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Abstract

Related-key attacks against block ciphers are often considered unrealistic. In
practice, as far as possible, the existence of a known «relation» between the secret
encryption keys is avoided. Despite this, related keys arise directly in some widely
used keyed hash functions. This is especially true for HMAC-Streebog, where known
constants and manipulated parameters are added to the secret key. The relation is
determined by addition modulo 2 and 2n. The security of HMAC reduces to the
properties of the underlying compression function. Therefore, as an initial analysis
we propose key-recovery methods for 10 and 11 rounds (out of 12) of Streebog
compression function in the related-key setting. The result shows that Streebog
successfully resists attacks even in the model with such powerful adversaries.

Keywords: Streebog, related-key, truncated differentials, rebound

1 Introduction

A secure cryptographic keyless hash function H must meet many require-
ments, including the three most well-known: preimage resistance, second
preimage resistance and collision resistance. Similar requirements are im-
posed on the compression function g(H,M) if the hash function is based on
the Merkle-Damg̊ard (MD) scheme [4, 3].

However, if the MD-like hash function is converted into the keyed one
using HMAC [7] with the secret K

HMAC(K,Msg) = H((K ⊕ opad)||H((K ⊕ ipad)||Msg)),

then other properties are expected from the compression function [8].
Firstly, g(H, ·) with the secret state H must be indistinguishable from a

truly random function.
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Secondly, the pair g(·, K⊕ipad) and g(·, K⊕opad) must be indistinguish-
able from a pair of random functions. In other words, g must be protected
from attacks using two related keys [5].

Even more interesting is the situation when the Russian hash function
Streebog [1] is used in HMAC. Streebog uses the Merkle-Damg̊ard approach
with some subtle differences, including the use of the checksum (modulo 2n)
of all message blocks in the finalization. In HMAC-Streebog there are four
calls of the compression function where the secret key is used, one of them is

g(·, (K ⊕ ipad) �Σ)

where Σ is the checksum that the attacker can freely manipulate by changing
the message, «�» denotes the addition modulo 2n.

Therefore, it would be reasonable for HMAC-Streebog to require
g(·, (K ⊕ Φ) � Σ) with the random secret K to be indistinguishable from
a family of random functions. In general, the input and parameters Φ, Σ
are adaptively chosen by the adversary. One can consider such significant
capabilities of the attacker mostly exaggerated, but they are convenient for
security proofs.

Streebog and its underlying transformations have received a lot of atten-
tion from cryptographers. Basically, the articles on the topic were devoted to
analysis in the keyless settings [9–17, 19, 20].

We can cite only three works [17, 22, 23] devoted to the analysis of Stree-
bog when using secret keys.

In [22] the key-recovery attacks on HMAC-Streebog were presented as
the extension of the generic state-recovery attacks on HMAC. The time and
data complexities of attacks are significantly more than «provable secure»
bounds of HMAC [8]. The method also does not use the properties of the
compression function.

Impossible differential properties of the compression function are utilized
in [17] to mount secret-state recovery attacks on 6.75-rounds g(H, ·). The
article [23] presents 7-round key-recovery attacks against g(H, ·) and g(·,M),
where H (resp. M) is secret.

As far as we know, the Streebog compression function has not been pre-
viously considered in the related-key settings. We extend the approach pre-
sented in [23] to attack g(·,M) and propose the key-recovery method for
g(·, (K ⊕ Φ) � Σ). First, we construct the single-key method that works
with a negligible success probability, but also with a relatively low time com-
plexity. The rebound technique [24] and the truncated differentials [6] are
the main parts of the method. Next, we present the effective way to convert
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this method into a highly probable one by using the sets of related keys. As
a result, we have a key-recovery method against 10 and 11 rounds (of 12).
Comparative characteristics are presented in table 1.

We are convinced that our results provide an additional argument showing
that Streebog compression function has a sufficient security margin even in
the related-key setting.

Setting Rounds Time Memory Data Keys Description

secret H

6.75 2399.5 2349 2483 1 [17]
6.75 2261.5 2205 2495.5 1 [17]
7 2421 2354 264 1 [23]
12 2256 2256 2256 1 birthday-paradox distinguisher
12 2512 ∼ 2 1 key guessing

secret M

7 2240 220 2113 1 [23]
10 2224 294 2225 2198 Section 6 (any relation)
10 2232 291 2168 2145 Section 6 (only ⊕)
11 2224 268 2225 2224 Section 6 (only ⊕)
12 2367 2145 2145 2145

parallel key guessing12 2314 2198 2198 2198

12 2288 2224 2224 2224

12 2256 2256 2256 2256

12 2512 ∼ 2 1 key guessing

Table 1: Attacks on the Streebog compression functions in secret-key settings. «Time» (t)
in g computations, «Memory» in n-bit blocks, «Data» (q) in chosen message-output pairs
over all keys, «Keys» is the number of used related keys (single-key attack is denoted by
«Keys = 1»).

2 Definitions

Let F28 be a finite field. Each element of F28 can be interpreted as an
integer or a binary vector. Denote 8 × 8 matrix space over F28 by F8×8

28 (we
also use symbol F8

28 as a vector space). Elements from F8×8
28 will be denoted

by capital letters: A, B. Blocks of states and messages also belong to F8×8
28 .

Elements of a matrix are indexed by 0 ≤ i, j ≤ v−1 (for example, a = A[0, 0]
is an element from the upper-left corner of the matrix). A[i, ·] is i-th row of A,
A[·, j] is j-th column of A. Elements from F28/F8

28/F
8×8
28 can be represented

as 8-, 64-, 512-bit strings, respectively.
Denote addition modulo 2 and addition modulo 2n by symbols «⊕» and

«�» correspondingly, n = 512. These operations are defined naturally for all
the objects under consideration.

We refer to ∆B = B⊕B′ ∈ F8×8
28 as a difference and indicate it in bold:

∆M , ∆K4. If ∆B[i, j] 6= 0 then we say that the position (i, j) is active,
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otherwise inactive. The differential trail is the sequence of the differences
after each transformation in the cipher. The truncated differential trail is the
set of the differential trails that have the same active positions.

The transformations over F8×8
28 (also over F8

28 and F28) are denoted in Sans
Serif font: f, S, L. The notation LS indicates a composition of transformations,
where S applies first (the reverse order «left-to-right» is used on the figures).
The inverse transformations are specified by f−1.

3 Streebog

The state size of Streebog consists of n = 512 bits (8× 8 bytes).
The message Msg is hashed as follows.
The text is always padded with bit string 10 . . . 0 and divided into l

blocks of n bits Msg||10 . . . 0 = M1|| . . . ||Ml. The compression function is
sequentially applied to the previous bit state and block

Hi+1 = gi·n(Hi,Mi+1), i = 0, ..., l − 1, H0 = IV ∈ F8×8
28 ,

where IV is a predefined constant. The counter N = i · n ∈ F8×8
28 is the

number of already hashed bits.
The bit length L and the checksum Σ = M1 � ...�Ml are «mixed» with

the state at the finalizing stage

Hl+1 = g0(Hl, L), Hl+2 = g0(Hl+1, Σ).

If 256-bit hash function is used, the output Hl+2 is truncated to 256 bit.
The compression function gN(H,M) employs AES-like XSPL-cipher E in

the Miyaguchi-Preenel mode

gN(H,M) = E(H ⊕N,M)⊕H ⊕M = R, where

H ∈ F8×8
28 is the previous state of the hash function;

M ∈ F8×8
28 is the message block;

N ∈ F8×8
28 is the number of previously hashed bits;

R ∈ F8×8
28 is the output (the next state of hash function).

The block cipher E consists of 12 rounds and a post-whitening key addi-
tion. Each round consists of four operations:

X – modulo 2 addition of an input block with a round key;
S – parallel application of the fixed bijective substitution s to each byte

of the state;
P – transposition of the state;
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L – parallel application of the linear transformation l to each row of the
state. In [21], it was shown that l-transformation can be represented as the
MDS matrix L over F8×8

28 .
The block cipher formula is

E(K,M) = X[K13]LPSX[K12] . . . LPSX[K2]LPSX[K1](M).

The key schedule uses round constants RCi ∈ F8×8
28 , i = 1, 2, . . . , 12, and

round keys Ki ∈ F8×8
28 , i = 1, 2, . . . , 13 are derived from a master key K0 as

follows:

K0 = H ⊕N, K1 = LPS(H ⊕N), Ki+1 = LPS(Ki⊕RCi), i = 1, 2, . . . , 12.

We also denote the intermediate states before X, S, P, L transformations
in i-th round as Xi, Yi, Zi, Wi correspondingly (X1 = M , Y1 = M ⊕ K1,
Z1 = S(Y1), W1 = P(Z1), etc.). The states in the key schedule are denoted
in a similar way HXi = Ki, HYi, HZi, HWi, where H = HX0, HX1 =
LPS(H ⊕N) etc.

We define an r-round compression function with r + 1 round keys as:

g(H,M) = (X[Kr+1]LPSX[Kr] . . . LPSX[K1](M))⊕H ⊕M.

Next, we also assume that N is an arbitrary constant C0.
HMAC-Streebog (see figure 1) is defined in [2] as

HMAC-Streebog(K,Msg) = H
(
(K ⊕ opad)||H((K ⊕ ipad)||Msg)

)
,

where K ∈ F8×8
28 is obtained by padding the k-bit secret key K with zero

bits, 256 ≤ k ≤ 512, opad and ipad are different nonzero constants.

Figure 1: HMAC-Streebog-512, 512 ≤ L < 1024, Σ = M1 �M2.
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The secret key K is used four times as part of the message input. The
checksum Σ is directly controlled by the attacker and determines the relation
between the keys. The sequence of the chosen messages Msg1,...,Msgq gen-
erates the sequence of the chosen relations Σ1,...,Σq. Hence, the adversary
has as many related keys as needed. The state H is usually not known to the
attacker, but we assume the opposite. Firstly, H can be revealed as a result
of some generic attack against HMAC, secondly, this may be convenient for
a formal security proof. The output R is observed only after the last call of g,
but if, for example, H(K||Msg) is used instead of HMAC, then R is known.

Thus, these considerations motivate us to examine the security of

g(H,M) = R, M = (K ⊕ Φ) �Σ,

where K is the secret 512-bit key, the output R is observed, and H, Φ, Σ are
chosen adaptively. If g is secure even in the described setting, then there is
no reason to worry about cases when the opponent has fewer opportunities.

4 Generic attack

The key-recovery attacks on the cryptoalgorithm are usually compared to
a simple guessing of the key. Obviously, a k-bit key can be found with 2k−1

trials on average.
However, in the related-key setting we have another generic attack. Let,

for example, the adversary attacks an arbitrary block cipher E. The sequence
of ciphertexts C1,...,Cq is the result of encryption of the same text P , but
with the different key

Ci = E(K ⊕ Φi, P ), i = 1, ..., q.

Pairs (Ci,Φi) are sorted by Ci and stored in memory. The attacker makes
t guesses K̃. If the value of C̃ = E(K̃, P ) exists in memory C̃ = Cj, then
surely K = K̃ ⊕ Φj, 1 ≤ j ≤ q. One revealed key allows to trivially find all
the others. The probability of successful guessing in one attempt is q · 2−k.
Hence, if t · q = 2k then the probability of the successful attack exceeds 1

2 .
Therefore, 2r related keys allow to mount generic attack with 2k−r time

and 2r memory complexities. We emphasize that the time complexity of any
related-key attack should be compared with 2k−r, not 2k.

The optimal time complexity is 2k/2 with r = k
2 . Informally speaking, any

cryptoalgorithm with a k-bit key provides only k
2 -bit security if the number

of the related keys available to the adversary is unlimited. Also note that the
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type of relation can be rather arbitrary and include, for example, modular
addition. The main thing is that the attacker has access to encryption with
different keys and the relations between the keys are known.

5 Single-key attack

At the beginning, we consider the case when the message
M = (K ⊕Φ) �Σ is secret and Φ = Σ = 0. The attack against 7 rounds in
such conditions was considered earlier in [23]. We use the similar approach
and construct the low-probability attack against 10 rounds of

g(H,M) = E(H,M)⊕H ⊕M = R.

The master-key H of the underlying block cipher is directly chosen by
the adversary

E(H,M)⊕M = R⊕H = R̃.

The key-recovery method consists of two stages.
«Offline» stage uses the rebound approach [24]. About 228 pairs (H,H ′)

are generated. Each pair determines a truncated differential trail
∆K1 → ...→ ∆K11. Some precomputations are also performed under the
assumption that ∆Y9 = ∆K9.

«Online» stage. For each input pair (H,H ′) we get the output (R̃, R̃′).
The truncated related-key differential trail ∆M → . . . → ∆R̃ is realized
with a probability of at least ptrail = 2−224. For each pair (R̃, R̃′) we construct
on average one possible value of the unknown internal state and check it
directly. If the rare event actually occurred, then we definitely obtain the
true key.

The patterns of the active S-boxes are

∆K1 → . . .→∆K11 : « 8−1−8−64−8−1−8−64−64−64−64»,

∆M →∆Y1 → . . .→∆R̃ : «0−8−0−8−0 −8−0−8−0 −64−64−64».

The offline stage constructs the suitable round keys for the block cipher.
Choose arbitrary nonzero bytes in one arbitrary column of the difference
∆HW3 (highlighted with green on figure 2).

Propagate forward to ∆HY4 = X[C4]L(∆HW3). Similarly in the back-
ward direction ∆HZ4 = P−1L−1(∆K5). Thus, we have 2558·8·2558·8 ≈ 2134

pairs (∆HY4,∆HZ4).
Solve equation S(HY4⊕∆HY4)⊕ S(HY4) = ∆HZ4. We get a total of

more than 2132 solutions (see Appendix A).
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In «outbound phase» we compute

K1 = X[C1]S
−1 . . .P−1L−1X[C4](HY4) and K11 = LPSX[C10] . . . LPS(HY4).

We assume that the part ∆K1 ← ∆K2 ← ∆K3 of the constructed trail
match the pattern «8 – 1 – 8» with probability 8 · 255/2558 ≈ 2−53 due to
the transition «1 ← 8». Note that any of eight possible patterns «1 ← 8»
is suitable. Similar reasoning is true for ∆K6 → ∆K7 → ∆K8 (and any
values of ∆K9 → ∆K10 → ∆K11 is appropriate.). Actually 64 truncated
trails are used, eight appropriate propagation possibilities in the backward
and the same for forward.

As a result we obtain about qpair = 226 = 2132−53−53 pairs (H,H ′) and
approximately 223 = 226/8 of them have the active first column. The time
complexity of the offline stage is about toffline = 2134 operations.

Figure 2: Offline stage. One of the possible truncated differential trail over first eight
round keys.

At the online stage, pairs (R̃, R̃′) are requested for each (H,H ′) from the
«oracle».

We expect four internal collisions at the same time (figure 3). In the
considered single-key setting,M = M ′ and ∆M = 0. The differences ∆K1,
∆K3, ∆K5, ∆K7 induce eight active bytes (one row or one column of the
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state) in the «encryption». If the transitions through S are the same in both
«encryption» and «key schedule» then ∆K2, ∆K4, ∆K6, ∆K8 make a
zero difference in «encryption».

Before the first non-linear layer ∆Y1 = ∆K1⊕∆M = ∆K1. We hope
that ∆HZ1 = ∆Z1. The transition ∆HY1 → ∆HZ1 is possible, hence,
the probability ∆Y1 → ∆Z1 is not less than pcoll = (2/256)8 = 2−56. If
actually ∆HZ1 = ∆Z1 then we obtain the first internal collision

∆Y2 = ∆K2 ⊕∆X2 = LP(∆HZ1)⊕ LP(∆Z1) = 0.

Figure 3: Online stage. Truncated related-key differential trail. The first round.

The same is true for ∆Y3 = ∆K3 and «parallel» transitions
∆HY3 → ∆HZ3, ∆Y3 → ∆Z3 (figure 4). We also assume that
Pr (∆Z3 = ∆HZ3) = pcoll.

Figure 4: Online stage. The third round.

Similarly for the third and the fourth internal collision (figure 5),
Pr (∆Z5 = ∆HZ5) = pcoll, Pr (∆Z7 = ∆HZ7) = pcoll.
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Therefore, we have

ptrail = Pr (∆X9 = 0) = Pr (∆Y9 = ∆K9) ≥ (pcoll)
4 = 2−56·4 = 2−224.

We use this distinguishing feature to construct the attack.

Figure 5: Online stage. Rounds 5, 6, 7 and 8.

After the rebound, the precomputations are performed at the offline stage.
We have 226 pairs (H,H ′) and derived round keys (K1, ..., K11), (K ′1, ..., K

′
11).

Assuming that the trail is realized, (H,H ′) determines the only one
∆Y9 = ∆K9. Try all possible values in the column Y9[·, i] and propagate
∆Y9[·, i] to ∆W10[·, i], i = 0, .., 7.

For fixed (H,H ′) eight tables are stored in memory, i-th table contains
the sequence of sorted values ∆W10[·, i] = W10[·, i]⊕W ′

10[·, i],

W10[·, i] = (PS(K10[i, ·]⊕ LPS(Y9[·, i]))) ,
W ′

10[·, i] = (PS(K ′10[i, ·]⊕ LPS(∆Y9[·, i]⊕ Y9[·, i]))) .

and corresponding set of W10[·, i]. Assuming that after two nonlinear layers,
∆W10[·, i] is distributed uniformly, one value of ∆W10[·, i] corresponds to
one value of W10[·, i] on average.
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Figure 6: Additional precomputation at the offline stage.

For all (H,H ′) about 226 · 8 · 264 tables are constructed. In total, this
step requires about 2 · 226 · 8 · 264 = 294 computations and the same number
of n-bit blocks in memory. Hence, the complexity of the offline stage almost
does not increase, toffline = 2134 + 293 ≈ 2134.

Consider again the online stage. The pair (H,H ′) defines the last round
keys (K ′11, K

′
11) and the output pair (R̃, R̃′). The difference ∆M is also

known to the adversary (in the single-key setting ∆M = 0). If the differential
trail really happened (∆X9 = 0), then i-th column of

∆W10 = L−1(∆R̃⊕∆K11 ⊕∆M)

must be in i-th table. Otherwise, the pair will surely be discarded. Usually one
solution W10[·, i] for i-th column is found. We construct internal state W10,
computeM = L(W10)⊕K11⊕R̃ and check them with the other input-output
pair (H,R). The average time complexity of the online stage is estimated as
tonline ≈ qpair. The probability of success is negligible

p1k-attack ≈ qpair · ptrail = 226 · 2−224 = 2−198.

6 Related-key attacks

The single-key low-probability attack presented above can be easily trans-
formed into attack in the related-key setting.

Let’s perform the offline stage once and store 226 convenient pairs (H,H ′)
and precomputed tables in memory. We use about 2r = 2198 = (p1k-attack)

−1

related keys and try the online stage against each of them independently. If
one key is recovered, then all the others are can, too, be easily found from
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known relations. The probability of success is now significant and is estimated
as 1− (1− p1k-attack)

2r ≈ 1− e−1 ≈ 0.63.
The time complexity is t = 2134 + 226 · 2198 ≈ 2224 (for comparison, the

generic method t = 2k−r = 2314). It is not difficult to see that almost any
possible relation can be used (M ⊕ Φ, M �Σ, M ⊕ Φ � Σ etc.).

However, a more effective attacks exists if the relation is bitwise xor (i.e.
M ⊕ Φ). We describe them in the following two subsections.

6.1 Reducing the number of related keys

At the offline stage, we select only those pairs (H,H ′) that activate only
one chosen column ∆K1[·, 0] 6= 0, ∆K1[·, 1] = ... = ∆K1[·, 7] = 0. The
number of convenient pairs has been reduced to qpair = 223 = 226/8.

At the online stage, we use many sets

Mi = {M⊕Φ′i⊕Φj}, Φj[·, 0] 6= 0, Φj[·, 1] = ... = Φj[·, 7] = 0, j = 0, ..., 264−1,

of the related keys. The values of Φ′i are chosen so that Mi1 ∩ Mi2 = ∅,
∀i1 6= i2. The set induces (2128 − 264) ≈ 2128 different pairs (M,M ′), where
also only the first column of the difference may be active ∆M [·, 0] 6= 0, other
columns are obviously inactive. Note that the pairs (M,M) are also used.
The pairs (M,M ′) and (M ′,M) are distinct if M 6= M ′. Indeed, (M,M ′)
and (H,H ′), H 6= H ′ generates two related-key differential trails,

(M ⊕H)⊕ (M ′ ⊕H ′) = (M ′ ⊕H)⊕ (M ⊕H ′), but in general
S(M ⊕H)⊕ S(M ′ ⊕H ′) 6= S(M ′ ⊕H)⊕ S(M ⊕H ′).

Hence, about 2128 · qpair = 2151 starting points are obtained with one M (at
the same time, the number of the required queries is 2 · qpair · 264 = 288).

The probability of the resulting trail is slightly worse. If ∆M = 0,
then ∆Y1 = ∆K1 and there is always a possibility to the transition
∆Y1 → ∆Z1, where ∆Z1 = ∆HZ1. Otherwise, ∆Y1 6= ∆K1 and the
target transition ∆Y1 → ∆Z1 may be impossible. However, assuming that
∆Y1[·, 0] is random, we can treat ∆Z1 also as random value and estimate

prand-coll = Pr(∆Z1 = ∆HZ1) = 2−64 < pcoll.

The probability of the modified truncated trail is

p′trail = prand-coll · (pcoll)3 = 2−232.

The rest of the attack is the same.
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Thus, we need about qset = 281 = (p′trail · 2151)−1 sets M. The total
number of the related keys is qkey = qset · 264 = 2145 = 2r. The number
of the queries q = 2 · qpair · 264 · qset = 2169. The memory for tables at
the precomputation is 2 · qpair · 8 · 264 = 291. The time complexity slightly
increases t = qset · 2128 · qpair = (p′trail)

−1 = 2232, but for the generic attack
t = 2k−r = 2369.

Figure 7: Online stage. Truncated related-key differential trail. The first round.
∆M [·, 0] 6= 0.

6.2 Extension to 11 round

We change the truncated differential trail used by adding one round at
the beginning (figure 8). The patterns of the active S-boxes are

∆K1 → . . .→∆K12 :« 64−8−1−8−64−8−1−8−64−64−64−64»,
∆M →∆Y1 → . . .→∆Y12 :«64−0 −8−0−8−0 −8−0−8−0 −64−64−64».

The rebound starts with ∆HW4 and ∆K6 instead of ∆HW3 and ∆K5.
The remaining steps are similarly «shifted to the right» (see Appendix B).

To provide ∆Y1 = ∆X2 = 0, we must use ∆M = ∆K1. In this case,
the probability of the rare event does not change ptrail = (pcoll)

4 = 2−224.
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Figure 8: Truncated related-key differential trail, ∆M = ∆K1.

We use only one pair (H,H ′) after the offline stage. Hence, only one
sequence (K1, K

′
1) → . . . → (K12, K

′
12) is used, and 2 · 8 · 264 = 268 n-bit

blocks of memory are required to store the rows of ∆W11 and W11 after the
precomputation.

The i-th pair of the related keys is

(Mi,M
′
i) = (M ⊕ Φi,M ⊕ Φi ⊕∆K1), i = 1, ...,

qkey
2
,

different values of Φi should give qkey different keys, and ∆M = ∆K1 is
always true. Again, each pair of keys gives two points to start for the online
stage

((H,Mi), (H
′,M ′

i)) and ((H,M ′
i), (H

′,Mi)) .

The success probability is also (1 − e−1) ≈ 0.63 with qkey = (ptrail)
−1. The

query complexity is q = 2 · qkey = 2225. As in previous attacks, the time
complexity is equal to the number of starting points

t ≈ toffline + 2 · qkey
2

= qkey = 2224 = 2r.

For comparison, the complexity of the generic method t = 2k−r = 2288.

7 Conclusion

In many practical cases, Streebog hashes the secret key joined to the
message. Due to the checksum modulo 2n in the finalization, the related
keys always arise. For example, in HMAC-Streebog the one processed block
is M = (K ⊕ Φ) � Σ, where K is the secret key, Φ is known, Σ is cho-
sen adaptively by the adversary. Therefore, this motivates us to investigate
round-reduced Streebog compression function g(H,M) with the secret M
under above mentioned relations.
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Among all the threat models for symmetric keyed cryptoalgorithms, the
related-key setting is one of the most powerful. We present key-recovery al-
gorithms up to 10 rounds (out of 12) when almost any relations exist (e.g.
addition modulo 2 or modulo 2n). If only bitwise xor is used then the attack
can be extended for 11 rounds. The rebound approach and the related-key
truncated differential trails are extensively used. The time complexity of the
methods is close to that of the generic approaches.

Thus, we have significant evidence that Streebog compression function
is hard to break even in the threat model under consideration. Therefore,
another argument was obtained in favor of the security of Streebog-based
keyed algorithms.
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A Differential properties of Streebog’s S-box

The differential distribution table (DDT) is defined as follows

DDT[∆x][∆y] = |{x : s(x)⊕ s(x⊕∆x) = ∆y}| ,
where s : F28 → F28, x,∆x,∆y ∈ F28.

The distribution of the number of solutions for Streebog’s S-box is shown
in the table below.

Solutions 0 2 4 6 8 256

Number 38235 22454 4377 444 25 1

For random non-zero ∆x,∆y ∈ F28\0 the probability that at least some
solution exists is

p = Pr (|{x : ∆y = s(x)⊕ s(x⊕∆x)}| > 0) =
22454 + 4377 + 444 + 25

2552
.

Let ∆x 6= 0, ∆y 6= 0, and it is also known that the equation

s(x)⊕ s(x⊕∆x) = ∆y
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has a solution x. Then we get a conditional distribution of the number of
solutions (

2 4 6 8
22454

27300

4377

27300

444

27300

25

27300

)
.

The expected value of such a distribution (i.e., the average number of solu-
tions provided that at least one solution exists) is

1

27300
(2 · 22454 + 4 · 4377 + 6 · 444 + 8 · 25) =

216 − 28

27300
= 2.39 . . . = z.

The case «S(∆HY4 ⊕HY4)⊕ S(HY4) = ∆HZ4»
We assume, that ∆HZ4 is a random difference. We also know that

∆HZ4 consisting only of non-zero bytes. Fix the position of columns in
∆HW3 and ∆K5.

Each row in ∆HY4 is also completely non-zero and belongs to a set of
255 elements.

The probability that a single byte matches is p ≈ 0.419. Hence a row
matches with a probability of p8 ≈ 2−10.

The probability that among the allowed ∆HY4[0, ·] there is a suitable
one is 1− (1− p8)255 ≈ 2−2.2.

Therefore, the probability for a match of all 8 rows equals to 2−2.2·8 =
2−17.6.

Each pair (∆HY4,∆HZ4) for which the equation is solvable gives on
average of z64 ≈ 280.4 solutions.

We have 2558 ≈ 264 possible values ∆HZ4.
Repeat for all pairs of columns in ∆HW3 and ∆K5.
As a result we obtain about

8 · 8 · 264+80.4−17.6 ≈ 2132

valid states HY4.
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B Detailed pictures for 11-round attack

Figure 9: Offline stage. Rebound.
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Figure 10: The truncated related-key differential trail. 9 rounds.
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Figure 11: Additional precomputation at the offline stage.
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