
Keyed Streebog is a secure PRF and MAC

Vitaly Kiryukhin

LLC «SFB Lab», JSC «InfoTeCS», Moscow, Russia
vitaly.kiryukhin@sfblaboratory.ru

Abstract

One of the most popular ways to turn a keyless hash function into a keyed one is
the HMAC algorithm. This approach is too expensive in some cases due to double
hashing. Excessive overhead can sometimes be avoided by using certain features of
the hash function itself. The paper presents a simple and safe way to create a keyed
cryptoalgorithm (conventionally called «Streebog-K») from hash function Streebog
H(M). Let K be a secret key, then KH(K,M) = H(K||M) is a secure pseudoran-
dom function (PRF) and, therefore, a good message authentification code (MAC).
The proof is obtained by reduction of the security of the presented construction
to the resistance of the underlying compression function to the related key attacks
(PRF-RKA). The security bounds of Streebog-K are essentially the same as those of
HMAC-Streebog, but the computing speed doubles when short messages are used.

Keywords: Streebog, Streebog-K, PRF, MAC, HMAC, provable security

1 Introduction

The HMAC algorithm was proposed in 1996 [10] as an efficient way to
construct a keyed transformation (and, most importantly, a secure message
authentification code) from a keyless hash function H(M)

HMAC(K,M) = H
(
(K ⊕ opad)||H(K ⊕ ipad||M)

)
,

where K is obtained by padding the secret key K with zero bits, opad and
ipad are different nonzero constants.

The security proof [10] explicitly assumes the use of a «plain» Merkle-
Damg̊ard [7, 8] cascade as an underlying hash function H(M): the message
M is padded and splitted into b-bit blocks; the compression function g is
iteratively applied to the previous n-bit state and b-bit block; the initial
state IV is the predefined constant; the last state is the result of hashing. The
result largely depends, among other things, on the weak collision resistance
(WCR) of H in the «secret initial state» setting.

1

Collision resistance is broken in practice for several widely used hash
functions, such as MD5 and SHA-1. In 2006, an updated proof was presented
in [14], showing that the HMAC-MD5 and HMAC-SHA-1 nevertheless remain
secure. The reduction shows that HMAC is a secure pseudorandom function
(PRF) if g is a secure PRF (in the secret key and also in some restricted
related-key settings). The proof was obtained via a non-uniform reduction
(with «non-constructible» adversaries), leading to the insignificance of this
result in practice [13].

In [13], along with a critique of the results [14], an alternative proof
was also presented (the definition of PRF is slightly different). More precise
bounds with the same initial requirements [14] and without the use of a
«non-uniform computation model» were also obtained in the works [15, 17].

Russian hash function Streebog [1] can also be used in the HMAC [3, 6].
Streebog uses a modified Merkle-Damg̊ard approach. Its compression func-
tion is based on a 12-rounds AES-like block cipher in Miyaguchi-Preneel
mode. The internal state and the message block consist of n = 512 bits. The
output length of hash function can be either 512 or 256-bit.

The most important differences from the «plain» cascade are the follow-
ing:

– before processing the i-th block, the state is summed modulo 2 with
the number of already hashed bits;

– the last call of the compression function is used to «mix» the checksum
(modulo 2n) of all message blocks.

It is important to note that the differences between Streebog and the
Merkle-Damg̊ard scheme do not allow direct use of the results [10, 14, 13, 15,
17] for HMAC-Streebog. The proof of the latter’s security was, among other
things, given in [16]. However, the reduction descends not to the properties
of the compression function g, but to the properties of the hash function H
itself.

Unfortunately, HMAC-Streebog has a significant overhead when work-
ing with short messages. We have at least 8 (resp. 9) calls of g for
HMAC-Streebog-256 (resp. 512). However, the design of Streebog implicitly
generates a more efficient solution.

The aforementioned features allow us to prove that «Streebog-K»
(«Keyed Streebog») KH(K,M) = H(K||M) is a secure pseudorandom func-
tion (PRF) under some plausible assumptions about the compression func-
tion g. Thus, processing a short message requires 4 computations of g: padded
key, padded message, bit length, checksum. It is also easy to see that the pro-
posed cryptoalgorithm does not require any changes in Streebog itself. Other

2

methods of involving K, such as secret-IV [11], along with simplifying the
finalization and a number of small changes can provide a more computa-
tionally efficient and no less secure solution. Unfortunately, all this requires
edits in the formal description of the hash function and in many existing im-
plementations. Therefore, we consider «Streebog-K» that is devoid of these
disadvantages.

The security of Streebog against the length-extension attack (i.e. the
particular case of PRF-security) is explicitly claimed in [5]. However, as far
as we know, there are no publicly available formal proofs.

The analysis of Streebog-K was carried out in the paradigm of provable
security [19, 18]. We start from high-level description of Streebog (section 3)
and its equivalent representation [22] carefully considered in the proof. Next,
in section 4 we present and discuss «hard-to-solve» problems: the indistin-
guishability of g from family of random functions under related key attacks
(PRF-RKA) in two various settings. In the main part of the paper (section 5)
we reduce the PRF properties of Streebog-K to the PRF-RKA properties of
g. Roughly speaking, if there is an effective attack against Streebog-K, then
there is an attack against g. The reduction gives us the upper bound on the
probability of the adversary’s success (for example, the forgery or the key
recovery). The bound functionally depends on the capabilities of the adver-
sary (amount of the computation resources, the number of adaptively chosen
input-output pairs).

Two «beyond security bound» attacks against Streebog-K were also
briefly considered (section 6). The first is the simple forgery attack, the sec-
ond one is the key recovery attack, almost identical to the same against
HMAC-Streebog [23].

Similar proofs can be also relatively easily obtained for HMAC-Streebog
[3] and S3G [4]. The corresponding results are briefly discussed in section 7.
The security bounds are almost the same in all cases, but Streebog-K requires
a weaker notion of PRF-RKA-security from g.

The good security bounds in the PRF setting allow you to use Streebog-K
as a secure MAC and key derivation function.

2 Notations and definitions

We use the following notations throughout the paper:
n = 512 – block size in bits; k ≤ 512 – key size in bits; ⊕ – bitwise XOR

operation; �, � – addition and subtraction modulo 2n = 2512;
|| – concatenation of binary strings;

3

V ∗ – the set of all binary strings of a finite length;
V n – the set of all n-bit strings with naturally defined operations «⊕»

and «�»;
V ≤L – the set of binary strings of length no more than L bits;
(V n)≤l – the set of binary strings of length no more than l · n bits, the

length of each string is a multiple of n;
bin(x) – n-bit representation of the integer x;
sum�(M) = m1 �m2 � . . . �ml – the checksum (modulo 2n) of blocks

from l-block message M = m1||m2||...|ml;
sum′�(M) = m1�. . .�ml−1 – the checksum of all blocks from the message

M = m1||m2||...|ml, except for the last block;
Func(X,Y) – the set of all mappings from the set X to the set Y;
X

R← X – uniform and random selection of element X from the set X.
The adversary is modeled by an interactive probabilistic algorithm that

has access to other algorithms (oracles). We denote by AdvTMF (A) a quanti-
tative characterization (advantage) of the capabilities of the adversary A in
realizing a certain threat, defined by the model TM , for the cryptographic
scheme F. The resources of A are measured in terms of time and query com-
plexities. The time complexity t includes the description size of A in some
computation model. The query complexity q is measured in the number of
adaptively chosen input/output pairs. If F has a variable input length, the
maximum length lmax of the query (in n-bit blocks) is also characteristic
of the adversary’s resources. Without loss of generality, we assume that A
always uses exactly q unique queries (no redundancy and repetitions). The
result of computations A after interacting with oracles O1, O2, ... Ow, w ∈ N
is some value x (usually binary), AO1,O2,...Ow ⇒ x.

The maximum of the advantage among all resource constrained adver-
saries is denoted by

AdvTMAlg (t, q, lmax) = max
A(t′,q′,l′):t′≤t, q′≤q, l′≤lmax

AdvTMAlg (A).

The cryptoalgorithm Alg is called secure in the threat model TM with respect
to adversaries limited by resources (t, q, lmax) if AdvTMF (t, q, lmax) < ε, where
ε is some small value determined by the requirements for the strength of the
cryptosystem.

To demonstrate the practical significance of the obtained results, we some-
times substitute heuristic estimates based on assumptions into derived secu-
rity bounds. The resulting informal estimates are denoted by symbol «/ »
meaning «less or equal if the assumptions are true».

4

Definition. The advantage of A in the model PRF (PRF -CMA –
indistinguishability from a random function under chosen message attack)
for the keyed cryptoalgorithm F : K×X→ Y is

AdvPRFF (A) = Pr
(
K

R← K;AFK(·) ⇒ 1
)
−Pr

(
F̃

R← Func(X,Y);AF̃(·) ⇒ 1
)
,

where K, X, Y are spaces of the keys, messages, and outputs respectively.
As the example, for a PRF with a fixed input length, we have (K,X,Y) =

(V n, V n, V n). For Streebog-K, (K,X,Y) = (V k, V ≤L, V n).

3 Streebog and Streebog-K

Streebog hashes the messageM ∈ V ∗ as follows. The text is padded with
bit string 10 . . . 0. At least one bit is always added, even if the message bit
length L is already divisible by n. The string M ′ = M ||10 . . . 0 is divided
into l blocks of n = 512 bits m1||m2|| . . . ||ml. The compression function is
sequentially applied to the previous state, the block and the counter

hi+1 = g(hi,mi+1, i), i = 0, ..., l − 1, h0 = IV ∈ V n,

where IV is a predefined constant which is different in both versions of the
hash function, the counter i = bin(i·n) ∈ V n is the number of already hashed
bits.

Two more transformations are performed at the finalizing stage: the bit
length L and the checksum Σ = sum�(M ′) are «mixed» with the state

hl+1 = g(hl, L,0), H = g(hl+1, Σ,0).

If 256-bit hash function is used, the output H truncated to 256 bit.

Figure 1: Keyless hash function Streebog-512.

The compression function is based on a 12-rounds AES-like block cipher
E in Miyaguchi-Preneel mode

g(hi,mi+1, i) = E(hi ⊕ i,mi+1)⊕ hi ⊕mi+1 = hi+1.

5

In [22], the equivalent representation was proposed (see the detailed figure
in the Appendix)

hi+1 = E(hi ⊕ i,mi+1)⊕ (hi ⊕ i)⊕mi+1︸ ︷︷ ︸
g′(hi⊕i,mi+1)

⊕ i,

hi+1 = g′(hi ⊕ i,mi+1)⊕ i,

hi+2 = g′(g′(hi ⊕ i,mi+1)⊕ i⊕ (i� 1)︸ ︷︷ ︸
∆i

,mi+2)⊕ (i� 1).

Adjacent counters are summed with each other. However, the last counter
appears differently hl = g′(hl−1 ⊕ (l� 1),ml)⊕ (l� 1)︸ ︷︷ ︸

∆̃l−1

.

Hence, g(hi,mi+1, i) is replaced by

g(hi,mi+1) = E(hi,mi+1)⊕ hi ⊕mi+1 ⊕∆i, i = 0, . . . , l − 2,

g(hi,mi+1) = E(hi,mi+1)⊕ hi ⊕mi+1 ⊕ ∆̃i, i = l − 1,

and the sequence of unique counters i is replaced by a «quasi-periodic» one
∆i = i⊕ (i� 1), for example,

∆0,∆1, . . . , ∆̃15 = 1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,15,

∆0,∆1, . . . ,∆15, ∆̃16 = 1,3,1,7,1,3,1,15,1,3,1,7,1,3,1,31,16.

Also, it is important that ∆i 6= ∆̃i ∀i = 0, ..., 2n − 1.
The keyed cryptoalgorithm Streebog-K defined as (fig. 2)

KH(K,M) = H(K||M) = H(K||0...0︸︷︷︸
n−k
||M), K ∈ V k, K ∈ V n,

where 256 ≤ k ≤ 512 = n and K is padded with zero bits if necessary (as
in [3]). Streebog-256 and Streebog-512 can be used as H without significant
differences in properties. Note that due to the key’s prepending, the last value
∆̃l = l has the index l, and not l − 1. Further in the text, the compression
function means g(h,m) = E(h,m)⊕ h⊕m.

4 Related key attack settings

The security proof presented in the next section shows that if the adver-
sary can break PRF-security of Streebog-K, then one of the following two
problems is also easy to solve. However, we expect these problems to be hard
– g successfully resists attacks using related keys in (at least) two settings.
Therefore, the security of Streebog-K is also difficult to break.

6

Figure 2: Streebog-K with the equivalent representation [22].

Problem 1. PRF -RKA⊕-security of gBK(·) = g(K, ·) in sense

Adv
PRF−RKA⊕
g. (A) = Pr

(
K

R← V n, Ag(K,·),g(K⊕φ,·) ⇒ 1
)
−

− Pr
(
f, f ′

R← Func(V n, V n), Af(·),f ′(·) ⇒ 1
)

– the pair of the compression functions (with the key K and with the related
key K⊕φ) is indistinguishable from the pair of random functions. The value
of φ 6= 0 is chosen once by the adversary before the sequence of queries. The
query consists of the block m and the binary flag «key K»/«key K ⊕ φ».

In the most favorable case, there are only two distinguishing methods:
brute-force attack against two keys and birthday-paradox

Adv
PRF−RKA⊕
g. (t, q) /

2 · t
2n

+
q2

2n+1
.

Problem 2. PRF -RKA�-security of gOK = g(·, K). The relation between
the keys is modular addition

AdvPRF−RKA�gO (A) = Pr
(
K

R← V k;Ag(·,K�·) ⇒ 1
)
−

−Pr
(
K

R← V k; fK�σ
R← Func(V n, V n), ∀σ ∈ V n;AfK�·(·) ⇒ 1

)
.

The query consists of the block m and the value σ. The response is
gO
K�σ

(m) = g(m,K � σ) or fK�σ(m) correspondingly. We can hope that in
the absence of specific vulnerabilities, the only possible attack is the parallel
key guessing

AdvPRF−RKA�gO (t, q) /
t · q
2k−1

.

The more related keys are used, the easier it is to carry out the attack.
The complexity of solving basic problems should be confirmed by con-

structive cryptanalysis of the compression function. The impossible differen-
tial single-key attack against gB is presented in [24] and covers 6.75 out of

7

12 rounds. In [25], attacks on 7 rounds in the PRF model are proposed for
gB and gO. The attacks in the related-key settings against 10 and 11 rounds
of gO were recently proposed in [26].

Despite the many papers on the topic [27, 28, 29, 30, 31, 32, 33, 34], to
the best of our knowledge, no effective full-round algorithms for constructing
preimages and collisions of various types have been published. This is implicit
evidence of the good cryptographic properties of g.

The existing results of cryptanalysis, as well as the conservative design
of the underlying block cipher E and its key schedule, suggest that there are
no special attacks on full-round versions of the compression function also
in the PRF-RKA settings. In other words, the two basic problems under
consideration are actually computationally hard.

The appearance of more efficient cryptographic methods of the compres-
sion function g will not render the presented security proof of Streebog-K
incorrect. Specific attacks on g can be taken into account in the security
bounds due to the absence of heuristic arguments in the proof.

5 Proof of PRF-security

Next, we show the reducibility of Streebog-K security to the problems
discussed in the previous section. The equivalent representation (figure 2) is
the start point KH(0)(K,M) = KH(K,M).

Step 1. We define the padding transformation pad : V ∗ → (V n)≤lmax

that sequentially adds to M :
– the nonempty binary string 10 . . . 0 to achieve the multiplicity of the

block length;
– the block bin(L) representing the length of M in bits.
Let M ′ consists of l + 1 full-length blocks (l ≥ 1), then

KH(0)(K,M) = KH(1)(K, pad(M) = M ||10 . . . 0||bin(L)), M ∈ V ∗,
KH(1)(K,M ′) = g

(
Csc(g(IV,K),M ′), K � sum′�(M ′))

)
, M ′ ∈ (V n)≤lmax ,

and the «mixing» L is an implicit part of the cascade transformation

Csc(KCsc,M
′) = g(. . . g(g(KCsc ⊕∆0,m1)⊕∆1,m2) . . .⊕ ∆̃l,ml+1),

where KCsc = g(IV,K) and ml+1 = bin(L).
The pad is injective, and hence if KH(1) is secure with arbitrary block-

length inputs, then KH(0) is also an equally good PRF with M ∈ V ∗.
Step 2. We replace gOK = g(·, K � ·) (the first and last compression

functions) with a family of true random functions fK�·(·) and obtain KH(2).

8

Algorithm A, which distinguishes KH(2) from KH(1), can be used to attack gOK
in the model PRF -RKA�. The corresponding algorithm BRKA works as fol-
lows. To process requests from A, one preparatory query (IV, 0) to the oracle
g(·, K � ·) is required. So, BRKA obtains KCsc. Each query M ∈ (V n)≤lmax

requires from BRKA no more than lmax computations and one related-key
query (Csc(KCsc,M), σ = sum′�(M)). The result of work A is equal to the
result of work BRKA and the query complexity is qB = 1 + qA.

Pr
(
AKH(1)(·) ⇒ 1

)
− Pr

(
AKH(2)(·) ⇒ 1

)
≤ AdvPRF−RKA�gO (BRKA).

Step 3. The essence of the step is contained in the following statement.
Lemma. The cascade Csc(KCsc,M), M ∈ (V n)≤lmax is itself PRF-secure

provided that g. is secure in the PRF -RKA⊕ model

AdvPRFCsc (t, q, lmax) ≤ q · lmax · Adv
PRF -RKA⊕
g. (t′, q),

where t′ = t+O(q · lmax).
The inequality presented above is similar to [9, Theorem 3.1] on the PRF-

security of a «plain» cascade pCsc (i.e. without addition with ∆0,...,∆̃l). The
differences are as follows: the relevant threat model for g. has been changed
from PRF to PRF -RKA⊕; the sequence ∆0, ...,∆l−1, ∆̃l is used; the prefix-
free restriction is not imposed on the adversary’s queries.

Obviously, the cascade isn’t secure if the adversary can predict some
output for non-queried input. If the value pCsc(K,M) is known for some
message M , then pCsc(K,M ||p) can also be easily computed for any block p
(length extension attack). Hence, the PRF-security of pCsc is proved only for
the case when none of the queried messages could be a prefix of any other.

Our situation is different. The value Csc(K,m1|| . . . ||ml+1) does not give
a direct opportunity to compute Csc(K,m1|| . . . ||ml+1||p) due to the ∆l 6=
∆̃l. Ifml+1 is the last block, then g(Kg⊕∆̃l,ml+1) is computed, otherwise we
have g(Kg⊕∆l,ml+1), where Kg is some intermediate state. The calculation
is performed using related keys, and the relation is equal to φl = ∆̃l ⊕ ∆l.
We formalize this intuition using the PRF -RKA⊕ notion and give the proof
in Appendix B.

Thus, the last call of the compression function with checksum mixing is
not necessary to ensure the security of Streebog-K (of course, under the two
assumptions about security of g). However, the presence of the checksum
affects the resistance to specific key-recovery «beyound the bound» attacks.

9

Step 4. Consider a special threat model called FINAL

AdvFINALCsc (A) = Pr
(
KCsc

R← V n, A ⇒ (M1, . . . ,Mq),

∃i, j : Csc(KCsc,Mi) = Csc(KCsc,Mj), Mi 6= Mj OR
∃i : Csc(KCsc,Mi) = IV).

An adversary A which is effective in this model allows to construct the algo-
rithm BFINAL attacking Csc in the PRF model. BFINAL runs the algorithm
A and obtains q different messages (M1, . . . ,Mq). For each message BFINAL
requests from its oracle the value Yi = F(Mi) (resp. Yi = Csc(KCsc,Mi)).
If BFINAL obtains the collision or the value IV among (Y1, ..., Yq) then the
result is 1, otherwise 0. Hence

Pr(BCsc(KCsc,·)
FINAL ⇒ 1) = p0 ≥ AdvFINALCsc (A),

Pr(BF(·)
FINAL ⇒ 1) = p1 ≤

q · (q − 1)

2

1

2n
+

q

2n
,

AdvPRFCsc (BFINAL) = p0 − p1 ≥ AdvFINALCsc (A)−
(
q · (q − 1)

2

1

2n
+

q

2n

)
,

AdvFINALCsc (A) ≤ AdvPRFCsc (BFINAL) +
q2 + q

2n+1
.

The last call of the compression function in Streebog «mixes» checksum
with the state. At the second step, this transformation was replaced by a
family of random functions fK�σ(·) R← Func(V n, V n), ∀σ ∈ V n. One query
has already been made KCsc = fK�0(IV).

The query Mi from A produces the pair of values

(Yi, σi) = (Csc(KCsc,Mi), sum
′
�(Mi))

If there are no collisions (Yi, σi) 6= (Yj, σj) for all i 6= j and for all i:
(Yi, σi) 6= (IV, 0), then fK�·(·) is not requested twice with the same query.
Thus, the result is indistinguishable from a random function.

The transformation KH(2) is represented as follows.
Initialization: K R← V k; H ′0, H ′1, . . . , H ′q

R← V n; KCsc = H ′0 = fK�0(IV);
On query Mi, i = 1, ..., q compute:

– Yi = Csc(KCsc,Mi); Hi = H ′i; σi = sum′�(Mi);

– (*) if (Yi, σi) = (Yj, σj) for some j < i then Hi = Hj;

– (*) if (Yi, σi) = (IV, 0) then Hi = KCsc;

– return Hi.

10

If rows marked with (*) are not executed, then the result is indistinguish-
able from a random function. Delete these rows and obtain KH(3).

The probability of the conditions (*) being true does not exceed the
probability of a successful attack in the FINAL model on Csc (if we remove
checksums, then it is essentially the same thing). Hence, by «fundamental
game-playing lemma»

Pr
(
AKH(3)(·) ⇒ 1

)
− Pr

(
AKH(2)(·) ⇒ 1

)
≤ AdvPRFCsc (BFINAL) +

q2 + q

2n+1
.

The set of transitions presented leads to the following theorem.
Theorem (PRF-security of Streebog-K). For any adversary A with

time complexity at most t that makes q queries, where the maximal message
length is at most (lmax−1) blocks, there exist the adversaries B′ and B′′ such
that

AdvPRFKH (A) ≤ AdvPRF−RKA�gO (B′) + q · lmax · Adv
PRF−RKA⊕
g. (B′′) +

q2 + q

2n+1
.

The query complexity of B′ and B′′ is q+ 1 and q correspondingly. The time
complexity of both adversaries is t′ = t+O(qlmax).

Assuming t � q · lmax and with the estimates of AdvPRF−RKA�gO and
Adv

PRF−RKA⊕
g. based on generic attacks

AdvPRFKH (t, q, lmax) /
t · q
2k−1

+
t · q · lmax

2n−1
+
q3 · lmax

2n
.

It should be noted that the bound presented in the theorem almost coincides
with the corresponding one in HMAC and can be considered tight in some
sense (see, for example [15]). At the same time, the approximate estimate,
which was given for illustrative purposes, is not accurate and significantly
exaggerates the capabilities of the adversary. Despite this, Streebog-K can be
used in practice without any restrictions on the amount of data processed.
Of course, the presented estimates do not consider threats that are outside
the formal model, e.g. side-channel attacks and others.

For example, let Streebog-K be used as MAC with 256-bit key. The output
is truncated to τ = 64 bits, q = 248 messages are processed with one key,
each message has a length of no more than lmax = 264 blocks. The computing
power of the adversary is about t = 2128 operations. Hence, the probability
of creating a forgery in one attempt is bounded by [12, Proposition 7.3] (SUF
– Strong UnForgeablility)

AdvSUFKH (t, q, lmax) ≤ AdvPRFKH (t, q, lmax) +
1

2τ
/ 2−63,

and the numerical value is close to the ideal 2−τ = 2−64.

11

6 Beyond the bound attacks

To complete the description of the properties and features of Streebog-K,
we briefly present two attacks on it. Once again, we note that attacks have
a significant probability of success only if the amount of material and com-
puting resources of the adversary is greater than allowed according to the
provable security bounds.

6.1 Existential forgery

The attack is carried out under the conditions of the adaptively chosen
messages.

The set of l-block messages Mi = bin(i)||bin(2n − i)||C, i = 1, ..., q is
prepared, where C contains arbitrary blocks. The checksums of all messages
are the same sum�(Mi) = sum�(Mj), 1 ≤ i, j ≤ q.

The oracle is queried for the values of Hi = KH(K,Mi).
For simplicity, we assume that after processing of the two first blocks

bin(i)||bin(2n − i), all intermediate states are different. Further transforma-
tions will be identical for each message.

Assuming that when processing the j-th block (j = 3, . . . , l), a random
mapping is applied to each intermediate state in parallel, the probability
of a collision for an arbitrary pair is estimated by Pr(Hi = Hj, i 6= j) =
Θ (l · 2−n), see [23, Lemma 1]. Then the probability of a collision among q
messages Pr(∃i, j : Hi = Hj, i 6= j) = Θ

(
q2 · l · 2−n

)
.

A collision generated by a pair of messages Mi, Mj most likely occurs
when processing one of the message blocks, and not when finalizing. Hence,
we have

KH(K,Mi||P) = KH(K,Mj||P), P ∈ V n.

The adversary uses the possibility of adaptive setting, obtains Hq+1 =
KH(K,Mi||P) and creates the forgery Mj||P with the code Hq+1.

The attack is the same for both Streebog-K and HMAC-Streebog.

6.2 Key recovery

In [23], among other things, the key-recovery attack against
HMAC-Streebog (with 512-bit key) was presented. The time complexity is
at least t = 2419 operations.

The attack consists of two phases. Both of them have almost the same
time complexity.

12

The first phase is the state-recovery attack. This method is generic for
HMAC with HAIFA-like [21] hash function. The optimal time complexity is
about t = 2419 operations. The oracle is queried about q = 2358 times. The
length of each query is at least l = 251 blocks. Other values of the q and l
will result in more time complexity.

The target of the second phase is the secret key. This part of the attack
can only be applied to HMAC-Streebog and similar cryptoalgorithms.

The state recovery attack can be used against Streebog-K without any
modification. So, we omit its description and refer to [23]. As a result of the
first phase, the adversary obtains the l-block messageM and the correspond-
ing secret state x (after processing the message and before finalization).

Key recovery phase is much easier for Streebog-K.
The adversary constructs 2u-collision starting with the state x (the time

complexity is about u · 2n/2 operations [20]). The value of the multicollision
is x∗ = Csc(KCsc,M ||Pi||10..0||bin(L)) and Pi contains exactly u blocks,
i = 1, ..., 2u. By queries to the oracle the values Hi = KH(K,M ||Pi) are
collected and g(x∗, K � σi) = Hi, where σi = sum�(M ||Pi||10..0) (see fig.
3). We assume that almost all σi are different and the same is true for Hi.

Figure 3: Key recovery attack (with known state x).

Thus, we need to guess zi = K � σi for some i. We compute g(x∗, z̃j) =

H̃j and check the match H̃j = Hi, j = 1, ..., 2v. If H̃j = Hi is true then
K � σi = z̃j can also be true with high probability. If 2u · 2v = 2n, we expect
one true match to be found.

The time complexity of the key recovery phase is t ≈ l·2u+u·2n/2+2v and
with u = 230, l = 251, t ≈ 2283, the query complexity is q = 2u. Consequently,
the complexity of the first phase is much greater than the second.

Thus, Streebog-K does not provide «512-bit security» in the sense of
resistance to the key recovery. This is also true for HMAC-Streebog. We
suggest using 256-bit keys in Streebog-K.

13

7 HMAC, S3G and GOST94

The obtained security proof for Streebog-K can be used with some mod-
ifications for a number of similar cryptoalgorithms.

HMAC-Streebog uses the key four times. The relation between keys is
defined by two operations simultaneously. In the second step of the proof,
the stronger model is used instead of PRF -RKA� (problem 2)

Adv
PRF−RKA⊕,�
gO (A) = Pr

(
K

R← V k;Ag(·,(K⊕·)�·) ⇒ 1
)
−

−Pr
(
K

R← V k; fi
R← Func(V n, V n), ∀i ∈ V n;Af(K⊕·)�·(·) ⇒ 1

)
,

the query is (m,φ, σ), the response is y = g(m, (K ⊕ φ)� σ). The heuristic
estimate of complexity for PRF -RKA⊕,� is the same as for PRF -RKA�.
Problem 1 and the rest of the steps remain unchanged, but one more step is
added. The collision after the first call of the hash function H((K⊕ipad)||M)
is taken into account, as well as the collision between the last related key and
the other three. The result is the following theorem (the proof is presented
in Appendix).

Theorem (PRF-security of HMAC-Streebog). For any adversary A
with time complexity at most t that makes q queries, where the maximal
message length is at most (lmax − 1) blocks, there exist adversaries B′ and
B′′ such that

AdvPRFHMAC-Streebog(A) ≤ Adv
PRF−RKA⊕,�
gO (B′)+

+q · lmax · Adv
PRF−RKA⊕
g. (B′′) +

q2 + q

2n+1
+

3(q2 + q)

2τ+1
,

where τ ∈ {256, 512} is the bit length of the output. The query complexity
of B′ and B′′ is 2 + 2 · q and q correspondingly. The time complexity of both
adversaries is t′ = t+O(qlmax).

Cryptoalgorithm S3G [4] is defined as S3G(K,M) = H(K||M), but the
k-bit key is not padded to 512 bits, k ∈ {128, 256}. The number of calls to
g is always the same for the selected k. Yet another variant of the compres-
sion function is defined as gOOK (m,m′) = g(m,K||m′), m′ ∈ V n−k with the
corresponding threat model

Adv
PRF−RKA�,||
gOO (A) = Pr

(
K

R← V k;Ag(·,(K||·)�·) ⇒ 1
)
−

−Pr
(
K

R← V k; fi
R← Func(V n, V n), ∀i ∈ V n;Af(K||·)�·(·) ⇒ 1

)
,

the query is (m,m′, σ), the response is y = g (m, (K||m′)� σ). The second
step of the proof changes accordingly. In the third step, the tree does not

14

have a single root, the number of roots is arbitrary from 1 to q. The fourth
step of the proof does not require significant changes.

Hash function GOST94 [2] is based on the «plain» Merkle-Damg̊ard
scheme (the state and the message size n = 256 bit) with one excep-
tion: the last call of the compression function g94 «mixes» checksum of
the message (modulo 2n) to the state. The first step of the security proof
HMAC-GOST94 should take into account changes in the padding. The sec-
ond step uses the same reduction as for HMAC-Streebog (gO94 must be secure
in the PRF -RKA⊕,� model). The third step is simply using the previously
known result [9, Th. 3.1] (g.94 must be a secure PRF). At the fourth step we
use a well-known «extension trick» as in the proof of HMAC [14, Sec. 7]. The
last step is the same as for HMAC-Streebog. However, it should be noted that
the security of g94, as far as we know, was not examined in the PRF model,
unlike g [24, 25]. Therefore, in the case of HMAC-GOST94, we cannot say
without a doubt that the basic problems are really computationally hard.

8 Conclusion

The paper presents «Streebog-K» («Keyed Streebog»)

KH(K,M) = H(K||M), K = K||0...0,

based on keyless hash function Streebog. The proposed solution has almost
the same cryptographic strength as HMAC-Streebog. This is true both from
the provable security point of view, and with regard to the applicability of
attacks. At the same time, the speed is doubled when processing short texts.

The suggested proof shows that Streebog-K is a pseudorandom function
(PRF) and, therefore, a secure message authentification code (MAC). The
security is reduced to the resistance of the underlying compression function
to the related key attacks (PRF-RKA). The existing results indicate that the
compression function is indeed secure in the relevant threat models.

The obtained results can be slightly modified to create security proofs of
HMAC-Streebog, HMAC-GOST94, S3G and similar cryptoalgorithms. Such
changes were also briefly listed.

We also propose two open problems to consider:
1) Is it possible to replace problem 1 (PRF -RKA⊕) in the reduction

with the simple PRF model?
2) Is there an attack in any model that would be more effective against

Streebog-K than against HMAC-Streebog?

15

9 Acknowledgements

The author sincerely thanks Evgeny Alekseev, Liliya Akhmetzyanova and
Alexandra Babueva for the inspiration, motivation and useful discussions.
The quality of the paper has been significantly improved thanks to the great
help of Andrey Scherbachenko. Special thanks to the anonymous reviewer(s)
for the thorough verification of the result and a lot of detailed comments and
suggestions.

References
[1] GOST R 34.11-2012 – National standard of the Russian Federation – Information

technology – Cryptographic data security – Hash function, 2012.
[2] GOST R 34.11-94 – National standard of the Russian Federation – Information tech-

nology – Cryptographic data security – Hash function, 1994.
[3] R 50.1.113-2016 – Information technology – Cryptographic data security – Crypto-

graphic algorithms accompanying the use of electronic digital signature algorithms and
hash functions, 2016.

[4] R 1323565.1.003-2017 – Information technology – Cryptographic data security – Cryp-
tographic algorithms for generating encryption keys and authentication vectors in-
tended for implementation in hardware trust modules for use in mobile communica-
tion, 2017.

[5] Grebnev S., Dmukh A., Dygin D., Matyukhin D., Rudskoy V., Shishkin V., “Asym-
metrical Reply to SHA-3: Russian Hash Function Draft Standard”, CTCrypt 2012,
2012.

[6] Smyshlyaev S., Alekseev E., Oshkin I., Popov V., Leontiev S., Podobaev V., Belyavsky
D., “RFC 7836 - Guidelines on the Cryptographic Algorithms to Accompany the
Usage of Standards GOST R 34.10-2012 and GOST R 34.11-2012”, March 2016.

[7] Damg̊ard I., “A design principle for hash functions”, CRYPTO 1989, Lect. Notes
Comput. Sci., 435, 1990, 416–427.

[8] Merkle R., “One way wash functions and DES”, CRYPTO 1989, Lect. Notes Comput.
Sci., 435, 1990, 428–446.

[9] Bellare M., Canetti R., Krawczyk H., “Pseudorandom Functions Revisited: The Cas-
cade Construction and its Concrete Security”, 37th FOCS, IEEE, 1996, 514–523.

[10] Bellare M., Canetti R., Krawczyk H., “Keying Hash Functions for Message Authen-
tication”, Crypto’96, Lect. Notes Comput. Sci., 1109, 1996, 1–15.

[11] Preneel B., Paul C. van Oorschot, “On the Security of Iterated Message Authentica-
tion Codes”, IEEE Transactions on Information Theory, 45 (1999), 188–199.

[12] Bellare M., Goldreich O., Mityagin A., “The power of verification queries in mes-
sage authentication and authenticated encryption”, Cryptology ePrint Archive: Report
2004/304, 2004.

[13] Koblitz N., Menezes A., “Another look at HMAC”, J. Math. Cryptol., 7:3 (2013),
225–251.

[14] Bellare M., “New proofs for NMAC and HMAC: security without collision-resistance”,
CRYPTO 2006, Lect. Notes Comput. Sci., 4117, April 2014, 602–619.

[15] Gaži P., Pietrzak K., Rybár M., “The Exact PRF-Security of NMAC and HMAC”,
CRYPTO 2014, Lect. Notes Comput. Sci., 8616, August 2014, 113–130.

[16] Alekseev E.K., Oshkin I.B., Popov V.O., Smyshlyaev S.V., “On the cryptographic
properties of algorithms accompanying the applications of standards GOST R 34.11-
2012 and GOST R 34.10-2012”, Mat. Vopr. Kriptogr., 7:1 (2016), 5–38.

[17] Nandi M., “A New and Improved Reduction Proof of Cascade PRF”, Cryptology
ePrint Archive: Report 2021/097, 2021.

16

[18] Bellare M., Rogaway P., Introduction to Modern Cryptography, 2005.
[19] Goldreich O., Foundations of Cryptography. Basic Tools, 2004.
[20] Joux A., “Multicollisions in Iterated Hash Functions. Application to Cascaded Con-

structions”, CRYPTO 2004, Lect. Notes Comput. Sci., 3152, 2004, 306–316.
[21] Biham E., Dunkelman O., “A Framework for Iterative Hash Functions (HAIFA)”,

Cryptology ePrint Archive, Report 2007/278, 2007.
[22] Guo J., Jean J., Leurent G., Peyrin T., Wang L., “The usage of counter revisited:

second-preimage attack on new Russian standardized hash function”, SAC 2014, Lect.
Notes Comput. Sci., 8781, 2014, 195–211.

[23] Dinur I., Leurent G., “Improved generic attacks against hash-based MACs and
HAIFA”, CRYPTO 2014, Lect. Notes Comput. Sci., 8616, 2014, 149–168.

[24] Abdelkhalek A., AlTawy R., Youssef A. M., “Impossible differential properties of
reduced round Streebog”, C2SI 2015, Lect. Notes Comput. Sci., 9084, 2015, 274–286.

[25] Kiryukhin V., “Streebog compression function as PRF in secret-key
settings”, CTCrypt 2021, Mat. Vopr. Kriptogr., 13:2 (2022), 99–116,
https://eprint.iacr.org/2022/118.pdf.

[26] Kiryukhin V., “Related-key attacks on the compression function
of Streebog”, CTCrypt 2022, June 6-9, 2022, Novosibirsk, Russia,
https://eprint.iacr.org/2022/970.pdf.

[27] AlTawy R., Youssef A. M., “Preimage attacks on reduced-round Stribog”,
AFRICACRYPT 2014, Lect. Notes Comput. Sci., 8469, 2014, 109–125.

[28] AlTawy R., Kircanski A., Youssef A. M., “Rebound attacks on Stribog”, ICISC 2013,
Lect. Notes Comput. Sci., 8565, 2014, 175–188.

[29] Lin D., Xu S., Yung M., “Cryptanalysis of the round-reduced GOST hash function”,
Inscrypt 2013, Lect. Notes Comput. Sci., 8567, 2014, 309–322.

[30] Ma B., Li B., Hao R., Li X., “Improved cryptanalysis on reduced-round GOST and
Whirlpool hash function”, ACNS 2014, Lect. Notes Comput. Sci., 8479, 2014, 289–
307.

[31] Wang Z., Yu H., Wang X., “Cryptanalysis of GOST R Hash Function”, Information
Processing Letters, 114 (2014), 655–662.

[32] Kölbl S., Rechberger C., “Practical attacks on AES-like cryptographic hash func-
tions”, LATINCRYPT 2014, Lect. Notes Comput. Sci., 8895, 2014, 259–273.

[33] Ma B., Li B., Hao R., Li X., “Improved (pseudo) preimage attacks on reduced-round
GOST and Grøstl-256 and studies on several truncation patterns for AES-like com-
pression functions”, IWSEC 2015, Lect. Notes Comput. Sci., 9241, 2015, 79–96.

[34] Hua J., Dong X., Sun S., Zhang Z., Hu L., Wang X., “Improved MITM Cryptanalysis
on Streebog”, Cryptology ePrint Archive, Paper 2022/568, 2022.

17

A Detailed pictures

Figure 4: The equivalent representation of Streebog.

18

B Proof of the lemma

Lemma. The cascade

Csc(KCsc,M) = g(. . . g(KCsc ⊕∆0,m1) . . .⊕ ∆̃l,ml+1),

where M = m1||m2||...||ml+1 ∈ (V n)≤lmax, 1 ≤ l + 1 ≤ lmax, is PRF-secure
provided that g. is secure in the PRF -RKA⊕ model

AdvPRFCsc (t, q, lmax) ≤ q · lmax · Adv
PRF -RKA⊕
g. (t′, q),

where t′ = t+O(q · lmax).
Proof. Let’s imagine queries to the cascade in the form of a tree:
the root v0 is KCsc; the nodes vi are the intermediate states; the results are
stored in leaves. Each edge of the tree is labeled with the the block mi from
the message M

KCsc = v0
m1→ v1

m2→ v2
m3→ v3 . . .

ml+1→ vl+1, 1 ≤ l + 1 ≤ lmax.

At each level (height) after processing all requests, there will be no more than
q nodes.

Consider an arbitrary node vi, which is essentially an intermediate secret
key. If mi+1 is not the last, then g(vi ⊕∆i,mi+1) = vi+1 is computed. If the
block m′i+1 is the last, then ∆̃i is used g(vi ⊕ ∆̃i,m

′
i+1) = v′i+1. The first

secret key is Kg = vi ⊕ ∆i, the second one is K ′g = vi ⊕ ∆̃i. The relation
between the keys is defined as

φi = Kg ⊕K ′g = ∆i ⊕ ∆̃i = (i⊕ (i� 1)) ⊕ i = i� 1, i = 0, . . . , lmax.

Figure 5: Node vi of the tree. The internal (resp. external) edges and nodes are highlighted
in blue (resp. red).

The adversary will never observe the values of the internal nodes of the
tree. Hence, all adversary’s queries will be independent of these values. For a

19

«plain» cascade from [9], this was ensured by limiting the queries (none of the
queried message could be a prefix of any other). In our case, the mentioned
independence is provided essentially by two different functions that compute
internal and external nodes, respectively.

We use a «hybrid argument» for tree levels (from 1 to lmax) and for nodes
of each level (from 1 to q).

Denote by Csci the cascade transformation starting from level i, Csc0 =
Csc. At level i, we define the hybrid game and the corresponding oracle Ci as
follows:

– Initialization: F R← Func
(
(V n)i, V n

)
; F′ R← Func

(
(V n)≤i, V n

)
;

– On query M = (m1, ...,ml) ∈ (V n)l, 1 ≤ l ≤ lmax from A compute:

if l ≤ i then y = F′(M); return y;
if l > i then Mpre = (m1, . . . ,mi); Msuff = (mi+1, . . . ,ml);
return y = Csci(F(Mpre),Msuff).

All internal (resp. external) nodes of the tree are calculated using F (resp.
F′). The oracle C0(·) is identical to the Csc(KCsc, ·). Indeed, if i = 0 thenMpre

is an empty string, Msuff = M , F(Mpre) = KCsc and y = Csc0(KCsc,M).
The algorithm Clmax

(·) is essentially a random function

AdvPRFCsc (A) = Pr
(
AClmax(·) ⇒ 1

)
− Pr

(
AC0(·) ⇒ 1

)
.

Let A be able to effectively distinguish C0(·) and C1(·), then it is pos-
sible to construct B0 distinguishing the compression function from the ran-
dom function in the PRF -RKA⊕ model. Really, for the one-block message
M = m1 algorithm B0 queries the value f ′(m1) (this is either the value of
the second random function, or g(K ⊕ φ1,m1)). For any multi-block query
M = (m1,m2, . . . ,ml) received from A, algorithm B0 asks its oracle for the
value f(m1) (resp. g(K,m1)). Recall that the secret random key K is es-
sentially the value K = KCsc ⊕∆0 (also distributed uniformly on V n), and
therefore, B0 correctly emulates the beginning of the cascade. Next, the value
Csc1(f(m1), (m2, . . . ,ml)) is computed and sent to A without queries to the
oracle. The result of B0 is equal to the result of A and

Pr
(
AC1(·) ⇒ 1

)
− Pr

(
AC0(·) ⇒ 1

)
≤ Adv

PRF−RKA⊕
g. (B0).

Consider the general case. Let A be able to effectively distinguish Ci(·)
and Ci−1(·) (figure 6).

20

Figure 6: Trees formed by queries to Ci(·) (left) and Ci−1(·) (right).

We turn to the case of q parallel games in the PRF -RKA⊕. The cor-
responding adversary Bi has access to q pairs of oracles (q pairs of random
functions (fj(·), f ′j(·)) or q pairs of (g.Kj

(·), g.Kj⊕φi(·)), j = 1, .., q). The query
from Bi consists of (j, b ∈ {1, 2},m ∈ V n), where b specifies the first or
the second oracle of the j-th pair. Due to the independence of the pairs, the
hybrid argument is straightforward, and we have

Pr
(
Bf·(·),f ′·(·)
i ⇒ 1

)
− Pr

(
B
g.K·(·),g

.
K·⊕φi

(·)
i ⇒ 1

)
≤

q∑
j=1

Adv
PRF−RKA⊕
g. (Bi,j).

The value of φi = i�1 is chosen equally by all PRF -RKA⊕-adversaries Bi,j,
j = 1, ...q. The algorithm of Bi,j is similar to that of B0. In fact, the latter
processes queries that affect the root of the tree, and Bi,j uses messages that
depend on the j-th node at depth i.

M = (m1, . . . ,ml) is the query from A to the oracle Ci(·) or Ci−1(·). The
algorithm Bi must perfectly simulate both of them:

– Initialization: PrefixMap[P] = ∅, ∀P ∈ (V n)i−1; maxj = 1;

– On query M = (m1,m2, . . . ,ml) ∈ (V n)l, 1 ≤ l ≤ lmax from A com-
pute:

– if l < i then return y
R← V n; (recall that there are no duplicate

queries M);

– if PrefixMap[(m1, . . . ,mi−1)] = ∅ then
PrefixMap[(m1, . . . ,mi−1)] = maxj;
maxj = maxj + 1;

– j = PrefixMap[(m1, . . . ,mi−1)];

21

– if l = i then y = f ′j(mi); (resp. y = g.Kj⊕φi(mi)) by query (j, 2,mi);
return y;

– if l > i then z = fj(mi); (resp. z = g.Kj
(mi)) by query (j, 1,mi);

Msuff = (mi+1, . . . ,ml);
y = Csci(z,Msuff); return y.

First of all, we note that requests shorter than l blocks always generate a
random response (both Ci and Bi). Different prefixes (m1, . . . ,mi−1) generate
queries to different oracles. PrefixMap is used to store all queried prefixes
(m1, ...,mi−1). Initially, there is not a single entry in PrefixMap. If the prefix
has not been queried before, a new entry is created in PrefixMap, otherwise,
the j corresponding to the prefix is extracted. After all interactions, we have
1 ≤ maxj ≤ q. In other words, PrefixMap stores at least one and at most
q elements. If maxj = 1, then all queries had the same prefix. If maxj = q,
then the prefixes of all queries were different.

Let Bi interact with q pairs of random functions. Therefore, if l = i then
the response is really random (as y = F′(M) in the case of Ci). If l > i

then it is also truly random (as the intermediate value F(Mpre)). Further
computation of the cascade is identical in both cases. So, Bi simulates Ci(·)
for the adversary A.

Let Bi interact with q pairs of the compression functions
(g.Kj

(·), g.Kj⊕φi(·)). Imagine that Mpre = (m1, . . . ,mi−1) and in-
stead of requesting a random function F(Mpre), we implicitly use
secret keys from the j-th pair of oracles. Next, the computations
y = Csci(g(Kj,mi), (mi+1, . . . ,ml)) are equivalent to the Csci−1 cascade,
and the perfect simulation of Ci−1(·) is also constructed.

Thus, we consistently replace Ci−1(·) with Ci(·) (i = 1, ..., lmax), and sum-
ming up the advantages, we obtain the statement of the lemma

AdvPRFCsc (A) ≤
lmax∑
i=1

(
Pr
(
ACi(·) ⇒ 1

)
− Pr

(
ACi−1(·) ⇒ 1

))
≤

≤
lmax∑
i=1

q∑
j=1

Adv
PRF−RKA⊕
g. (Bi,j).

22

C Adaptation of the proof for HMAC-Streebog

Recall that the HMAC is represented as

HMAC(K,M) = H
(
(K ⊕ opad)||H(K ⊕ ipad||M)

)
,

where ipad, opad ∈ V n, ipad 6= opad, K = (K||0...0) ∈ V n. We consider the
case when H is Streebog-256 or Streebog-512 (fig. 7 and 8).

Denote by τ ∈ {256, 512} the bit length of the hash function output.
The intermediate output is HI = H((K ⊕ ipad)||M) ∈ V τ and the keys for
cascades are KI

Csc = g(IV,K ⊕ ipad), KO
Csc = g(IV,K ⊕ opad).

The proof of the PRF-security for HMAC-Streebog is similar to the cor-
responding one for Streebog-K. Next, we describe the changes.

The first step remains the same. We proceed to the analysis when the
message consists of n-bit blocks (HMAC(1)).

In the second step, the stronger model is used instead of PRF -RKA�
(problem 2)

Adv
PRF−RKA⊕,�
gO (A) = Pr

(
K

R← V k;Ag(·,(K⊕·)�·) ⇒ 1
)
−

−Pr
(
K

R← V k; fi
R← Func(V n, V n), ∀i ∈ V n;Af(K⊕·)�·(·) ⇒ 1

)
,

the query is the triple (m,φ, σ), the response is y = g(m, (K ⊕ φ)� σ).
We replace gOK = g(·, (K⊕·)� ·) (the first and last compression functions

in the inner and outer hash functions) with a family of true random functions
f(K⊕·)�·(·) and obtain HMAC(2).

Algorithm A, which distinguishes HMAC(2) from HMAC(1), can be used
to attack gOK in the model PRF -RKA⊕,�. The corresponding algorithm
BRKA works as follows. To process requests from A, two preparatory queries
(IV, ipad, 0) and (IV, opad, 0) to the oracle g(·, (K⊕·)�·) are required (KI

Csc

and KO
Csc are obtained). Each query M ∈ (V n)≤lmax requires from BRKA no

more than O(lmax) computations and two related-key queries

(Csc(KI
Csc,M), ipad, σI = sum′�(M)),

(Csc(KO
Csc, H

I ||10...0||bin(n+ τ)), opad, σO = sum�(HI ||10...0)).

The result of work A is equal to the result of work BRKA and the query
complexity is qB = 2 + 2 · qA.

Pr
(
AHMAC(1)(·) ⇒ 1

)
− Pr

(
AHMAC(2)(·) ⇒ 1

)
≤ Adv

PRF−RKA⊕,�
gO (BRKA).

The third and fourth steps also remain the same.

23

The fifth step.
As a result of four steps we construct HMAC(3) as a truly random function

generating HI . The last compression function is defined in HMAC(3) as a
family of random functions f(K⊕opad)�σO(x). The value of HI affects both
inputs (σO and x). We concern only about σO and ignore x. The adversary
A makes q queries to HMAC(3) and thereby generates 2 + 2 · q queries to
f(K⊕·)�·(·). During the entire interaction, the following keys will be generated:

K ⊕ ipad,
K ⊕ opad,

KI
1 =(K ⊕ ipad)� σI1 ,

KO
1 =(K ⊕ opad)� σO1 ,

. . .

KO
q =(K ⊕ ipad)� σIq ,

KO
q =(K ⊕ opad)� σOq .

We have two possible «bad» events:
1) collision in the sequence KO = {KO

1 , ..., K
O
q };

2) nonempty intersection of KO and KI = {KI
1 , ..., K

I
q , K⊕ipad,K⊕opad}.

If no bad events have occurred, then the last compression function never
queried with the coinciding arguments and hence output of HMAC(3) is in-
distinguishable from a true random function.

The collision in KO is guaranteed to generate the collision in the output
of HMAC(3). Therefore, we are obliged to consider them.

Collisions in KI are not unsafe. This is taken into account in step 4, if
the same keys are used, then the inputs are probably different.

The nonempty intersection of KO and KI may not lead to the reuse of
random functions values, but to simplify the analysis, we consider only the
worst case and assume that x value is the same for the same keys.

The probability of the first «bad» event is equal to the probability of the
collision HI ∈ V τ

Pr(∃i 6= j : KO
i = KO

j) = Pr(∃i 6= j : σOi = σOj) ≤ q · (q − 1)

2τ+1
.

The set KI contains at most (q + 2) elements. Due to the bijectivity of
modular addition, we have at most (q + 2) values σO at which KO ∈ KI .
Hence, there are at most (q + 2) values HI that lead to «bad» event 2

Pr(KO ∩KI 6= ∅) ≤ q · (q + 2)

2τ
.

24

and by the union bound and «fungamental game-playing lemma»

AdvPRF
HMAC(3)(q, lmax) ≤ q · (q − 1)

2τ+1
+
q · (q + 2)

2τ
=

3(q2 + q)

2τ+1
.

Figure 7: HMAC-Streebog-256 with equivalent representation. The message M consists of
L < 512 bits.

Figure 8: HMAC-Streebog-512 with equivalent representation. The message M consists of
L < 512 bits.

25

	1 Introduction
	2 Notations and definitions
	3 Streebog and Streebog-K
	4 Related key attack settings
	5 Proof of PRF-security
	6 Beyond the bound attacks
	6.1 Existential forgery
	6.2 Key recovery

	7 HMAC, S3G and GOST94
	8 Conclusion
	9 Acknowledgements
	References
	A Detailed pictures
	B Proof of the lemma
	C Adaptation of the proof for HMAC-Streebog

