
MixCT: Mixing Confidential Transactions from
Homomorphic Commitment

Jiajun Du1, Zhonghui Ge1, Yu Long1, Zhen Liu1,
Shifeng Sun1, Xian Xu2, and Dawu Gu1

1 Shanghai Jiao Tong University, Shanghai, China
{cqdujiajun,zhonghui.ge,longyu,liuzhen,shifeng.sun,dwgu}@sjtu.edu.cn

2 East China University of Science and Technology, Shanghai, China
xuxian@ecust.edu.cn

Abstract. Mixing protocols serve as a promising solution to the un-
linkability in blockchains. They work by hiding one transaction among
a set of transactions and enjoy the advantage of high compatibility with
the underlying system. However, due to the inherently public nature of
the blockchains built on the account-based model, the unlinkability is
highly restricted to non-confidential transactions. In the account-based
model, blockchains supporting confidential payments need to trade their
compatibility for unlinkability.
In this paper, we propose MixCT, a generic protocol that provides the
mixing service for confidential payment systems built from homomorphic
commitment in the account-based model. We formally define the secu-
rity goals including safety and availability, and prove that our generic
construction satisfies them. Furthermore, we provide an efficient instan-
tiation of MixCT by the Pedersen commitment and the one-out-of-many
proof. The evaluation results show that MixCT introduces a small cost
for its users while being highly compatible with the underlying confiden-
tial blockchain.

Keywords: blockchain · confidential transaction · mixing service.

1 Introduction

The decentralized payment system, also known as the blockchain, provides a
popular medium of exchange and has attracted a substantial number of applica-
tions. Each transaction in a blockchain is confirmed by a public ledger, with the
corresponding relationship between the sender and receiver precisely kept. This,
however, makes it possible to track the transaction flow and gives rise to the
privacy issue. To this point, several privacy-enhanced blockchain systems have
been proposed to protect ledger privacy, mainly in two aspects: the unlinkability
between transactions and the confidentiality of each transaction’s amount.

In the early blockchain-based cryptocurrencies [16], people use a pseudonym
to break the link between a user’s on-chain address and the real-world identity.
This method, however, has been proved to be useless after being thoroughly
studied [4,15]. Later, many efforts have been made to provide stronger unlinka-
bility to blockchains, by mixing multiple transactions and obscuring the relations

2 Jiajun Du et al.

between the two sets of senders and receivers [1,18,19]. Unlike stand-alone cryp-
tocurrencies such as [5, 10, 20, 21], this approach is highly compatible with the
underlying blockchain and needs neither to start up a new blockchain nor to
hard-fork an existing one. For this reason, mixing has become highly promising
to enhance the unlinkability of blockchains .

The mixing procedure could be implemented with or without a hub. Coin-
Shuffle [18] is a typical non-hub scheme to mix Bitcoin. Users are required to
encrypt their output addresses layer by layer and decrypt them in a pre-designed
order. CoinShuffle++ [19] proposes a P2P mixing protocol, DiceMix, to generate
a decentralized CoinJoin transaction in an arbitrary order. These two schemes
deal with the plain-text transaction in which the transaction amount is public.
ValueShuffle [17], based on DiceMix [19], can mix the confidential transaction
in the way that the amount is hidden by cryptographic commitment. All these
non-hub schemes suffer from large off-chain communication overhead. For exam-
ple, CoinShuffle++ [19] and ValueShuffle [17] require every user to communicate
with each of the other participants to generate a CoinJoin transaction. The
communication cost is even more when there are malicious participants.

In contrast to the non-hub mixing, in the hub-based solutions, a trustless
tumbler acting as the hub provides the mixing service for users. In this way, nei-
ther an involved P2P mixing protocol nor participant coordination is required,
which makes it quite feasible in practice. TumbleBit [12] and A2L [22] are typi-
cal hub-based schemes that prevent the tumblers from linking users during mix-
ing. However, most existing hub-based mixing service works for non-confidential
blockchain only. Due to the public nature, anyone can link two transactions’
participants together by matching the equal values on the input and output
sides. So only fixed and equal amount mixing is supported [12,14,22]. As far as
we know, the only confidential payment system that supports mixing is [17], a
non-hub mixing working in the unspent-transaction-output (UTXO) model.

Unlike the UTXO model built from Bitcoin, the account-based model in-
troduced by Ethereum supports smart contracts, which makes it well-suited for
real-world applications. Mixing is even more important in the account-based
model. Möbius [14] uses a smart contract as a tumbler for the first time, but
it does not support confidential mixing. Most recently, people have proposed
several confidential payment systems in the account-based model, such as basic
Zether [7] and PGC [8]. Unfortunately, neither of them supports unlinkability.
Though [7] and [9] use sophisticated ZK-proofs and many-out-of-many proofs
to allow anonymous transactions, the resulting schemes are not compatible with
the original Zether anymore, and thus emerge as stand-alone cryptocurrencies.
To the best of our knowledge, providing the mixing service for the confidential
payment system in the account-based model is still an open problem. To solve
it, there are two major challenges.

– How to achieve unlinkability without undermining the safety of the underly-
ing blockchain? In other words, the add-on mixing service could neither break
the underlying system’s balance nor steal money from any participants.

MixCT: Mixing Confidential Transactions from Homomorphic Commitment 3

Table 1. Comparison with previous mixing solutions

Type Scheme # Off-Chain
Messages1

Transactions
/User Model Confidential

Mixing
Payment

Value
DoS

Resistance

Non-hub
CoinShuffle [18] O(n) 1 UTXO ✗ Fixed N/A

CoinShuffle++ [19] O(n) 1 UTXO ✗ Fixed N/A
ValueShuffle [17] O(n) 1 UTXO ✓ Arbitrary N/A

Hub-based

TumbleBit [12] 12 4 U or A ✗ Fixed ✗

A2L [22] 9 4 U or A ✗ Fixed ✓

Möbius [14] 2 2 Account ✗ Fixed ✓

Ours 2 2 Account ✓ Arbitrary ✓

1 n is the number of the mixing users.

– How to provide an available mixing service? To be feasible in practice and
be compatible with the underlying blockchain, the introduced scheme should
resist Deny-of-Service (DoS) attacks, be easy to implement, and not change
the underlying transaction format.

Contributions and roadmap. This work addresses the aforementioned two
challenges with a protocol we call MixCT, which provides mixing services for
the confidential payment systems in the account-based model. To be applicable,
MixCT only requires that the underlying blockchain utilizes homomorphic hiding
to achieve confidentiality. Our contributions are as follows.

– Generic confidential mixing service in the account-based model. For any con-
fidential payment system built from the homomorphic commitment in the
account-based model, MixCT can provide the mixing service with a trustless
tumbler, without changing the transaction format (Section 3 and 4). MixCT
can also be applied to schemes that use additively homomorphic encryption
to hide transaction amounts (Section 7). A comparison between MixCT and
the state-of-the-art mixing approaches is given in Table 1.

– Formal security definition and proof. We formalize the security goals of
MixCT using the game-based security model and provide the formal se-
curity proof accordingly. In particular, we analyze the safety of the system
layer and user layer comprehensively (Section 5).

– Efficient instantiation and valid evaluation. We instantiate MixCT with Ped-
ersen commitment and one-out-of-many proof on Ethereum. The evaluation
results show that our MixCT is cheap compared with other unlinkability
solutions for the confidential payment systems. (Section 6).

Technical Overview. We give an overview of MixCT, on top of a confidential
payment system built in the account-based model.

In MixCT, the tumbler divides the time into epochs, and one epoch consists
of two phases: escrow and redeeming. In the escrow phase, the tumbler collects
new escrow transactions from the blockchain and publicly updates the tumbler’s
state. In the redeeming phase, the tumbler funds the receivers who can provide
the valid redeeming requests in this epoch. Each participant can validate both
the escrow and redeeming transactions, while no one (including the tumbler but

4 Jiajun Du et al.

excluding the sender/receiver acting as the creators of the escrow/redeeming
request respectively) can link an escrow transaction with a redeeming transaction
in each epoch. That is, the tumbler provides the mixing service without breaking
the unlinkability. We now describe how the two challenges mentioned above are
settled in MixCT.

The first challenge is to maintain the safety for both the mixing users and
the underlying ledger. This means that the tumbler can neither violate the un-
linkability nor steal coins, and a user can neither “print money” via a mixing
service nor double-spend an escrow. It is hard to satisfy all these requirements,
since the transaction amounts are invisible. Our main idea to address this chal-
lenge is to utilize a one-to-one permutation. In each epoch, the tumbler forms
a one-to-one permutation among the redeeming and escrow transactions. This
permutation must be invisible to achieve unlinkability, so we use pseudo-random
permutation to mask the escrow transaction and non-interactive zero-knowledge
proof to guarantee successful redeeming.

The second challenge is to enhance the availability, including being com-
patible with the underlying confidential blockchain, resisting DoS attacks, and
reducing the costs of providing a mixing service. To address this challenge, we
use the preimage of the mask as the additional random factor to generate the
redeeming transaction, so that the resulting escrow and redeeming transactions’
format is unmodified compared with the underlying chain. Fortunately, this de-
sign turns out to be DoS resistance, and all the required building blocks could
be instantiated with lightweight cryptographic tools, as discussed in Section 6.

2 Preliminaries

Basic notations. We denote the length of a binary string x by |x|, and the size
of a finite set S by |S|. We denote the security parameter by λ ∈ N, and the
uniformly random selection of one element r from a space R by r←$R. negl(λ)
is a negligible function with respect to λ. For algorithms, we denote an output
y from a randomized algorithm A with the input x and a random factor r by
y ← A(x, r). For n ∈ N, we denote {1, 2, ..., n} as [n].

2.1 Cryptography Assumptions

Let GroupGen be a PPT algorithm that takes a security parameter λ as its input.
GroupGen outputs the description of a cyclic group G of prime order p ≥ 2λ, and
one (or more) random generator(s) g←$G.

Definition 1 (One Way Permutation) Let OWP be a one-way permutation
defined over X where |X | ≥ 2λ. Then the OWP is hard-to-invert, if for any PPT
adversary A and y←$X , Pr[y = OWP(x) | A(OWP, y) = x] ≤ negl(λ).

Definition 2 (Discrete Logarithm Assumption) Run GroupGen to output
G, p, g. The discrete logarithm (DLog) assumption holds if for any PPT adver-
sary A and h←$G, Pr[gx = h | A(G, p, g, h) = x] ≤ negl(λ). The DLog is a
hard-to-invert instantiation of a OWP defined over G.

MixCT: Mixing Confidential Transactions from Homomorphic Commitment 5

2.2 Additive Homomorphism Message Hiding Schemes

To achieve the confidential payment in blockchain, the transaction amount is
hidden by some cryptographic tools, including commitment and public encryp-
tion. In this section, we give the definition of homomorphic commitment and
its typical instantiation. Besides, we discuss the relation between homomorphic
public key encryption and commitment.

An additively homomorphic commitment protocol HCom includes the follow-
ing algorithms. Here we use M,R, C to denote the message space, randomness
space, and the resulting space respectively.

– pp ← HCom.Gen(λ). Output the public parameters pp, including the com-
mitment key, used to hide a message m ∈M.

– c← HCom.Com(m; r). On input m ∈M and a hiding factor r←$R, output
the hidden result c.

We review the well-known hiding and binding properties of the commitment
schemes in Appendix A.

Definition 3 (Additive Homomorphism) We call the protocol HCom defined
above is additive homomorphism, if for all pp← HCom.Gen(λ), all m1,m2 ∈M
and all r1, r2 ∈ R, we have

HCom.Com(m1; r1)⊕C HCom.Com(m2; r2) = HCom.Com(m1 ⊕M m2; r1 ⊕R r2)

where ⊕M, ⊕R, ⊕C operate on M,R, and C respectively.

Pedersen Commitment. It is the most widely used additively homomorphic
commitment scheme, which consists of the following algorithms. Pedersen com-
mitment is additively homomorphic and perfectly hiding.

– pp← Gen(λ). Run GroupGen to generate pp = (G, p, g, h), where G is a cyclic
group of prime order p and g, h are two generators (commitment key) of G.
The message and randomness spaces are Zp.

– c ← Com(m; r). On input message m and randomness r, output the com-
mitment c = gmhr.

Additive Homomorphism Public Key Encryption. The additively homo-
morphic message hiding could be instantiated by public key encryption that
is additively homomorphic. Typically, to construct confidential transactions,
Zether [7] utilizes ElGamal, and PGC [8] proposes and applies the Twisted El-
Gamal. These additively homomorphic encryption schemes obviously satisfy the
homomorphism and hiding properties and are also binding for a fixed public key.

It is worth noting that a commitment scheme can be constructed in a stan-
dard way from a CPA secure public key encryption with perfect decryption. In
our work, we use HCom as the building block for MixCT. We discuss MixCT’s
instantiation purely with homomorphic public key encryption in Section 7.

6 Jiajun Du et al.

2.3 Non-Interactive Zero-Knowledge Proof

A non-interactive zero-knowledge (NIZK) proof is a protocol using which the
prover could convince the verifier that a statement is true without leaking any
further information. Let RL ⊆ X ×W be an NP relation and we say w ∈ W is
a witness for the statement x ∈ X if (x,w) ∈ RL. The corresponding language is
defined as L = {x | ∃w ∈ W s.t. (x,w) ∈ RL}. A NIZK scheme consists of three
algorithms (Gen, Prove, Vf),

– pp ← NIZK.Gen(λ). Output the public parameters pp, which will be an
implicit input of the following two algorithms.

– π ← NIZK.Prove(x,w). On input the statement x and the witness w, output
a proof π.

– 0/1 ← NIZK.Vf(x, π). On input a statement x and a proof π, output 0 if
reject and 1 otherwise.

We review the completeness, soundness, and zero-knowledge properties of the
NIZK in Appendix A.

One-out-of-many proof. One-out-of-many proof (OOOM) is a proof protocol
to prove that 1 out of n commitments (c1, c2, · · · , cn) is committed to 0 under
the commitment key ck. Formally, it is defined by the following relation.{

((ck, (c1, c2, · · · , cn)), (l, r))
∣∣∣∣ ∀i ∈ [n] : ci ∈ Cck ∧ l ∈ [n] ∧ r ∈ R

∧ cl = Comck(0; r)

}
where R is the randomness space and [n] stands for the interval {1, ..., n}. The
protocol is first introduced by Groth and Kohlweiss in [11] and an optimized
construction is given in [6]. In the standard way, Fiat-Shamir transform [3] can
be used to turn the protocol into a NIZK proof scheme, which requires no trusted
setup and provides higher efficiency in contrast to the general-purpose NIZK
schemes. Precisely, OOOM consists of two algorithms (OOOM.Prove, OOOM.Vf),

– π ← OOOM.Prove(ck, (c1, c2, · · · , cn), (l, r)). On input the commitment key
ck, the statement (c1, c2, · · · , cn), and the witness (l, r), output the proof π.

– 0/1 ← OOOM.Vf(ck, (c1, c2, · · · , cn), π). On input the commitment key ck,
the statement (c1, c2, · · · , cn), and the proof π, output 0 if reject and 1
otherwise.

3 Definition of Mixing Confidential Transaction System

In this section, we provide the formal definition of the mixing confidential trans-
action system (MixCT) in the account-based model.

3.1 Data Structure

The mixing confidential transaction system overlays an underlying blockchain
supporting decentralized confidential transactions. We begin by presenting the
base components required to construct the MixCT system.

MixCT: Mixing Confidential Transactions from Homomorphic Commitment 7

Blockchain. Blockchain is a public decentralized append-only ledger that is
stateful by all previously confirmed transactions. Let LT be the ledger’s state
at time T . For any t > 0, LT is a prefix of LT+t. By a sequence of transactions
between T and T + t, LT can be updated to LT+t. In a blockchain, users are
identified by their public keys, and each user can generate one or more key pairs
(pk, sk) to form transactions.
Account-based model. In the account-based model, the blockchain maintains
a mapping bal[pk] from each user’s public key pk to its balance v. The public key
pk works as an address to receive transactions from other users. The user’s secret
key sk is used to generate transactions to other accounts. Once a transaction is
confirmed on the blockchain, the transaction amount will be added/subtracted
to/from the balance of the receiver/sender’s account.
Smart Contract. A smart contract is a piece of code executed on the blockchain,
receiving coins and handling them according to predefined rules when triggered
by users. Typically, the smart contract works in the account-based model. It is
worth noting that the smart contract has a public key pksc as its address, with
no corresponding secret key.
Confidential Transaction. The confidential transaction [13] is a special form
of blockchain transaction in which the transaction amount is hidden by some
cryptography tools. Without loss of generality, a confidential transaction ctx can
be described as

ctx = (pks, pkr, c, aux),

where pks/pkr is the public key of the transaction’s sender/receiver respectively,
c is the confidential transaction amount3, and aux is the application-dependent
auxiliary information used to check the validity of the transaction. In particular,
if the confidential transaction is output by a smart contract with address pksc,
then the format of aux is different, i.e., it contains neither a signature nor any
information derivable from the secret key. Once a ctx gets confirmed by the
blockchain, it will be recorded on the ledger. Simultaneously, the sender and the
receiver’s accounts will be updated.

To generically describe the generation and verification of ctx, a confidential
transaction scheme could be described by two main functions CT = (Create,Verify),

– ctx ← CT.Create(sks, pkr, v). pks’s owner uses the secret key sks to create
a confidential transaction ctx, which transfers amount v to the receiver’s
address pkr in the confidential form. In particular, if Create is called by a
receiver and run by a smart contract to fund amount v to the receiver pkr,
we denote it as CT.Create(pksc, pkr, v). In this case, the resulting ctx is valid
only if this function has been run by the smart contract.

– 1/0← CT.Verify(ctx). Every blockchain user validates ctx with this function.

As far as we know, all the existing confidential transaction schemes in the
account-based model utilize homomorphic cryptography primitives, including
homomorphic commitment and public key encryption.
3 c could be a vector, such as in PGC or Zether.

8 Jiajun Du et al.

3.2 Entities

In MixCT, in addition to the common users of the blockchain, there are two
more types of entities.
Mixing Service Users. Mixing service users are a set of the underlying blockchain
users willing to utilize the mixing service. Each mixing service user controls a
pair of accounts, acting as the sender and the receiver. Without ambiguity, we
also use “user” to stand for a mixing service user later.
Tumbler. A tumbler is a trustless medium that works as an unlinkable payment
hub to provide the mixing service for users. More specifically, senders escrow
their coins to the tumbler, and receivers redeem coins from it. For safety, the
tumbler can neither violate the unlinkability between the escrow and redeeming
transactions, “print money”, nor steal money from users.

One main obstacle in designing a qualified tumbler lies in how to moderate
its capacity. That is, the tumbler can validate the received escrow/redeeming
transactions but cannot “open” them. Otherwise, the unlinkability is broken
immediately. In MixCT, we use a smart contract with the public address pkt as
the tumbler, which solves this paradox perfectly. Since the tumbler, as a smart
contract publicly executed by all blockchain miners, has no secret inputs, and
has the same view as the blockchain users.

3.3 Definition of the Mixing Confidential Transaction System

For simplicity, we omit the transaction propagation and verification procedures
run by the underlying confidential blockchain and focus on the add-on only. A
mixing confidential transaction system in one epoch is a tuple of polynomial-
time algorithms described as follows, and Figure 1 provides the overview of the
MixCT.

TumblerSender Receiver

, token

prectx,

Escrow
Phase

Redeem
Phase

CreateEscrow

RequestRedeem

ProcessEscrow

VerifyEscrow

VerifyRedeem

ProcessRedeem

Fig. 1. Overview Sequence Diagram of MixCT.

– pp ← Setup(λ). Given a security parameter λ, the underlying blockchain
executes this algorithm to generate all public parameters used in the system.

– (ctxesc, token, td) ← CreateEscrow(sks, pkt, v). A sender with secret key sks
executes this algorithm to generate a confidential transaction ctxesc, to es-
crow v coins to the tumbler with account address pkt. Besides, this algorithm
outputs a randomness td to generate a one-time escrowing token, and td is
the trapdoor to redeem ctxesc.

MixCT: Mixing Confidential Transactions from Homomorphic Commitment 9

– 0/1 ← VerifyEscrow(ctxesc, token, state). Given an escrow transaction ctxesc
and the corresponding token, the tumbler executes this algorithm to check
the validity of ctxesc and the uniqueness of token. That is, the token has never
been recorded in the state, which is initially empty.

– state′ ← ProcessEscrow(ctxesc, token, state). After verification, the tumbler
uses the new received transaction ctxesc and the corresponding token to up-
date its storage state to state′. We note that since the tumbler works in a
blockchain, its state is always publicly accessible.

– (prectx, π) ← RequestRedeem(skr, pkt, ctxesc, td, state). The receiver with se-
cret key skr executes this algorithm to generate a confidential pre-redeeming
transaction prectx to be sent to the tumbler, based on an escrowing transac-
tion ctxesc. The key idea is that the receiver who gets the trapdoor td of the
ctxesc, can generate a valid redeeming proof π for prectx.

– 0/1← VerifyRedeem(prectx, π, state). The tumbler executes this algorithm to
verify the validity and uniqueness of the pre-redeeming transaction prectx,
by using the redeeming proof π and state.

– (ctxred, state
′) ← ProcessRedeem(pkt, pkr, prectx, π, state). Run by the tum-

bler. If prectx and the corresponding proof π are valid, the tumbler parses
prectx and updates state to state′, to prevent double-spend attacks. Then
the tumbler uses prectx to generate a complete redeeming transaction ctxred
to the receiver with pkr, and broadcasts this transaction. At this point, the
receiver’s account bal[pkr] will be updated by the additively homomorphic
operation of the underlying confidential blockchain, which finishes the re-
deeming procedure.

We note that the last three algorithms are called by a receiver with pkr and
run by the tumbler with pkt. We decouple the procedure to make it clearer.

3.4 Preconditional Assumptions

We assume that the underlying blockchain’s confidentiality cannot be broken and
do not consider network layer attacks, since they are orthogonal to our work.
We also assume that the underlying blockchain does not support anonymous
transactions, and at least 2 out of n users cannot be controlled by the adversary.

3.5 Security Goals for Confidential Mixing Service

Many previous works [14,17,18] have proposed several security requirements for
the mixing service. However, most of them focus on non-confidential mixing. The
security definition for the confidential mixing service in the account-based model
is still missing. To this point, we propose 6 security goals for MixCT. In what
follows, we give an informal description of these security goals, and the formal
definitions can be found in Section 5.

– Theft prevention. This is a twofold definition. (1) For an accepted escrow
transaction generated by a sender, nobody can redeem it unless getting the

10 Jiajun Du et al.

transaction’s trapdoor from the sender. (2) Nobody can redeem “out of noth-
ing”. That is, nobody can generate a valid redeeming transaction without a
corresponding escrow transaction.

– Balance. Every escrowed transaction can be redeemed with the same value
as the corresponding sender has escrowed.

– Double-spend prevention. Every escrowed transaction cannot be redeemed
more than once.

– Unlinkability. After a sequence of escrow and redeeming, no one (includ-
ing the tumbler but excluding the actual sender and receiver) can link a
redeeming transaction with an escrow transaction.

– Confidentiality. No information about the transaction amount is leaked
during the mixing procedure, which means that the introduction of MixCT
will not violate the underlying confidentiality.

– DoS resistance. The protocol can resist DoS attacks, and every honest
party can always terminate without losing money.

In summary, the first five properties are used to guarantee “safety”, which
means that there is a determined but invisible permutation between the set of
the escrow transactions and the set of successful redeeming transactions. The
last property is to guarantee “availability” of our scheme.

4 A Generic Design of MixCT from an Additively
Homomorphic Commitment

In this section, we present the generic design of the MixCT scheme. For “generic”
we mean that any additively homomorphic commitment could be utilized in
MixCT to provide the mixing service for the underlying confidential payment
system.

First, we introduce two data structures to clarify the local (but public) state
maintained by the tumbler, as mentioned in Section 3.3. We define state =
(EPool,RPool) as follows. In the state, EPool is used to generate proof for a
valid redeeming, and RPool is used to prevent double-spend attacks. Initially,
both of them are empty.

– EPool. Used to record the “input set” of the invisible permutation. Store all
the (ce, token) pairs built from successful escrow transactions. Specifically,
parse ce from each successful escrow transaction ctxesc = (pks, pkt, ce, aux).
Then use ce and the corresponding token to form a record in EPool.

– RPool. Used to record the “output set” of the invisible permutation. Store
all the cr part of the successful redeeming transaction. Specifically, parse cr
from each valid pre-redeeming request prectx = (pkt, pkr, cr, aux)pre. Then
use cr to form a record in RPool.

We are now ready to construct the protocol described in Section 3.3. Here
we use the additively homomorphic commitment scheme HCom = (Gen,Com),
non-interactive zero-knowledge scheme NIZK = (Gen,Prove,Vf), and a one-way

MixCT: Mixing Confidential Transactions from Homomorphic Commitment 11

permutation OWP whose domain is the same as the randomness space R in
HCom. The constructions are as follows.

– pp ← Setup(λ). Run ppHcom ← HCom.Gen(λ), ppnizk ← NIZK.Gen(λ), and
output pp = (ppHCom, ppNIZK).

– (ctxesc, token, td)← CreateEscrow(sks, pkt, v). Run ctxesc ← CT.Create(sks, pkt,
v) to generate a confidential transaction. Specifically, ctxesc = (pks, pkt, ce, aux)
in which ce = HCom.Com(v; re). Then, sample a uniform t←$R as the td,
and compute token← OWP(t).

– 0/1 ← VerifyEscrow(ctxesc, token, state). Run CT.Verify(ctxesc) to verify the
confidential transaction ctxesc with aux. Then check whether the token is in
the range of OWP, and check if (∗, token) /∈ EPool. Output 1 if all checks
pass, otherwise output 04.

– state′ ← ProcessEscrow(ctxesc, token, state). When the transaction ctxesc has
been confirmed by the underlying blockchain, parse the confidential value
ce from ctxesc. Then update state by storing (ce, token) into EPool, i.e.,
EPool← EPool+ (ce, token).

– (prectx, π) ← RequestRedeem(skr, pkt, ctxesc, td, state). Parse the confiden-
tial amount ce from ctxesc first. Use the td to generate a mask cmask =
HCom.Com(0; td), and compute the new masked amount cr by homomor-
phicly adding cmask to ce, i.e., cr = ce⊕C cmask. Then, create a pre-redeeming
transaction prectx whose confidential amount is cr. The format of prectx is
(pkt, pkr, cr, aux)pre. The difference between a pre-redeeming request and a
truly redeeming transaction is that prectx has not been run by the tumbler.
Next, read the tumbler’s EPool from its state. Run NIZK.Prove(EPool, cr)
with witness td to generate a proof π for (EPool, cr) ∈ Llegal, where Llegal
is defined as(EPool, cr)

∣∣∣∣∣∣
td ∈ Domain of OWP ∧ token = OWP(td)

∧ ∃(ce, token) ∈ state.EPool
∧cr = ce ⊕C HCom.Com(0; td)

 5

– 0/1← VerifyRedeem(prectx, π, state). First, parse the confidential amount cr
from prectx and check if cr does not exist in RPool. Validate the transaction
format of prectx. Next, verify the proof π by NIZK.Vf(EPool, cr, π). Output
1 if all checks pass, otherwise output 0.

– (ctxred, state
′) ← ProcessRedeem(pkt, pkr, prectx, state). The tumbler con-

structs the complete redeeming transaction ctx from prectx by running it.
Then it broadcasts the resulted transaction to confirm that ctxred adds the
transaction amount to address pkr. Record ctxred into RPool by RPool←
RPool+ cr and output the updated state′.

4 Note that the same ce may existed. That is because, in different escrow transactions,
a user may use the same random factor to hide the same transaction amount. In
MixCT, though the (ce, token) pair is recorded, we only require that each token is
unique to identify each escrow transaction.

5 cr is a commitment under the same key as ce.

12 Jiajun Du et al.

5 Formal Security Definitions and Proofs

In this section, we present the formal definitions of the security goals mentioned
in Section 4. We now state the main result of this paper.

Theorem 1 The confidential mixing service tuple MixCT = (Setup, CreateEscrow,
VerifyEscrow, ProcessEscrow, RequestRedeem, VerifyRedeem, ProcessRedeem), as
defined in Section 4, is a safe and available confidential mixing service solution.

We prove this theorem via 6 separate lemmas, which show that our construc-
tion satisfies all the requirements of the confidential mixing service. We assume
that the adversary A cannot only let the honest parties participate in the mix-
ing service but also corrupt some of them. Besides, A has no more access to the
tumbler than getting its public key or making escrow/redeeming queries. This is
because the tumble cannot open any transaction, as mentioned in Section 3.2.

The definition of the oracle O available to the adversary A and the detailed
proofs of each lemma can be found in Appendix B.

Definition of the Theft Prevention. If A can successfully generate a pre-
redeeming request, by either redeeming an honest user’s escrow or redeeming out
of nothing, we call the A wins the theft prevention game. Formally, we define
theft prevention via the following security experiment between A and C.

Advtheft
MixCT(λ)=Pr

 b = 1∧
((c∗e, token

∗) ∈ state.EPoolh∨
(c∗e, token

∗) ̸∈ state.EPool)

∣∣∣∣∣∣
pp← Setup(λ);

state, (prectx∗, π∗)← AO(pp);
b← VerifyRedeem(prectx∗, π∗, state)

where (ctx∗esc, token

∗) denotes the corresponding escrow transaction of prectx∗

(if any), c∗e is the confidential value in ctx∗esc, and state.EPoolh (containing the
honest users’ escrows) is a subset of state.EPool.

Lemma 1. Assuming the hard-to-invert property of the OWP and the soundness
of the NIZK, the MixCT is theft prevention.

Definition of the Balance. Here we focus on the adversary’s attempt to re-
deem an escrowed transaction with a different value, since the adversary could
not redeem the non-corrupted user’s escrow or redeem out of nothing by Lemma
1. Here we define the balance attack game for the corrupted users only.

Advbalance
MixCT (λ) =

Pr

 b = 1∧
c∗r = HCom.Com(v∗′; r∗′)∧
(v∗′, r∗′) ̸= (v∗, r∗ ⊕R td∗)

∣∣∣∣∣∣∣∣
pp← Setup(λ);

state, (ctx∗esc, token
∗)← AO(pp, td∗);

(prectx∗, π∗), state′ ← AO(state, ctx∗esc, td
∗);

b← VerifyRedeem(prectx∗, π∗, state′)

where (ctx∗esc, token

∗) ∈ state.EPool, and c∗r is the confidential amount in prectx∗.

Lemma 2. Assuming the binding of HCom and the soundness of NIZK, the
MixCT is balance secure.

MixCT: Mixing Confidential Transactions from Homomorphic Commitment 13

Definition of the Double-spend Prevention. If A can redeem one escrow
transaction twice, we call A wins the double-spend prevention game. The formal
definition is as follows.

Advdouble-spend
MixCT (λ) =

Pr

ctx∗red and ctx∧
red redeem

the same (ctx∗esc, token
∗)

∣∣∣∣∣∣∣∣
pp← Setup(λ);
state ← AO(pp);

state′, (ctx∗red, π
∗) ← AO(pp, state);

state′′, (ctx∧
red, π̂) ← AO(pp, state′)

Lemma 3. Based on the one-to-one property of OWP and the soundness of the
NIZK, the MixCT is double-spend prevention.

Definition of the Unlinkability. We define the unlinkability via the following
experiment between A and C.

Advunlink
MixCT(λ) =

Pr

b′ = b

∣∣∣∣∣∣∣∣∣∣
pp← Setup(λ);

(state, {ctxesci, tokeni, pksi}i=0,1∧pksi∈Th
)← AO(pp);

b←$ {0, 1};
(prectx∗, π∗)← RequestRedeem(pkrb , pkt, ctxescb, tdb, state);

b′ ← AO(prectx∗, π∗, state)

where (pksi , pkri) denotes a pair of sender/receiver, (ctxesci, tokeni) is created by
pksi , Th denotes the honest users’ set, and neither of {pksi}i=0,1 is corrupted by
A. The confidential amount in (prectx∗, π∗) is c∗r .

Lemma 4. Assuming the NIZK is zero-knowledge and the HCom is hiding, no
ppt A can win the unlinkability game in MixCT with non-negligible probability.

Definition of the Confidentiality. For confidentiality, we mean to block po-
tential leakage of the transaction amount. Here we define confidentiality via the
following experiment between A and C.

Advconfidential
MixCT (λ) =

Pr

b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(λ);
(state, pks, pkr, v0, v1)← AO(pp);

b←$ {0, 1};
(ctx∗esc, token

∗, td∗)← CreateEscrow(sks, pkt, vb);
state′ ← ProcessEscrow(ctxesc, token, state);

(prectx∗, π∗)← RequestRedeem(pkr, pkt, ctxesc, td
∗, state′);

b′ ← AO(prectx∗, π∗, ctx∗esc, token
∗)

where (pks, pkr) denotes a pair of sender/receiver. As natural restrictions for
pks ∈ Th and pkr ∈ Th, we assume that A cannot control them.

Lemma 5. Assuming the confidentiality of the underlying blockchain, the hiding
property of HCom, and the zero-knowledge of NIZK, the MixCT satisfies confi-
dentiality.

14 Jiajun Du et al.

Definition and analysis of the DoS Resistance. DoS attacks usually occur
when a mass number of users join in some protocol, or the adversary tries to
deviate the honest users from the normal execution of the protocol. In particular,
for the mixing service, the adversary A may try to prevent the honest users from
getting the service or redeeming their escrow. In our design, a mixing service’s
user pays the tumbler first and then can redeem it. As such A will pay great
expenses incurred launching a DoS attack. Moreover, once a user escrows coins
to the tumbler, based on the completeness of our NIZK, the user can always
generate a valid redeem request, without the help of any other participants.

Lemma 6. The MixCT is DoS resistance.

6 An Efficient Instantiation of MixCT

We now present an efficient instantiation of our generic MixCT construction
without the trusted setup. Specifically, assuming the underlying confidential pay-
ment system utilizes Pedersen commitment as the HCom, we use DLog as the
OWP, and the one-out-of-many proof OOOM as the NIZK. We also construct a
smart contract to act as the untrusted tumbler.

6.1 Detailed Instantiation

For simplicity, we omit the non-confidential and public verifiable information
contained in escrows and redeem transactions, including pks, pkt, pkr, aux, etc.

– pp ← Setup(κ). Run GroupGen(λ), and output pp = (G, p, g, h, f), where G
is a cyclic group of prime order p and g, h, f are three generators of G.

– (ctxesc, token, td) ← CreateEscrow(sks, v). Here ce in ctxesc is the Pederson
commitment of transaction amount v, and token uses DLog. Thus,

(ce, token) = (Com(v; r),OWP(t)) = (gvhr, f t)

– 0/1 ← VerifyEscrow(ctxesc, token, state). Check ctxesc’s validity via the un-
derlying confidential payment system. Check token ∈ G and token is unique.

– state′ ← ProcessEscrow(ctxesc, token, state). If the escrow transaction ctxesc
gets through the above verification, add (ce, token) to EPool.

– (prectx, π)← RequestRedeem(ctxesc, td, state).
• Parse ce from ctxesc, and use the td = tl in token to generate cr used in
prectx, where l is the index of the sender’s escrow record in EPool.

cr = ce ⊕C Com(0; td) = Com(v; r) · Com(0; tl) = gvhr+tl

• Denote EPool at this state as (cie, tokeni)i∈[n]. Run OOOM.Prove with
witness tl to generate a proof π for (EPool, cr) ∈ Llegal, where Llegal is

Llegal =

 (EPool, cr)

∣∣∣∣∣∣
∀i ∈ [n] : cie, tokeni ∈ G

∧ l ∈ [n] ∧ tl ∈ Zp ∧ tokenl = OWP(tl) = f tl ∈ G
∧ cr = cle ⊕C Comg,h(0; tl) = gvhr+tl

 .

MixCT: Mixing Confidential Transactions from Homomorphic Commitment 15

Llegal can be converted into two OOOM Language LPoFmt
legal and LPoRed

legal
6,

LPoFmt
legal =

{
(g, h),

(
cr
cie

)
i∈[n]

∣∣∣∣∣∀i ∈ [n] : cr
cie
∈ G ∧ l ∈ [n] ∧ tl ∈ Zp

∧
(

cr
cle

)
= Comg,h(0; tl) = htl

}
7,

LPoRed
legal =

(
g, h

f

)
,(

cr
cie·tokeni

)
i∈[n]

∣∣∣∣∣∣∣
∀i ∈ [n] : cr

cie·tokeni
∈ G ∧ l ∈ [n] ∧ tl ∈ Zp

∧ tokenl = OWP(tl) = f tl ∈ G

∧
(

cr
cle·tokenl

)
= Comg,hf

(0; tl) =
(

h
f

)tl

 .

Intuitively, we use LPoFmt
legal and LPoRed

legal to prove that the receiver uses the
(cle, tdl) couple to generate the unique cr accordingly, with the correct Ped-
ersen commitment format under the key (g, h). Obviously, with l and the cor-
responding witness td = tl, the receiver can generate π = (πPoFmt, πPoRed)
via OOOM.Prove.

– 0/1 ← VerifyRedeem(prectx, π, state). Use state and run OOOM.Vf to check

(cr, π). Output 1 if cr ̸∈ RPool ∧ OOOM.Vf

(
(g, h),

(
cr
cie

)
i∈[n]

, πPoFmt
)

= 1

∧ OOOM.Vf

((
g, h

f

)
,
(

cr
cie·tokeni

)
i∈[n]

, πPoRed
)

= 1. Output 0 otherwise.

– (ctxred, state
′) ← ProcessRedeem(pkt, prectx, π, state). The tumbler runs this

to construct the complete redeeming transaction ctx from prectx, add cr to
the receiver’s address, and store ctxred into RPool by RPool← RPool+cr
and output updated state′.

6.2 Implementation and Evaluation

To show the feasibility of MixCT, we implement it with Ethereum smart con-
tract. Here we focus on the costs introduced by the MixCT. We change the num-
ber of the mixing service users and record the costs for escrow and redeeming
accordingly. The costs of escrow lie in the generation of the token. In the re-
deeming, the costs contain the user’s off-line generation of the one-out-of-many
proof, and the tumbler’s online verification and processing.

As shown in Table 2, the escrow costs are fixed for all. The redeeming costs
increase from 496k Gas to 3085k Gas as the escrow users’ number changes from
4 to 64, which is much lower than other sophisticated approaches [7,9]. Besides,
to generate/validate the proof of a redeeming transaction with no more than 64
mixing users, the time cost is less than 1.5/0.5 seconds.

Our evaluation benchmarks are collected on a laptop with a 2.9GHz AMD
R7-4800H processor. We implement our design on Truffle Suite [2], a development
environment for decentralized applications. We use Solidity to accomplish the
smart contract of the tumbler running on top of the Ethereum virtual machine
6 To break the safety by generating a statement that belongs to LPoFmt

legal and LPoRed
legal ,

but not to Llegal, one needs to solve the DLog problem in group G.
7 Here for a, b ∈ G, we use a

b
to denote the operation a · b−1.

16 Jiajun Du et al.

Table 2. The evaluation results of MixCT

#users Escrow Redeem
Size/bytes Gas/units Size/bytes Prove Time/ms Verify Time/ms Gas/units

n = 4

132 128,556

2,500 173 93 496,163
n = 8 2,948 271 133 714,341
n = 16 3,396 451 185 1,080,093
n = 32 3,844 758 288 1,755,951
n = 64 4,292 1,466 462 3,085,444

n O(1) O(logn) O(n logn)

(EVM) and use JavaScript to implement the mixing user. Especially, we use the
construction of one-out-of-many proof from [6]. All code has been open-sourced8.

7 Extension to Additively Homomorphic Encryption

As defined in Section 3.3, MixCT only requires the additive homomorphism
property of the confidential transaction from the underlying blockchain. Nat-
urally, one might wonder whether a similar construction could be deployed to
blockchains using additively homomorphic encryption.

Intuitively, it is possible since there is some standard construction from a
CPA secure public-key encryption with perfect decryption (e.g., both ElGamal
and Twisted ElGamal satisfy these requirements), to the commitment scheme.
However, there are two issues here. First, the generic confidential transaction’s
format would be changed to ctx = (pks, pkr, (cs, cr), aux), where (cs, cr) are the
ciphertexts of two opposite amounts sharing the same absolute value. Second,
to add cr to the receiver’s account without leaking its public key, and to ensure
that only the appointed receiver can successfully redeem, the sender needs to
confidentially add the receiver’s public address into the escrow transaction. In
this way, safety could be guaranteed.

We leave the concrete mixing service based on homomorphic encryption, esp.,
the efficient instantiation without a trusted setup, as future work.

8 Conclusion

In this paper, we have proposed a confidential mixing service scheme in the
account-based model. The proposed scheme, MixCT, allows us to mix confiden-
tial transactions constructed from additively homomorphic commitments. We
formalize this protocol in the system layer and user layer comprehensively, and
then prove that it satisfies both safety and availability. Experimental evaluation
shows that MixCT could be instantiated by lightweight cryptographic tools.

8 https://github.com/dujiajun/MixCT

https://github.com/dujiajun/MixCT

MixCT: Mixing Confidential Transactions from Homomorphic Commitment 17

References

1. CoinJoin: Bitcoin privacy for the real world, https://bitcointalk.org/?topic=
279249

2. Truffle Suite, https://trufflesuite.com/
3. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-

natures via the fiat-shamir transform: Minimizing assumptions for security and
forward-security. In: Advances in Cryptology — EUROCRYPT 2002 (2002)

4. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
User Privacy in Bitcoin. In: Financial Cryptography and Data Security (2013)

5. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized Anonymous Payments from Bitcoin. In: 2014 IEEE
Symposium on Security and Privacy (2014)

6. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short ac-
countable ring signatures based on DDH. In: ESORICS (2015)

7. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards Privacy in a Smart
Contract World. In: Financial Cryptography and Data Security (2020)

8. Chen, Y., Ma, X., Tang, C., Au, M.H.: PGC: Decentralized Confidential Payment
System with Auditability. In: ESORICS (2020)

9. Diamond, B.E.: Many-out-of-Many Proofs and Applications to Anonymous Zether.
In: 2021 IEEE Symposium on Security and Privacy (SP) (2021)

10. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A New Design for
Anonymous Cryptocurrencies. In: Advances in Cryptology – ASIACRYPT 2019
(2019)

11. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Advances in Cryptology - EUROCRYPT 2015 (2015)

12. Heilman, E., AlShenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
An Untrusted Bitcoin-Compatible Anonymous Payment Hub. In: NDSS (2017)

13. Maxwell, G.: Confidential transactions (2015), https://people.xiph.org/~greg/
confidential_values.txt

14. Meiklejohn, S., Mercer, R.: Möbius: Trustless Tumbling for Transaction Privacy.
In: Proceedings on Privacy Enhancing Technologies (2018)

15. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan,
K., Hennessey, J., Miller, A., Narayanan, A., Christin, N.: An Empirical Analysis
of Traceability in the Monero Blockchain. In: Proceedings on Privacy Enhancing
Technologies (2018)

16. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System https://bitcoin.
org/bitcoin.pdf

17. Ruffing, T., Moreno-Sanchez, P.: ValueShuffle: Mixing Confidential Transactions
for Comprehensive Transaction Privacy in Bitcoin. In: Financial Cryptography and
Data Security (2017)

18. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: Practical Decentralized
Coin Mixing for Bitcoin. In: ESORICS (2014)

19. Ruffing, T., Moreno-Sanchez, P., Kate, A.: P2P Mixing and Unlinkable Bitcoin
Transactions. In: NDSS (2017)

20. Saberhagen, N.v.: CryptoNote v 2.0 (2013), https://www.
semanticscholar.org/paper/CryptoNote-v-2.0-Saberhagen/
5bafdd891c1459ddfd22d71412d5365de723fb23

21. Sun, S.F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: A Compact Accumulator-
Based (Linkable Ring Signature) Protocol for Blockchain Cryptocurrency Monero.
In: Computer Security – ESORICS 2017 (2017)

https://bitcointalk.org/?topic=279249
https://bitcointalk.org/?topic=279249
https://trufflesuite.com/
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.semanticscholar.org/paper/CryptoNote-v-2.0-Saberhagen/5bafdd891c1459ddfd22d71412d5365de723fb23
https://www.semanticscholar.org/paper/CryptoNote-v-2.0-Saberhagen/5bafdd891c1459ddfd22d71412d5365de723fb23
https://www.semanticscholar.org/paper/CryptoNote-v-2.0-Saberhagen/5bafdd891c1459ddfd22d71412d5365de723fb23

18 Jiajun Du et al.

22. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A2L: Anonymous Atomic Locks for Scal-
ability in Payment Channel Hubs. In: IEEE Symposium on Security and Privacy
(SP) (2021)

A Security Definitions

Definition 4 (Hiding) An additively homomorphic commitment protocol HCom
is hiding if a commitment reveals no information about the committed message
m. Formally, for any PPT adversary A,

Pr

[
A(c) = b

∣∣∣∣ pp← HCom.Gen(λ); (m0,m1)← A(pp);
b←$ {0, 1}; c← HCom.Com(mb; rb)

]
≤ 1

2
+ negl(λ).

If the probability is exactly 1/2, the commitment scheme is perfectly hiding.

Definition 5 (Binding) An additively homomorphic commitment protocol HCom
is binding if a commitment c can only be opened to one message. Formally, for
all PPT A,

Pr

[
m0 ̸= m1 ∧

Com(m0; r0) = Com(m1; r1)

∣∣∣∣ pp← HCom.Gen(λ);
(m0, r0), (m1, r1)← A(pp)

]
≤ negl(λ).

If the probability is exactly 0, the commitment scheme is perfectly binding.

Definition 6 (Completeness) A non-interactive zero-knowledge proof proto-
col NIZK is complete if the prover who knows a witness of a statement could
always convince the verifier to accept. Formally,

Pr

[
NIZK.Vf(x, π) = 1 ∨ (x,w) /∈ RL

∣∣∣∣ pp← NIZK.Gen(1λ);
π ← NIZK.Prove(x,w)

]
= 1.

Definition 7 (Soundness) A non-interactive zero-knowledge proof protocol NIZK
is sound if the prover cannot convince the verifier to accept a false statement.
Formally,

Pr

[
NIZK.Vf(x, π) = 1 ∧ x /∈ L

∣∣∣∣ pp← NIZK.Gen(1λ);
π ← A(pp, x)

]
≤ negl(λ).

Definition 8 (Zero-Knowledge) A non-interactive zero-knowledge proof pro-
tocol NIZK is zero-knowledge if the verifier cannot get additional information ex-
cept that the statement is true. Formally, for x ∈ L, there exists a PPT algorithm
S such that for all adversaries A,∣∣∣∣Pr[A(pp, x, π)= 1

∣∣∣∣ pp← NIZK.Gen(1λ);
π ← NIZK.Prove(x,w)

]
− Pr

[
A(pp, x, π)

= 1

∣∣∣∣ (pp, x, π)← S(x)]∣∣∣∣
≤ negl(λ).

MixCT: Mixing Confidential Transactions from Homomorphic Commitment 19

B Security Proofs

We denote the number of sender-receiver pairs in one epoch by n, the honest
user list by Th, and the corrupted user list by Tc. We formally describe the attack
behaviors as the adversary’s queries to oracles implemented by a challenger C.
The oracle O available to the adversary may be one of the followings.

– OT
reg: A queries this oracle to register as the tumbler, and gets the public

address.
– O

H/C
reg : A queries the OH

reg/OC
reg oracle to instruct an honest user/let an cor-

rupted user pk to register in the mixing protocol. C keeps track of this type
of queries by maintaining a Th/Tc for honest (corrupted) users.

– O
H/C
esc : A queries the OH

esc/OC
esc oracle to instruct an/a honest/corrupted

user pk ∈ Th/pk ∈ Tc to escrow. C keeps track of this type of queries by
maintaining a EPoolh/EPoolc for honest users.

– O
H/C
red : A queries the OH

red/OC
red oracle to instruct an/a honest/corrupted

user pk ∈ Th/pk ∈ Tc to redeem. C keeps track of this type of queries by
maintaining a RPoolh/RPoolc for honest users.

Proof of Lemma 1.

Proof. (1) If a PPT A wants to redeem a non-corrupted user’s escrow (ctx∗esc,
token∗) in state.EPool, A must generate (prectx∗, π∗). However, for the given
(c∗e, token

∗) parsed from (ctx∗esc, token
∗), c∗r is unique. That is because c∗r = c∗e⊕C

HCom.Com(0; td∗), and token∗ = OWP(td∗). Thus, based on the one-to-one
property of OWP, c∗r in prectx∗ is determined for the given (ctx∗esc, token

∗). Since
a PPT A cannot invert token∗ = OWP(td∗) to get td∗, A can generate neither
the statement c∗r nor the corresponding proof π∗.

(2) Else if the PPT A can generate a valid pre-redeeming request (prectx∗, π∗)
with no existing corresponding escrow transaction (c∗e, token

∗) in state.EPool.
It obviously violates the soundness property of the used NIZK.

In conclusion, no PPT adversary has a non-negligible advantage in the theft
prevention game.

Proof of Lemma 2.

Proof. Suppose there exists a PPT adversary A who can win this game with
non-negligible advantages. Same as before, the soundness of the NIZK means
(ctx∗esc, token

∗) ∈ state. This means A generates a prectx∗ with a confidential
value c∗r that can be opened to a different value of c∗e in ctx∗esc. Recall Llegal re-
quires c∗r = c∗e⊕CHCom.Com(0; td∗) = HCom.Com(v∗; r∗)⊕CHCom.Com(0; td∗) =
HCom.Com(v∗; r∗ ⊕R td∗). If c∗r can be opened with (v∗′, r∗′) ̸= (v∗, r∗ ⊕R td∗)
and π∗ can pass the validity check, this means A can break the binding property
of the HCom with non-negligible probability.

Proof of Lemma 3.

20 Jiajun Du et al.

Proof. From the soundness of our NIZK, the successful redeeming of (ctx∗red, π
∗)

means that there must be a corresponding record (ctx∗esc, token
∗) in state.EPool.

Since we use state.RPool to ensure the uniqueness of each successful redeeming,
if c∗r and ĉr (contained in the pre-redeeming transactions of ctx∗red and ctx∧

red
respectively) can both pass VerifyRedeem, they must be different.

However, c∗r in prectx∗ is determined for a given (ctx∗esc, token
∗). Based on the

one-to-one property of OWP, no A can redeem (ctx∗esc, token
∗) more than once.

Proof of Lemma 4.

Proof. We proceed via a sequence of games. Let Pr[Wi] be the probability that
A wins in Gamei. Let c≈ denote that two distributions are computationally in-
distinguishable.

Game0(λ): This game is as in the experiment with b = 0. Denote the confidential
amount and the proof contained in (prectx∗, π∗) as (cr

∗
0, π

∗
0).

Game1(λ): This game is the same as Game0, except the proof π∗
0 in RequestRedeem

is now replaced by the output π′
0 from a simulator S of NIZK instead of gener-

ated by NIZK.Prove. By a direct reduction to the zero-knowledge property of
the NIZK, we have (cr∗0, π∗

0)
c≈ (cr

∗
0, π

′
0). That is, |Pr[W1]−Pr[W0]| ≤ negl(λ).

Game2(λ): This game is the same as Game1, except that b = 1 is used to generate
prectx∗. Since (ctxesc1, token1) is in the same state.EPool as (ctxesc0, token0),
from the zero-knowledge property of NIZK, there is a simulator S that can
generate the simulated proof π′

1 for cr
∗
1. Then distinguishing Game1 and

Game2 reduces to the hiding property of the underling homomorphic com-
mitment. So we have (cr∗0, π′

0)
c≈ (cr

∗
1, π

′
1). Thus, |Pr[W2]−Pr[W1]| ≤ negl(λ).

Game3(λ): This game is the same as Game2, except that π∗
1 is used instead of

the simulated proof π′
1. Because of the zero-knowledge of NIZK, we have

(cr
∗
1, π

′
1)

c≈ (cr
∗
1, π

∗
1). That is |Pr[W3]− Pr[W2]| ≤ negl(λ).

From above, we conclude (cr
∗
0, π

∗
0)

c≈ (cr
∗
1, π

∗
1), and

∣∣Pr[b′ = b]− 1
2

∣∣ < negl(λ).

Proof of Lemma 5.

Proof. We proceed via three claims.
Claim 5.1. The CreateEscrow is confidential.

This conclusion is obvious, i.e., (c∗e0, token
∗
0)

c≈ (c∗e1, token
∗
1). Because c∗e0

c≈
c∗e1 follows from the confidentiality of the underlying blockchain, and token∗b is
generated independently of c∗eb by a OWP.
Claim 5.2. The RequestRedeem is confidential.

Let (c∗rb, π
∗
b) be the redeeming request of (c∗eb, token

∗
b). Then there is a ran-

dom r′′←$R, s.t. c∗rb = c∗eb ⊕c HCom.Com(0; td∗b) = HCom.Com(vb; r
′′), since

td∗b ←$R. Based on the confidentiality of the underlying blockchain, c∗r0
c≈

c∗r1. By the zero-knowledge property of NIZK, we have (c∗r0, π
∗
0)

c≈ (c∗r0, π
′
0)

c≈
(c∗r1, π

′
1)

c≈ (c∗r1, π
∗
1), where π′

b is the simulated proof for c∗rb.
Claim 5.3. No PPT adversary can link the output of a CreateEscrow to a
RequestRedeem.

This comes directly from the unlinkability of MixCT.

	MixCT: Mixing Confidential Transactions from Homomorphic Commitment

