
Truncated EdDSA/ECDSA Signatures

Thomas Pornin

NCC Group, thomas.pornin@nccgroup.com

19 July, 2022

Abstract. This note presents some techniques to slightly reduce the size of EdDSA
and ECDSA signatures without lowering their security or breaking compatibility with
existing signers, at the cost of an increase in signature verification time; verifying a 64-
byte Ed25519 signature truncated to 60 bytes has an average cost of 4.1 million cycles
on 64-bit x86 (i.e. about 35 times the cost of verifying a normal, untruncated signa-
ture).

1 Signature Size Reduction
We consider the following situation:

– A system involves a signer, who generates digital signatures on some data. The signatures
must then be transmitted to a verifier, who validates the signatures against the signer’s
public key and the purported signed data.

– There are severe constraints on the size of the signature, due to the transmission mech-
anism. For instance, the signature and some other data must fit in a QR code. Another
possible case would be the packaging of many signed transactions in a limited-bandwidth
ledger, as is common in blockchain systems.

– At the same time, the signature generation algorithm must be one of a few standard
mechanisms, for compatiblity with the signer’s hardware (e.g. it is a smartcard) or for
compliance reasons.

In such a situation, one would want a signature algorithm that minimizes signature size. A
standard Ed25519 signature (EdDSA over Curve25519) or ECDSA (with NIST’s curve P-
256) has size 64 bytes. If the algorithm can be chosen freely, then various possibilities to reduce
the signature size exist, e.g.:

– Use a smaller elliptic curve; for instance, NIST’s P-192 still offers a formidable and cur-
rently unbreakable security level of 96 bits, and yields ECDSA signatures of 48 bytes.

– Employ an EC-based Schnorr signature with a reduced “challenge” size. Ann-bit security
level can be obtained with a 2n-bit curve and an n-bit hash function output for the com-
putation of the internal challenge, as long as the hash function is not a “narrow-pipe”
design[6]. This would allow Schnorr signatures with a 256-bit curve and a purported
128-bit security level to fit in 48 bytes or so.

– Use a pairing-friendly curve and the BLS signature scheme[2]. A suitable curve might
provide a base curve with a prime order of about 2256 elements, and yield signatures of
size 32 bytes only with a 128-bit security level. For various reasons (notably performance),
somewhat larger curves are currently being standardized[9], but a signature size of 48
bytes is obtained with curve BLS12-381.

However, if we are stuck with standard Ed25519 or ECDSA over P-256, then such solutions
cannot be applied. In this note, we explore another method, which is to simply truncate the
signature, and let the verifier rebuild the missing part during the verification process.

Generic Truncation. In general, some truncation can be safely applied on any signature
scheme: the last t bits of the signature are omitted, and the verifier just tries all possible 2t val-
ues of the missing bits until a valid signature is obtained. This entails running the verification
algorithm an average of 2t−1 times. The process is safe for the following reasons:

– The truncation and reconstruction use only public data.
– A valid untruncated signature is obtained as a byproduct.

In other words, if a forgery attack is feasible against the truncated signature scheme, then the
attacker can simply run this validation process on that forged truncated signature to obtain
an untruncated forgery as well. In that sense, support for truncated signatures cannot make
forgery attacks easier.

Of course, the verification cost rises quite steeply with the number of removed bits, so
that a practical implementation would probably not be able to remove more than 8 or 10 bits
before the verification becomes too expensive. However, in the case of EdDSA and ECDSA
signatures, some optimizations are feasible, allowing practical truncation of, for instance, 32
bits, reducing the signature size from 64 down to 60 bytes. The purpose of this note is to
describe these optimizations, in the case of both Ed25519, and ECDSA with NIST’s P-256.
We implemented and benchmarked both cases; the implementation is available in the open-
source crrl library, available on:

https://github.com/pornin/crrl/

2 EdDSA Signatures
Notations. EdDSA is standardized in RFC 8032[5] for twisted Edwards curves; we focus
here on Ed25519. In the description below, we use the following notations:

– The public key is the curve point A.
– The conventional generator for the curve subgroup is B.
– The signature consists of (the encoding of) a pointR and a scalar s. The scalar is an integer

modulo the curve subgroup order ℓ ≈ 2252. R and s are encoded in that order, over 32
bytes each; s uses little-endian.

– The verification algorithm entails computing a challenge value k, which is a scalar; it is
obtained by using a hash function over the concatenation of the point R, the public key
A, and the signed message. The scalar k may have a value anywhere between 0 and ℓ − 1.
The signature is then deemed valid if the following equation is fulfilled:

8sB = 8R + 8kA

Note that we use here the “cofactored” equation (with the multiplier 8). A “cofactorless”
equation is also defined, without that multiplier, but its use is not recommended (no-
tably, some optimized verification mechanisms, in particular batch verification, cannot
easily enforce the validity of the cofactorless equation).

2

https://github.com/pornin/crrl/

Core Verification Algorithm. Since s uses the little-endian encoding convention, re-
moving the last t bits of the signature is equivalent to reducing the integer s (nominally in
the 0 to ℓ − 1 range) modulo 2n, for n = 256 − t. We suppose here that t ≥ 8; in practice,
our implementation supports any t from 8 to 32. Note that the top three bits of s are already
known to be zero, since ℓ < 2253.

Let s0 be the value as received, i.e. s0 = s mod 2n. We can write:

s = s0 + 2251 + s12n

for an integer s1 such that −2t−5 ≤ s1 ≤ +2t−5 (the value +2t−5 is possible in case s ≥ 2252,
because ℓ is slightly above 2252). The verification equation can then be rewritten as:

s1 (2n8B) = 8R + 8kA − 8(s0 + 2251)B

By definingU = 2n+3B andV = 8(R+kA−(s0+2251)B), the truncated signature verification
becomes the problem of finding a solution s1 in the [−2t−5 . . . +2t−5] range to the restricted
discrete logarithm problem:

s1U = V

In general, we can hope for solving such a problem with a cost proportional to the square
root of the width of the range of possible solutions. Here, we can furthermore leverage the
following facts:

– In a twisted Edwards curve such as Curve25519, points have coordinates x and y; for any
point P, points P and −P have the same y coordinate.

– The point U defined above depends on the number of removed bits (t) but not on the
signature value nor the public key; this allows part of the computation to be performed
in advance, and included in the verifier software as a precomputed table.

Here are the steps that we use in our implementation:

1. Let I and J be two positive integers such that IJ ≥ 2t−5. Exact values will be discussed
below; in general, one can think of I and J to be roughly equal to 2(t−5)/2.

2. For j = 0 to J , define Uj = jIU . We compute and accumulate the y coordinates of points
Uj in a table, that we sort so that lookups are efficient.

3. For i = 0 to I − 1, define Vi = V − iU . We compute the points Vi and extract their y
coordinates.

4. We look for a match between the y coordinates of a point Uj and a point Vi . For any
match, we have two candidates for the solution: s1 = i+ Ij and s1 = i− Ij. Each candidate
is validated against the normal (untruncated) verification equation.

If a solution s1 exists (i.e. the signature is valid), then there must exist two integers a and
b such that s1 = a + Ib, with 0 ≤ a < I and −J ≤ b ≤ J . In that case:

(a + Ib)U = V

bIU = V − aU

Since U−b = −Ub, points Ub and U−b have the same y coordinate. Therefore, our search
process must find a match for i = a and j = |b|, and we will try s1 = a + Ib as a potential
solution.

3

Precomputations. SinceU does not depend on runtime parameters, we can precompute
the values Uj and store an already sorted search table in the code.

The validation of each possible solution s1 is relatively fast since s1 is a small integer, andU
andV do not have to be recomputed each time; it is much faster than a complete verification.
We can therefore afford a few false positives. Correspondingly, we can store only a few bits of
the y coordinates of theUj in the precomputed table (in our implementation, we keep 48 bits
only of each y coordinate). Thus, for a given code footprint budget, we can use a somewhat
larger table.

The runtime cost is roughly proportional to I (for the computation of the points Vi);
the cost induced by a large J is only static read-only storage (for the precomputed table) and
O(log J) for each lookup (with a binary search). Thus, it is advantageous to make J larger than
I . In our implementation, we use J = 214, i.e. a table of 16385 elements (about 131 kB), and
I can range up to I = 213 (for the maximum supported truncation of t = 32 bits).

Using the Montgomery Curve. General point addition on a twisted Edwards curve
uses eight multiplications in the base field (8M). However, we can lower the per-Vi cost by
switching to the Montgomery domain, i.e. mapping the points to the birationally equivalent
Montgomery curve, where we can have a per-point cost of 6M instead. Specifically, the twisted
Edwards point P = (x, y) is mapped to a Montgomery point (e, f) with e = (1 + y)/(1 −
y). Then, if the e coordinates of points U , Vi and Vi+1 are the fractions Nu/Du, Ni/Di and
Ni+1/Di+1 respectively, then we get the u coordinate of Vi+2 as a fraction Ni+2/Di+2 with the
following equations:

Ni+2 = Di ((Ni+1 −Di+1) (Nu +Du) + (Ni+1 +Di+1) (Nu −Du))2

Di+2 = Ni ((Ni+1 −Di+1) (Nu +Du) − (Ni+1 +Di+1) (Nu −Du))2

For more details on these formulas, see [4] (section 3.2).

Batch Inversion. Since we get the point coordinates as fractions, they must be normal-
ized to affine values, which entails a division in the base field. This is an expensive opera-
tion; however, several inversions can be batched together by applying recursively a trick due
to Montgomery (1/a = b(1/(ab)) and 1/b = a(1/(ab))). This method allows inverting n
field elements for the cost of a single inversion in the field, and an additional 3(n − 1) multi-
plications. Since inversion cost can range up to 100 or more multiplications in the field, the
batch method is a huge gain. In our implementation we use batches of 200 values.

Early Exit. We do not have to compute all Vi before starting to lookup coordinates in the
table of Uj values; we can do so as the Vi are obtained (subject to the granularity of batch
inversion for normalization to affine coordinates). Since signature verification uses only pub-
lic data, there can be no secret information leak and we can exit as soon as we obtain a valid
signature. Thus, on average, we will need to compute only half of the Vi before finding the
right solution; the worst case (when the match is found only last, or when there is no match
at all because the signature is invalid), the cost will be up to twice that of the average.

Extra Bits in the Commitment. If we are desperate for size, then up to 3 extra bits of
information can be smuggled into the commitment part of the signature, i.e. the pointR. In a

4

normal, legitimately produced signature, the pointR is generated by using a (pseudo)random
scalar r, i.e. an integer in the 0 to ℓ − 1 range, and computing R = rB. The point B has order
ℓ . However, the complete Curve25519 has order 8ℓ , and B generates only a subgroup of the
curve. In general, any point P on the curve can be written uniquely as P = Pℓ + P8, with
Pℓ being part of the subgroup of order ℓ , and P8 being an element of a subgroup of order 8
(denoted E[8]). We therefore expect R = Rℓ + R8 to be such that R8 = (0, 1) (the neutral
element on the curve).

This leads us to the following scheme:

– Let T be a generator of E[8]. There are four such points; any will do.
– An extra 3-bit information g (as an integer such that 0 ≤ g < 8) is encoded into the

signature by replacing R with R′ = R + gT . Since we use the cofactored verification
equation, this does not make the signature invalid.

– Information g can be recovered by multiplying the received R′ by ℓ :

ℓR′ = ℓR + ℓgT = (ℓg mod 8)T

It shall be noted that this scheme relies on the assumption that the original R is indeed
in the subgroup of order ℓ . It could be argued that a signer could legitimately issue valid sig-
natures with R not in that subgroup (and correspondingly generate public/private key pairs
with the public key not in the subgroup either) as long as they still validate with the signature
verification equation. There does not seem to be any good reason to do so, though. To cover
that case, the information embedding step may first normalize R to the proper subgroup (by
multiplying it by 8−1 mod ℓ , then by 8), but this implies some extra costs.

We did not implement this method because it involves curve point computations on the
signer’s side. In situations where a hardware signature generator must be used (e.g. a smart-
card), there might not be easily available implementations of such operations outside of the
signing engine; the signer might furthermore lack the computing resources to do so.

Performance. We implemented the truncated signature support in crrl, which is writ-
ten entirely in the Rust language. No inline assembly is used, nor SIMD opcodes (e.g. AVX2
or NEON); on x86 systems, the _addcarry_u64() and _subborrow_u64() intrinsics
are used, since they seem to provide a slight speed-up over the portable constructions that
we use on other architectures. All operations on secret data are fully constant-time. Curve
operations use regular extended coordinates, with some optimizations for sequences of dou-
blings. Untruncated signature verification uses the optimization described by Antipa et al in
[1], with the optimized lattice reduction algorithm from [7].

We benchmarked the implementation for various truncations (removal of 8, 16, 24, 28
or 32 bits). Rust compiler 1.59 is used (“stable” channel). Benchmark uses the “release” op-
timization level, with the extra flags “-C target-cpu=native” to specifically target the
system on which the process is executed. The two test systems are:

– An Intel i5-8259U running at 2.3 GHz, in 64-bit mode (x86-64 architecture), under
Linux (Ubuntu 22.04). TurboBoost is disabled.

– A Raspberry Pi, model 3B, with a BCM2837 CPU (ARM Cortex A53 core), running
at 1.2 GHz, in 64-bit mode (aarch64 architecture), under Linux (Ubuntu 20.04.4). Per-
formance counters were enabled and used to get accurate cycle counts.

5

Results are summarized in table 1. We note that even with the maximal truncation (32 bits),
the signature verification cost is only 25 to 35 times (on average) that of the normal, untrun-
cated signature verification (for valid signatures).

Operation x86-64 (Intel “Coffe Lake”) aarch64 (ARM Cortex A53)
valid signature invalid signature valid signature invalid signature

Sign 51497 - 212906 -
Verify 114031 114031 478875 478875
Verify trunc (t = 8) 150734 149270 671503 662950
Verify trunc (t = 16) 152607 146079 680137 651421
Verify trunc (t = 24) 177044 170473 761440 711991
Verify trunc (t = 28) 417015 585547 1541250 1956374
Verify trunc (t = 32) 4086200 7399430 12008249 21844606

Table 1: Performance of Ed25519 truncated signatures. Values are in clock cycles. Signature
verification measures are averages for either valid signatures, or invalid signatures.

3 ECDSA Signatures
The process for truncated ECDSA signatures is similar to that of EdDSA, but with some
differences that we discuss below. We focus on the standard NIST curve P-256 (also known
as “secp256r1” or “prime256v1”).

Notations The curve has order ℓ , which is close to (but lower than) 2256. It is a prime
integer; there is no cofactor. The curve conventional generator point is denotedG. The public
key is the point Q. A signature is a pair (r, s) of integers modulo ℓ .

In a normal ECDSA signature verification, the input message is hashed, and the hash
value is converted (through truncation and modular reduction) into a scalar m. The verifica-
tion then consists of computing the point R = (m/s)G + (r/s)Q, and finally verifying that
the x coordinate of the point R is equal to r (modulo ℓ). Note that the x coordinate of point
R is in the base field in which the curve is defined, i.e. it is an integer modulo a given prime p
which is close to, but distinct from, ℓ . The transform of that value into r thus requires first
turning it into an integer representative (in the 0 to p − 1 range), then reducing that integer
modulo ℓ .

ECDSA signatures can be encoded in several ways; one of the most common formats uses
unsigned big-endian encoding of r and s, concatenated in that order. The two encodings are
left-padded if necessary to ensure that they have the same size (in bytes), so that their inter-
pretation by the verifier is unambiguous. With curve P-256, this yields signatures of 64 bytes
(about 1/216 of signatures could be encoded in 62 bytes or fewer, because the top bytes of r
and s would happen to be both zero, but in practice we must assume that signatures have size
64 bytes).

6

Preparation for Truncation. In order to help with truncation, a few inexpensive steps
are first applied to the signature (r, s):

– If r < p − ℓ , then the signature is rejected. This step ensures that there is a unique value
for the x coordinate of point R that matches r (equivalently, that the reduction of the
integer modulo ℓ did not alter the value). The probability that a legitimately generated
ECDSA signature has a value r in the rejected range is about 2−128.9, which means that
it does not really happen in practice, and if it ever happens, then it is almost surely due
to a hardware failure rather than a singular stroke of bad luck.

– If s ≥ 2255 then it is replaced with ℓ − s. This leverages the fact that if (r, s) is a valid
signature, then so is (r,−s), and vice versa; this is due to the property of short Weierstraß
curves that points R and −R have the same x coordinate. This allows us to ensure that s
can be encoded over 255 bits.

– s is reencoded using the little-endian convention, so that truncation applies to the most
significant bits rather than the least significant.

After these steps, the signature value can be truncated, by removing the last t bits (for some
value of t, typically at most 32 bits).

Core Verification Algorithm. Due to the restriction we applied on the value of r, the
x coordinate of point R can be rebuilt unambiguously. This allows recomputing the point
R (through a process analogous to standard point decompression), although we lack its sign;
thus, wo do not know if the point R we recompute is the real R, or −R. This does not matter
in the rest of the process, though it prevents us from applying an optimization that we could
use in the case of EdDSA.

Write s = s0 + s12n, for n = 256 − t. Since the preparation step ensured that s < 2255, we
know that 0 ≤ s1 < 2t−1. The verification equation can be rewritten as:

sR = mG + rQ

which leads to:
s0R + s1 (2nR) = mG + rQ

As in the EdDSA case, we define two sets of points Uj and Vi and look for a match, i.e. two
points that have the same x coordinate. In more details:

1. Let I and J be positive integers such that IJ ≥ 2t−1. As will be explained below, we
normally choose J = 2(t−2)/2 and I = 2J .

2. For j = 0 to J , defineUj = s0R+jI (2nR). We compute and accumulate the x coordinates
of the Uj in a table sorted for fast lookups.

3. For i = 0 to I , compute Vi = mG + rQ − i(2nR) and verify whether the x coordinate of
Vi is equal to the x coordinate of one of the Uj . If a match is found between Uj and Vi ,
then the two candidates are s = s0 + (i + Ij)2n and s = s0 + (−i + Ij)2n.

If a solution s1 exists, then we can write s1 = a + Ib with 0 ≤ a < I and 0 ≤ b < J . If we
rebuilt the correct R, then the verification equation is:

s0R + (a + Ib) (2nR) = mG + rQ

7

which leads to Ub = Va, thus a match with i = a and j = b, and s = s0 + (i + Ij)2n. On the
other hand, if we rebuilt−R instead of the correctR, then the verification equation becomes:

−(s0R + (a + Ib) (2nR)) = mG + rQ

which can be rewritten as:

−(s0R + I (b + 1) (2nR)) = mG + rQ − (I − a) (2nR)

i.e.−Ub+1 = VI−a, so that we will get a match between the x coordinates ofUb+1 andVI−a. We
then have i = I−a and j = b+1, and the solution is s = s0+(I−i+I (j−1))2n = s0+(−i+Ij)2n.
Note that we included the upper range limit on i and j (i.e. we computed UJ and UI as well)
precisely so that I − a and b + 1 are always part of the covered indices.

The verification process can terminate as soon as the solution is found; for a valid signa-
ture, about half of the Vi (on average) have to be computed, but all the Uj , which is why it is
advantageous to choose I = 2J (as an approximation, the total cost is proportional to J +I/2,
which is minimized for I = 2J when the product IJ is fixed).

X-only Arithmetics. As in the EdDSA case, we only need the x coordinates of theUj and
Vi points, and we can obtain them with x-only arithmetics. We use formulas first published
by Brier and Joye[3] (see also section 3.4 of [4]). Suppose that we are working with a short
Weierstraß curve of equation y2 = x3 + ax + b for two constants a and b, and we want to
compute the x coordinates of points Pi = P0 + iM for successive integers i and some base
pointsP0 andM. If we have the x coordinates ofPi andPi+1 as fractionsXi/Zi andXi+1/Zi+1,
respectively, and the x coordinate of M is xm, then we can compute the x coordinate of Pi+2
as Xi+2/Zi+2 with:

Xi+2 = Zi ((Xi+1xm − aZi+1)2 − 4b(Xi+1 + xmZi+1)Zi+1)
Zi+2 = Xi (Xi+1 − xmZi+1)2

On curve P-256, the constant b is large, but a = −3, making multiplications by a cheap.
Overall cost is 6M+2S, which compares quite favourably with the 14M cost of the generic
point addition formulas that we otherwise use in our implementation (using projective co-
ordinates, the formulas are explained in [8]). However, the formulas above are not complete;
they have a few special cases that must be handled explicitly:

– If M = O (the “point-at-infinity”), then there is no defined x coordinate xm. However,
all Pi are then identical to each other, making the process very simple.

– If Pi+1 = O, then Pi = −M and Pi+2 = M: we can set Xi+2 = xm and Zi+2 = 1 in that
case.

– If Pi = O, then Pi+1 = M and Pi+2 = 2M; we can then obtain the coordinates of Pi+2
with the point doubling formulas:Xi+2 = (xm−a)2−8bxm, andZi+2 = 4(x3m+axm+b).

– IfPi = (0,±
√
b), i.e.Pi happens to be one of the two points of P-256 whose x coordinate

is zero, then the following alternate formulas should be used:

Xi+2 = 2((Xi+1xm + aZi+1) (Xi+1 + xmZi+1) + 2bZ2
i+1)

Zi+2 = (Xi+1 − xmZi+1)2

8

In all other cases, the formulas return a proper result. In particular, when Pi+1 = −M, the
value Zi+2 = 0, which is correct since Pi+2 = O in such a case.

The special cases can be handled with simple conditional tests, since we are working with
public data, and there is no secret information that may be leaked.

TheXi/Zi fractions can be normalized to affine x coordinates by batches, to use the batch
inversion algorithm, just like EdDSA.

Performance andComparisonwith EdDSA. The verification process of a truncated
ECDSA signature over curve P-256 is substantially slower than for a truncated Ed25519 sig-
nature with the same number of removed bits, for the following reasons:
– Ed25519 signature truncation has “free bits” since the top three bits of s are always zero,

and the fourth top bit is almost always zero as well. Since the asymptotic cost of recon-
struction based on such discrete logarithms works in O(2t/2), these “free bits” should
yield an improvement by a factor of 4.

– In ECDSA, one bit is gained by the fact that both (r, s) and (r,−s) are valid signatures,
but that bit is lost again for the same reason: s can be negated because the value r does
not distinguish betweenR and−R, but not knowing the exact pointR forces us to cover
both cases, which prevents us from using the same kind of optimization as in EdDSA (in
EdDSA we could “center” s1 on 2251, which gained the equivalent of one extra bit, but
in ECDSA we cannot, to account for the unknown sign of R).

– Contrary to the EdDSA case, precomputations do not apply because the s value is ap-
plied to the point R, which depends on the signature value, and not on the fixed gener-
ator point in the curve. Thus, we have to recompute the Uj in addition to the Vi , which
leads us to use a smaller J range, and a higher I range than we could otherwise do. The
prevention of precomputations explains an extra factor of about 3 between the EdDSA
and ECDSA cases.

– Curve25519 is a faster curve than P-256. Multiplications and squarings in the Curve25519
field benefit from the special format of the modulus (2255 − 19) and are about 20% to
30% faster than the same operations in the P-256 field in our implementation. Moreover,
formulas on P-256 involve more multiplications and squarings than their counterparts
on Curve25519.

From these various slowdown factors, we expect verification of truncated ECDSA signatures
to have a cost of about 15 to 20 times that of EdDSA for the same number t of removed bits.
This is corroborated by benchmarks. In table 2, we give measures on the same test machines
as the Ed25519 benchmarks of table 1.

As seen in the benchmarks, the verification cost of truncated ECDSA signatures can be-
come quite high as t grows. However, even for the largest supported trunction (t = 32 bits,
i.e. reduction of the signature by 4 full bytes), the verification time is “only” about 200 to 300
times the cost of verifying an untruncated signature. On the test ARM Cortex A53, which is
the least performant of our two test systems, the worst case time (for an invalid signature) is
still less than 0.3 seconds, thus compatible with many applications that run in “human time”.

Acknowledgements
We thank Elena Bakos Lang and Kevin Henry for proofreading this note.

9

Operation x86-64 (Intel “Coffe Lake”) aarch64 (ARM Cortex A53)
valid signature invalid signature valid signature invalid signature

Sign 124916 - 389117 -
Verify 256582 256582 990943 990943
Verify trunc (t = 8) 715534 709033 2622643 2597251
Verify trunc (t = 16) 910975 1027641 3231167 3548516
Verify trunc (t = 24) 4886746 7163237 14977838 21032242
Verify trunc (t = 28) 18421302 27847149 53483430 79182671
Verify trunc (t = 32) 74496480 115365970 202775264 317982992

Table 2: Performance of ECDSA/P-256 truncated signatures. Values are in clock cycles. Sig-
nature verification measures are averages for either valid signatures, or invalid signatures.

References
1. A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik and S. Vanstone, Accelerated Verification

of ECDSA signatures, Selected Areas in Cryptography - SAC 2005, Lecture Notes in Computer
Science, vol 3897, pp. 307-318, 2005.

2. D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing, Advances in Cryp-
tology - ASIACRYPT 2001, Lecture Notes in Computer Science, vol. 2248, pp. 514-532, 2001.

3. E. Brier and M. Joye, Weierstraß Elliptic Curves and Side-Channel Attacks, Advances in Cryptol-
ogy - PKC 2002, Lecture Notes in Computer Science, vol. 2274, pp. 335-345, 2002.

4. C. Costello and B. Smith, Montgomery curves and their arithmetic: The case of large characteristic
fields,
https://eprint.iacr.org/2017/212

5. S. Josefsson and I. Liusvaara, Edwards-Curve Digital Signature Algorithm (EdDSA),
https://tools.ietf.org/html/rfc8032

6. G. Neven, N. P. Smart and B.Warinschi, Hash function requirements for Schnorr signatures, Jour-
nal of Mathematical Cryptology, vol .3, issue 1, pp. 69-87, 2009.

7. T. Pornin, Optimized Lattice Basis Reduction In Dimension 2, and Fast Schnorr and EdDSA
Signature Verification,
https://eprint.iacr.org/2020/454

8. J. Renes, C. Costello and L. Batina, Complete addition formulas for prime order elliptic curves,
Advances in Cryptology – Eurocrypt 2016, Lecture Notes in Computer Science, vol. 9665,
pp. 403-428, 2016.

9. Y. Sakemi, T. Kobayashi, T. Saito and R. Wahby, Pairing-Friendly Curves,
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-
friendly-curves

10

https://eprint.iacr.org/2017/212
https://tools.ietf.org/html/rfc8032
https://eprint.iacr.org/2020/454
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves

	1 Signature Size Reduction
	2 EdDSA Signatures
	3 ECDSA Signatures

