g., reducing 107 queries for Kyber512 and
250 for Kyber1024, compared to the attacks in [37]. We call the attacks �near-
optimal� since their query complexities are close to the Shannon bound.
For instance, for Kyber512, the constructive result is only larger than the
Shannon bound by 10 queries (or by a factor of 0.8 %).

2. We further employ the lattice estimator, a new version of the widely-used
LWE estimator [5] to roughly estimate the query sample complexity when
a certain amount (e.g., 260) of post-processing with lattice reduction is al-
lowed. Our new multi-positional mismatch attacks also improve the query
complexity in this scenario. Though it has been remarked in [37] that the
derived lower bounds are invalid when post-processing is allowed, we present
the �rst quantitative analysis of mismatch attacks with post-processing.

3. Last, our new multi-positional mismatch attacks can improve the e�ciency
of side-channel attacks on CCA-secure implementations of Kyber and Saber.
The new attack strategy may also be applied to improve the fault-injection
attack in [43].

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we present the nec-
essary background including the CPA-secure versions of Kyber and Saber, the
model of mismatch attacks, and the Hu�man coding. In Section 3, we present
the state-of-the-art mismatch attacks on Kyber and Saber proposed in [37]. We
present our multi-positional attacks, that constructively beat the lower bounds
from [37], in Section 4. This is followed by more discussions about using post-
processing to further reduce the query complexity and the connection to side-
channel and fault-injection analysis in Section 5. We conclude this paper and
present possible future works in Section 6.

2 Background

In this section, we introduce CPA-secure instantiations of the KEMs Kyber and
Saber. Note that in the o�cial documents of Kyber and Saber, the CPA-secure
versions are limited to ephemeral keys, but this constraint may be ignored in
practice. We thus create these CPA-secure instantiations to assess their key reuse
resilience. Our notations and terminology are similar to the ones in [37].

� Let H(·) be a hash function and x||y be the concatenation of two strings x
and y.

� The symbol ←$ denotes sampling from a distribution.

4



Alice Bob

1. Generate matrix a ∈ Rl×lq

sA, eA ←$Bl
η 2. m←$ {0, 1}256

PA ← a ◦ sA + eA Generate matrix a ∈ Rl×lq

Output: (sA,PA) PA sB ←$Bl
η, eB ←$Bl

η′ , e
′
B ←$Bη′

PB ← a ◦ sB + eB

vB ← Ptr
A ◦ sB + e′B

+Decompressq(m, 2)

3. uA ← Decompressq(c1, 2
dPB ) c1 ← Compressq(PB , 2

dPB )

vA ← Decompressq(cc, 2
dvB ) PB , c1, c2 c2 ← Compressq(vB , 2

dvB )

m′ ← Compressq(vA − strA ◦ uA, 2) KB ← H(m||(PB , (c1, c2)))

KA ← H(m′||(PB , (c1, c2)))

Fig. 1: The CPA-secure version of Kyber

� Let Atr denote the transpose of the matrix A.

� The distribution Bη is the central binomial distribution whose output is
computed as

∑η
i=1(ai−bi), where ai and bi are independently and uniformly

randomly sampled from {0, 1}.

2.1 CPA-Secure Version of Kyber

Kyber [40] is the KEM proposal of CRYSTALS (Cryptographic Suite for Alge-
braic Lattices), based on the module learning with errors (MLWE) problem. In
the fourth round NIST has selected Kyber as their scheme for PKE/KEM. Fol-
lowing the work of [37], we describe a potential instantiation of the CPA-secure
Kyber KEM in Figure 1 by invoking the functions of Kyber.CPAPKE from [40].

Let Rq be the polynomial ring Zq[x]/(xn + 1), where q = 3329 and n = 256,
and let ◦ (+ or −) be the corresponding multiplication (addition or subtraction)
in the ring. Let l denote the rank of the module, which is set to be 2, 3, and 4,
for the three di�erent versions, Kyber512, Kyber768, and Kyber 1024. Alice and
Bob generate a matrix a from a public seed by calling a pseudorandom function.
As shown in Figure 1, round-3 Kyber employs two central binomial distributions
Bη and Bη′ . The designers pick (η, η′) = (3, 2) for Kyber512, and (η, η′) = (2, 2)
for Kyber768 and Kyber1024. The Compressq(x, p) function transforms x from
module q to module p by

Compressq(x, p) = dx · p/qc mod +p,
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Alice Bob

1. Generate matrix a ∈ Rl×lq

sA ←$Bl
η 2. m←$ {0, 1}256

PA ← ((a ◦ sA + h) mod q) Generate matrix a ∈ Rl×lq

� (εp − εq) ∈ Rl×1
p sB ←$Bl

η

Output: (sA,PA)) PA PB ← ((a ◦ sB + h) mod q)

� (εp − εq) ∈ Rl×1
p

vB ← Ptr
A ◦ (sB mod p) ∈ Rp

3. vA ← Ptr
B ◦ (sA mod p) ∈ Rp c← ((vB + h1 − 2εp−1m) mod p)

m′ ← ((vA + h2 − 2εp−εT c) mod p) PB , c � (εp − εT ) ∈ RT

� (εp − 1) ∈ R2 KB ← H(m||(PB , c))

KA ← H(m′||(PB , c))

Fig. 2: The CPA-secure version of Saber

where r′ = r mod +p represents the unique element r′ in the range −p2 < r′ ≤ p
2

such that r′ ≡ r (mod p). We also de�ne the inverse function

Decompressq(x, p) = dx · q/pc.

If the �rst input to the function Compressq(x, p) (or Decompressq(x, p)) is a
vector/polynomial, then we call the function coe�cient-wise.

2.2 CPA-Secure Version of Saber

Saber [16] was a �nalist candidate in the third round of the NIST PQ project,
whose security is based on the hardness of the Module Learning with Rounding
problem (MLWR). Similar to the CPA-secure version of the Kyber KEM, in
Figure 2 we present a possible instantiation of a CPA-secure Saber KEM by
invoking the functions of Saber.PKE from [16].

We use the same notations as in Section 2.1, e.g. Rq denotes the polynomial
ring Zq[x]/(xn + 1), where n = 256 and the rank of the module l is set to be 2
for LightSaber, 3 for Saber, and 4 for FireSaber. The matrix a is also generated
from a public seed. The secret coe�cients are generated from the central binomial
distribution Bη, where η is 5 for LightSaber, 4 for Saber, and 3 for FireSaber,
respectively. Saber chooses three positive integers q, p, and T as powers of 2,
i.e., q = 2εq , p = 2εp , and T = 2εT , respectively. In round-3 Saber, εq = 13 and
εp = 10. The exponent εT is set to be 3 for LightSaber, 4 for Saber, and 6 for
FireSaber, respectively.
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We denote the bitwise right shift operation by� and apply it to polynomials
and matrices by calling it coe�cient-wise. Saber also introduces two constant
polynomials h1 ∈ Rq and h2 ∈ Rq with all coe�cients set to 2εq−εp−1 and
2εp−2 − 2εp−εT−1 + 2εq−εp−1, respectively, and one constant vector h ∈ Rl×1q

with each polynomial set to h1.

2.3 Mismatch Attack Model

In a key mismatch attack, we assume that Alice reuses her keypair (sA,PA) and
the adversary Eve impersonates Bob to recover Alice's secret key sA by com-
municating with Alice. We can build an oracle to simulate the decapsulation of
Alice with input including the pair (PB , c) chosen by Eve and the correspond-
ing shared key KB . Here we denote c1, c2 by c for Kyber. The oracle denoted O
calls Alice's decapsulation function and obtains the shared key KA. It outputs
1 if the shared keys KA = KB and 0 otherwise. The aim of a mismatch attack
is to recover Alice's key by selecting the chosen pairs of the form (PB , c) and
iteratively querying the oracle O.

2.4 Hu�man Coding

Hu�man coding refers to an algorithm that �nds an e�cient binary code used
for lossless data compression. Given a symbol-by-symbol encoding of strings
with independent and identically distributed symbols from a known distribution,
Hu�man coding creates an optimal code. Hu�man coding works by iteratively
building a binary tree from the bottom up by merging the two least probably
symbols into a new symbol. Basic (one-dimensional) Hu�man coding can be
generalized to n dimensions and improved by considering each possible n-tuple
of symbols from an alphabet as a new symbol and applying Hu�man coding to
these n-tuples. We refer the reader to a book on information theory (e.g., [13])
for more details.

3 One-Positional Mismatch Attacks

In a mismatch attack, Eve impersonates Bob and wants to recover Alice's secret
key sA. As we can see in Figure 1 and 2, given the pair (PB , c), the keys KA and
KB match if and only if Alice's computed m′ matches Eve's chosen m. Thus,
for each query of the oracle Eve sets her parameters m and (PB , c) such that
the output of the oracle teaches her something about sA.

Let us explain in some detail how Eve's attack works when retrieving one
position at a time and let us �rst focus on position 0. Let si denote the value
of sA on index i, when the subscript A is implied. Eve creates the message
m = [1, 0, . . . , 0]. She sets her parameters (PB , c) such that Alice's received
message is 0 by design on all positions except for the position 0, whose value
depends on the secret value s0. By observing the output of the oracle, Eve learns
some information about s0. Repeating the process, Eve learns the exact value of
s0 and then continues the process to learn the other si values.
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3.1 Kyber

Let us now describe the attack in some more detail, for Kyber10243. Eve lets
PB = [d q32c, 0, . . . , 0]. She calculates c1 = Compressq(PB , 2

dPB ) and sets
c2 = [h, 0, . . . , 0], where h is a parameter designed to extract di�erent in-
formation about the secret, depending on the context. Alice calculates uA =
Decompressq(c1, 2

dPB ) = PB and vA = Decompressq(c2, 2
dvB ) = [d q32hc, 0,

. . . , 0]. Next, Alice calculates

m′[0] =Compressq((vA − strAuA)[0], 2) (1)

=Compressq(vA[0]− (strAuA)[0], 2) (2)

=

⌈
2

q

(⌈ q
32
h
⌋
− sA[0]

⌈ q
32

⌋)⌋
mod 2. (3)

The value of m′[0] depends on h and s0 according to Table 2. Each query
gives us partial information about s0. Notice that we are not able to split the
values of s0 into all possible two subsets of values. All the possible combinations
split the values into two adjacent intervals. Attempts at making any other type
of split fail. Modifying the mismatch attack to allow for other splits with respect
to s0 leads to a situation where m′[i] is not always equal to 0 for i 6= 0.

Let us show why Alice's received message is equal to 0 by construction on all
positions with non-zero index. Since vA[i] = 0, for index i 6= 0, Alice computes

m′[i] =Compressq((vA − strAuA)[i], 2) (4)

=Compressq(vA[i]− (strAuA)[i], 2) (5)

=

⌈
2

q

(
−sA[i]

⌈ q
32

⌋)⌋
mod 2. (6)

The expression within the outer rounding function is bounded in absolute
value by 2/3329 · 2 · 105 = 0.126 . . . < 1/2. Hence the value is always equal to 0
when rounded to the nearest integer and thus m′[i] = 0, for i 6= 0.

To modify the mismatch attack to recover si, where 1 ≤ i ≤ n, we instead
let PB be equal to 0 on all positions, except for PB [n− i] = −d q32c.

As Kyber is based on module-LWE, Pb and s consist of l blocks, where
each block has size n. The multiplication of them consists of a scalar product
of two vectors with l polynomials each. Thus, to retrieve positions n to 2n− 1,
we just shift the index of PB by n positions. That is, we let all positions in
PB be equal to 0, except that PB [n] = d q32c, to retrieve sn. To retrieve the
value sn+i, for 0 < i < n, we let all positions of PB be equal to 0, except that
PB [2n− i] = −d q32c. To retrieve another block we just continue shifting another
n positions and so on.

In Figure 3 we illustrate the mismatch attacks from [37] on the di�erent
versions of Kyber.

3 To attack other versions of Kyber you just alter the attack parameters slightly.
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Table 2: m′[0] as a function of s0 for di�erent values of h for Kyber1024.
s0

h -2 -1 0 1 2

7 1 0 0 0 0
8 1 1 0 0 0
9 1 1 1 0 0
10 1 1 1 1 0
22 0 1 1 1 1
23 0 0 1 1 1
24 0 0 0 1 1
25 0 0 0 0 1

3.2 Saber

A mismatch attack on Saber works similarly to a mismatch attack on Kyber.
Let c be equal to 0 on all positions, except that c[0] = h. Let H denote 2εp−2 −
2εp−εT−1+2εq−εp−1. Finally, let PB be equal to 0 on all positions except PB [0] =
k. For the �rst index i = 0 we get

m′[0] = ((k(si mod p) +H − 2εp−εT h) mod p)� (εp − 1). (7)

For the indices i 6= 0 we get

m′[i] = ((k(si mod p) +H) mod p)� (εp − 1). (8)

If we make k small enough, then we make sure that m′[i] = 0 for all possible
values of si. Table 3 shows parameters achieving di�erent splits of m′[0], while
making sure that m′[i] = 0, for all i 6= 0, for FireSaber4.

Note that the parameters di�er a bit from the ones in [37]. We pick the
minimal values of k that achieve each possible split. This allows our multi-
positional attacks in Section 4 to use as many positions at the same time as
possible.

To retrieve positions si, for 1 ≤ i ≤ n− 1, we make the adjustment that c is
equal to 0 on all positions, except that c[n− i] = −k, where k refers to a value
used to achieve a speci�c split to retrieve the value s0 for an implied value of h.

Just like Kyber, Saber is based on module-LWE and the mismatch attack
retrieves the secret values in blocks of size n. Just like for Kyber, we shift the
non-zero indices of PB by n positions to retrieve each new block of secret values.

In Figure 3 we illustrate the mismatch attacks from [37] on the di�erent
versions of Saber.

3.3 The Lower Bounds from [37]

An obvious lower bound on the attack is the Shannon bound. In a pure mismatch
attack, the number of queries cannot be lower than the entropy of the secret.

4 To attack other versions of Saber you just alter the attack parameters slightly.
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Table 3: m′[0] as a function of s0 for di�erent values of h and k for FireSaber.
s0

h k -3 -2 -1 0 1 2 3

15 5 1 0 0 0 0 0 0
15 7 1 1 0 0 0 0 0
15 13 1 1 1 0 0 0 0
16 4 1 1 1 1 0 0 0
16 2 1 1 1 1 1 0 0
17 7 1 1 1 1 1 1 0
47 5 0 1 1 1 1 1 1
47 7 0 0 1 1 1 1 1
47 13 0 0 0 1 1 1 1
48 4 0 0 0 0 1 1 1
48 2 0 0 0 0 0 1 1
49 7 0 0 0 0 0 0 1

As each position in the secret vector is independent of the other positions, the
entropy is equal to the number of positions times the entropy of each position,
leading to the Shannon bounds of Table 4.

Regarding their mismatch attacks the authors of [37] write �For simplicity, we
assume the adversary recovers Alice's secret key sA one coe�cient block by one
coe�cient block.� For Kyber and Saber, this means recovering one coe�cient at
a time. Under this restriction, the authors show that Hu�man coding is optimal
and leads to another lower bound for a pure mismatch attack. In our concrete
setting, since not every possible splitting of the secret values into two subsets is
possible using our available types of queries, there is no guarantee that we can
reach the performance of the Hu�man code in practice.

Table 4: Lower limits for key mismatch attacks on Kyber and Saber.

Scheme s Range Unknowns Entropy Per Position Shannon Bound Hu�man Bound

Kyber512 [−3, 3] 512 2.3334 1195 1216
Kyber768 [−2, 2] 768 2.0306 1560 1632
Kyber1024 [−2, 2] 1024 2.0306 2079 2176

LightSaber [−5, 5] 512 2.7064 1386 1412
Saber [−4, 4] 768 2.5442 1954 1986
FireSaber [−3, 3] 1024 2.3334 2389 2432
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3.4 The Practical Mismatch Attacks from [37]

Figure 3 illustrates and summarizes the practical mismatch attacks on Kyber
and Saber from [37]. The blue/red/green/yellow/brown/orange lines correspond
to the 1st/2nd/3rd/4th/5th/6th splits respectively.

All the attacks on both Kyber and Saber follow the same strategy. Start
with a query that splits the possibilities for the secret value si into two halves as
equally probable as possible. Then no matter on which half of the secret values
we end up, each of the remaining queries decides whether the si is equal to the
remaining most probable value or any of the other values5.

There are two interesting ways of viewing these mismatch attacks, which we
generalize to higher dimensions in Section 4.4.

Partly, the attacks correspond to �rst making as even of a split as possible,
and then for the remaining part of the attack make splits that correspond to
Hu�man coding6. In Section 4.4 we apply a similar strategy where we start out
with a couple of roughly even splits of the secret values and then apply steps
that are identical to/close to Hu�man coding. This approach is applied manually
for attacks on all versions of Kyber and on FireSaber.

Another perspective on these mismatch attacks is that they are all greedy
attacks. Each split for each attack is the split that divides up the remaining
secret values into two as equally probable halves as possible. This approach is
generalized in Section 4.4 for our attacks on Saber and LightSaber, systems
where creating attacks manually by hand is tedious due to the si values taking
a wider range of values.

3.5 On the Performance of the Mismatch Attacks From [37]

In Table 5 we list the expected number of queries used for the practical mismatch
attacks from [37]. Notice that there are small deviations between our table and
Table 6 of [37]. This is due to us avoiding premature rounding. Notice that for
all deviations, our corrected values are closer to the experimental results of [37].

For Kyber and Saber we can argue that their approach is optimal given their
restrictions.

1. By testing all parameter settings we �nd for both Kyber and Saber that the
only possible splits divide the secret values into two adjacent intervals.

2. For the initial split it should be optimal to split the secret values as evenly
as possible, that is, split into one interval of positive values, one interval of
negative values, and put the value 0 in whichever of the two intervals.

3. For all versions of both Kyber and Saber, their approach after the initial
split is identical to Hu�man coding, which is optimal, given the restrictions.

5 The fact that all the mismatch attacks on Kyber and Saber follow this approach is
due to the distribution of the si values. For another distribution, such as the uniform
distribution, this would of course not be a sensible strategy.

6 For all the attacks, after the initial split, the remaining splits correspond to Hu�man
coding for their respective half of the secret values. The possibility of this depends
on the distribution of the si values. This is not possible for all secret distributions.
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-2 -1 0 1 2

-3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3 4

-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 3: Illustrations of the mismatch attacks on all versions of Kyber and
Saber from [37]. Starting from the bottom of the �gure and moving upwards
the illustrations cover Kyber768/Kyber1024, Kyber512/FireSaber, Saber, and
LightSaber, respectively.

Table 5: Practical mismatch attacks compared to the Hu�man bounds.
Scheme s Range Unknowns Queries Per Position Total Queries Hu�man Bound

Kyber512 [−3, 3] 512 2.5625 1312 1216
Kyber768 [−2, 2] 768 2.3125 1776 1632
Kyber1024 [−2, 2] 1024 2.3125 2368 2176

LightSaber [−5, 5] 512 2.8515.. 1460 1412
Saber [−4, 4] 768 2.7226.. 2091 1986
FireSaber [−3, 3] 1024 2.5625 2624 2432
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4 Multi-Positional Mismatch Attacks

The main idea of this paper is to remove the constraint of recovering only one
coe�cient at a time. Let us begin by explaining how our idea works with two
positions at a time and �rst explain it for Kyber.

4.1 Two-Positional Mismatch Attacks on Kyber

To start with we will show how to obtain s0 and s128 (for the setting where sA
consists of blocks of size 256, which covers all versions of Kyber and Saber) and
then later explain how to generalize this approach to obtain the other values of
sA. Let us focus on Kyber10247. Eve lets m have the value 0 on all positions,
except that m[0] = 1 and/or m[128] = 1. Let PB be 0 on all positions except
that PB [0] = b1 · d q32c and PB [128] = b2d q32c, where b1, b2 ∈ {−1, 0, 1}. Also, let
c2 be 0 on all positions, except that c2[0] = h1d q32c and c2[128] = h2d q32c. Next,
we calculate m′[0] and m′[128]. We get

m′[0] =Compressq(vA[0]− (strAuA)[0], 2) (9)

=

⌈
2

q

(⌈ q
32
h1

⌋
−
(
sA[0]b1

⌈ q
32

⌋
− sA[128]b2

⌈ q
32

⌋))⌋
mod 2, (10)

and

m′[128] =Compressq(vA[128]− (strAuA)[128], 2) (11)

=

⌈
2

q

(⌈ q
32
h2

⌋
−
(
sA[0]b2

⌈ q
32

⌋
+ sA[128]b1

⌈ q
32

⌋))⌋
mod 2. (12)

For an integer i, with 1 ≤ i ≤ 127 we get

m′[i] =Compressq(−(strAuA)[i], 2) (13)

=

⌈
2

q

(
−
(
sA[i]b1

⌈ q
32

⌋
− sA[128 + i]b2

⌈ q
32

⌋))⌋
mod 2, (14)

and

m′[128 + i] =Compressq(−(strAuA)[128 + i], 2) (15)

=

⌈
2

q

(
−
(
sA[i]b2

⌈ q
32

⌋
+ sA[128 + i]b1

⌈ q
32

⌋))⌋
mod 2. (16)

For both of the latter two positions the expression within the outer rounding
function is bounded in absolute value by 2/3329 · 2 · 2 · 105 = 0.252 . . . < 1/2.
Hence these values are always equal to 0 when rounded to the nearest integer
and thus m′[i] = 0, for i 6= 0, 128.

7 To attack other versions of Kyber you just alter the parameters of the attack slightly.
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To retrieve the positions si and s128+i, where 1 ≤ i ≤ 127, we can for example
make the following adjustments. Let m be equal to 0 on all positions except that
m[i] = 1 and/or m[128 + i] = 1. Also, let c2 be 0 on all positions, except that
c2[i] = h1d q32c and c2[128 + i] = h2d q32c.

Next, we will interpret our two-positional approach. We organize the possible
pairs of values s0, s128 in a two-dimensional grid. For each cell we write the value
of m′[0], m′[128] or m′[0]&m′[0], depending on whether only m[0] = 1, only
m[128] = 1 or if m[0] = m[128] = 1. Here of course the value of the bits depend
in general on s0, s128 and the chosen parameters b1, b2, h1, h2.

Planar Cuts The most obvious split that can be achieved is the one where
we cut with respect to only one of the variables. These planar cuts are achieved
by letting m[0] = 1, m[128] = 0 and h2 = 0. Two examples of such splits are
shown in Figure 4. To achieve a vertical split we let b2 = 0 and b1 = 1. In
Figure 4a, speci�cally we let h1 = 9. To achieve a horizontal split we let b1 = 0,
b2 = −1. In Figure 4b speci�cally we let h1 = 24. Horizontal and vertical splits
are already the ones achieved in the mismatch attacks from [37], explained in
detail in Section 3. In and of themselves, these two types of splits do not add
anything to the mismatch attacks compared to previous work, but they are useful
in combination with the other methods from this section.

m′0

s0

-2 -1 0 1 2

s128

-2

-1

0

1

2

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

(a) A vertical split.

m′0

s0

-2 -1 0 1 2

s128

-2

-1

0

1

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

1 1 1 1 1

(b) A horizontal split.

Fig. 4: Two examples of planar splits of the secret values.

Rectangular Cuts We can also simultaneously cut horizontally and vertically.
This allows us to cut out any rectangle of values, where at least one corner of the
rectangle is at one of the corners of the grid. To do this we letm[0] = m[128] = 1.
We let b1 = 1 and b2 = 0. In Figure 5 we let h1 = 24 and h2 = 9. The �gure
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shows m′0, m
′
128 and m′ = m′0&m

′
128 respectively. In other words, the vertical

cut, the horizontal cut, and the resulting rectangular cut respectively.

m′0

s0
-2 -1 0 1 2

s128

-2

-1

0

1

2

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

(a) The vertical cut

m′128

s0
-2 -1 0 1 2

-2

-1

0

1

2

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

(b) The horizontal cut

m′
s0

-2 -1 0 1 2

-2

-1

0

1

2

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

(c) The rectangular result

Fig. 5: The cuts with respect to m′0, m
′
128 and the rectangular cut as their inter-

section.

Triangular Cuts Our next type of split is a triangular cut, originating from
any of the 4 corners of the grid. Here we let m[0] = 1, m[0] = 1 and h2 = 0.
See Figure 6 for two examples of this type of cut. In Figure 6a we let h1 = 10,
b1 = 1 and b2 = −1. In Figure 6b we let b1 = b2 = 1 and h1 = 24.

Intersections of Two Triangular Cuts Finally, by letting m[0] = m[0] = 1
and b1, b2 6= 0, we create the intersection of two perpendicular triangular cuts.
Notice that we are not able to create the intersection of all possible pairs of
triangular cuts. The sign change and �ip of b1 and b2 in (9) compared to (11)
means that the two triangular cuts cannot originate from the same corner or
from opposite corners. See Figure 7 for an example of this type of cut. Here we
let b1 = b2 = 1, h1 = 24 and h2 = 10.

4.2 Two-Positional Mismatch Attacks on Saber

Two-positional mismatch attacks on Saber work similarly to the corresponding
attacks on Kyber. We will brie�y cover how to modify the parameters to make
the attacks work to retrieve the values s0 and s128. The modi�cations used to
recover the rest of the positions are analogous to the modi�cations covered in
Section 4.1. Let PB be equal to 0 on all positions, except that PB [0] = k1 and
PB [128] = k2. Let c be equal to 0 on all positions, except that c[0] = h1 and
c[128] = h2. For the index 0, we get

m′[0] = ((k1(s0 mod p)−k2(s128 mod p)+H−2εp−εT h1) mod p)� (εp−1).
(17)

15



m′0

s0

-2 -1 0 1 2

s128

-2

-1

0

1

2

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

(a) A triangular cut of the secret val-
ues, originating from the upper right
corner.

m′0

s0

-2 -1 0 1 2

s128

-2

-1

0

1

2

1 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

(b) A triangular cut of the secret val-
ues, originating from the upper left cor-
ner.

Fig. 6: Two examples of triangular cuts.
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s0
-2 -1 0 1 2

s128
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-1

0

1

2

1 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

(a) First triangular cut

m′128

s0
-2 -1 0 1 2

-2

-1

0

1

2

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

(b) Second triangular cut

m′
s0

-2 -1 0 1 2

-2

-1

0

1

2

0 1 1 1 1

0 0 1 1 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

(c) The intersection

Fig. 7: The cuts with respect to m′0, m
′
128 and their intersection.
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For the index 128 we get

m′[128] = ((k1(s128 mod p)+k2(s0 mod p)+H−2εp−εT h1) mod p)� (εp−1).
(18)

Now, for an integer i, where 1 ≤ i ≤ 127 we get

m′[i] = ((k1(si mod p)− k2(s128+i mod p) +H) mod p)� (εp − 1), (19)

and

m′[128 + i] = ((k2(si mod p) + k1(s128+i mod p) +H) mod p)� (εp − 1).
(20)

For small values of k1 and k2 the expressions in (19) and (20) are equal to
0 for all secrets sA. Combining k1 and k2 with suitable values of h1, h2 we split
the values in (17) and (18) correctly as a function of the values of s0 and s128.

Just like in the one-dimensional setting, all the splits that we have introduced
for Kyber can also be done for Saber. Thus, when designing our mismatch attacks
in Section 4.4 we only need to consider the distribution of sA.

4.3 Hyperrectangular Cuts

It is possible to generalize the idea of [37] in other ways. Instead of making
planar cuts in one dimension at a time, we can make planar cuts with respect to
an arbitrary number of positions at a time. Let us explain the idea for Kyber.
Let I ⊂ {0, 1, . . . , n−1} be the set of indices that we want to make planar splits
with respect to. Let m[i] = 1, for i ∈ I, and m[i] = 0, for i 6∈ I. Let PB be
equal to 0 on all positions except that PB [0] = d q32c. Let c2[i] = 0, for i 6∈ I and
c2[i] = hi, for i ∈ I. Here hi are the parameters deciding the precise planar cut
with respect to each dimension. For i ∈ I we now get

m′[i] =Compressq(vA[i]− (strAuA)[i], 2) (21)

=

⌈
2

q

(⌈ q
32
hi

⌋
− sA[i]

⌈ q
32

⌋)⌋
mod 2. (22)

For other indices we get

m′[i] =Compressq(vA[i]− (strAuA)[i], 2) (23)

=

⌈
2

q

(
−sA[i]

⌈ q
32

⌋)⌋
mod 2, (24)

which simpli�es to 0 as explained above. The idea works similarly for the Saber
schemes, except the values of m′[i] are evaluated according to (7) for i ∈ I (with
the index 0 replaced by i) and (8) for i 6∈ I.

It is of course possible to create a lot of other cuts in higher dimensions. We
discuss these cuts and their potential in Section 5.1.
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4.4 The Optimization Problem

Now we have introduced a set of cuts in the multi-positional setting and are ready
to apply them to some schemes. In two dimensions, the optimization problem
we now want to solve is, given our available planar, rectangular, triangular, and
intersecting triangular splits, how do we come up with a splitting strategy, given
the distribution of sA, that minimizes the expected number of splits?

First, we will cover our attacks on all versions of Kyber and on FireSaber
in detail. Then we will show how we devised a greedy algorithm to develop an
attack on Saber and LightSaber.

Kyber1024 and Kyber768 In Kyber768 and Kyber1024 the si values are
centered binomially distributed with η = 2. The probabilities of the possible
value pairs (s0, s128) are according to Figure 8.

The �gure also shows the �rst four queries of the mismatch attack. For exam-
ple, on the �rst query, represented by the blue lines, we learn whether the secret
pair is among the nine positions in the lower left part or whether it is among
the other sixteen positions. Depending on which is the case, the second query
we make corresponds to either of the red splits and so on. The �gure shows the
�rst four queries.

Figure 9 then shows the next three queries. The positions that are �lled
in black are the positions that are found in less than or equal to four queries.
Within seven queries the secret pair is guaranteed to be found. Notice for both
�gures that we do not always specify exactly which split we use. Given that the
values of the secret pair are limited to a certain area, we only specify how the
split works within that area. Given the lack of restrictions on the split's behavior
outside of this area, most splits are not uniquely determined.

The overall strategy for choosing which splits to make is the following. Start
by making a few splits that roughly divide up the possible secret pairs into
equally probable blocks. Then make queries that perform identically/close to
Hu�man coding. This roughly generalizes the strategy of the mismatch attack
on Kyber768/Kyber1024 in one dimension, as discussed in Section 3.4.

The number of queries needed to �nd all the di�erent secret value pairs is
found in Figure 10. Using these �gures together, we calculate the expected num-
ber of queries to recover two positions as 1059/256 ≈ 4.1367. This corresponds to
roughly 2.0684 queries per position. We compare this query complexity against
other algorithms and some boundaries in Section 4.5.

Kyber512 and FireSaber In Kyber512 and FireSaber the values si are cen-
tered binomially distributed with η = 3. Thus, the probabilities of the possible
value pairs (s0, s128) are according to Figure 11. This �gure also illustrates the
�rst four queries of the mismatch attack. The remaining six queries are cov-
ered in Figure 12. Just like for Kyber1024/Kyber768, the strategy is to start
by making a couple of roughly even splits followed by using (close to) Hu�man
coding in latter queries. Also for these schemes, the strategy roughly mimics and
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256 · P (s0, s128)

s0

-2 -1 0 1 2

s128

-2

-1

0

1

2

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

Fig. 8: The �rst part of the two-positional mismatch attack against Ky-
ber768/Kyber1024. All the probabilities are multiplied by 256 for readability.
The blue, red, green and yellow splits correspond to the �rst, second, third and
fourth queries respectively.

256 · P (s0, s128)

s0

-2 -1 0 1 2

s128

-2

-1

0

1

2

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

Fig. 9: The second part of the two-positional mismatch attack against Ky-
ber768/Kyber1024. All the probabilities are multiplied by 256 for readability.
The brown, orange and pink splits correspond to the �fth, sixth and seventh
queries respectively. The positions that are �lled in black correspond to the value
pairs that are found after less than or equal to four queries. The curved path
between the lower right and the upper right areas signals that these positions
correspond to the same block after four queries.
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s0
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s128
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7 7 5 7 7

6 4 4 4 6

6 3 3 4 5

6 4 3 4 5

7 7 6 6 6

Fig. 10: The number of queries needed to �nd the secret pair (s0, s128) for
the di�erent values of this pair for the two-positional mismatch attack on Ky-
ber768/Kyber1024.

generalizes the strategy of the mismatch attack on Kyber512/FireSaber in one
dimension, as discussed in Section 3.4.

The number of queries needed to �nd all the di�erent secret value pairs
is found in Figure 13. Using these �gures together, we calculate the expected
number of queries to recover two positions as 19285/4096 ≈ 4.70825. This cor-
responds to roughly 2.3541 queries per position. We compare this performance
against other algorithms and some boundaries in Section 4.5.

The Automatic Greedy Approach For Saber and LightSaber the num-
ber of possible pairs of secret values is too large to make manual optimization
practical. To get a decent attack against these two schemes we make an auto-
matic search for a solution instead. In two dimensions we apply a greedy attack,
where the algorithm in each step chooses the query that splits the remaining
positions as evenly as possible. It turns out that the algorithm performs better
when only using planar and rectangular splits, compared to when adding tri-
angular/triangular intersection splits. Using the latter types of splits makes the
algorithm choose a worse local optimum.

We generalize this attack to three dimensions, where we allow for any types of
cuboid splits (the hyperrectangular splits in three dimensions). This corresponds
to letting |I| ≤ 3 in Section 4.3. The performance of the attack in two and three
dimensions is shown in Table 6.

All the mismatch attacks in [37] on Kyber and Saber are hyperrectangular,
greedy attacks in one dimension, making this type of greedy approach a pretty
natural generalization. Perhaps not surprisingly, the greedy hyperrectangular at-
tack (mostly) performs better in three dimensions than in two, and better in two
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4096 · P (s0, s128)

s0

-3 -2 -1 0 1 2 3

s128

3

2

1

0

-1

-2

-3

1 6 15 20 15 6 1

6 36 90 120 90 36 6

15 90 225 300 225 90 15

20 120 300 400 300 120 20

15 90 225 300 225 90 15

6 36 90 120 90 36 6

1 6 15 20 15 6 1

Fig. 11: The �rst part of the two-positional mismatch attack against Ky-
ber512/FireSaber. All the probabilities are multiplied by 4096 for readability.
The blue, red, green and yellow splits correspond to the �rst, second, third and
fourth queries respectively. The green diagonal split decides whether the secret
is (0, 0) or any of the values in the upper left block. The yellow diagonal split
decides whether the secret is (0,−1) or (−1, 0).

Table 6: The performance of the greedy mismatch attacks in two and three
dimensions on all versions of Kyber and Saber, measured in expected number of
queries per secret position.

Kyber512 Kyber768 Kyber1024 LightSaber Saber FireSaber

Two Dimensions 2.4561 2.0820 2.0820 2.7643 2.6256 2.4561
Three Dimensions 2.3771 2.0837 2.0837 2.7540 2.5839 2.3771
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4096 · P (s0, s128)

s0

-3 -2 -1 0 1 2 3

s128
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1

0
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-3

1 6 15 20 15 6 1

6 36 90 120 90 36 6

15 90 225 300 225 90 15

20 120 300 400 300 120 20

15 90 225 300 225 90 15

6 36 90 120 90 36 6

1 6 15 20 15 6 1

Fig. 12: The two-positional mismatch attack against Kyber512/FireSaber. The
queries after the �rst four queries. The blue, red, green, yellow, brown and orange
splits correspond to the �fth, sixth, seventh, eighth, ninth and tenth queries
respectively. All the probabilities are multiplied by 4096 for readability. The
green split inside the box to the lower right decides whether the secret pair is
(2,−2) or any of the other remaining values of the area. The brown split that
crosses the curved lines decides whether the secret is (−1,−3) or (1,−3).
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0
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9 5 4 3 4 5 8
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8 7 6 5 6 7 9
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Fig. 13: The number of queries needed to �nd the secret pair (s0, s128) for
the di�erent values of this pair for the two-positional mismatch attack on Ky-
ber512/FireSaber.

than in one. In three dimensions the attack performs slightly better than/slightly
worse than the Hu�man bound in one dimension, see Table 7 and Section 4.5
for a comparison of this approach to other algorithms and limits.

Notice that this is essentially the most obvious type of automatic attack.
There is room for all sorts of improvements here, which we discuss in Section 5.1.

4.5 Comparisons

In Table 7 we compare our mismatch attacks against the previous state-of-the-
art, previous lower bounds and new lower bounds. Our Result 1 refers to manual
optimization in two dimensions. Our Result 2 refers to the best greedy attack
from Section 4.4 for the di�erent schemes8. The values in bold are the new
state-of-the-art values. When performing two-positional attacks, the lower limit
is Hu�man coding in two dimensions. When performing three-positional attacks,
the lower limit is Hu�man coding in three dimensions. The performance of Hu�-
man coding in one, two and three dimensions respectively is called Hu�man

8 Notice that for the greedy attacks in three dimensions the performance is marginally
worse than the number of positions times the performance from Table 6. The secret
is retrieved in blocks of 256 positions at a time. After �nding 3 · 84 = 252 positions
using the three-positional attack, the remaining 4 positions of the block have to be
retrieved using two-positional steps, which are slightly worse for most schemes.
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Bound 1, 2 and 3 respectively. Finally, the Shannon Bound refers to the entropy
of the secret, which is the theoretically best performance that you can achieve
with a pure mismatch attack.

Table 7: Our results compared to various bounds and previous practical attacks
Kyber512 Kyber768 Kyber1024 LightSaber Saber FireSaber

Previous Best [37] 1312 1776 2368 1460 2091 2624
Hu�man Bound 1 1216 1632 2176 1412 1986 2432
Our Result 1 1205.3 1588.5 2118 - - 2410.6

Our Result 2 1217.7 1599 2132 1410.2 1984.9 2435.4
Hu�man Bound 2 1202.1 1575 2100 1395.9 1970.0 2404.3
Hu�man Bound 3 1199.9 1569.8 2093.0 1391.7 1962.3 2399.7
Shannon Bound 1195 1560 2079 1386 1954 2389

Unlike the one-dimensional situation analyzed in Section 3.5, we do not claim
that our strategy is optimal given our restrictions. Both developing an optimal
strategy, and showing that a strategy is optimal, are much harder in our setting.

However, we can say that our results are fairly close to optimal. For all the
schemes our attacks are much closer in performance to the Shannon bound than
to [37]. We have thus made most of the possible improvements that can be made.

For all versions of Kyber and for FireSaber, we are very close to the Hu�man
bound in two dimensions, showing that there is very little room for improvement.
Our greedy attacks against Saber and LightSaber are obviously not optimal in
our given context, but can still only be improved a little bit, as they both perform
fairly close to the Hu�man bound in three dimensions.

It should also be noted that due to not all imaginable splits being accessible
in practice, even the optimal strategy performs worse than the Hu�man bounds
for the respective dimension, making our results even closer to optimal.

In Section 5.1 we discuss how improving our attacks probably makes it pos-
sible to reach the Shannon bound. In Section 5.2 we discuss how we can beat
the Shannon bound by using post-processing.

5 Discussions

5.1 Room for Further Improvements

For the two-positional splits of Kyber, by letting b1 = 2, b2 = 1, vice versa or
changing signs of one of the variables, we can create yet other cuts9. This creates
even more possible splits in two dimensions.

9 Notice that we cannot increase the values of b1 and b2 too much, because then the
other indices of (13) are not guaranteed to be equal to 0.
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The hyperrectangular cuts from Section 4.3 only generalize the planar and
rectangular splits. Of course, a lot of other splits are also possible in higher di-
mensions. Even limited to only hyperrectangular splits in higher dimensions our
fairly simple greedy attack can of course be improved with smarter approaches
and/or by increasing the number of dimensions.

Thus, we conjecture that getting (arbitrarily close) to the Shannon bound
is possible, because of the numerous potential improvements. Meanwhile, we
emphasize that our current results are already close to the bound.

5.2 Post-Processing with Lattice Reduction

Previous literature on mismatch attacks focuses on the number of queries needed
to fully recover the secret s. However, the adversary also has access to LWE
samples. Not taking advantage of this information in an attack is clearly sub-
optimal. While [37] states �Secondly, what we talk about is recovering the full
key, but obviously the recovery of the partial key also leaks information about
the key, signi�cantly decreasing the bit-security.�, they did not study this hybrid
approach in detail.

In principle, the optimal hybrid mismatch attack with post-processing chooses,
given a limited number of queries, among all possible mismatch strategies, the
strategy that minimizes the complexity of the post-processing. A paper that
studied solving the LWE and NTRU problem with hints about the secret more
generally is [14]. In our setting it is most likely optimal to �nd the exact position
value of as many positions as possible and, if the �nal few queries are not enough
to completely know the �nal positions being queried, use the partial information
we have on these positions.

We plot the relationship between the allowed number of queries using the best
mismatch attack from Table 7 and the post-processing complexity in Figure 14,
for all versions of Kyber and Saber. We use the primal_bdd(·) function in the new
Lattice-Estimator10 [5] to estimate the cost of solving the corresponding LWE
instance. Without post-processing, the right-most vertical line shows the query
complexity of the current best two-positional attack and the second (dotted)
vertical line to the right shows the Shannon lower bound. We can see that the
two lines are fairly close, so our new attack is near-optimal in the information-
theoretical sense. We also see that the query complexity can be highly reduced
by using post-processing. For instance, the query complexity is reduced by a
factor 2 for Kyber512, when the allowed post-processing cost is 280.

5.3 Relation to Side-Channel and Fault-Injection attacks

Similar to the one-positional mismatch attacks proposed in [37], our multi-
positional version can improve the query (or trace) complexity of chosen-ciphertext
side-channel attacks on CCA-secure implementations of Kyber and Saber. The

10 https://github.com/malb/lattice-estimator.
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Fig. 14: The post-processing complexity in log2(·) vs. the number of queries. The
two horizontal lines represent the post-processing complexity of 280 (upper) and
260 (lower), respectively. The most right vertical line shows the current best two-
positional attack without post-processing and the second right (dotted) vertical
line shows the Shannon lower bound for the attacks without post-processing.

method of generating the chosen ciphertexts is the same as the approach of se-
lecting ciphertexts described in Section 4. The new attacks may also be applied
to improve the fault-injection attack proposed in [43].

6 Conclusions and Future Work

In this paper, we have proposed novel multi-positional key mismatch attacks on
Kyber and Saber that signi�cantly improve the state-of-the-art mismatch attacks
of [37]. Our new attacks even beat the lower bounds proposed in [37], and they
are near-optimal since their query complexities are close to the Shannon lower
bounds. The new attacks can be applied to improve the e�ciency of chosen-
ciphertext side-channel attacks against Kyber and Saber and may also have
signi�cance in fault-injection attacks.

The new idea of targeting multiple secret coe�cients simultaneously can be
generalized to other lattice-based KEMs. This translation is probably straightfor-
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ward for other LWE/LWR-based KEMs such as FrodoKEM [34], but might also
be applicable to KEMs based on NTRU. e.g., NTRU [12] and NTRU prime [9].

We have also estimated how much the mismatch attacks can be improved by
using post-processing, showing that we can beat the Shannon bounds with this
approach when having access to moderate computational resources.

As we conjecture in our paper, by improving the greedy algorithm and in-
creasing the dimensions, it is likely possible to come arbitrarily close to the
Shannon bound for all versions of Kyber and Saber. One interesting topic is to
apply more advanced automatic tools, such as mixed integer linear programming
(MILP) or constraint programming, to search for better mismatch attacks. On
the other hand, our results are near-optimal, so the room for improvement is
small in practice.
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