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Abstract

Non-fungible tokens (NFTs) are a blockchain application that has
recently witnessed significant success. However, NFT marketplaces
are majorly built on popular blockchain platforms that do not provide
privacy tools. As a result, NFTs are easily visible to everyone. This
has naturally given rise to various issues, including stolen/duplicate
NFTs and attacks like shill trading. Furthermore, this architecture
fails to reflect the real-life privacy notion as it digitizes unique physical
goods.

In this project, we build Paras – a blockchain-agnostic protocol
that offers privacy to NFTs. Specifically, one may hide the real NFTs
and only display a reference to them on marketplaces, hide seller and
bidder identities, hide bid values and user wallet balances.

Paras is based on cryptographic primitives, such as, threshold en-
cryption and robust secret sharing. It does not rely on any trusted
execution environments for security, unlike some existing protocols in
this direction.

1 Introduction

Satoshi Nakamoto explained her vision for private transactions in [1]. Pri-
vacy is crucial not only in financial transactions (i.e., privacy of wallet
balances, amounts transferred in transactions and user anonymity) but also
in more complex financial DApps, as they find wider usage and involve
large-value assets. One such application is of non-fungible tokens (NFTs).

1.1 The Need for Privacy in NFTs

NFTs are unique virtual or physical assets that are stored on a blockchain
network, which provides information regarding their ownership. It is a fast-
growing market with sales amounting to tens of billions of dollars per year
[2].
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In order to capture the audience excitement, NFT marketplaces are
mostly built on popular blockchains, such as Ethereum and Solana. How-
ever, these blockchain platforms are not privacy enabling; specifically, user
identities, bids, transaction details, etc. are completely visible to the gen-
eral public. As a result, successful NFT categories are limited to those that
do not need privacy, such as, simple images. This leaves out a plethora of
meaningful and useful categories that require privacy.

1.1.1 More Meaningful NFT Categories Require Privacy

Below are examples of NFT categories that are more complex and useful
and that need privacy.

Exclusive viewership. Art ownership in the non-digital world features
rarity and exclusivity. Contrary to popular belief, not all art mas-
terworks are held in museums and public galleries. Many of these
are being kept in private art collections where only a selected few are
able to observe them. To replicate exclusivity in the digital world, the
privacy feature for NFTs is necessary.

Viewership with access control. NFTs where exclusivity is maintained
through some access control, such as, previous interest/engagement,
age limit and paywall, require privacy to enforce the access control
policies.

Secret NFTs with sneak peaks. NFT artists can publish only sneak peaks
to their protected content which will be revealed only to the buyers.
A popular example is of Quentin Tarantino, the creator of the Pulp
Fiction, a cult movie, who wanted to sell never-seen-before scenes of
the movie in a protected manner by only revealing sneak peaks of the
video to the general public and the exclusive content to only the buyer
[3].

Sealed bid auctions. Sealed bid auctions are a popular form of auctions
where no bidder knows how much bid the other auction participants
have made. This method helps prevent malicious behaviors such as
front-running attacks. The usefulness of this type of auction holds
true for NFT auctions as well. Privacy is inherently necessary to enable
sealed bid auctions.

Seller’s asset value protection. Keeping the bids private helps ensure
that if all bids are too low for any of them to be accepted by the seller,
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the property will not become stigmatized by having a perceived low
value in the marketplace.

Real estate and luxury goods. As NFTs replicate the real-world owner-
ships of real-world assets, especially those that involve personal privacy-
sensitive data, their success depends on the availability of privacy op-
tions that exist in their real-world counterparts.

Event ticketing. NFTs are being used as tickets to events like concerts
[4, 5]. User anonymity is necessary to preserve privacy of information
such as users’ physical whereabouts.

1.1.2 Generic Attacks in Marketplaces without Privacy

The fast growth of the NFT industry without the right technological ad-
vancements has opened the door to rampant piracy and fraud. While the
above categories of use cases require privacy by design, privacy is arguably
also crucial to avert many attacks.

Below are some important attack categories that can be effectively thwarted
with privacy tools.

Shill bidding/wash trading. Shill bidding refers to a malicious behavior
by an NFT seller who gets an accomplice to place high bids, in an attempt to
artificially inflate others’ bids. (If the shill wins the bid, she could later pay
back the funds to the owner under the table.) Shill bidding is believed to
occur pervasively across marketplaces even for high-profile NFT projects
[6, 7]. Protecting privacy of bidding values can help fight against such
malicious activities.

A similar attack is of wash trading, wherein a malicious seller sells NFTs
to another wallet funded by herself, in an attempt to artificially inflate
perception of the asset’s value. Such malicious activities are rampant, as
per some recent analysis [8, 9]. In a marketplace where privacy-powered
trades are the default, it is conceivable that wash trading which do not
employ privacy options are easier to tell apart.

Stealing. In traditional NFT marketplaces, it’s not just the artist or the
original seller who might have a copy of the underlying digital asset. Most
such assets are displayed to the public on NFT marketplaces, so anyone
can take a screenshot or possibly make a copy. That is, ownership of an
NFT does not prevent a third party from making a copy of a digital asset
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that is linked to the NFT if they have access to it. Stolen NFTs are indeed
rife in NFT marketplaces [10, 11]. Privatizing NFTs and displaying only a
reference, such as a thumbnail, can help effectively curb this menace.

1.2 Our Contribution

We design Paras, a blockchain-agnostic protocol that offers privacy to NFTs.
Specifically, one may hide the real NFTs and only display a reference to them
on marketplaces, hide seller and bidder identities, hide bid values and user
wallet balances.

1.3 Related Work

A blockchain platform that is trying to solve the issue of privatizing NFTs
is called Secret Network [12]. The main thesis of this protocol is to share
all secrets with validator nodes but the secret will be stored inside trusted
execution environments (TEEs). Specifically, the consensus seed is stored
inside the TEE of each validator node, allowing for encrypted inputs to be
fully decrypted and computed upon.

The security of the entire protocol mainly relies on the assumption that
even when secret values are computed upon inside TEEs, the TEEs are able
to keep the secrets completely secure even from the party that is running the
TEEs. However, it is a well-known fact from deep and wide research that
TEEs are subject to relatively easy attacks [13]. Given the relatively weak
level of security of TEEs (as opposed to security from cryptographic proto-
cols), it is not prudent to transact extremely high-value assets by relying on
easily breakable security mechanisms.

2 Technical Introduction

2.1 The Main Technical Challenge

In pursuit of privacy for NFTs, let’s for now focus on just the aspect of
hiding NFTs from everyone except the seller and the winning bidder. In
essence, the seller needs to encrypt her NFT and include the secret key in
some hidden way in the blockchain state, so that, upon completion of the
bidding phase, the secret key is revealed to just the winning bidder.

It appears that we are looking to solve the following notorious problem:

“How to usefully hide a secret value in a smart contract?”
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Specifying usefulness of the secret value is important, because, otherwise,
one can simply encrypt/commit to that secret and place it in the smart
contract whereby the secret key turns useless.

Given the complexity of this question, despite some active research [14,
15], the solutions are far from ideal.

2.2 Why zk-SNARKs Don’t Suffice?

Recall that the power of zk-SNARKs [16] is to prove correctness of some
computation while hiding some selected parts of it. On the other hand, as
discussed in Section 2.1, the need of the hour is completely different; we
need to be able to hide a secret, without knowing ahead of time to whom it
will be revealed. Hence, zk-SNARKs won’t fit the puzzle. As a result, zk-
SNARK-powered blockchains, such as Mina [17], Aleo [18] and Zcash [19],
are not equipped enough to solve the problem.

2.3 Why Other Primitives such as Witness Encryption Don’t
Suffice?

On the same lines, one needs to check if other seemingly relevant primitives,
such as, witness encryption [20] or fully homomorphic encryption [21], would
be useful for our purposes. We will consider these two primitives in some
detail.

Witness encryption. Recall that witness encryption allows one to en-
crypt a secret to a statement (instead of a public key), so that, any party
who has a witness to that statement can decrypt the ciphertext. Witness
encryption is a natural candidate for the following reason. Consider witness
encrypting an NFT so that the witness to open it is the randomness knowl-
edge of the bidding transaction with the highest bidding value. However,
challenges arise because of the following reasons.

• The number of bids is not fixed ahead of time. So it is not clear how
to prevent an adversarial bidder from holding back all bids that are
higher than her own, while performing witness decryption.

• Even if we somehow restrict the number of bids, an adversarial bidder
can simply make up a few transactions with lower bids and hold back
the transactions with higher bids.

• Furthermore, one might argue for the witness encryption approach
that even if someone adversarially learns the secret key that decrypts
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the NFT, they may still not own the NFT per the blockchain state.
However, this approach does not take us further in the goal of priva-
tizing NFTs.

Fully Homomorphic Encryption (FHE). Recall that the power of
fully homomorphic encryption lies in performing computations “under the
hood”; i.e., in order to compute on encrypted data, one doesn’t need to
decrypt the encrypted data before performing computation on it. However,
the output of the computation remains encrypted. On the other hand, we
are looking for special key management techniques whereby the output is
decrypted only to some party, namely the winning bidder, whose identity is
unknown at the time of encryption. Clearly, this gadget too doesn’t fit the
puzzle.

3 Preliminaries

3.1 Basic Notations

We write PPT for probabilistic polynomial-time. Any algorithm discussed
here will implicitly take the security parameter 1λ as an input unless men-
tioned otherwise.

In the contexts of secret sharing, we use Σ to denote the alphabet. Read-
ers can simply regard Σ as a prime-ordered finite field F. For any sequence
s = (s1, s2, . . . , sn) ∈ Σ and sequence of indices W = (w1, . . . ,wt) ∈ [n]t

with t ≤ n, let sW be the sub-sequence (sw1 , sw2 , ..., swt).
Unless specified otherwise, we will use superscripts to specify the type of

a variable and subscripts to specify the entity the variable belongs to. For
example, pkkpi denotes that this public key variable is of ‘key-private’ type
(a notion that will be discussed later) and belongs to some i-th party.

We will denote encryption of a plaintext v with public key pk as [[v]]pk.
Note that we will use different types of encryption such as key private en-
cryption and threshold encryption; to clarify the type of encryption, we will
write the type in the superscript as in [[v]]KPpk and [[v]]THRpk , respectively.

To denote a variable that is not specified, we will use ‘*’.

3.2 Public-key Encryption

A public key encryption scheme PKE with message spaceM consists of three
PPT algorithms KeyGen,Enc,Dec defined as follows.
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• KeyGen(1λ): The key generation algorithm takes as input the security
parameter and outputs a public key pk and a secret key sk.

• Enc(pk,m; r): The encryption algorithm takes a public key pk, a mes-
sage m and randomness r, and outputs a ciphertext c.

• Dec(sk, c): The decryption algorithm takes a secret key sk and a
ciphertext c and outputs a message m.

3.3 Robust Secret Sharing

A secret sharing scheme allows a dealer to randomly split a secret between n
parties so that qualified subsets (i.e., subsets of size ≥ threshold k) of parties
can reconstruct the secret from their shares while unqualified subsets learn
nothing about the secret. We consider a robust variant where the secret
should be correctly reconstructed even if at most k− 1 shares are corrupted
by an adversary. We formalize this below.

Definition 1 (Robust secret sharing) An (n, k) secret sharing scheme,
with alphabet Σ and message length m, is a pair of functions (Share,Combine),
where Share : Σm → Σn is probabilistic and Combine : Σn → Σm is deter-
ministic, which satisfy the following properties.

Privacy. For a privacy threshold k, the adversary can choose a sequence
W = (w1, ...,wk−1) ∈ [n]k−1 of share indices to observe. We say that
the scheme is ϵ-private if for every such strategy, there is a share dis-
tribution D over Σk−1 such that for every secret message x ∈ Σm,
Share(x)W is ϵ-close (in statistical distance) to D. We refer to ϵ as
the privacy error and say that the scheme has perfect privacy if ϵ = 0.

Reconstruction. We say that the scheme has reconstruction error η if for
every secret message x ∈ Σm, Pr[Combine(Share(x)) = x] ≥ 1−η. We
say the scheme has perfect reconstruction if η = 0.

We are also interested in robust secret sharing, where an adversary is
allowed to modify at most k − 1 shares.

Robustness. For any secret x ∈ Σm, let Y = Share(x). Consider an ar-
bitrary adversary who observes k − 1 shares and can then arbitrarily
change these k − 1 shares, transforming Y to Y ′.

The scheme is robust if for every such adversary,

Pr[Combine(Y ′) = x] ≥ 1− η.
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3.4 Key-private Encryption

A key-private public-key encryption scheme is a special kind of encryption
scheme where ciphertexts cannot be linked to the public key used to encrypt
them. The definition is borrowed from [22].

Definition 2 (Key-private Encryption) A key-private public-key encryp-
tion scheme KP = (SetupKP,KeyGenKP,EncKP,DecKP) is a public-key en-
cryption scheme that satisfies the below security properties.

1. ciphertext indistinguishability under chosen-ciphertext attack (IND-CCA
security); and

2. key indistinguishability under chosen-ciphertext attack (IK-CCA secu-
rity). While the first property is standard, the second is less known;
informally, IK-CCA requires that ciphertexts cannot be linked to the
public key used to encrypt them, or to other ciphertexts encrypted with
the same public key. For definitions, we refer the reader to [23].

3.5 Threshold Encryption

A threshold encryption scheme allows sharing a secret key across multiple
servers which can compute decryption shares of a given ciphertext and the
shares can be combined to obtain the plaintext. The formal description
below is borrowed from [24].

Definition 3 (Threshold Encryption) A threshold encryption scheme con-
sists of the following algorithms.

• KeyGenTHR(1λ, 1n, 1k)→ (pkTHR, vkTHR,
−→
skTHR). The probabilistic key

generation algorithm KeyGenTHR takes as input a security parameter
λ, the number of decryption servers n ≥ 1, and the threshold parameter
k (1 ≤ k ≤ n) (all in their binary forms); it outputs

(pkTHR, vkTHR,
−→
skTHR)← KeyGenTHR(1λ, 1n, 1k)

where pkTHR is the public encryption key, vkTHR is the public verifica-
tion key, and

−→
skTHR = (skTHR1 , skTHR2 , . . . , skTHRn ) is the list of private

key shares. The servers can execute an interactive protocol to compute
the KeyGenTHR functionality in such a way that pkTHR, vkTHR will be
known by all parties and skTHRi will be known only by the i-th decryp-
tion server.

8



• EncTHR(pkTHR,m) → c. A probabilistic encryption algorithm EncTHR

that takes as input a public key pkTHR and a plaintext m, and outputs
a ciphertext c = EncTHR(pkTHR,m).

• δi ← DecShare(skTHRi , c). A probabilistic decryption share generation
algorithm DecShare that takes as input a private key share skTHRi and a
ciphertext c, and outputs a decryption share δi ← DecShare(skTHRi , c).

• DecShareVfy(vkTHR, c, δi) ∈ {valid, invalid}. A share verification
algorithm DecShareVfy that takes as input the public verification key
vkTHR, a ciphertext c, and decryption share δi, and outputs either
valid or invalid.

• m ← DecCombine(vkTHR, c,∆). A combining algorithm DecCombine
that takes as input the public verification key vkTHR, a ciphertext
c, and a set of decryption shares ∆, and outputs a plaintext m ←
DecCombine(vkTHR, c,∆). The combining algorithm is also allowed to
output a special ‘?’ symbol that is distinct from all possible plaintext
messages.

We shall say a set ∆ of decryption shares is full if it contains k shares, no
two of which belong to the same server.

Completeness. Let (pkTHR, vkTHR,
−→
skTHR) be an output of

KeyGenTHR(1λ, 1n, 1k). We require the following two consistency properties:

1. For any ciphertext c, if δi ← DecShare(skTHRi , c) where skTHRi is the

i-th private key share in
−→
skTHR, then DecShareVfy(vkTHR, c, δi) →

valid.

2. If c is the output of EncTHR(pkTHR,m) and ∆ = {δi}i is a set of
decryption shares δi ← DecShare(skTHRi , c) for k distinct private keys

in
−→
skTHR, then we require that DecCombine(vkTHR, c,∆) = m.

Security. Security of a threshold PKE is defined using two properties:

1. security against chosen ciphertext attacks (CCA), and

2. decryption consistency.
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Intuitively, security against CCA means the following: Even when an ad-
versary corrupts k − 1 of n servers (and thereby gets their corresponding
private keys shares and gets to view corresponding decryption shares of
maliciously chosen ciphertexts), she cannot distinguish encryptions of two
different plaintexts. Decryption consistency means that an adversary can-
not produce two sets of full decryption shares for a ciphertext so that each
decryption share verifies correctly by the verification key but the results of
combining the two decryption shares are different. For formal definitions,
we refer the readers to [25].

4 A Private NFT Protocol

Definition 4 (A private NFT (pNFT) protocol) A private NFT pro-
tocol is a protocol between a seller S, validators V1, . . . ,Vnv , and bidders
B1, . . . , Bnb

, consists of the following phases.

• The Setup Phase. This phase generates secret parameters for every
party and public parameters.

• The Putting-up-an-auction Phase. In this phase, a seller S puts
up an NFT for auction.

• The Bidding Phase. Bidders bid on the NFT.

• The Bid Resolution Phase. The validators sort the bids and exe-
cute the transaction from the highest bidder to the seller.

Privacy of a pNFT protocol. A pNFT protocol offers privacy in the
following dimensions.

1. Sender and bidder identities. It must be computationally hard to
link different transactions (bidding, buying or selling) performed using
the same key.

2. Seller wallet balance. It must be computationally hard to know a
seller’s wallet balance. This is in the interest of the seller’s financial
privacy.

3. Bidder wallet balance. It must be computationally hard to know
any bidder’s wallet balance. This is in the interest of the bidder’s
financial privacy.
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4. Closed bidding. For any asset being sold, one can have no knowledge
of other bids until the sale completes the bidding phase. This privacy
aspect holds true even from the point of view of validators.

5. The winning bid. Once the bidding phase is complete, only the
validators will learn the bid values. All other parties (except the seller
and the corresponding bidder) do not learn anything about the bids,
including the winning bid.

4.1 Zero Knowledge Proofs alone are not sufficent for pNFT.

4.1.1 Sketch of Zerocash

Zerocash works in a UTXO model. That is, money is represented via coins.
The commitment of a coin is published on the ledger when the coin is cre-
ated, and its serial number is published when the coin is consumed. Each
transaction on the ledger attests that some “old” coins were consumed in
order to create some “new” coins: it contains the serial numbers of the
consumed coins sn, commitments of the created coins comm, and a zero
knowledge proof π attesting that the serial numbers belong to coins created
in the past (without identifying which ones), and that the commitments
contain new coins of the same total value. The commitments and the serial
numbers are designed in such a way that they do not reveal the public key
of the sender nor the coin.

In a transaction, in order for the sender to send the new coins to some
recipient’s public key pk, the sender also includes an encryption under the
recipient’s public key of the commitment randomnesses rcomm and the coin
value v: Enc(pk, (rcomm, v, ρ)), where, ρ is the seed for the serial number
corresponding to the coin. In order for the ciphertext to not reveal the
recipient public key, a special encryption scheme called a key-private en-
cryption scheme is used.

5 Paras - The pNFT Protocol

Let (KeyGen,Enc,Dec) be a public-key encryption scheme. Let (SetupKP,KeyGenKP,
EncKP,DecKP) be a key-private public-key encryption scheme. Let (Share,Combine)
be a robust secret sharing scheme. Let (KeyGenTHR,EncTHR,DecShare,DecShareVfy,
DecCombine) be a threshold encryption scheme. Let PRF be a pseudoran-
dom function. Paras works as follows.
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5.1 The Setup Phase

The setup phase consists of the following components.

• Threshold key generation

• Common key generation

• Individual key generation

5.1.1 Threshold Key Generation

All the validators participate in this interactive protocol of threshold key
generation based on the threshold encryption scheme. Each validator in-
puts their randomness share to the key generation (pkTHRV , vkTHRV ,

−→
skTHR)←

KeyGenTHR(1λ, 1n, 1k). The result of the protocol is a threshold public key
pkTHRV and a decryption share verification key vkTHRV which all validators
receive, and a private key share skTHRi that Vi receives.

5.1.2 Common key generation

The outcome of this step is a common key-pair (skV , pkV ) – common to
all the validators – per the standard public key encryption scheme (i.e.,
(skV , pkV ) ← KeyGen(1λ)); no other party learns about skV . See Section
5.4.3 for implementation details.

5.1.3 Individual key generation

Each validator Vi generates its own key pair (ski, pki) per the standard
encryption scheme (i.e., (ski, pki)← KeyGen(1λ)).

5.2 The Putting-up-an-auction Phase

Towards minting an NFT, a seller performs the following steps.

1. Sample a fresh key pair (sknft, pknft) per the standard encryption
scheme (i.e., (sknft, pknft)← KeyGen(1λ)).

2. Encrypt the asset with pknft before storing it in a distributed storage
such as IPFS.

3. Secret-share sknft and distribute the shares privately to correspond-
ing validators: (sknft[1], sknft[2], . . . , sknft[nv]) ← Share(sknft). Send
sknft[i] to Vi over a private channel (i.e., by encrypting under pki of
Vi).
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This completes the phase of putting up an auction.1

V1

[[sknft[1]]]pk1

V2

[[sknft[2]]]pk2 V3

[[sknft[3]]]pk3

V4

[[sknft[4]]]pk4

V5

[[sknft[5]]]pk5

S

(sknft, pknft) [[ nft ]]pknft

Figure 1: The Putting-up-an-auction Phase

5.3 The Bidding Phase

Let B be a bidder with a secret-key public-key pair (mskB, mpkB) per the
standard encryption scheme. These keys will be used to derive non-linkable
key pairs as described below and hence the notations convey that the key
pair is a master key pair in that respect.

Let the number of bids performed by B so far be nb − 1. To place the
nb-th bid, B proceeds as follows:

1. Derive a secret key for to the current bid:

skB ← PRF(mskB, nb)

where, PRF is a pseudorandom function.

2. Derive pkB corresponding to skB. For example, pkB ← KeyGen(1λ; skB).

3. Let v be the bid that B wants to place for an NFT. Let pkTHRV be
the threshold public key of the validators. Compute the threshold
ciphertext:

cTHR ← [[v]]pkTHR
V
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4. Compute (comm,−→sn), where −→sn = (sn1, sn2), like in zerocash (as ex-
plained in Section 4.1.1). Roughly, comm is a commitment to the bid-
ding value v and sn1, sn2 are serial numbers corresponding to the old
coins being spent to make this transaction.

5. Let pkkpS be the public key of the seller S where the encryption scheme

is key-hiding1. Compute ckp ← EncKP(pkkpS , (rcomm, v, ρ)), where,
rcomm is the commitment randomnesses and ρ is the seed for the serial
number corresponding to the coin being potentially sent to S. Com-
pute encryption of ckp under pkV as [[pkV ]]ckp .

6. Compute a proof π of the following statement: There exist

• a transaction: txn1 = (comm1,
−→sn1, π1, [[v1]]pkTHR

V

, pkB1
, ckp1 )

• a transaction: txn2 = (comm2,
−→sn2, π2, [[v2]]pkTHR

V

, pkB2
, ckp2 )

• a proof of consensus: ϕtxn1

• a proof of consensus: ϕtxn2

• a bid value v, randomness r

• a secret key: mskB (per the standard encryption scheme) and a
positive integer nb (to represent the nb-th bid by the bidder)

Such that conjunction of the following sub-statements holds:

• Statement 0: comm1, comm2 commit to v1, v2 respectively such
that v = v1 + v2; B is authorized to spend the coins in txn1 and
txn2; the coins in txn1 and txn2 are unspent; sn1, sn2 correspond
to coins in txn1, txn2, respectively; π1, π2 are valid proofs2.

• Statement 1: There exist v′ and randomness r such that cTHR =
EncTHR(pkTHRV , v; r)

• Statement 2: Consensus proofs ϕtxn1 and ϕtxn2 are valid (in
other words, ConsensusVfy(txn1, ϕtxn1) = valid and
ConsensusVfy(txn2, ϕtxn2) = valid).

• Statement 3: Let skB = PRF(mskB, nb);
then (∗, pkB) = KeyGen(1λ; skB).

7. Broadcast (comm,−→sn, π, [[v]]pkTHR
V

, pkB, [[c
kp]]pkV

) to all validators.

1This can be derived in a way similar to pkB of the bidder.
2This can be generalized to arbitrary number of “old” coins

14



comm, −→sn, π [[v]]pkTHR
V

pkB [[ckp]]pkV

Like in Zerocash Encryption secrets sent to seller if bidder wins

Bid value encrypted to validators’ Bidder’s key-private pk pkTHR

Figure 2: The Bidding Phase

5.4 The Bid Resolution Phase

In this phase, the validators decipher the bids, sort them and execute the
transaction corresponding to the highest bid. The validators proceed as
follows.

1. After the bidding phase is complete, the validators perform threshold
decryption of every bid value. Specifically, consider a bidding trans-
action (comm,−→sn, π, [[v]]pkTHR

V

, pkB). Every validator Vj computes its

decryption share δj of the ciphertext [[v]]pkTHR
V

and encrypts it under

the common public key pkV . That is, Vj , who has threshold secret
key skTHRj , computes δj ← DecShare(skTHRj , c) where c = [[v]]pkTHR

V

; Vj
then computes encryption under validators’ common public key of δj
as cj = [[δj ]]pkV

.

2. For every i ̸= j, validator Vj decrypts ci as δi ← Dec(skV , ci), where
skV is the common secret key of validators. Then, for all i, Vj checks
whether DecShareVfy(vkTHRV , c, δi) = valid. Let ∆ denote the set of
all valid decryption shares. Then, Vj combines the shares to obtain
the bidding value v ← DecCombine(vkTHRV , c,∆).

3. Every validator sorts the bids and selects the highest bidder B for
the following steps. Let (comm,−→sn, π, [[v]]pkTHR

V

, pkB) be the bidding
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transaction by B.

4. Recall that validator Vi had received a secret key share sknft[i] of the
secret key that encrypts the NFT in question, in the putting-up-an-
auction phase. Vi encrypts and sends sknft[i] to the winning bidder:
[[sknft[i]]]pkB

5. B decrypts [[sknft[i]]]pkB
to obtain sknft[i], for all i. Then B recovers

sknft by computing sknft ← Combine(sknft[1], . . . , sknft[nv]).

V1 V2

V3

V4

Vn

δ1 δ2

δ3

δ4

δn

Figure 3: The Bid Resolution Phase

5.4.1 Key-private Encryption Scheme

To instantiate the key-private encryption scheme, we use the key-private
Elliptic-Curve Integrated Encryption Scheme (ECIES) [26, 27]; it is one of
the few standardized key-private encryption schemes with available imple-
mentations.

5.4.2 Threshold Key Generation.

Our protocol works with Delegated Proof-of-Stake model, where the com-
munity elects a set of validators to run the consensus. Note that stan-
dard threshold schemes treat every player identically and have no notion of
“weight” in the consensus. Hence, the network must adapt them to take
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validators’ weight into account. A simple approach is to assign multiple
threshold shares to larger validators.

Threshold key generation algorithms are usually interactive protocols
between multiple participants. A special transaction on the Paras-powered
network instructs the validators to commence execution of this stateful pro-
tocol. Each validator runs a threshold daemon process that is responsible
for the secure keeping of the secret state. For each phase of the protocol:

1. A validator keeps the state of the protocol in its local memory.

2. It calls the secret daemon to generate the messages as per the protocol
description for other validators.

3. It propagates the messages either via the broadcast or via the private
channels to other validators (see 4).

4. Each validator executes state transition functions to update its state,
proceed to the next phase of the protocol, and repeat the above steps.

At the end of the protocol, a threshold public key is generated on the Paras-
powered network, and it can be displayed back to the user (e.g., for bid-
ding/selling) or to the application that generated the initial request.

V1

skτ1

V2

skτ2

V3

skτ3

V4

skτ4

V5

skτ5

Figure 4: Distributed Threshold-key Generation
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Threshold Decryption. Decryption requests on the Paras-powered net-
work are processed similarly to the key-generation requests. These are in-
voked when a bidding phase is complete for a given seller. These are inter-
active protocols, and state transition between the rounds is triggered as a
function of the messages propagated via the Paras-powered blockchain view
and every validator’s local memory.

Handling Validator Membership Changes. The validator set needs
to be rotated periodically to allow for new stakeholders to join the set. Upon
a validator set update, we need to update the threshold key to be shared
across the new set. Thus if we allowed anyone to join at any time, we would
have to update the threshold key very frequently. To prevent this, we rotate
validators every T blocks. Within intervals of T rounds, the set V R and the
threshold key are fixed. At every round that is an integral multiple of the
parameter T , we update the validator set as follows:

1. At any round R, the Paras state keeps track of the current validator
set V R. V R+1 = V R unless R+ 1 is a multiple of T .

2. During rounds ((i−1)T, iT ], users post bonding/unbonding messages.

3. At the end of round iT , these messages are applied to V iT−1 to get
V iT .

Threshold Key Generation and Threshold decryption in the Pres-
ence of Rotating Validators. Paras-powered blockchain may issue a
request for a new key or a threshold decryption at round R. The decryption
process takes longer than one round; instead of slowing down consensus, we
request that the decryption is produced before round R + x starts, where
x is related to the number of rounds it takes to produce a decryption. In
particular, validators start round R + x only after seeing a certificate for
round R + (x − 1) and a decryption for each decryption request issued at
round R. The outcome of all round R requests must be included in block
R+ x. In other words, a round R block proposal that does not contain the
outcomes from a round R− x− 1 is considered invalid, and validators don’t
vote on it. To ensure that all threshold messages are decrypted before a
validator set update, Paras does not issue any threshold requests during a
round equal to −1,−2, . . . ,−x− 1 mod T .
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5.4.3 Common Key Generation.

We will implement the step of common key generation by having one of the
validators (which is arbitrarily chosen – for example, it can be the first one
in a lexicographic ordering by their identities) sample the key pair and send
the key pair to every validator over a private channel.

In order to disallow a cheating validator from sharing malicious key pairs,
we require the following property from the encryption scheme. For every
public key, there exists a unique private key and the correctness of a key
pair can be verified efficiently given the key pair. We note that commonly
used encryption schemes satisfy this property.

5.4.4 Consensus Proofs

Recall that the protocol relies on an additional proof (i.e., in addition to the
Zerocash approach of checking for knowledge of commitment randomnesses
and secrets) that a bidding transaction went through consensus for a bidder
to spend the coins in the said transaction. In the bidding phase, these proofs
are denoted as ϕtxn to denote a proof of consensus on a transaction txn.

Towards implementing such a consensus proof, we can either rely on the
traditional method of verifying the state proof of the blockchain or rely on
a threshold signature from the validators.
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