
Multi-Instance Secure Public-Key Encryption ⋆

Carlo Brunetta1 , Hans Heum2 , and Martijn Stam1

1 Simula UiB,
Merkantilen (3rd floor)
Thormøhlensgate 53D
N-5006 Bergen, Norway.

carlob,martijn@simula.no
2 Department of Mathematical Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.

hans.heum@ntnu.no⋆⋆

Abstract. Mass surveillance targets many users at the same time with the goal of learning as much as possi-
ble. Intuitively, breaking many users’ cryptography simultaneously should be at least as hard as that of only
breaking a single one, but ideally security degradation is gradual: an adversary ought to work harder to break
more. Bellare, Ristenpart and Tessaro (Crypto’12) introduced the notion of multi-instance security to capture
the related concept for password hashing with salts. Auerbach, Giacon and Kiltz (Eurocrypt’20) motivated the
study of public key encryption (PKE) in the multi-instance setting, yet their technical results are exclusively
stated in terms of key encapsulation mechanisms (KEMs), leaving a considerable gap.
We investigate the multi-instance security of public key encryption. Our contributions are twofold. Firstly, we
define and compare possible security notions for multi-instance PKE, where we include PKE schemes whose
correctness is not perfect. Secondly, we observe that, in general, a hybrid encryption scheme of a multi-
instance secure KEM and an arbitrary data encapsulation mechanism (DEM) is unlikely to inherit the KEM’s
multi-instance security. Yet, we show how with a suitable information-theoretic DEM, and a computationally
secure key derivation function if need be, inheritance is possible. As far as we are aware, ours is the first
inheritance result in the challenging multi-bit scenario.

Keywords: Multi-Instance Security · Hybrid Encryption · Property Inheritance · Mass Surveillance

⋆ This article is the full version of an earlier article: PKC 2023, ©IACR 2023.
⋆⋆ Work by Hans Heum performed as part of his PhD studies at Simula UiB.

https://orcid.org/0000-0001-9363-7585
https://orcid.org/0000-0003-0527-2999
https://orcid.org/0000-0002-5319-4625

2

1 Introduction

Security of cryptographic schemes is increasingly studied concretely. The question changes from whether a
scheme is secure or not, to how secure it is. The change in emphasis also results in increased importance in
more realistic security notions that model a world where an adversary might have many potential targets. If an
adversary simply tries to learn something about one of its κ targets, then intuitively the more targets there are,
the easier the adversary’s job becomes. Indeed, using simple hybrid arguments results in a security degradation
that is linear in κ. But what happens if the adversary is greedy and wants to learn more, maybe even targets
everyone? On the one hand, one could argue that if breaking one instance is hard, then so is breaking many. Yet,
on the other hand, one would hope that breaking multiple instances, say n, is strictly harder than breaking just
a single one.

This second perspective made Bellare, Ristenpart and Tessaro [12], henceforth BRT, realize that new security
notions are needed to reason about such greedy adversaries. They were motivated by how salts in password
hashing protect against attackers re-using precomputation to retrieve multiple passwords. For their study into
probabilistic symmetric schemes, they identified left-or-right indistinguishability under xor as the strongest
notion. Roughly speaking, there are κ keys in the system each associated with its own left-or-right challenge bit
bi and the goal of the adversary is to guess the xor of all those bits.

Recently, Auerbach, Giacon and Kiltz [4], henceforth AGK, argued the importance of BRT’s concept to protect
against mass surveillance. They introduced the (n, κ) scaling factor as the effort to break n out of κ instances
relative to the effort needed to break a single instance. After recalling several well-known greedy attacks against
public key schemes with dubious scaling factors, they set out to provide an encryption scheme with good, non-
trivial scaling factor.

They discussed various versions of Hashed ElGamal that differed in whether users shared group parame-
ters and/or generators, plus whether the underlying group was elliptic curve or finite field based. In the pro-
grammable random oracle model, they showed that the multi-instance security of Hashed ElGamal tightly re-
lates to a novel multi-instance Gap Computational Diffie–Hellman (MI-GapCDH) assumption, whose validity
was further supported by an analysis in the generic group model.

Therewas, or rather is, just one small problem:Hashed ElGamal is a key encapsulationmechanism (KEM), not
a public key encryption (PKE) scheme. Indeed, although AGK use PKE as their motivation, their formalization
is entirely centred around KEMs. Of course, Cramer and Shoup [19] already showed how a secure KEM can
be combined with a secure data encapsulation mechanism (DEM) to create a secure PKE (for various notions of
security). This so-called hybrid encryption paradigm iswidely deployed in the real world, yet, can its composition
theorem be easily lifted to the multi-instance setting?

For key unrecoverability, all seems fine, but for indistinguishability one quickly uncovers various challenges.
Consider an adversaryA that wants to recover n out of κ challenge bits bi: it can attempt to recover roughly half
of its bi by somehow breaking the DEM, and recovering the remaining half by breaking the KEM. Intuitively,
such a divide-and-conquer strategy essentially rules out inheriting full multi-instance security of both KEM and
DEM simultaneously. Instead, perhaps we should aim to bound an adversary’s multi-instance advantage against
the hybrid encryption in terms of either breaking the full multi-instance security of the KEM or breaking only
one of many instances of the DEM.

Special care would have to be taken to ensure that the corresponding multi-user DEM advantage is not over-
whelming the multi-instance KEM advantage. After all, already when showing multi-user security of hybrid en-
cryption, ensuring the DEM advantage does not overshadow the multi-user KEM advantage is challenging [23].
Furthermore, the study of multi-user KEMs highlights a second, more technical problem.

Formulti-user security, there are essentially two different formalizations possible: onewhere each user comes
with its own challenge bit and one where the users share a global challenge bit. Jager et al. [29] recently observed
that only the latter lends itself to an easy adaptation of composition theorems using KEMs, as it allows a simple
game-hop where all KEM-derived ephemeral keys are replaced by randomly selected keys (decoupled from the
KEM encapsulations). That proof technique fails when there are multiple challenge bits. Unfortunately, for multi-
instance security, the only option available is a notion with multiple challenge bits. In such a setting, inheritance
of security properties of the KEM to any construction based on the KEM is an open problem.

Our Contribution. As mentioned above, multi-instance security was introduced by BRT in the context of
probabilistic symmetric primitives and later adapted to key encapsulation mechanisms by AGK, who provide
an excellent motivation for the study of multi-instance security in a public key setting. We adapt those notions
to multi-instance security for PKE schemes, but make a number of non-trivial changes in the process. Firstly,
we observe that the mechanisms used by BRT and AGK to model multi-instance games differ, which seems
to have gone unnoticed hitherto. BRT’s mechanism is stronger as it allows for corruptions (denoted by ⋆), yet

3

IND-CCA⋆ MKU-CCA⋆

ROR-CCA⋆ UKU-CCA⋆

Co
r.
2

·2
n
(κ n

)

Thm. 2

·c−1

/

Sect.3 +
κ
γ

Th
m
.1

Fig. 1. An overview of multi-instance security notions for public-key encryption, where γ relates to imperfect correctness
(Def. 1), and the loss factor c is explained in Thm. 2.

AGK’s mechanism is more expressive by making explicit how many instances an adversary should break. We
use elements of both in our notions, incorporating both BRT’s corruptions and AGK’s explicit expression of the
number of targeted instances. Secondly, we allow for correctness to be imperfect, which has ramifications for
how to deal with decryption oracles (for chosen-ciphertext attacks) and corruptions.We delve into the differences
between the various mechanisms in Sect. 3.3, furthermore we use our revised mechanism to study a number of
related notions, as summarized in Fig. 1.

In more detail, we start out by porting BRT’s notion of key unrecoverability to the public-key setting. In fact,
we consider two distinct versions of key unrecoverability: “Universal Key Unrecoverability” (UKU), where the
adversary is tasked to recover the exact challenge private key(s) and “Matching Key Unrecoverability” (MKU),
where it suffices to recover suitably equivalent private keys, where we leverage our imperfect correctness no-
tion to define “suitably equivalent”. As one would expect, this relaxed key unrecoverability notion implies the
stronger, exact notion up to a small loss related to how we model imperfect correctness (Thm. 1).

For our main notion of multi-instance security, we follow BRT’s identification of left-or-right xor-indistin-
guishability as the strongest notion and adapt it to the public key setting. As for the symmetric encryption
setting studied by BRT, this indistinguishability notion implies the above key unrecoverability notions (Thm. 2);
however, the differences between perfect symmetric encryption and imperfect PKE affect the corresponding
implications and their proofs.

Finally, we explore an alternative notion, namely real-or-random xor-indistinguishability (ROR). Trivially,
left-or-right tightly implies real-or-random and in the multi-instance setting BRT showed that the usual factor-2
loss from the single instance implication between real-or-random to left-or right, becomes an exponential factor-
2κ loss. A similar loss is possible in our setting, however, we can also achieve a typically preferable bound of(
κ
n

)
2n (Cor. 2).
With suitable notions for multi-instance PKE available, we focus on how to turn a suitably multi-instance

secure KEM into a multi-instance secure PKE scheme using hybrid encryption. For key unrecoverability, in-
heritance is immediate, yet we would like to guarantee good multi-instance indistinguishability (the left-hand
branch of Fig. 1). We summarize our findings in Fig. 2.

Our first observation is that we can expand the length of the ephemeral key to any desired length us-
ing a pseudorandom extendable output function (XOF). The resulting extendable KEM, or XEM, inherits the
multi-instance security of the underlying KEM, provided the XOF is secure against multi-challenge adversaries
(Thm. 5). To ensure that the XOF does not become the weakest link, its seed will need to be long enough, which
in turn implies that the underlying KEM already needs to output a sufficiently long ephemeral key.

The XOF above of course plays the role of key derivation function, but it is more common that it is modelled
as part of any key expansion done by the DEM. Moving it into the KEM allows us to use an information-theoretic
DEM, read one-time pad (OTP), irrespective of themessage length. TheOTP’s properties enable a simplified proof
for the security of hybrid encryption (Thm. 6), where the PKE does indeed inherit the multi-instance security
of the XEM, with two important caveats. Firstly, the OTP is only passively secure, so the PKE only achieves
CPA not CCA security, and secondly, standard KEM indistinguishability only tightly provides real-or-random
indistinguishability for the PKE (see the top line of Fig. 2).

Switching to the TagKEM framework [2], or in our case TagXEM, takes care of the first shortcoming and
tightly achieves multi-instance ROR-CCA secure PKE, or IND-CCA non-tightly (Thm. 7). For the PKE to inherit
multi-instance IND-CCA security tightly, we introduce a novel KEM indistinguishability notion thatmore closely
matches PKE’s left-or-right idea, namely real-or-permuted (ROP). Finally, we can show tight multi-instance
inheritance for the most desirable PKE notion, based on a ROP-secure TagXEM (Thm. 8).

One small hiccough remains, as our KEM-to-XEM result unfortunately only works for classical KEM indis-
tinguishability, not for ROP indistinguishability, nor does it look feasible to convert a KEM or XEM to a TagKEM
or TagXEM, respectively, inheriting multi-instance security using standard reductions. Here, the random oracle,

4

IND-CCA⋆
KEM IND-CCA⋆

XEM ROR-CPA⋆
PKE

MI-GapCDH⋆ IND-CCA⋆
TXEM ROR-CCA⋆

PKE

OW-PCA⋆
KEM ROP-CCA⋆

TXEM IND-CCA⋆
PKE

AGK [4] + RO

Thm. 5
+ XOF

Thm. 6
+ OTP

Thm. 7
+ OTP

Thm. 9
+ MAC + RO

Thm. 8
+ OTP

Lemma 4

Fig. 2. An overview of our constructions achieving various flavours of multi-instance security. The left upwards arrow is
dotted, as AGK did not consider corruptions.

as used by AGK to prove their construction secure, comes to the rescue, although rather than looking at Hashed
ElGamal under the MI-GapCDH assumption, we consider more general KEMs that are multi-instance one-way
under plaintext checking attacks (unfortunately, also at this point we need to restrict to perfect correctness),
which we combine with Abe et al.’s TagKEM construction from a KEM and a MAC (message authentication
code).

Recalling that the original random oracle [14] was in fact a XOF, we can bake the extendability into the ran-
dom oracle, including the key needed for an information-theoretic secureMAC.Moreover, the power of the ROM
allows proving the stronger ROP indistinguishability just as easily as classical KEM indistinguishability. All in
all, with Thm. 9 we achieve a suitably multi-instance secure TagXEM based on a KEM that can be instantiated
by Hashed ElGamal. In that case, the security relies on the MI-GapCDH⋆ assumption, i.e. with corruptions.
As an added benefit of using the random oracle, the resulting multi-instance bounds no longer rely on suffi-
ciently long XOF inputs, thus for determining a suitable group size (when instantiating by Hashed ElGamal) the
MI-GapCDH⋆ advantage is leading.

For low granularity, which corresponds to a setting where every user generates its own group as part of its
public key, AGK’s technique can easily be extended to include corruptions and in the generic group model we
arrive at the same bound for the hardness of MI-GapCDH⋆, so with corruptions, as AGK did without corrup-
tions. Unfortunately, for the more realistic high granularity setting, where users share the same (standardized)
group, AGK’s proof strategy does not easily allow incorporating corruptions. We provide details in App. C.

Thus, we can conclude that XOF-based Hashed ElGamal combined with a suitable information-theoretically
secure MAC and the one-time-pad, provides good multi-instance security in the programmable random oracle
model and generic group model, provided that users each select their own independent group. We briefly touch
upon a concrete interpretation in App. D, where we also informally address AGK’s scaling factor.

Related Work. Farshim and Tessaro [20] recently followed up BRT’s line of work on the multi-instance se-
curity of password hashing by combining it with the related preprocessing setting. AGK [4] motivated their
investigation into multi-instance security by the threat of mass surveillance. The latter had previously moti-
vated Bellare et al. [11] to consider subversion, namely the ease with which a “big brother” might subvert an
encryption algorithm by replacing it surreptitiously with a trapdoored one with otherwise identical behaviour.

The multi-instance setting is closely related to the multi-user setting, in which the adversary is tasked with
breaking only one rather than n out of κ possible instances. Multi-user security was introduced by Bellare
et al. [7] in the public-key setting, with the goal of deriving concrete security parameters in a more realistic
setting. There have been many recent follow-up works, including how the hybrid paradigm generalizes to the
setting without corruptions [23], and later with corruptions [33], as well as the construction of tightly-secure
authenticated key exchange (AKE) from multi-user KEMs [29]. Various versions of the multi-user GapCDH
problem with corruptions were recently proposed and analysed in that context [30].

One definitional subtlety of multi-user security is the number of challenge bits: either a single one, as orig-
inally conceived, or many, as typical for the multi-instance setting. The various definitions do not appear to
imply each other tightly [26], which slightly hinders regarding the multi-user setting as a special case of the
multi-instance setting (due to potential tightness losses).

5

2 Preliminaries

2.1 Notation

For a positive integer n, we write [n] for the set {1, . . . , n}. We use code-based experiments, where← denotes
deterministic assignment and←$ denotes probabilistic assignment. By convention, all sets and lists are initialized
empty. For a set X, we use the shorthand X

∪←− x for the operation X ← X ∪ {x}. If X is a list, then X
⌢←− x

denotes appending the element x to X; to retrieve the ith element of the list, we write X[i] where by convention
X[i] = ∅ for out-of-bounds i.

We use Pr[Code : Event |Condition] to denote the conditional probability of Event occurring when
Code is executed, conditioned on Condition. We omit Code when it is clear from the context and Condition
when it is not needed. For Boolean values, we use {true, false} and {0, 1} interchangeably, where by convention
1 corresponds to true.

When proving relations between notions and security of constructions, we will often refer to simple fully
black box (SFBB) reductions. A reduction is fully black box iff it works for all schemes and adversaries, and
only accesses them in a black box manner [6, 38] (we leave the black box dependence implicit in our notation).
Moreover, if the reduction only runs its adversary once and without rewinding, then the reduction is simple [34].

Finally, the respective games that the adversary and the reduction are playing often have matching (though
not identical) oracles; for instance, both may have access to a decryption oracle or a key corruption oracle. We
call a reduction type-preserving with respect to, say, a decryption oracle iff the reduction will make decryption
queries iff its black-box adversary makes decryption queries. Type-preservation, without explicit mention of any
oracles, is implicitly meant to imply for all meaningfully matching oracles (unless otherwise specified).

Type-preservation of reductions appears folklore and can easily be established by inspection. Intuitively, a
type-preserving reduction can be used to show simultaneously that CCA security of some kind implies CCA
security of another kind and that CPA security of the same kind implies CPA security of the other kind. In
Sect. 3.3 we will encounter several reductions that are only partially type-preserving.

2.2 PKE Syntax

A public-key encryption scheme PKE consists of four algorithms: the probabilistic key generation algorithm
PKE.Kg, which takes as input some system parameter pm (see also Remark 1) and outputs a public/private key
pair (pk, sk); the deterministic key validation algorithm PKE.Check, which takes as input the system parame-
ters pm as well as a purported public/private key pair (pk, sk) and returns true or false (see Remark 2 below),
the probabilistic encryption algorithm PKE.Enc, which on input a public key pk and a message m ∈ M (see
Remark 3), outputs a ciphertext c; and the deterministic decryption algorithm PKE.Dec, which on input of a
secret key sk and a ciphertext c, outputs either a message m, or a special symbol ⊥ denoting failure.

Remark 1. The system parameters pm are implicitly input to PKE.Enc and PKE.Dec as well; for concreteness,
they can for instance be the description of an elliptic curve group with generator for an ECDLP-based system or
the dimensions and noise sampling algorithm for an LWE-based system. When one is interested in re-phrasing
our results in an asymptotic setting, the parameters pm will be generated by a probabilistic, polynomial-time
algorithm that only takes the security parameter as input.

Remark 2. For variousmodern cryptosystems, especially schemes targeting post-quantum security or tightmulti-
user security, the relationship between public and private keys is not one-to-one. For instance, a single public
key can have various private keys [23] or a single private key can lead to various public keys [16]. Naively, one
could check whether a public key and private key belong together by simply verifying whether encrypting and
then decrypting a number of random messages always returns the original messages. With imperfect correct-
ness, such a canonical checking algorithm can produce both false positives and false negatives. Yet, it is usually
still possible to ckeck whether a private–public key pair matches more directly, which we model by the key
validation algorithm PKE.Check. We will define both correctness and key unrecoverability in terms of this key
validation algorithm.

Remark 3. Themessage spaceMmay depend on the parameters pm, but for simplicitywe assume it independent
of the public key pk. OftenM consists of arbitrary length bitstrings, or at least all bitstrings up to some large
length (e.g. 264) and messages of the same length are deemed equivalent as they are expected to yield ciphertexts
of identical lengths. We will model these equivalences more abstractly by assuming that pm implicitly defines
a number m of equivalence classes, together with an efficient method J·K : M → [m] to determine the class
(e.g. length) of a message and an efficient algorithm to sample uniformly from a given equivalence class. We
write ∼ for the equivalence, so form ∈M, m ∼ m′ iff JmK = Jm′K.

6

Correctness. Perfect correctness states that for all parameters pm, all key pairs (pk, sk) that can be output by
PKE.Kg(pm), and all messages m ∈ M, we always have that PKE.Decsk(PKE.Encpk(m)) = m. Yet modern
schemes, especially lattice-based ones, often allow a small decryption error, where occasionally decryption will
fail or it will return a wrong message.

Various relaxations of correctness have appeared in the literature in order to argue about such schemes as it
turns out that some classical results implicitly or subtly relied on perfect correctness. In order for our work to be
meaningful for a large range of both classical and modern schemes, we introduce a stronger version of imperfect
correctness based on the key validation algorithm.

Definition 1 ((γ, δ)-Correctness). Let γ, δ ∈ [0, 1]. Then a public-key encryption scheme PKE is called (γ, δ)-
correct iff for all pm,

1. Pr[(pk, sk)←$ PKE.Kg(pm) : PKE.Check(pm, pk, sk) = false] ≤ γ;
2. for all (pk, sk) and allm ∈M, if PKE.Check(pm, pk, sk) = true then

Pr[PKE.Decsk(PKE.Encpk(m)) ̸= m] ≤ δ .

Perfect correctness corresponds to (0, 0)-correctness and any scheme is trivially both (1, 0)-correct and (0, 1)-
correct. For good schemes γ and δ can simultaneously be chosen small, where typically increasing γ allows for
decreasing δ. As we will see, both γ and δ will appear in various bounds, thus allowing larger γ to enable smaller
δ (or vice versa) might give preferable bounds.

3 Multi-Instance Security of Public-Key Encryption

3.1 Two Flavours of Key Recovery

The minimal requirement for public-key encryption schemes is that, given a public key, it should be difficult to
recover the private key. Although key unrecoverability is a veryweak notion theoretically, its study has twomain
motivations: firstly, many multi-instance attacks target key recovery, and secondly, conceptually the notion is
relatively simple, allowing both an instructive introduction of formalizing multi-instance security and an initial
comparison between BRT’s perfect symmetric encryption and our imperfect public key encryption.

At first sight, the generalization to themulti-instance setting appears immediate: an adversary tries to recover
the respective private keys for a number of public keys. BRT introduced universal key unrecoverability (UKU)
as a suitable notion for multi-instance security of symmetric encryption. We provide an analogue for public-key
encryption, but there are some crucial changes in the game’s mechanics (see also Sect. 3.3).

Let 0 < n ≤ κ be integer parameters, then the universal key unrecoverability experimentExp(n,κ)-uku-cca⋆PKE (A)
for public-key encryption scheme PKE and adversaryA is described in Fig. 3. It generates κ key pairs and pro-
vides the public keys toA, who is then tasked with recovering exactly n of the corresponding private keys.

The adversary has access to both a decryption oracle D and a key corruption oracle K, giving rise to chosen
ciphertexts attacks with corruptions (CCA⋆; the ⋆ denotes corruptions). The decryption oracle D(i, c) takes as
input an index i and a ciphertext c, and returns the output of the decryption algorithm PKE.Dec on input ski
and c. The corruption oracleK(i) simply takes as input a key index i, and returns the corresponding private key
ski. The game notes that the key pair with index i has been corrupted by adding it to the global set K.

Eventually, A outputs a set of key indices I and a list (ŝki)i∈I of guesses of the private keys corresponding
to those indices. In order for I to be eligible, it needs to have cardinality nwithout containing any corrupted key
pairs, that is, the sets of guessed keys I and corrupted keys K should be disjoint. If I is eligible and every guessed
private key matches the corresponding sampled one, the adversary wins the game. In that case, the game halts
with output 1; otherwise, it halts with output 0. The advantage is the probability that the game outputs 1.

Definition 2. Let PKE be a public-key encryption scheme. Then the universal key unrecoverability advantage of
an adversaryA is

Adv
(n,κ)-uku-cca⋆
PKE (A) = Pr

[
Exp

(n,κ)-uku-cca⋆
PKE (A) = 1

]
,

where the experiment is defined in Fig. 3.

Weaker notions emerge by dropping either or both of the two oracles. Without key corruption, standard CCA
security results. Without decryption oracle, chosen plaintext security (CPA⋆ resp. CPA) emerges. As usual, an
encryption oracle is superfluous in the PKE setting.

For cryptosystems where a single public key may have many matching private keys (such as Cramer–
Shoup [18]), universal key unrecoverability is rather weak. Hence, we consider a second, slightly stronger notion

7

Experiment Exp(n,κ)-(u/m)ku-cca⋆

PKE (A)

(pk1, sk1), . . . , (pkκ, skκ)←$ PKE.Kg

(I, (ŝki)i∈I)←$AD,K(pk1, . . . , pkκ)

if |I| ≠ n ∨ I ∩ K ̸= ∅ then return 0

UKU : return
∧
i∈I

ski = ŝki

MKU : return
∧
i∈I

PKE.Check
(
pki, ŝki,

)

Oracle D(i, c)

m← PKE.Decski(c)

return m

Oracle K(i)

K
∪←− i

return ski

Fig. 3. The key recovery experiments Exp(n,κ)-uku-cca⋆
PKE (A) and Exp

(n,κ)-mku-cca⋆

PKE (A); they only differ in their win condi-
tion.

Experiment Exp(n,κ)-ind-cca⋆
PKE (A)

(pk1, sk1), . . . , (pkκ, skκ)←$ PKE.Kg

b1, . . . , bκ ←$ {0, 1}

(I, b̂)←$AE,D,K,B(pk1, . . . , pkκ)

if |I| ̸= n ∨ I ∩ (K ∪ B) ̸= ∅ then b̂←$ {0, 1}

return ⊕i∈I bi = b̂

Oracle K(i)

K
∪←− i

return ski

Oracle B(i)

B
∪←− i

return bi

Oracle E(i,m0,m1)

if m0 ̸∼ m1 then return E

c←$ PKE.Encpki(mbi)

Mi(c)← mbi

Ci
∪←− c

return c

Oracle D(i, c)

m← PKE.Decski(c)

if c ∈ Ci ∧m = Mi(c) then return E

returnm

Fig. 4. Our main notion of multi-instance indistinguishability. In blue the slightly non-standard strengthening of the decryp-
tion oracle in case of imperfect correctness.

of key recovery, in which the recovered private keys are no longer required to be identical to those sampled in
the game. Instead, it suffices that each passes the keypair checking algorithm PKE.Check; here we leverage our
correctness definition (Def. 1). We call the resulting notionmatching key unrecoverability (MKU), whose game is
included in Fig. 3. That MKU security indeed implies UKU security is captured by Thm. 1 below, where the error
term κγ results from the unique correct keys as output by the key generation not always passing the PKE.Check
algorithm (see App. A.1 for the proof).

Theorem 1 (MKU −→ UKU). Let 0 < n ≤ κ be integer parameters and let PKE be a (γ, δ)-correct encryption
scheme. Then, there is a type-preserving SFBB reduction Bmku, such that for every adversaryAuku,

Adv
(n,κ)-uku-cca⋆
PKE (Auku) ≤ Adv

(n,κ)-mku-cca⋆
PKE (Bmku) + κγ .

3.2 Left-or-Right XOR Indistinguishability

To capture a stronger notion of security than simply hardness of key recovery, BRT considered various gener-
alizations of indistinguishability to the multi-instance setting. For perfect probabilistic symmetric encryption,
they concluded that left-or-right xor-indistinguishability is the strongest notion. Here each key comes with its
own challenge bit that determines the left-or-right nature of the corresponding challenge encryption oracle; the
adversary is tasked to retrieve the xor of all the challenge bits. In Def. 3, we use our modified game mechanics
to adapt left-or-right xor-indistinguishability for potentially non-perfect public-key encryption.

Definition 3. Let PKE be a public-key encryption scheme. Then the xor-indistinguishability advantage of an
adversaryA is

Adv
(n,κ)-ind-cca⋆
PKE (A) = 2 · Pr

[
Exp

(n,κ)-ind-cca⋆
PKE (A) = 1

]
− 1 ,

where the experiment is defined in Fig. 4.

In the experiment Exp(n,κ)-ind-cca⋆PKE (A), the adversary gets access to κ independently drawn public keys and
helper oracles D and K (as described in Sect. 3.1). Furthermore, A gets access to a challenge encryption oracle
E and a separate bit corruption oracle B.

8

On input two equivalent messages m0 and m1 and a public key index i, the challenge encryption oracle
returns PKE.Encpki(mbi) where bi is the challenge bit associated with the public key indexed by i. As usual
for IND-CCA notions, challenge ciphertexts cannot be queried to the decryption oracle, which we catch on-
the-fly [9]. Owing to the imperfect decryption, we allow a slight relaxation: if a challenge ciphertext decrypts
incorrectly, we do not suppress the output and essentially allow the query. This relaxation strengthens the notion,
but as challenge ciphertexts are honestly generated, the advantage gained by an adversary can be bound by the
correctness parameters of the PKE using an identical-until-bad argument; however such a generic approach
might not give bounds appropriate for the multi-instance setting.

Eventually, the adversary returns a set I of targets and a guess b̂ of the xor of the corresponding challenge
bits bi. If I is a set of n uncorrupted indices, then intuitively an adversary’s uncertainty about any of the n
challenge bits will be affected in the final guess b̂, so in that sense b̂ neatly captures an adversary’s need to break
n instances in order to win. If I is not a set of n uncorrupted indices, it is considered ineligible, at which point the
game overwrites A’s guess b̂ with a uniform guess. This mechanism is equivalent to the experiment returning
true or false with equal probability, thus ensuring an adversary gains zero advantage from such a bad I.

The Relationship with Key Recovery. BRT showed that in their perfect symmetric setting, multi-instance
indistinguishability implies multi-instance universal key unrecoverability. While that may sound like a triviality,
their proof [13, App. C] was not entirely straightforward and, to ensure that the advantages carried over neatly,
the distinguishing reduction receiving recovered keys needed to amplify its success probability by repeated
random challenge encryptions. Their bound ends up with an additive term that corresponds to the likelihood
that decrypting using an incorrect key results in the opposite message from the decrypted one.

Our imperfect public key setting is slightly different. On the one hand, the reduction can check the recovered
keys with the PKE.Check algorithm, yet on the other hand correct keys can still cause incorrect decryptions.
As a result, our amplification based on multiple challenge encryptions differs from BRT’s, as we move from
unanimity to a plurality vote. Furthermore, our reduction can use fixed messages (to match how correctness
is defined), which reduces a dependency (in the bound) on the size of the message space. We suspect that our
amplification can be tightened further by a combination of exploiting randomness and more fine-tuned voting,
coupled with more fine-grained bounding of probabilities.

As is, the complexity of the bound makes its behaviour somewhat opaque and for some parameter choices
vacuous (when c < 0). The main idea is that Bind can increase q, the number of challenge encryptions per
user, to counteract the losses inferred by large n and/or large δ, with a small penalty to its running time. For
δ = 2−64, q = 1 already suffices for c > 1/2 for n < 225. In case of perfect correctness for keys that check out,
corresponding to δ = 0, the bound is completely tight.

Theorem 2 (IND −→ MKU). Let PKE be a (γ, δ)-correct encryption scheme with δ < 1/2. Then there is a
type-preserving SFBB reduction Bind such that, for everyAmku,

Adv
(n,κ)-ind-cca⋆
PKE (Bind) ≥ c · Adv(n,κ)-mku-cca⋆

PKE (Amku) ,

with c = 2
(
1− 2q(δ(1− δ))

q
2

)n − 1 where q ∈ Z>0 is an amplification parameter of the reduction; Bind’s
overhead consists of q · n calls to E , n offline key checks, and q · n offline decryptions.

Proof. Let Bind run adversary Amku on the same κ public keys as it received itself. Whenever Amku makes a
decryption or corruption query, Bind simply forwards the queries to its own oracle, relaying the response back
to Amku. Eventually, Amku terminates with output (I, (ŝki)i∈I) and Bind first confirms whether Amku won,
by checking, for all the returned private keys, whether PKE.Check(pki, ŝki) holds. If any check fails,Bind halts
with output (∅, 0), prompting the eligibility check of Exp(n,κ)-ind-cca⋆PKE (A) to fail.

Let m0 and m1 be two distinct yet equivalent messages. Then for all i ∈ I, Bind creates a guess b̂i by
querying its challenge encryption oracle q times on those two messages, so q queries E(i,m0,m1) resulting in
cij , for j ∈ [q]. It then decrypts those ciphertexts using the private key ŝki it obtained from Amku, resulting in
purported messages mij ← PKE.Decŝki

(cij). If, for a fixed i, there are strictly more than q/2 appearances of
m0 amongst the mij , it sets b̂i to 0; if there are strictly more than q/2 appearances of m1, then it sets b̂i to 1. If
neither message appears more than q/2 times, Bind halts with output (∅, 0). Once Bind has created a guess b̂i
for all i ∈ I, it terminates on output (I,

⊕
i∈I b̂i).

For i ∈ I, let Checki be the event thatAmku outputs a key ŝki that passes the test and let Goodi be the event
thatBind’s guess b̂i actually equals bi. Let CheckI be the event that all Checki hold (for i ∈ I) and define GoodI
analogously.

9

As Bind’s simulation of Exp(n,κ)-mku-cca⋆
PKE is perfect, we know that

Adv(n,κ)-mku-cca⋆(Amku) = Pr[CheckI] ,

moreover,

Pr
[
Exp

(n,κ)-ind-cca⋆
PKE (Bind) = 1

]
≥ Pr[CheckI ∧ GoodI] + Pr[¬CheckI ∧ b = 0]

= Pr[GoodI |CheckI] Pr[CheckI] +
1

2
(1− Pr[CheckI])

which implies that

Adv
(n,κ)-ind-cca⋆
PKE (Bind) ≥ (2Pr[GoodI |CheckI]− 1)Adv(n,κ)-mku-cca⋆(Amku) .

To boundPr[GoodI |CheckI]we exploit the correctness definition, specifically that its quantification (Def. 1)
ensures that whenever Checki holds, we have thatPr

[
PKE.Decŝki

(PKE.Encpki(m)) = m
]
≥ 1−δ, irrespective

ofm and where the probability is only over the randomness of PKE.Enc.
If, for a given i, decryption is correct strictly more than q/2 times, then we are guaranteed that Goodi occurs.

If we let B
(
q, p
)
be the binomial distribution over q trials and with probability p, then

Pr[Goodi |Checki] ≥ Pr
[
B
(
q, (1− δ)

)
>

q

2

]
and, as this bound only relies on the randomness of the challenge encryption oracle, guaranteed independent
for differing i, we may conclude that

Pr[GoodI |CheckI] ≥
(
Pr
[
B
(
q, (1− δ)

)
>

q

2

])n
.

Finally, we note that
Pr
[
B
(
q, (1− δ)

)
>

q

2

]
≥ 1− 2q (δ(1− δ))

q
2

by a standard application of known bounds on binomial tails, requiring δ ≤ 1/2 (see details below). Plugging in
all the various bounds recovers the theorem statement.

For the binomial tail bound, we use the Chernoff–Hoeffding bound [27], which states that, for a binomial
distribution B

(
q, p
)
over q trials and with probability p, and any k satisfying p < k

q < 1 the tail bound

Pr
[
B
(
q, p
)
≥ k

]
≤ exp

[
−qD

(
k

q

∥∥∥∥ p

)]
holds, where D(a∥b) is the Kullback–Leibler divergence defined as D(a∥b) = a ln

(
a
b

)
+ (1− a) ln

(
1−a
1−b

)
.

We further use the trick that Pr
[
B
(
q, (1− δ)

)
> q

2

]
= 1 − Pr

[
B
(
q, δ
)
≤ q

2

]
, so the relevant Kullback–

Leibler divergence becomes

D

(
1

2

∥∥∥∥ δ

)
=

1

2
ln

(1
2

δ

)
+

(
1− 1

2

)
ln

((
1− 1

2

)
1− δ

)

=
1

2
ln

(
1

2δ

)
+

1

2
ln

(
1

2(1− δ)

)
= ln

[(
1

4δ(1− δ)

) 1
2

]
,

which allows us to compute the bound

Pr
[
B
(
q, (1− δ)

)
>

q

2

]
≥ 1− exp

[
−qD

(
1

2

∥∥∥∥ δ

)]
= 1− exp

[
−q ln

[(
1

4δ(1− δ)

) 1
2

]]
= 1− 2q (δ(1− δ))

q
2 .

10

Experiment Exp(≤κ,κ)-ind-cca⋆
PKE (A)

4 : if |I| ̸= κ then b̂← 0

Experiment Exp(≥n,κ)-ind-cca⋆
PKE (A)

4 : if |I| < n ∨ I ∩ (K ∪ B) ̸= ∅ then b̂← 0

Fig. 5. The main differences between our mechanism for multi-instance indistinguishability (Fig. 4) and prior art revolve
around line 4: BRT’s experiment Exp(≤κ,κ)-ind-cca⋆

PKE (A) (left) and AGK’s experiment Exp(≥n,κ)-ind-cca⋆
PKE (A) (right). The dif-

ferences are highlighted in blue.

Corollary 1 (IND −→ UKU). Let PKE be a (γ, δ)-correct encryption scheme with δ < 1/2. Then there is a
type-preserving SFBB reduction Bind such that, for everyAuku,

Adv
(n,κ)-ind-cca⋆
PKE (Bind) ≥ c · Adv(n,κ)-uku-cca⋆PKE (Auku)− κγ ,

with c, q, and Bind’s overhead as above (Thm. 2).

3.3 Alternative Mechanisms

As we mentioned before, our mechanism to capture multi-instance security differs slightly from those used by
BRT and AGK, respectively, even when accounting for changes in primitive and correctness. At first sight, the
differences might appear mostly cosmetic, though there are some subtleties involved.

The BRT Notion: Requiring n = κ, Possibly Corrupted, Targets. BRT require an adversary to return
the xor of all bits, but allow those bits or corresponding users to be corrupted. Fig. 5 reflects the small change
needed in the code of our security experiment to match BRT’s mechanism (ignoring a minor, inconsequential
difference, as BRT have a single, merged corruption oracle that returns both key and bit). As motivation for
including corruptions, BRT discuss the scenario that, say, half of the keys generated are hopelessly insecure:
an adversary breaks the insecure half and corrupts the rest, thus being successful. Moreover, they mention that
their choice implies security under a corruptionless notion with dynamically chosen I.

Although the implication is of course true, and something can be said to target the strongest possible notion,
corruptions have a habit of creating complications for reductions and provable security in general. Yet, we believe
the inclusion of corruptions, or not, should reflect the threat model of the adversary and that choice should be
orthogonal to the number of users being targeted. BRT, instead of having an explicit hardness parameter n,
restrict an adversary to make at most qc corruption queries to avoid trivial wins when qc = κ. Yet, whether the
resulting, intuitive hardness will or should then match n = κ− qc, is unclear.

We address the equivalence between BRT’s mechanism and our general mechanism (with corruptions) in
Lemmas 1 and 2. Both lemmas have in common that the respective reductionsmaymake up to κ−n additional bit
corruptions. In other words, the reductions are not type-preserving, making the equivalence somewhat sloppy.
As an aside, using techniques similar to those to prove Thm. 2, the key corruption oracle could be used (at a loss)
to simulate the bit corruption oracle instead.

Lemma 1 (main notion =⇒ BRT). Let n ≤ κ and qc ≤ κ − n. Then there is an SFBB reduction B such that,
for every adversaryA making at most qc corruption oracle calls,

Adv
(≤κ,κ)-ind-cca⋆
PKE (A) ≤ Adv

(n,κ)-ind-cca⋆
PKE (B) ,

where B makes at most κ− n additional bit corruption oracle calls.

Proof. As both games provide the same interface to A, B can simply simulate the game for A by forwarding
every oracle call, where B stores the input and output for later use. Upon halting,A returns a guess b̂A for the
value of ⊕i∈[κ]bi.

As A makes at most κ − n corruption queries, there are at least n uncorrupted keys left for B, who may
select an arbitrary uncorrupted subset I of cardinality n. Subsequently B bit-corrupts all remaining instances,
possibly forgoing those thatA already bit-corrupted. Eventually,B sets b̂B ← b̂A ⊕

⊕
i∈B bi, where B is the set

of corrupted bits B = [κ]\I, and halts with output (I, b̂B).
As the oracles behave exactly the same, the simulation is perfect and, by inspection, B wins iffA wins.

Lemma 2 (BRT =⇒ main notion). Let n ≤ κ. Then there is an SFBB reductionB such that, for every adversary
A,

Adv
(n,κ)-ind-cca⋆
PKE (A) ≤ Adv

(≤κ,κ)-ind-cca⋆
PKE (B) ,

where B makes at most κ− n additional bit corruption oracle calls.

11

Proof. As both games provide the same interface to the adversary, B can simply simulate the game for A by
forwarding every oracle call, whereB stores the input and output for later use. Upon halting,A returns a list I
and a guess b̂A for the value of⊕i∈Ibi. Let B = [κ]\I, thenB bit-corrupts all of B, so it can set b̂B ← b̂A⊕

⊕
i∈B bi

and halt with output b̂B. As the oracles behave exactly the same, the simulation is perfect and, by inspection,B
wins iffA wins.

The AGK Notion: Allowing More than n Targets without Corruptions. When AGK studied KEMs in the
multi-instance setting, they used a xor notion with the n as the minimum number of targets to attack (out of
κ possible) as an explicit parameter; moreover, an adversary would not have access to any corruption oracles.
Fig. 5 reflects the small change needed in the code of our security experiment to match AGK’s mechanism with
corruptions added (where we fixed a minor bug in their code: rather than resampling b̂, their experiment would
immediately return 0 instead, inadvertently granting an adversary that deliberately returns a compromised han-
dle the significant advantage of −1).

Absent corruptions, AGK indicated that for some pathological schemes, breaking more targets might para-
doxically be easier than breaking fewer [3, App. C]. In those cases, the freedom to return a set I of cardinality
greater than n would make life easier for an adversary, leading to a stronger notion.

In the presence of corruptions, requiring the adversary to target exactly n users as we do is without loss of
generality. As an example, if an adversary can figure out the xor of n+1 honest bits, it can bit-corrupt any single
one of these n + 1, and xor the resulting bit out of the initial guess to obtain a final one on n bits instead. We
formalize this intuition below.

Lemma 3 (main notion =⇒ AGK⋆). There is an SFBB adversary B such that, for everyA,

Adv
(≥n,κ)-ind-cca⋆
PKE (A) ≤ Adv

(n,κ)-ind-cca⋆
PKE (B) .

IfA returns a list of n′ targets, B makes n′ − n additional calls to its bit corruption oracle.

3.4 Real-or-Random XOR Indistinguishability

An alternative notion of indistinguishability, known as real-or-random indistinguishability (ROR), sees the ad-
versary tasked with figuring out whether a challenge ciphertext contains the adversarially chosen messagem or
an unknown, randomly chosen message. The game Exp(n,κ)-ror-cca⋆PKE is exactly as in Fig. 4, apart from the chal-
lenge encryption oracle EROR(i,m), which setsm0 ← m andm1 ←$ [m] to then call (left-or-right) E(i,m0,m1).

By construction, left-or-right indistinguishability easily implies real-or-random indistinguishability. That
statement is as true in the multi-instance setting as it is in the classical single-user setting. Conversely, in the
single-user setting, it has long been established that the reduction fromROR to IND loses a factor 2 [8]. However,
BRT showed that in the multi-instance setting, the factor 2 blows up exponentially to, in their case, 2κ. Yet,
BRT argue that this exponential loss is not as bad as it might seem, given that the multi-instance advantages
are supposed to be exponentially smaller than their single-user counterparts. Thus, reductions incurring losses
exponential in κ or n can still be valuable.

To adapt BRT’s reduction to our setting, we require n = κ, implying that A cannot access its corruption
oracles. Otherwise, corruptions would make the reduction noticeable once at least one bi is set to 1, potentially
influencing an adversary’s behaviour in unpredictable ways.

Theorem 3. There is an SFBB reduction B such that, for every adversaryA,

Adv
(κ,κ)-ind-cca
PKE (A) ≤ 2κ · Adv(κ,κ)-ror-ccaPKE (B) ,

where B additionally draws κ bits uniformly at random.

Proof. First, B uniformly draws κ independent bits di. Let d = ⊕i∈[κ]di denote their xor. Then, whenever A
calls E(i,m0,m1), B calls EROR(i,mdi). Calls to D are simply forwarded. Once A halts with output d̂, B will
guess “real” iffA guessed d correctly, that is, B sets b̂ = d̂⊕ d and halts with the output b̂.

If bi = 0 for all i ∈ [κ], then the simulation is perfect, and B wins whenever A wins. If, on the other hand,
bi = 1 for some i, then the corresponding di is information-theoretically hidden from A and consequently, d
itself will be perfectly hidden. Hence, d̂ = d will occur with probability 1/2, irrespective ofA’s behaviour. Using
these observations, we obtain:

Pr
[
Exp

(κ,κ)-ror-cca
PKE (B) = 1

]
= Pr

[
∀i∈[κ]bi = 0

]
· Pr
[
d̂ = d

∣∣∣∀i∈[κ]bi = 0
]

12

+ Pr
[
d̂ = d

∣∣∣ ∃i∈[κ]bi = 1
]
·
(
1− Pr

[
∀i∈[κ]bi = 0

])
=

1

2κ
Pr
[
Exp

(κ,κ)-ind-cca
PKE (A) = 1

]
+

1

2

(
1− 1

2κ

)
=

1

2κ

(
Pr
[
Exp

(κ,κ)-ind-cca
PKE (A) = 1

]
− 1

2

)
+

1

2

=⇒ Adv
(κ,κ)-ror-cca
PKE (B) =

1

2κ

(
2 · Pr

[
Exp

(κ,κ)-ind-cca
PKE (A) = 1

]
− 1
)

=
1

2κ
Adv

(κ,κ)-ind-cca
PKE (A) .

Furthermore, a reduction playing an (n, n) game can exploit an adversary playing a (n, κ) game by guessing
in advance the set I of targets that the adversary will return. A correct, eligible guess allows the reduction to
simulate the remaining keys without being noticed.

Theorem 4. There is an SFBB reduction B such that, for every adversaryA,

Adv
(n,κ)-ind-cca⋆
PKE (A) ≤

(
κ

n

)
· Adv(n,n)-ind-ccaPKE (B) .

B’s overhead consists of generating κ − n fresh keypairs, sampling κ − n bits, and choosing a subset of [κ] of
cardinality n uniformly at random.

Composing Thm. 3 and 4, we obtain the following bound.

Corollary 2 (ROR =⇒ IND). There is an SFBB reduction B such that, for any adversary B,

Adv
(n,κ)-ind-cca⋆
PKE (A) ≤

(
κ

n

)
· 2n · Adv(n,n)-ror-ccaPKE (B) .

B’s overhead consists of generating κ−n fresh keypairs, sampling κ bits, and choosing a subset of [κ] of cardinality
n uniformly at random.

An alternative bound losing a factor 2κ is possible by combining Thm. 3with Lemma 2, however a simple analysis
shows that whenever n < κ/5 the corollary above is preferable.

At first glance, an exponential-looking loss of 2κ might seem severe, potentially rendering the resulting
bound vacuous. Yet, as BRT already highlighted, the multi-instance advantages themselves might vanish ex-
ponentially in n, making the bounds relevant for the notions being compared. Nonetheless, tigher bounds still
matter; unfortunately achieving even tighter bounds in the general case seems challenging [5, 12].

4 Inheriting Multi-Instance Security

4.1 TagKEM: Definition and Notion of Security

Our goal is to turn the AGKmulti-instance secure KEM into a PKE. Yet, for the construction of hybrid encryption,
the more general TagKEMs, where encapsulation is split into two algorithms (TKEM.Key and TKEM.Enc) have
proven more powerful [2]: intuitively speaking, splitting the algorithm allows the tag and consequently the key
encapsulation to depend on the data encapsulation, making CCA security of the hybrid construction easier to
achieve (cf. the Kurosawa–Desmedt scheme [31]). In Def. 4 we introduce a further generalization, called TagXEM,
by allowing extendable output lengths for the ephemeral keys produced by the TagXEM.

Definition 4 (TagXEM). A TagXEM is a tuple of algorithms (TXEM.Kg, TXEM.Key, TXEM.Enc, TXEM.Dec,
TXEM.Check), where long-term key generationTXEM.Kg on input pm outputs a random keypair (pk, sk); ephemeral
key generation TXEM.Key on input pk and ℓ ∈ Z>0, outputs a random ephemeral key K ∈ {0, 1}ℓ and an inter-
nal state σ, subsequently encapsulation TXEM.Enc on input a state σ and a tag τ ∈ T , deterministically outputs
an encapsulation c, or a special symbol ⊥ denoting failure. The deterministic decapsulation algorithm TXEM.Dec
takes input a private key sk, an encapsulation c, a tag τ , and a length ℓ, and outputs either a key K ∈ {0, 1}ℓ or
⊥ to denote failure. Finally, the deterministic TXEM.Check takes as input the system parameters pm as well as a
purported public/private key pair (pk, sk) and returns true or false.

13

Experiment Exp(n,κ)-ind-cca⋆
TXEM (A)

(pk1, sk1), . . . , (pkκ, skκ)←$ TXEM.Kg

b1, . . . , bκ ←$ {0, 1}

(I, b̂)←$AC,E,D,K,B(pk1, . . . , pkκ)

if |I| ̸= n ∨ I ∩ (K ∪ B) ̸= ∅ then b̂←$ {0, 1}

return ⊕i∈I bi = b̂

Oracle D(i, ⟨c, τ⟩ , ℓ)

K ← TXEM.Decski(c, τ, ℓ)

if Pi(c, τ) ̸= ∅
K′ ← Pi(c, τ), ℓ

′ ← min{ℓ,
∣∣K′∣∣}

else

K′ ← ε, ℓ′ ← 0

if ⟨c, τ⟩ ∈ Ci ∧ KJℓ′K = K′Jℓ′K
return E

return K

Oracle C(i, ℓ)

(K0, σ)←$ TXEM.Keypki(ℓ)

Ei
⌢←− ⟨σ,K0⟩

K1 ←$ {0, 1}ℓ

return Kbi

Oracle E(i, j, τ)

if Ei[j] = ∅ then return E

⟨σ,K⟩ ← Ei[j], Ei[j]← ∅
c←$ TXEM.Enc(σ, τ)

Pi(c, τ)← K

Ci
∪←− ⟨c, τ⟩

return c

Oracle K(i)

K
∪←− i

return ski

Oracle B(i)

B
∪←− i

return bi

Fig. 6. Multi-instance indistinguishability notion for TXEM. In blue the same strengthening as in Fig. 4 in the case of
imperfect correctness, with a slightly more complex admin to accomodate tags and length extension. We takeKJℓK to mean
the first ℓ bits ofK and ε as the empty string.

If we restrict to a single value ℓ, the usual notion of TagKEMs appears; moreover if we restrict to a single value of
τ , theTXEM.Key andTXEM.Enc algorithms can be merged into a single key encapsulation mechanism, leading
to normal KEMs (or XEMs if the variable output length is still incorporated). Consequently, the correctness and
security definitions for the more general TagXEMs, as discussed throughout this section, imply corresponding
definitions for KEM, XEM, and TagKEM.

For correctness, we allow the effective tag space Tℓ to depend on the length ℓ of the ephemeral key. Similarly
to Def. 1, we define (γ, δ)-correctness for TagXEM. To ensure correctness for all τ , including those that depend
on K , τ ’s quantifier sits inside the probability statement.

Definition 5 ((γ, δ)-Correctness TagXEM). Let γ, δ ∈ [0, 1]. Then a tag extendable-output key encapsulation
mechanism TXEM is called (γ, δ)-correct iff

1. Pr[(pk, sk)←$ TXEM.Kg(pm) : TXEM.Check(pm, pk, sk) = false] ≤ γ;
2. if TXEM.Check(pm, pk, sk) = true then for all ℓ ∈ Z>0 it holds that

Pr

[
(K,σ)←$ TXEM.Keypk(ℓ) : ∃τ ∈ Tℓ s.th.

c← TXEM.Enc(σ, τ)
TXEM.Decsk(c, τ, ℓ) ̸= K

]
≤ δ .

For security, Abe et al.’s notion of TagKEM indistinguishability [2] transfers easily to the multi-instance setting.
The relevant game is given in Fig. 6, where we also made the necessary changes to deal with the variable output
length of TagXEMs, plus the strengthening of D in the case of imperfect correctness (cf. Sect. 3.2).

Definition 6. Let TXEM be a TagXEM. Then the xor-indistinguishability advantage of an adversaryA is

Adv
(n,κ)-ind-cca⋆
TXEM (A) = 2 · Pr

[
Exp

(n,κ)-ind-cca⋆
TXEM (A) = 1

]
− 1 ,

where the experiment is defined in Fig. 6.

If we fix ℓ and set Tℓ to a single element, the notion captures multi-instance security for standard KEMs, which
is near equivalent (see Sect. 3.3) the notion that AGK used. In other words, provided MI-gapCDH is hard, their
construction achieves (n, κ)-IND-CCA security in the random oracle model, but only for fixed ℓ and trivial
Tℓ [4, Thm. 2].

14

TXEM.Keypk(ℓ)

(Kkem, σ)←$ TKEM.Keypk

Kxem ← F (Kkem, ℓ)

σ′ ← ⟨σ, ℓ⟩
return (Kxem, σ′)

TXEM.Enc(σ′, τ)

⟨σ, ℓ⟩ ← σ′

if τ ̸∈ Tℓ :
return ⊥

c← TKEM.Enc(σ, τ)

return c

TXEM.Dec(c, τ, ℓ)

if τ ̸∈ Tℓ :
return ⊥TAG

Kkem ← TKEM.Dec(c, τ)

if Kkem =⊥:
return ⊥KEM

Kxem ← F (Kkem, ℓ)

return Kxem

Fig. 7. A TagXEM TXEM from a TagKEM TKEM with keyspace {0, 1}k and a XOF with seed space X = {0, 1}k . The
key generation algorithm TXEM.Kg is unchanged from TKEM.Kg.

Oracle C(i, ℓ) (game G0)

(Kkem
0 , σ)←$ TKEM.Keypki

Ei
⌢←− σ

Kxem
0 ← F (Kkem

0 , ℓ)

Kxem
1 ←$ {0, 1}ℓ

returnKxem
bi

Oracle C(i, ℓ) (game G1)

(Kkem
0 , σ)←$ TKEM.Keypki

Ei
⌢←− σ

Kxem
0 ← F (Kkem

0 , ℓ)

Kkem
1 ←$ {0, 1}k

Kxem
1 ← F (Kkem

1 , ℓ)

returnKxem
bi

Fig. 8. Encryption oracle for the proof of Thm. 5. In blue the code added to G1 compared to G0.

4.2 Extending the Output of a TagKEM

First, we show how combining a TagKEM with a fixed output length and a suitable pseudorandom extendable
output function (XOF), yields a TagXEM that inherits the MI security of the underlying KEM. Recall that a XOF,
for instance SHAKE128 and SHAKE256 as standardized by NIST [35], is a function F : X × Z>0 → {0, 1}∗ for
some finite domain X that on input a seed s ∈ X and a desired output length ℓ, outputs a value y ∈ {0, 1}ℓ.
Moreover, if ℓ < ℓ′, then F (s, ℓ) is a prefix of F (s, ℓ′) for all s. This prefix preservation is not a requirement
of our constructions; rather we model the property to ensure SHAKE128 and SHAKE256 are suitable real-world
instantiations.

As security notion for a XOF F we use its multi-challenge pseudorandomness, which is a standard distin-
guishing advantage AdvpsrndF (A): an adversary needs to distinguish between either a real oracle that, on input
a desired length ℓ, samples a seed s ←$ X uniformly at random and returns F (s, ℓ), or an ideal oracle that, on
input said ℓ, simply returns a uniformly sampled string of length ℓ.

The construction of the TagXEM is given in Fig. 7 and the security claim follows in Thm. 5 . If the PsRND
advantage of F is sufficiently small, then TXEM inherits the multi-instance security of TKEM; moreover, as
the result holds for arbitrary T and Tℓ, it holds for the trivial spaces, yielding a slightly simpler XEM from KEM
result.

Theorem 5. Let TKEM be a (γ, δ)-correct TagKEM sampling keys from {0, 1}k and with tagspace T , let F :
{0, 1}k × Z>0 → {0, 1}∗ be a XOF, and let TXEM be a TagXEM as given in Fig. 7 for arbitrary Tℓ ⊆ T . Then
TXEM is (γ, δ)-correct, and there are SFBB reductions B and C such that, for every adversaryA,

Adv
(n,κ)-ind-cca⋆
TXEM (A) ≤ Adv

(n,κ)-ind-cca⋆
TKEM (B) + 2 · AdvpsrndF (C) .

If A calls C qc times and D qd times, then B’s overhead consists of at most qc + qd evaluations of F , while C’s
overhead consists of doing κ executions of TKEM.Kg, at most qc executions of TKEM.Key and TKEM.Enc, and at
most qd executions of TKEM.Dec.

Proof. LetA be an adversary for Exp(n,κ)-ind-cca⋆TXEM . We will use G0(A) as shorthand for that experiment, where
in Fig. 8 we have expanded the challenge oracle C based on the actual construction of TXEM.Key. When called
on a desired key length ℓ and a tag τ , C returns Kxem

bi
such that either Kxem

bi
is computed as F (Kkem

0 , ℓ), or it is
uniformly drawn from the keyspace {0, 1}ℓ.

15

Next, let G1 be as G0, except that Kxem
1 is computed as F (Kkem

1 , ℓ), for some key Kkem
1 uniformly sampled

from the underlying TagKEMs keyspace {0, 1}k . Thus the challenge now takes the form F (Kkem
bi

, ℓ).
We claim that there is a reduction B such that

Adv
(n,κ)-ind-cca⋆
TKEM (B) = 2Pr[G1(A) = 1]− 1 .

To see this, letB answerA’s challenge queries by quering its own oracle and, upon receivingKkem, compute
and forward Kxem = F (Kkem, ℓ). Similarly, whenever A queries the decryption oracle on (c, ℓ), B queries its
own decryption oracle on c, receives Kkem (resp. ⊥/E) and forwards the reply F (Kkem, ℓ) (resp. ⊥/E) toA. The
public keys and calls to the other oracles are simply forwarded, and, when A outputs (I, b̂), B halts with the
same output.

The simulation of G1 is perfect, and B wins iffA wins. Therefore,

Pr
[
Exp

(n,κ)-ind-cca⋆
TKEM (B) = 1

]
= Pr[G1(A) = 1] ,

implying the statement.
We next claim that there is a reduction C such that

AdvpsrndF (C) = Pr[G0(A) = 1]− Pr[G1(A) = 1] .

C simulates the game forA by generating key pairs and challenge bits as needed, forwarding the public keys
to A, and whenever A queries for the encapsulation, decapsulation and corruption oracle, using the TXEM
algorithms to give faithful simulations. When A queries C(i, ℓ), however, C first runs TKEM.Encpki to get a
Kkem ∈ {0, 1}k and a state σ. It then sets Kxem

0 to F (Kkem
0 , ℓ), before it queries its own challenge oracle on

length ℓ, and gives the result toKxem
1 . After adding (σ, ℓ) into Ei, as required for the simulation, it returnsKxem

bi
to A. Note that if in the PsRND game b is set to 0, then Kxem

1 = F (K, ℓ), meaning this is a faithful simulation
of G1. If b = 1,Kxem

1 is drawn uniformly from {0, 1}ℓ, making it a faithful simulation of G0.
Once A halts with output (I, b̂), C checks whether I is eligible, i.e. of the correct cardinality and not con-

taining any corrupted indices. If yes, C outputs 1 if ⊕i∈Ibi = b̂ and 0 otherwise. If I is ineligible, it outputs the
guess 0. AssumingA’s output is eligible, C gets the following advantage.

Pr
[
ExppsrndF (C) = 1

]
= Pr[A wins ∧ b = 1] + Pr[A loses ∧ b = 0]

= Pr[b = 1]Pr[G0(A) = 1] + Pr[b = 0]Pr[G1(A) = 0]

=
1

2
Pr[G0(A) = 1] +

1

2
(1− Pr[G1(A) = 1])

=
1

2
(Pr[G0(A) = 1]− Pr[G1(A) = 1] + 1) ,

from which we obtain

AdvpsrndF (C) = 2 · Pr
[
ExppsrndF (C) = 1

]
− 1

= 2 · 1
2
(Pr[G0(A) = 1]− Pr[G1(A) = 1] + 1)− 1

= Pr[G0(A) = 1]− Pr[G1(A) = 1] .

IfA’s output was ineligible, C gets advantage

2Pr[b = 0]− 1 = 0 = Pr[G0(A) = 1 | I ineligible]− Pr[G1(A) = 1 | I ineligible] ,

so the relation holds also in this case. The advantage ofA can be bounded as:

Adv
(n,κ)-ind-cca⋆
TXEM (A) = 2Pr[G0(A) = 1]−1

= 2
(
Pr[G0(A) = 1]+Pr[G1(A) = 1]−Pr[G1(A) = 1]

)
−1

= 2
(
Pr[G0(A) = 1]−Pr[G1(A) = 1]

)
+2Pr[G1(A) = 1]−1

≤ 2 · AdvpsrndF (C) + Adv
(n,κ)-ind-cca⋆
TKEM (B) ,

yielding the statement.
As for correctness,TXEM.Kg = TKEM.Kg, so γTXEM = γTKEM. If a decryption error happens inTKEM, it

translates to F being called with the wrong seed, leading to a decryption error inTXEM except in the case of an
output collision. Thus, δTXEM ≤ δTKEM, allowing us to conclude that TXEM is (γTKEM, δTKEM)-correct.

16

PKE.Encpk(m)

(K, c1)←$ XEM.Encpk(|m|)
c2 ← K ⊕m

return ⟨c1, c2⟩

PKE.Decsk(⟨c1, c2⟩)

K ← XEM.Decsk(c1, |c2|)
if K =⊥ then return ⊥
m← K ⊕ c2

returnm

PKE′.Encpk(m)

(K,σ)←$ TXEM.Keypk(|m|)
c2 ← K ⊕m

c1 ← TXEM.Enc(σ, c2)

return ⟨c1, c2⟩

PKE′.Decsk(⟨c1, c2⟩)

K ← TXEM.Decsk(c1, c2, |c2|)
if K =⊥ then return ⊥
m← K ⊕ c2

return m

Fig. 9. Two hybrid encryption schemes: PKE (top row) is a conventional hybrid scheme combining a XEM with the OTP
to yield a CPA-secure PKE, while PKE′ (bottom row) combines a TagXEM with the OTP to yield a CCA-secure PKE. The
key generation and checking algorithms are equivalent to their XEM resp. TXEM counterparts.

One concern is whether the PsRND advantage of F will be sufficiently small. Suppose k is the output length of
the underlying TagKEM. A generic attacker would always be able to fix ℓ > k and evaluate F for, say, N seeds
offline in the hope of colliding with any of the challenge evaluations. The PsRND distinguishing advantage of
such an adversary is of order (qc + qd)N/2k , indicating that the underlying TagKEM already needs to provide
keys long enough for Thm. 5 to yield meaningful multi-instance security.

4.3 A PKE Inheriting (Tag)XEM Security

As a multi-instance secure XEM provides us with ephemeral keys of any desired length, we can combine it
with an information-theoretic DEM in order to achieve PKE. Here we opt for the one-time-pad (OTP), as it is
the simplest and best-known primitive providing perfect secrecy. The beauty of the OTP is that whether you
switch out the ephemeral key for a uniform random one, or the message for a uniform random one, the resulting
ciphertext distribution is the same. It allows the PKE to tightly inherit the MI-security of the XEM, albeit yielding
only real-or-random security under chosen-plaintext attacks. The construction is provided in full in Fig. 9 (top
row); the security claim is captured in Thm. 6.

Theorem 6 (ROR-CPA PKE). Let XEM be a (γ, δ)-correct XEM, and let PKE be a hybrid encryption scheme
as given in Fig. 9. Then PKE is (γ, δ)-correct, and there is a type-preserving SFBB reduction B such that for every
adversaryA,

Adv
(n,κ)-ror-cpa⋆
PKE (A) ≤ Adv

(n,κ)-ind-cpa⋆
XEM (B) .

Proof. B, playing Exp
(n,κ)-ind-cpa⋆
XEM is able to perfectly simulate Exp(n,κ)-ror-cpa⋆PKE for A as follows. If A calls its

challenge encryption oracle, B first acquires an ephemeral OTP key of the correct length from its challenge
encryption oracle, and an encapsulation c1. It next uses K to encrypt the given message, producing the mes-
sage encapsulation c2, and returns ⟨c1, c2⟩. Corruption oracle calls are simply forwarded. Eventually, when A
terminates on an output (I, b̂), B terminates on that very same output.

We claim that B provides a perfect simulation of the Exp
(n,κ)-ror-cpa⋆
PKE game, where the implicit challenge

bits in Exp
(n,κ)-ror-cpa⋆
PKE exactly match the unknown ones in Exp

(n,κ)-ind-cpa⋆
XEM . After all,{

K ⊕m | m←$ {0, 1}ℓ
}
=
{
K ⊕m | K ←$ {0, 1}ℓ

}
,

so a random ephemeral key in B’s game neatly corresponds to a random message in A’s game. As A’s view
after corrupting remains consistent with Exp

(n,κ)-ror-cpa⋆
PKE , the simulation is perfect and B wins iffA wins.

Given the perfect correctness of the OTP, it is easy to see that the correctness parameters transfer directly
from XEM to PKE: PKE.Kg = XEM.Kg, so γPKE = γXEM; meanwhile, an incorrect decryption in the XEM
translates to an incorrectK being xored with c2 (assumingK ̸= ⊥), leading to incorrectm; otherwise, decryp-
tion always succeeds. Therefore, δPKE = δXEM.

One might hope that adding information-theoretic MACs to the DEM would result in the inheritance of CCA
security, but that is easier said than shown. For instance, the usual proof technique of a game hop where all

17

IfA calls oracle E(i,m)

qi ← qi + 1

K ← CB(i, |m|)
c2 ← K ⊕m

c1 ← EB(i, qi, c2)
return ⟨c1, c2⟩

IfA calls oracle D(i, ⟨c1, c2⟩)

K ← DB(i, ⟨c1, c2⟩ , |c2|)
if K = E then return E

if K =⊥ then return ⊥
m← K ⊕ c2

return m

Fig. 10. The reductionB, playing Exp(n,κ)-ind-cca⋆
TXEM , while giving a perfect simulation of Exp(n,κ)-ror-cca⋆

PKE forA. Not shown
are the counters qi being initialized to 0, and the corruption oracles being forwarded directly. At the end of the game,B halts
with the same output asA.

decryption queries are disallowed does not work: after breaking only a single KEM private key, the reduction
will be found out as not being faithful. Sadly, a single-instance break (of the reduction) suffices to show that that
reduction cannot demonstrate multi-instance security.

Luckily, TagKEMs allow for a modified hybrid scheme for which the DEM no longer needs to satisfy CCA
security for the resulting PKE to be guaranteed CCA-secure: in the single-instance setting, if the TagKEM is
CCA-secure, then so is the PKE [2]. We upgrade the construction to use TagXEMs and the OTP in Fig. 9 (bottom
row) and show its multi-instance inheritance in Thm. 7.

Theorem 7 (ROR-CCA PKE). Let TXEM be a (γ, δ)-correct TagXEM, and let PKE′ be a hybrid encryption
scheme as given in Fig. 9. Then PKE′ is (γ, δ)-correct, and there is a type-preserving SFBB reduction B such that
for every adversaryA,

Adv
(n,κ)-ror-cca⋆
PKE′ (A) ≤ Adv

(n,κ)-ind-cca⋆
TXEM (B) .

Proof. This time the reduction B, playing Exp
(n,κ)-ind-cca⋆
TXEM , is able to perfectly simulate Exp(n,κ)-ror-cca⋆PKE forA,

including decryption queries. ThewayB handlesA’s challenge encryption and decryption queries is specified in
Fig. 10. Encryption queries are handled essentially as before, just taking into account the slightly different syntax
of TagXEMs. Calls to the decryption oracle are forwarded, yielding an ephemeral key that is used to produce
the message from c2. Note that, since the message encapsulation is used as a tag when producing the challenge
encryption, B’s decryption oracle will return E iff ⟨c1, c2⟩ was previously issued as a challenge. (Essentially, B
can rely on its own experiment to keep track of admin relevant for the experiment it simulates forA.)

Corruption oracle calls are simply forwarded. Eventually, when A terminates on an output (I, b̂), B termi-
nates on that very same output.

From here on out, the proof tracks that of Thm. 6, where this time we claim that B provides a perfect
simulation of the Exp(n,κ)-ror-cca⋆PKE game, where the implicit challenge bits in Exp

(n,κ)-ror-cca⋆
PKE exactly match the

unknown ones in Exp
(n,κ)-ind-cca⋆
TXEM . Furthermore, by inspection, both the corruption oracle and crucially the

decryption oracle are impeccable. As the simulation is perfect, B wins iffA wins.
As with PKE, the correctness parameters of PKE′ transfer directly fromTXEM: PKE.Kg = XEM.Kg, so

γPKE = γXEM. A decryption error inTXEM again translates to the wrong OTP key being xored with c2, or an
unexpected ⊥. Def. 5 guarantees that with probability at least δTXEM there are no tags τ such that decrypting
fails. Given that the decryption algorithm of PKE′ does not allow tampering of the tags without also affecting
c2, PKE′ could in fact well end up allowing for much smaller values of δ than that ofTXEM. Nevertheless we
conclude that δPKE ≤ δTXEM, and that PKE′ is (γTXEM, δTXEM)-correct.

While encouraging, the claim that the constructed PKE inherits the multi-instance security of the TagXEM is
dampened by the exponential separation between the ROR security notion and IND, as argued in Sect. 3.4.
Indeed, extrapolating to the latter notion by combining Thm. 7 with Cor. 2, we have only achieved the following
bound.

Corollary 3. Let TXEM be a (γ, δ)-correct TagXEM, and let PKE′ be a hybrid encryption scheme as given in
Fig. 9. Then PKE′ is (γ, δ)-correct, and there is a type-preserving SFBB reduction B such that for every adversary
A,

Adv
(n,κ)-ind-cca⋆
PKE′ (A) ≤

(
κ

n

)
· 2n · Adv(n,n)-ind-ccaTXEM (B) ,

where B’s overhead is dominated by generating κ− n fresh keypairs, sampling κ bits, and choosing a subset of [κ]
of cardinality n uniformly at random.

18

Oracle CROP(i, ℓ,Π)

(K0, σ)←$ TXEM.Keypki(ℓ)

Ei
⌢←− σ

K1 ← Π(K0)

return Kbi

Fig. 11. Fig. 6 is upgraded to Exp
(n,κ)-rop-cca⋆
TXEM by letting CROP replace C.

4.4 Real-Or-Permuted: A Strengthened Notion for KEM Security

If we want to achieve an IND-CCA PKE more tightly, we seem to need a different notion of security for our
TagXEMs. What could such a notion look like?

Our solution is a novel, stronger KEM notion, which we will refer to as “real-or-permuted”, orROP for short.
Fig. 11 provides the crucial new challenge oracle. The adversary has to guess whether a tentative K is the one
encapsulated under c, or whether an adaptively chosen permutation has been applied to it. As permutations
preserve the distribution of the sampling space, there are no choices of Π that make the game generically and
trivially winnable.

Technically, we need to specify how the adversary providesΠ such that it is guaranteed, or can be checked,
to be a permutation. Hence, formally we define ROP with respect to a class of permutations P , reminiscent
of for instance key-dependent message [24] or related-key attack [10] definitions. We require that membership
Π ∈ P is easy to check (e.g. ROP can simply index an element in P) and that, by definition, P can be verified
to indeed only contain permutations. For our main results, it suffices if P is the class of one-time pads, in the
sense that Π specifies the key (or pad) of the one-time pad enciphering. Henceforth, we will assume that ROP
is defined with respect to that class, unless explicitly stated otherwise.

The new notion ROP and IND relate to each other much the same way as IND and ROR for PKE. It is not
hard to see thatROP tightly implies IND, whereas the other direction seems to incur the same loss as theROR-
to-IND implication for PKE (see App. B). For completeness,ROP lends itself equally well to XEMs and KEMs, or
notions without corruptions or a decryption oracle. Finally, if any of the above primitives are constructed using
an IND-secure PKE (e.g. using a Fujisaki–Okamoto style transform [21, 22, 28]), then achieving ROP is as easy
as achieving IND: simply let K be the “left” message, and Π(K) be the “right”!

4.5 PKE′ Tightly Inherits IND-CCA Security

Using ROP in place of IND, we are able to show directly that the PKE constructions of Fig. 9 are IND-CPA
resp. IND-CCA secure, by (as before) giving a (Tag)XEM reduction that provides a perfect simulation for the
PKE adversary.

The crucial observation is that for any pair of messagesm0,m1 ∈ {0, 1}ℓ, there exist a permutationΠm0→m1

on {0, 1}ℓ such that the message encapsulations are related as K ⊕ m1 = Πm0→m1(K) ⊕ m0. Namely, the
permutation that on input K , outputs m0 ⊕m1 ⊕K .

Theorem 8 (IND-CCA PKE). Let TXEM be a (γ, δ)-correct TagXEM, and let PKE′ be a hybrid encryption
scheme as given in Fig. 9. Then PKE′ is (γ, δ)-correct, and there is a type-preserving SFBB reduction B such that
for every adversaryA,

Adv
(n,κ)-ind-cca⋆
PKE′ (A) ≤ Adv

(n,κ)-rop-cca⋆
TXEM (B) .

Proof. B is given in Fig. 12. The simulation is as in the proof of Theorem 7, except for the simulation of the
challenge encryption oracle: here, B now forwards the permutation Πm0→m1

that on input K outputs m0 ⊕
m1 ⊕K , receiving as a challenge either the honest key K or the permuted key Πm0→m1

(K). To see that the
simulation is perfect, consider the view of A in the case that A challenges instance i on messages m0,m1,
then corrupts, receiving ski and decrypting the challenge. If the decryption is correct and bi = 0, A recovers
the honest key K0, and therefore the message m0. While, whenever bi = 1, A still recovers K0, but now the
challenge was produced by encrypting m0 using the permuted key. Decrypting will then yield

K0 ⊕ c2 = K0 ⊕K1 ⊕m0 = K0 ⊕m0 ⊕m1 ⊕K0 ⊕m0 = m1 ,

just as expected. Note how this implies that the bits of each game correspond exactly to each other; the simulation
is perfect, and B wins iffA wins.

The correctness parameters of PKE′ again transfer directly from TXEM (see Thm. 7).

19

IfA calls oracle E(i,m0,m1)

if m0 ̸∼ m1 then return E

qi ← qi + 1

K ← CROP(i, |m0|, Πm0→m1)

c2 ← K ⊕m0

c1 ← E(i, qi, c2)
return ⟨c1, c2⟩

IfA calls oracle D(i, ⟨c1, c2⟩)

K ← DB(i, ⟨c1, c2⟩ , |c2|)
if K = E then return E

if K =⊥ then return ⊥
m← K ⊕m

return ⟨c1, c2⟩

Fig. 12. The reduction B, playing Exp
(n,κ)-rop-cca⋆
TXEM , while giving a perfect simulation of Exp(n,κ)-ind-cca⋆

PKE′ for A. Counters
qi are initialized to 0, corruption queries are forwarded directly. B halts with the same output asA.

TXEM.Kg

(pk′, sk′)←$ KEM.Kg

pk← pk′

sk←
〈
pk′, sk′

〉
return (pk, sk)

TXEM.Check(pk, sk)〈
pk′, sk′

〉
← sk

if pk ̸= pk′ then return 0

return KEM.Check(pk′, sk′)

TXEM.Enc(σ, τ)

⟨c,Kmac⟩ ← σ

mac← MACKmac(τ)

return ⟨c,mac⟩

TXEM.Keypk(ℓ)

(Kkem, c)←$ KEM.Encpk

ℓ′ ← ℓ+ ℓmackey

Kmac∥Kxem ← F
(
pk, c,Kkem, ℓ′

)
σ ← ⟨c,Kmac⟩
returnKxem

TXEM.Decsk(⟨c,mac⟩ , τ, ℓ)〈
pk′, sk′

〉
← sk

Kkem ← KEM.Decsk′(c)

if Kkem =⊥ then return ⊥
ℓ′ ← ℓ+ ℓmackey

Kmac∥Kxem ← F
(
pk′, c,Kkem, ℓ′

)
if MACKmac(τ) ̸= mac then return ⊥
returnKxem

Fig. 13. A TagXEM from a KEM, a MAC, and an XOF F .

We leave it to the reader to verify that as before, employing a ROP-CPA XEM in place of the TagXEM yields
IND-CPA security for the PKE of Fig. 9 (top row), by adapting the proof of Thm. 6 to the above. We again
stress that using an information-theoretically CCA-secure DEM together with a CCA XEM does not seem to
yield a proof of CCA inheritance to the PKE (see Sect. 4.3).

4.6 TagXEM from a KEM, a MAC, and a Random Oracle

With Thm. 8, we achieved what we set out to do: demonstrating tight MI inheritance from a TagXEM to an
IND-CCA PKE. However, AGK only showed how to construct an IND-CCA KEM, providing a reduction to the
MI-GapCDH assumption in the programmable random oracle model. Without the crucial support of tags, our
construction only achieves CPA security. Furthermore, Thm. 5 does not easily transfer to the ROP setting: it is
not clear how to combine a ROP-CCA KEM with a XOF to yield a ROP-CCA XEM.

We complete the picture by providing a TagXEM construction from a KEM, a MAC, and a XOF. Our construc-
tion (Fig. 13) is inspired by Abe et al.’s TagKEM construction [2] and we show that with an information-theoretic
MAC, if the KEM is perfectly correct, has unique encapsulations [25] and is multi-instance one-way secure un-
der plaintext-checking attacks (OW-PCA), then the TagXEM is ROP-CCA secure in the programmable random
oracle model (to model the XOF). Before stating our concrete security result (Thm. 9), we will define the relevant
concepts and advantages below.

Preliminaries. One-wayness for KEMs tasks an adversary to retrieve the ephemeral key that has been encap-
sulated, given the public key and the encapsulation. In the multi-instance setting, an adversary has access to
many public keys and various encapsulations per public key and endeavours to find ephemeral keys for encap-
sulations for as many different public keys as possible (no reward for breaking multiple encapsulations under
the same public key).

20

Exp
(n,κ)-ow-pca⋆

KEM (A)

(pk1, sk1), . . . , (pkκ, skκ)←$ KEM.Kg

(I, (ji, K̂i)i∈I)←$AE,P,K(pk1, . . . , pkκ)

if |I| ̸= n ∨ I ∩ K ̸= ∅ then return 0

return
∧
i∈I

Pi[ji] = K̂i

P(i, c,K)

K′ ← KEM.Decski(c)

returnK = K′

E(i)

(K, c)←$ KEM.Encpki

Pi
⌢←− K

return c

K(i)

K
∪←− i

return ski

Fig. 14. Multi-instance one-way security in the presence of plaintext checking attacks.

Plaintext-checking attacks (PCA) were introduced by Okamoto and Pointcheval [36, Definition 8] in a single-
user public key encryption setting. Intuitively, PCA provides the adversary access to an oracle that, on input a
pair (m, c) determines whether c encrypts m or not; more formally [1], the oracle checks whether c decrypts
to m or not. In the context of KEMs, the PCA oracle takes a pair (Kkem, c) as input and determines whether c
decapsulates toKkem or not. Themulti-user ormulti-instance generalization is straightforward and the definition
(in its modern decryption incarnation) inherently deals with imperfect correctness in the decryption.

Definition 7 considers one-wayness under plaintext checking attacks. For standard ElGamal KEM, where a
(multiplicative) discrete-log group with generator g and of prime order q is given as part of the parameters, a
public key consists of h = gx with x←$ Zq the private key, and an encapsulation outputs (Kkem, c) = (hr, gr)
for random r ←$ Zq , the one-wayness problem (in the single-user case) is equivalent to the computational
Diffie–Hellman (CDH) problem. The plaintext checking oracle allows an adversary to learn, for group elements
(k, c) of its choice, whether k = cx or not. The corresponding hardness assumption for OW-PCA is known
as the Strong CDH assumption. An even stronger assumption is the GapCDH assumption, where an adversary
instead can use an oracle that determines whether a quadruple of group elements is a Diffie–Hellman tuple or
not.

Definition 7 (OW-PCA). Let KEM be a key encapsulation mechanism. Then the one-way advantage under
plaintext-checking attacks of an adversaryA is

Adv
(n,κ)-ow-pca⋆
KEM (A) = Pr

[
Exp

(n,κ)-ow-pca⋆
KEM (A) = 1

]
,

where the experiment is defined in Fig. 14.

In addition to perfect correctness and OW-PCA security, the security reduction for our construction (Thm. 9)
relies on two further properties of the underlying KEM. Unique encapsulation captures that for a fixed public key
and ephemeral key, the encapsulation corresponding to that ephemeral key is unique (without saying anything
about how to compute it). Unique encapsulations have been used before, for instance by Heuer et al. [25] (see
also Remark 4 below).

Definition 8 (Unique Encapsulation). LetKEM be a perfectly correct KEM. Then it has unique encapsulations
iff

Pr

 (pk, sk)←$ KEM.Kg
(Kkem

0 , c0)←$ KEM.Encpk
(Kkem

1 , c1)←$ KEM.Encpk

: Kkem
0 = Kkem

1 ∧ c0 ̸= c1

 = 0 .

The second additional property we require from the KEM is that collisions amongst encapsulations (under a
single randomly drawn public key) are suitably rare. Def. 9 captures the relevant probability of a k-way encap-
sulation collision. If a KEM is perfectly correct with unique encapsulations, then colliding encapsulations are
equivalent to colliding ephemeral keys; if, as is usually the case, these ephemeral keys are furthermore chosen
uniformly at random from a finite set X , we can upper bound ϵk(q) by qk/|X |k−1 using a standard bound on
k-way collisions (see e.g. [37, Appendix B]).

Definition 9 (Encapsulation Multi-Collisions). LetKEM be a KEM, and let q, k ∈ Z>1 be parameters. Then
the k-out-of-q encapsulation multi-collision probability is

ϵk(q) = Pr

[
(pk, sk)←$ KEM.Kg
∀i∈[q](K

kem
i , ci)←$ KEM.Encpk

: ∃J⊆[q],|J|=k∀i,j∈Jci = cj

]
.

21

For completeness, we also present definitions of a deterministic message authentication code, so we dispense
with an explicit verification algorithm in Def. 10 (for concreteness, we restrict to bitstrings for both keys and
tags, of length ℓmackey and ℓmac respectively), and an information-theoretic notion of forgeries (Def. 11) where
we use the same parameter k as above (or rather k − 1 in Thm. 9), but this time to denote the number of valid
message–tag pairs available to an adversary. The usual choice is k = 1, e.g. when considering strongly universal2
hash functions, but Wegman and Carter [40] already investigated k > 1. Provided ℓmackey is large enough (at
least k · ℓmac), one can achieve ϵ̂k = 2−ℓmac , which is optimal.

Definition 10 (Message Authentication Code (MAC)). A message authentication codeMAC is a pair of algo-
rithms MAC.Kg and MAC.Mac, where MAC.Kg randomly generates a Kmac ∈ {0, 1}ℓmackey , and the deterministic
MAC.Mac takes a keyKmac and a messagem ∈M to output tag mac← MAC.MacKmac(m) ∈ {0, 1}ℓmac .

Definition 11 (Information-Theoretic MAC Forgeries). Let MAC be given and let k ∈ Z≥0 be a parameter,
then the forging advantage after observing k valid message–tag pairs is defined as

ϵ̂k = max
∀i∈{0}∪[k]

(mi,maci)

Pr
[
MAC.MacKmac(m0) = mac0

∣∣∣ ∀i∈[k]MAC.MacKmac(mi) = maci
]
.

Security Claim. With all elements in place, we can state the security of Fig. 13’s TXEM, in Thm. 9. The
security bound depends on a tuning parameter k that feeds into both the collision probability of the underlying
KEM and the forgery advantage of the MAC, with opposite effects. The ability to tune the bound therefore
allows some flexibility when instantiating the three underlying primitives KEM, MAC, and XOF: for fixed qc,
increasing k will result in a smaller upper bound on ϵk(qc), but to ensure that ϵ̂k−1 does not dominate, it might
then be necessary to increase the key size ℓmackey (and possibly tag size ℓmac) of the information-theoretic MAC
(see Cor. 5 for a concrete instantiation). Otherwise, instantiating the information-theoretic MAC and the XOF is
relatively straightforward (with the usual ROM caveats for the latter).

Theorem 9. LetTXEM be as in Fig. 13, letKEM be a perfectly correct KEM with unique encapsulations, and let
k ∈ Z>1. Then there is an SFBB reduction B such that, for all A that makes qc challenge and qd decryption oracle
queries,

Adv
(n,κ)-rop-cca⋆
TXEM (A) ≤ Adv

(n,κ)-ow-pca⋆
KEM (B) + 2

(
qdϵ̂k−1 + ϵk(qc)

)
in the programmable random oracle model, where ϵ̂k−1 is the forging advantage after observing k−1 valid message–
tag pairs (Def. 11) and ϵk(qc) is the k-out-of-qc encapsulation multi-collision probability of KEM (Def. 9). IfAmakes
qf queries to the random oracle, then B makes at most qf queries to its plaintext checking oracle.

Proof. For simplicity, we will in the following employ the convention MACKmac(m) := MAC.MacKmac(m).
The game G0(A), given in Fig. 15, is simply the ROP-CCA TagXEM experiment of Figs. 6 and 11 instanti-

ated with the TagXEM construction of Fig. 13, with slightly simplified key management and including the XOF
modelled as a lazily sampled random oracle F . For the latter, we treat the bit string F(pk, c,Kkem) as a list and
use ⌢←−$ to sample (in this case a uniform random bit) and append to that string. The while loop thus ensures
the correct prefix behaviour, while keeping the code concise. As output we take the first ℓ bits of F(pk, c,Kkem),
denoted F(pk, c,Kkem)JℓK.

In G1 (Fig. 16), we make the C oracle independent of the ephemeral key returned by KEM.Enc. To achieve
this, the random oracle is altered so that now, whenever F is called together with consistent Kkem and c, the
value ofKkem gets stored in a list K. In the case that the correct key has been called to F before, we then simply
retrieve it and call F as usual. Otherwise, we pre-sampleKmac andKxem, and store them in the list Di(c). Then,
onceF is called on that ciphertext with the correspondingKkem, we program the random oracle using the value
stored in Di(c), ensuring consistency. Note how the programming does not alter the output distribution of F , as
each pre-sampled value is sampled uniformly at random, and is only ever programmed to a single element.

Additionally, we introduce the counters ctr(·, ·) to detect whether a k-wise multi-collision is created by the
C oracle and, if so, the flag badmc is set. This multi-collision detection does not change the behaviour of the
game—it will assist us bounding another bad event in the next hop. We therefore have that G0 and G1 behave
identically and

Pr[G0(A)]− Pr[G1(A)] = 0 . (1)

In G2(A) (Fig. 17), we make the decryption oracle independent of the private keys by leveraging the lists
introduced in G1(A): ifA calls for the decryption of c under ski and Ki(c) has already been defined, we simply
retrieve Kkem and call the random oracle as usual. Otherwise, we can conclude that F is yet to be called on the

22

Game G0(A)

(pk1, sk1), . . . , (pkκ, skκ)←$ KEM.Kg

b1, . . . , bκ ←$ {0, 1}

(I, b̂)←$AC,E,D,K,B,F (pk1, . . . , pkκ)

if |I| ̸= n ∨ I ∩ (K ∪ B) ̸= ∅ then b̂←$ {0, 1}

return ⊕i∈I bi = b̂

Oracle D(i, ⟨⟨c,mac⟩ , τ⟩ , ℓ)

if ⟨⟨c,mac⟩ , τ⟩ ∈ Ci then return E

Kkem ← KEM.Decski(c)

if Kkem =⊥ then return ⊥
ℓ′ ← ℓ+ ℓmackey

Kmac∥Kxem ← F(pki, c,K
kem, ℓ′)

if MACKmac(τ) ̸= mac then return ⊥
return Kxem

Oracle C(i, ℓ,Π)

(Kkem, c)←$ KEM.Encpki
ℓ′ ← ℓ+ ℓmackey

Kmac∥Kxem
0 ← F(pki, c,K

kem, ℓ′)

Ei
⌢←− ⟨c,Kmac⟩

Kxem
1 ← Π(Kxem

0)

return Kxem
bi

Oracle E(i, j, τ)

if Ei[j] = ∅ then return E

⟨c,Kmac⟩ ← Ei[j], Ei[j]← ∅
mac← MACKmac(τ)

Ci
∪←− ⟨⟨c,mac⟩ , τ⟩

return ⟨c,mac⟩

Oracle F(pk, c,Kkem, ℓ)

while
∣∣∣F(pk, c,Kkem)

∣∣∣ < ℓ

F(pk, c,Kkem)
⌢←−$ {0, 1}

return F(pk, c,Kkem)JℓK

Fig. 15. The gameG0(A) with F modelled as a lazily sampled random oracle. Not shown are the corruption oracles, which
are as in Fig. 6, and will remain unchanged over the course of the game hops.

relevant values, and thus use Di(c) to retrieve/defineKmac and check the validity of mac. If the latter is invalid,
we return ⊥; otherwise, the event badmf occurs (and we may abort G2(A) with any output).

By design,G1 andG2 are identical-until-badmf , and badmf only happens if the adversary is able to produce a
validMAC forgery, possibly after having seen a number of validmac produced under the same key by the game’s
oracles. We use badmc to bound the number of valid mac an adversary has seen: we claim that if badmc has not
been set, that number is at most k − 1 (see the argument below), implying that the probability of a forgery at
that point is at most ϵ̂k−1 (Def. 11) and by a simple union bound Pr[badmf | ¬badmc] ≤ qdϵ̂k−1 where qd is the
number of decryption calls.

Back to flag badmc: assume it has not yet been set, thus for all pk and c, the counters ctr(pk, c) ≤ k − 1.
As the KEM is perfectly correct and has unique encapsulations, the implication is that, for any input-triple, the
number of “delayed” F(pk, c,Kkem) calls during C is at most k − 1 and each such C call can lead to at most one
valid mac to be output by E , proving our claim from above. Finally, we note that Pr[badmc] ≤ ϵk(qc) where qc
is the total number of C queries (here we use that ϵk(x) + ϵk(y) ≤ ϵk(x+ y)).

The arguments above show that

Pr[G1(A)]− Pr[G2(A) | ¬badmf] ≤ Pr[G2(A) : badmf] ≤ qdϵ̂k−1 + ϵk(qc) . (2)

NowB, given in Fig. 18, gives a faithful simulation ofG2 while playingAdv(n,κ)-ow-pca⋆(A), using its encryption
oracle in place ofKEM.Enc to produce the challenges in C, and its plaintext checking oracle in place ofKEM.Dec
to check for consistent inputs to F . At the end of its run, A returns a list of targets I and a guess b̂. Assuming
badmf was not triggered, and that none of the i in I were corrupted, B proceeds to check whether correct
decapsulations were queried to the random oracle together with a challenge ciphertext produced under each
targeted key, and collects one such decapsulation per key from Ki. It finally halts with the collected keys, together
with I and a set of indices ji specifying the targeted challenge.

Let Q be the event that A returns a list I of uncompromised instances, for which F was queried with each
key pki in I at least once with aKkem satisfyingKkem = KEM.Decski

(c). Note how ¬Q then implies that either
at least one challenge bit bi is information-theoretically hidden fromA, and therefore also⊕i∈Ibi, or the I output

23

Oracle C(i, ℓ,Π)

(· , c)←$ KEM.Encpki
ctr(pki, c)← ctr(pki, c) + 1

if ctr(pki, c) ≥ k then badmc ← true

ℓ′ ← ℓ+ ℓmackey

if Ki(c) ̸= ∅
Kkem ← Ki(c)

Kmac∥Kxem
0 ← F(pki, c,K

kem, ℓ′)

else

while |Di(c)| < ℓ′

Di(c)
⌢←−$ {0, 1}

Kmac∥Kxem
0 ← Di(c)Jℓ′K

Ei
⌢←− ⟨c,Kmac⟩

Kxem
1 ← Π(Kxem

0)

returnKxem
bi

Oracle F(pk, c,Kkem, ℓ)

if F(pk, c,Kkem) = ε then

∀i∈[κ]pki = pk

if KEM.Decski(c) = Kkem then

Ki(c)← Kkem

if Di(c) ̸= ε then

F(pki, c,K
kem)← Di(c)

while
∣∣∣F(pk, c,Kkem)

∣∣∣ < ℓ

F(pk, c,Kkem)
⌢←−$ {0, 1}

return F(pk, c,Kkem)JℓK

Fig. 16. The oracles modified in gameG1, in which C is made independent of the sampledKkem. The flag badmc is initialized
to false and the counters ctr(·, ·) to 0. Changes in blue.

Oracle D(i, ⟨⟨c,mac⟩ , τ⟩ , ℓ)

if ⟨⟨c,mac⟩ , τ⟩ ∈ Ci then return E

if Ki(c) = ∅
while |Di(c)| < ℓmackey

Di(c)
⌢←−$ {0, 1}

Kmac ← Di(c)JℓmackeyK
if MACKmac(τ) ̸= mac then return ⊥
else badmf ← true and abort

Kkem ← Ki(c)

ℓ′ ← ℓ+ ℓmackey

Kmac∥Kxem ← F(pki, c,K
kem, ℓ′)

if MACKmac(τ) ̸= mac then return ⊥
returnKxem

Fig. 17. ThemodifiedD oracle inG2(A) (changes in blue) is made independent of the private keys. The badmf flag, initialized
to false, is set when a valid forgery is made without F having been called on the relevant values.

byA is ineligible; in either case,A gets advantage 0. This gives us,

Pr[G2(A) | ¬badmf] = Pr[G2(A) |Q ∧ ¬badmf] · Pr[Q | ¬badmf]

+ Pr[G2(A) | ¬Q ∧ ¬badmf] · Pr[¬Q | ¬badmf]

≤ Pr[Q | ¬badmf] +
1

2
(1− Pr[Q | ¬badmf]) (3)

=
1

2
Pr[Q | ¬badmf] +

1

2
.

Then note that

Pr[Q | ¬badmf] ≤ Pr
[
Exp

(n,κ)-ow-pca⋆
KEM (B)

]
,

=⇒ Pr[G2(A) | ¬badmf] ≤
1

2
Pr
[
Exp

(n,κ)-ow-pca⋆
KEM (B)

]
+

1

2
. (4)

24

B(pk1, . . . , pkκ)

b1, . . . , bκ ← {0, 1}

(I, b̂)← AC,E,D,K,B,F (pk1, . . . , pkκ)

i1, . . . , in ← I

for k ∈ [n] :

for c s.th. Kik (c) ̸= ∅ :
for j s.th. c = Pik [j] :

jik ← j, K̂ik ← Kik (c)

return (I, (ji, K̂i)i∈I)

IfA calls oracle C(i,Π, ℓ)

c← EB(i), Pi
⌢←− c

ℓ′ ← ℓ+ ℓmackey

if Ki(c) ̸= ∅ :
Kkem ← Ki(c)

Kmac∥Kxem
0 ← F(pki, c,K

kem, ℓ′)

else :

while |Di(c)| < ℓ′ :

Di(c)
⌢←−$ {0, 1}

Kmac∥Kxem
0 ← Di(c)Jℓ′K

Ei
⌢←− ⟨c,Kmac⟩

Kxem
1 ← Π(Kxem

0)

return Kxem
bi

Oracle F(pk, c,Kkem, ℓ)

if F(pk, c,Kkem) = ∅ :
∀i∈[κ]pki = pk :

if PB(i, c,Kkem) :

Ki(c)← Kkem

if Di(c) ̸= ε :

F(pki, c,K
kem)← Di(c)

while F(pk, c,Kkem) < ℓ :

F(pk, c,Kkem)
⌢←−$ {0, 1}

return F(pk, c,Kkem)JℓK

Fig. 18. The reduction B, simulating G2 while playing Exp
(n,κ)-ow-pca⋆

KEM . Changes to the oracles are highlighted in blue;
omitted oracles are simulated exactly as in G2.

Combining eqs. (1)–(4), we get

Adv
(n,κ)-rop-cca⋆
TXEM (A) = 2Pr[G0(A)]− 1

= 2
(
Pr[G1(A)]− Pr[G2(A) | ¬badmf] + Pr[G2(A) | ¬badmf]

)
− 1

= 2
(
Pr[G1(A)]− Pr[G2(A) | ¬badmf]

)
+ 2Pr[G2(A) | ¬badmf]− 1

≤ 2
(
qdϵ̂k−1 + ϵk(qc)

)
+ 2

(
1

2
Pr
[
Exp

(n,κ)-ow-pca⋆
KEM (B)

]
+

1

2

)
− 1

= 2
(
qdϵ̂k−1 + ϵk(qc)

)
+ Pr

[
Exp

(n,κ)-ow-pca⋆
KEM (B)

]
= 2
(
qdϵ̂k−1 + ϵk(qc)

)
+ Adv

(n,κ)-ow-pca⋆
KEM (B) .

The proof borrows some ideas already used to prove AGK’s Thm. 2. In fact, it is relatively straightforward to
recast AGK’s Thm. 2 as the multi-instance version of a OW-PCA KEM plus a programmable random oracle
yielding an IND-CCA KEM, although the presence of the error terms ϵ̂k−1 and especially ϵk(qc) render recovery
of AGK’s Thm. 2 as a special case of our Thm. 9 not immediate.

Combining Thm. 8 and 9 in Cor. 4, we can finally conclude that our construction yields a PKE inheriting the
multi-instance security of the underlying KEM (for parameter regimes where the loss term does not dominate).

Corollary 4. Let PKE′ be as in Fig. 9, let the underlying TagXEM be as in Fig 13, letKEM be a perfectly correct
KEM with unique encapsulations, and let k ∈ Z>1. Then, there is an SFBB reduction B such that, for all A that
makes qc challenge and qd decryption oracle queries,

Adv
(n,κ)-ind-cca⋆
PKE′ (A) ≤ Adv

(n,κ)-ow-pca⋆
KEM (B) + 2

(
qdϵ̂k−1 + ϵk(qc)

)

25

in the programmable random oracle model, where ϵ̂k−1 is the forging advantage after observing k−1 valid message–
tag pairs (Def. 11) and ϵk(qc) is the k-out-of-qc encapsulation multi-collision probability of KEM (Def. 9). IfAmakes
qf queries to the random oracle, then B makes at most qf queries to its plaintext checking oracle.

Remark 4. The resulting construction is remarkably similar to the PKE studied by Heuer et al. [25] in the context
of selective opening attacks (and to a lesser extent its predecessor by Steinfeld et al. [39] and successor by Lai et
al. [32]). They too use a random oracle to derive a MAC key and a one-time pad from an ephemeral KEM key.
The only two differences are that Heuer et al. do not consider arbitrary length messages and that their random
oracle outputs Kxem∥Kmac, i.e. the opposite order from what we do.

For fixed length messages, the order in which those two keys are output does not matter. However, when
moving to arbitrary length-messages, the order of the XOF output does matter. Outputting Kxem∥Kmac instead
would allow a length extension attack enabling the adversary to recover the MAC key, at which point producing
forgeries would be trivial.

In a way, the construction is quite brittle that these small details matter. Another example of brittleness is
that our reduction for Theorem 9 requires⊥ produced from a KEM decryption error to be indistinguishable from
a failed MAC verification. In implementations, a timing attack might well break this requirement.

Remark 5. The proof of Thm. 9 does rely on perfect correctness of the underlying KEM, thus excluding many
popular post-quantum KEMs based on the hardness of LWE. Having said that, establishing the post-quantum
security of TXEM would require a proof in the quantum random oracle model [15]. We leave the construction
of a post-quantum TagXEM as an enticing open problem.

A Concrete Instantiation. We conclude by providing a concrete bound for the construction when instantiat-
ing with low granularity ElGamal KEM on groups of size ≥ p. ElGamal KEM satisfies perfect correctness and
unique encapsulation (ensuring compatibility with Thm. 9) and produces uniformly random group elements as
ephemeral keys, so ϵk(qc) ≤ qk/pk−1. Furthermore, the relevant multi-instance OW-PCA security can be linked
to the low granularity MI-GapCDH problem with corruptions (Thm. 12). By extending AGK’s low granularity
bound [4, Thm. 6] to include corruptions (Thm. 11) and combining with Cor. 4, we arrive at a clean information-
theoretic bound (Cor. 5) in the generic group and programmable random oracle model. To keep the bound easier
to interpret, we assume that the adversary makes at most√p queries to the encryption and decryption oracles;
realistically, an adversary will be able to make far more offline queries q to its generic group and for q ≈ √p
a single discrete logarithm instance can already be broken. In a similar vein, the requirement that each group
instance receive at least max{60 log2 p,

√
qf/2} group operation calls (allowing some simplifications in the MI-

GapCDH bound) is a reasonable one, as already argued by AGK, given that the number of group operations
performed by an ElGamal adversary is “typically large”.

Corollary 5. Let PKE′ be as in Fig. 9, let the underlying TagXEM be as in Fig 13, let KEM be instantiated as low
granularity ElGamal (see App. C) and let p be a lower bound on the generated groups. Let k ∈ Z>1, let MAC
be an information-theoretic MAC with key length ℓmackey and output length ℓmac and satisfying ϵ̂k−1 = 2−ℓmac .
Then, for any information-theoretic A that makes at most

√
p challenge oracle queries, at most

√
p decryption

oracle queries, qf queries to the random oracle, and a total of q queries to the group-operation oracles with at least
max{60 log2 p,

√
qf/2} queries per group instance, it holds that

Adv
(n,κ)-ind-cca⋆
PKE′ (A) ≤

(
4 · e · q2

n2 · p

)n

+ 2

(√
p

2ℓmac
+

1

p
k
2−1

)
in the programmable random oracle and generic group model.

For the construction to exhibit meaningful multi-instance security, we want the upper bound on the adversary’s
advantage to diminish with increasing n. Since the second term on the right hand side of Cor. 5 is independent
of n, the first term has to dominate for advantages of interest. Thus, for a fixed p, we want to set ℓmac and k
so that, irrespective of n, we do not really care about the other two terms, where ℓmac directly corresponds to
the PKE’s ciphertext expansion and increasing k will require longer ephemeral keys as output by the XOF to
ensure that ℓmackey ≥ k · ℓmac. To minimize overhead, having both terms equal is optimal, corresponding to
2ℓmac = (k − 1) log2 p. Some reasonable options are then (ℓmac, k) = (log2 p, 3) or (ℓmac, k) = (3/2 log2 p, 4).

Alternatively, the bound can be interpreted in terms of the scaling factor, which focuses on the minimum
resources needed to achieve an overwhelming advantage (see App. C for details). In that case, the second term,
being independent of n, is manifestly of little interest for either of our suggested parameter choices.

26

Acknowledgement

The authors would like to thank Joseph Jaeger for identifying a bug in our definition of xor-indistinguishability
in the published version of the article [17].

27

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistinguishable under plaintext-checkable attacks.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 332–352. Springer, Heidelberg (Mar / Apr 2015). https://doi.org/10.
1007/978-3-662-46447-2_15

2. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A new framework for hybrid encryption. Journal of Cryptology
21(1), 97–130 (Jan 2008). https://doi.org/10.1007/s00145-007-9010-x

3. Auerbach, B., Giacon, F., Kiltz, E.: Everybody’s a target: Scalability in public-key encryption. Cryptology ePrint Archive,
Report 2019/364 (2019), https://eprint.iacr.org/2019/364

4. Auerbach, B., Giacon, F., Kiltz, E.: Everybody’s a target: Scalability in public-key encryption. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 475–506. Springer, Heidelberg (May 2020). https://doi.org/
10.1007/978-3-030-45727-3_16

5. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In: Fischlin, M., Coron, J.S.
(eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 273–304. Springer, Heidelberg (May 2016). https://doi.org/10.
1007/978-3-662-49896-5_10

6. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 296–315. Springer, Heidelberg (Dec 2013). https://doi.org/10.1007/
978-3-642-42033-7_16

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: Security proofs and improvements.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (May 2000). https://doi.
org/10.1007/3-540-45539-6_18

8. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption
schemes. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (Aug 1998). https:
//doi.org/10.1007/BFb0055718

9. Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA: When and how should challenge decryption
be disallowed? Journal of Cryptology 28(1), 29–48 (Jan 2015). https://doi.org/10.1007/s00145-013-9167-4

10. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (May 2003). https://doi.org/10.1007/
3-540-39200-9_31

11. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against mass surveillance. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (Aug 2014). https://doi.org/
10.1007/978-3-662-44371-2_1

12. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application to password-based cryptography. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (Aug 2012). https:
//doi.org/10.1007/978-3-642-32009-5_19

13. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application to password-based cryptography. Cryp-
tology ePrint Archive, Report 2012/196 (2012), https://eprint.iacr.org/2012/196

14. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E.,
Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/
10.1145/168588.168596

15. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (Dec 2011). https:
//doi.org/10.1007/978-3-642-25385-0_3

16. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Seiler, G., Stehle, D.: Crystals -
kyber: A cca-secure module-lattice-based kem. In: 2018 IEEE European Symposium on Security and Privacy (EuroS P).
pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

17. Brunetta, C., Heum, H., Stam, M.: Multi-instance secure public-key encryption (2023), to appear at PKC’23, also available
as https://eprint.iacr.org/archive/2022/909/20230404:114420

18. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack.
In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (Aug 1998). https://doi.org/10.
1007/BFb0055717

19. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen
ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)

20. Farshim, P., Tessaro, S.: Password hashing and preprocessing. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part II. LNCS, vol. 12697, pp. 64–91. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77886-6_
3

21. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M.J.
(ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/
3-540-48405-1_34

22. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. Journal of Cryptology
26(1), 80–101 (Jan 2013). https://doi.org/10.1007/s00145-011-9114-1

23. Giacon, F., Kiltz, E., Poettering, B.: Hybrid encryption in a multi-user setting, revisited. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 159–189. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007/
978-3-319-76578-5_6

https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/s00145-007-9010-x
https://doi.org/10.1007/s00145-007-9010-x
https://eprint.iacr.org/2019/364
https://doi.org/10.1007/978-3-030-45727-3_16
https://doi.org/10.1007/978-3-030-45727-3_16
https://doi.org/10.1007/978-3-030-45727-3_16
https://doi.org/10.1007/978-3-030-45727-3_16
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/s00145-013-9167-4
https://doi.org/10.1007/s00145-013-9167-4
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-642-32009-5_19
https://eprint.iacr.org/2012/196
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://eprint.iacr.org/archive/2022/909/20230404:114420
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/978-3-030-77886-6_3
https://doi.org/10.1007/978-3-030-77886-6_3
https://doi.org/10.1007/978-3-030-77886-6_3
https://doi.org/10.1007/978-3-030-77886-6_3
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1007/978-3-319-76578-5_6

28

24. Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F.
(eds.) ACM CCS 2007. pp. 466–475. ACM Press (Oct 2007). https://doi.org/10.1145/1315245.1315303

25. Heuer, F., Jager, T., Kiltz, E., Schäge, S.: On the selective opening security of practical public-key encryption schemes. In:
Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 27–51. Springer, Heidelberg (Mar / Apr 2015). https://doi.org/10.1007/
978-3-662-46447-2_2

26. Heum, H., Stam, M.: Tightness subtleties for multi-user pke notions. In: Paterson, M.B. (ed.) Cryptography and Coding.
pp. 75–104. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0_5

27. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Asso-
ciation 58, 13–30 (1963)

28. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 341–371. Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/
978-3-319-70500-2_12

29. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. In: Canteaut, A., Standaert,
F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (Oct 2021). https://doi.org/
10.1007/978-3-030-77870-5_5

30. Kiltz, E., Pan, J., Riepel, D., Ringerud, M.: Multi-user CDH problems and the concrete security of NAXOS and HMQV. In:
Rosulek, M. (ed.) CT-RSA 2023 (to appear). Springer, Heidelberg (2023), available as https://eprint.iacr.org/2023/
115.

31. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 426–442. Springer, Heidelberg (Aug 2004). https://doi.org/10.1007/978-3-540-28628-8_26

32. Lai, J., Yang, R., Huang, Z., Weng, J.: Simulation-based bi-selective opening security for public key encryption. In: Ti-
bouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 456–482. Springer, Heidelberg (Dec 2021).
https://doi.org/10.1007/978-3-030-92075-3_16

33. Lee, Y., Lee, D.H., Park, J.H.: Tightly cca-secure encryption scheme in a multi-user setting with corruptions. Des. Codes
Cryptogr. 88(11), 2433–2452 (2020)

34. Lewko, A.B., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer, Heidelberg (May 2014). https://doi.org/10.1007/
978-3-642-55220-5_4

35. NIST: SHA-3 standard: Permutation-based hash and extendable-output functions. Federal Information Processing Stan-
dards Publication 202, NIST (Aug 2015)

36. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmetric Cryptosystem Transform. In: Naccache,
D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–175. Springer, Heidelberg (Apr 2001). https://doi.org/10.1007/
3-540-45353-9_13

37. Preneel, B.: Analysis and Design of Cryptographic Hash Functions. Ph.D. thesis, KU Leuven (Feb 1993)
38. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor,

M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (Feb 2004). https://doi.org/10.1007/
978-3-540-24638-1_1

39. Steinfeld, R., Baek, J., Zheng, Y.: On the necessity of strong assumptions for the security of a class of asymmetric encryp-
tion schemes. In: Batten, L.M., Seberry, J. (eds.) ACISP 02. LNCS, vol. 2384, pp. 241–256. Springer, Heidelberg (Jul 2002).
https://doi.org/10.1007/3-540-45450-0_20

40. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. Journal of Computer and
System Sciences 22, 265–279 (1981)

A Deferred Proofs

A.1 Proof of Theorem 1

Theorem 1 (MKU → UKU). Let 0 < n ≤ κ be integer parameters and let PKE be a (γ, δ)-correct encryption
scheme. Then, there is a type-preserving SFBB reduction Bmku, such that for every adversaryAuku,

Adv
(n,κ)-uku-cca⋆
PKE (Auku) ≤ Adv

(n,κ)-mku-cca⋆
PKE (Bmku) + κγ .

Proof. Bmku forwards all the experiment’s messages until it receives fromAuku the output (I, ⃗̂sk). Observe that
these secret keys allow Auku to win if they were generated in the game setup, (pki, ŝki) ←$ PKE.Kg, while in
order forBmku to win, the secret keys must pass the key validation algorithm, PKE.Check(pm, pki, ŝki) = true.
Briefly, Bmku wins if, at least,Auku wins and the secret keys pass the validation algorithm. Formally,

Pr
[
Exp

(n,κ)-mku-cca⋆
PKE (Bmku) = 1

]
≥ Pr

[
Exp

(n,κ)-uku-cca⋆
PKE (A)= 1 ∧

∧
i∈I

PKE.Check(pm, pki, ŝki) = true

]

https://doi.org/10.1145/1315245.1315303
https://doi.org/10.1145/1315245.1315303
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-030-92641-0_5
https://doi.org/10.1007/978-3-030-92641-0_5
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://eprint.iacr.org/2023/115
https://eprint.iacr.org/2023/115
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-030-92075-3_16
https://doi.org/10.1007/978-3-030-92075-3_16
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/3-540-45450-0_20
https://doi.org/10.1007/3-540-45450-0_20

29

= Pr

[
Exp

(n,κ)-uku-cca⋆
PKE (A)= 1 ∧

∧
i∈I

PKE.Check(pm, pki, ski) = true

]

where, sinceAuku wins, it holds that ŝki = ski;

≥ Pr

Exp(n,κ)-uku-cca⋆PKE (A)= 1 ∧
∧
i∈[κ]

PKE.Check(pm, pki, ski) = true

= Pr

[
Exp

(n,κ)-uku-cca⋆
PKE (A)= 1

]
− Pr

Exp(n,κ)-uku-cca⋆PKE (A)= 1 ∧
∨
i∈[κ]

PKE.Check(pm, pki, ski) = false

≥ Pr

[
Exp

(n,κ)-uku-cca⋆
PKE (A)= 1

]
− Pr

 ∨
i∈[κ]

PKE.Check(pm, pki, ski) = false

= Pr

[
Exp

(n,κ)-uku-cca⋆
PKE (A)= 1

]
−
∑
i∈[κ]

Pr[PKE.Check(pm, pki, ski) = false]

= Pr
[
Exp

(n,κ)-uku-cca⋆
PKE (A)= 1

]
− κγ .

Applying Def. 2 then yields the stated bound.

B The Relationship between ROP and IND Security for KEMs

The following lemma shows that ROP is at least as strong as IND, in the sense that ROP tightly implies IND.

Lemma 4 (ROP =⇒ IND). There is a type-preserving SFBB reduction B such that, for any adversary B,

Adv
(n,κ)-ind-cca⋆
TXEM (A) ≤ Adv

(n,κ)-rop-cca⋆
TXEM (B) .

IfA calls its challenge oracle q times, then B draws q keys uniformly at random.

Proof. Whenever A calls C(i, ℓ), let B define the permutation Π that is simply the xor of the input with a
freshly sampled key, and then call CROP(i, ℓ,Π). The resulting K1 will look like a uniformly random key, with
no relation to the encapsulated key K0.

In the other direction, a loss of
(
κ
n

)
· 2n is inferred, as can be seen by adapting the proof techniques that led

to Cor. 2.

Theorem 10 (IND =⇒ ROP). There is an SFBB reduction B such that, for any adversary B,

Adv
(n,κ)-rop-cca⋆
TXEM (A) ≤

(
κ

n

)
· 2n · Adv(n,κ)-ind-cca⋆TXEM (B) .

B’s overhead consists of generating κ−n fresh keypairs, sampling κ bits, and a choosing a subset of [κ] of cardinality
n uniformly at random.

C On the MI-GapCDH Problem with Corruptions

In this section we study the hardness of the MI-GapCDH problem, as introduced by AGK, when enhanced with
corruptions. AGK considered three settings: the (realistic) high granularity setting, with one global (standardized)
group and group generator; mid granularity, where the group remains global but generators are independently
sampled per user; and low granularity, where the groups themselves are independently sampled among users.
AGK went on to provide useful bounds linking the hardness of each to standard assumptions (in the algebraic
and generic group models).

30

Experiment Exp(n,κ)-gapcdh⋆
low-gran (A)

for i ∈ [κ] do

(Gi, gi, pi)←$ GGen

G[i]← (Gi, gi, pi)

x[i]←$ Zpi ; X[i]← g
x[i]
i

y[i]←$ Zpi ; Y[i]← g
y[i]
i

Z[i]← g
x[i]·y[i]
i

(I, Ẑ)←$ADDH,K(G, X, Y)

if |I| ̸=n then return 0

if I ∩ K ̸= ∅ then return 0

return
∧
i∈I

Z[i] = Ẑ[i]

Oracle DDH(i,X, Y, Z)

parse (X,Y)→ (gxi , g
y
i)

return gx·yi = Z

Oracle K(i)

K
∪←− i

return x[i]

Fig. 19. Multi-instance gap CDHwith corruption for the low granularity case, i.e. each challenge is sampled for a completely
independent group and generator. Highlighted in blue, the differences introduced concerning the uncorrupted version of
Auerbach et al. [4].

Restricting ourselves for now to low granularity MI-GapCDH in the generic group model, we can directly
adapt AGK’s bound [4, Thm. 6]. Denote by Exp(n,κ)-gapcdh⋆low-gran the low granularity n-out-of-κMI-GapCDH experi-
mentwith corruptions (Fig. 19); the advantage of an adversaryA against the experiment isAdv(n,κ)-gapcdh⋆low-gran (A) :=

Pr
[
Exp

(n,κ)-gapcdh⋆
low-gran (A) = 1

]
.

Compared to AGK, we make one more change to the experiment by defining eligible lists I, in addition to
containing no compromised indices, to be of size exactly n rather than greater-or-equal n; this happens without
loss of generality for computational problems (see also Sec. 3.3).

Theorem 11. LetGGen be a group-generating algorithm generating generic groups of size at least p. Let n, κ, q, qD
and qi for i ∈ [κ] such that 1 ≤ n ≤ κ, q =

∑n
i=1 qi, and qi are such that qi ≥ 60 log2 p and 4q2i ≥ qD . Then, for

any adversaryA making at most qi queries to the i-th group-operation oracle and qD queries to the gap oracle,

Adv
(n,κ)-gapcdh⋆
low-gran (A) ≤

(
4 · e · q2

n2 · p

)n

.

Proof (sketch). The proof is identical to AGK’s Theorem 6 up to the additional observation that, since instances
are completely independent, knowing the solution to one cannot help in solving others. This does not alter any
of the steps of their proof: as AGK point out, all the generated groups are independent and, to win,Amust output
an eligible list I of indices and a corresponding list Ẑ of solutions; all we have done is alter what constitutes an
eligible list I.

AGK showed that low granularity schemes achieve optimal scaling, as apparent in the exponential nature
of the above bound. Thus, Theorem 11 allows the multi-instance security of our constructions to lean on an
explicit bound with optimal scaling; all that remains is to observe that for ElGamal KEM, its multi-instance
OW-PCA security is easily achieved from the low granularity MI-GapCDH assumption. Writing X for gx and
Y for gy , letKEM be such thatKEM.Kg samples a group (G, g, p)←$ GGen, private exponent x←$ Zp and sets
(pk, sk) ← (((G, g, p), X), x), KEM.Encpk samples y ←$ Zp and sets (K, c) ← (Xy, Y), and KEM.Decsk, on
input c = Y , returnsK ← Y x (where we assume KEM.Dec also implicitly has access to the group description).

Theorem 12. Let KEM be as above. Then there is an SFBB reduction B such that, for allA,

Adv
(n,κ)-ow-pca⋆
KEM (A) ≤ Adv

(n,κ)-gapcdh⋆
low-gran (B) .

IfA calls its challenge oracle q times, then B draws q uniformly random group elements.

Proof (sketch). The reduction matches public keys to the received X[i] and forwards them to A. Given that the
multi-instance OW-PCA game (Fig. 14) is multi-challenge, the reduction relies on random self-reducibility to
provide multiple challenges per instance: for each challenge oracle call to instance i, B samples w ←$ Zpi

and

31

sets c← Y[i] · gwi , saving w in list Wi for later. Calls to the oracle P are forwarded to oracle DDH, and likewise
for corruption calls.

Once A halts with output (I, (ji, K̂i)i∈I), for each i ∈ I, the reduction retrieves w ← Wi[ji] and sets
Ẑ[i] ← K̂i/X[i]

w , finally halting with output Ẑ. If A returned correct ephemeral keys, then for each i we have
K̂i = cx = gxyi gxwi , so that dividing by X[i]w = gxwi produces Ẑ[i] = gxyi , as desired.

As the group is cyclic and gwi are independently sampled, uniformly random group elements, the Y[i] · gwi
are independently uniform too; thus, the simulation is faithful, and B wins iffA wins.

For high and mid granularity, an immediate adaptation of AGK’s bounds to include corruptions does not seem
possible. Take their Theorem 5, relating the (uncorrupted) high granularity n-out-of-κ MI-GapCDH to a (n, n)
multi-instance gap discrete logarithm problem, for which they give a useful bound. The proof constructs a re-
duction B that obtains n discrete logarithm challenges Z and injects them into the κ CDH challenges, which
are then given to the adversary. This injection is done in such a way that possession of any n-sized subset of
solutions to the κ challenges allows for the reconstruction of the original n DL solutions.

This strategy breaks down in the presence of corruptions, as answering a corrupting query on any GapCDH
instance would necessitate to compromise one of the DL challenges the reduction seeks to break. (It is possible
that this could be patched by having the adversary guess beforehand the instances that will be corrupted, al-
though this would likely lead to a looser bound.) We therefore leave the hardness of mid and high granularity
MI-GapCDH as interesting open problems, with high granularity being of particular relevance, as it most closely
matches typical deployment practice.

D On the Scaling Factor

As argued in the introduction, we want a guarantee that breaking nPKE instances can not be done much more
efficiently than breaking each independently. Ideally, then, the advantages should experience an exponential
dampening with increasing n, as achieved by the KEM of Sect. C; our main results can then be interpreted to
say that for any given n, our constructions inherits this smallness of the underlying KEM.

Another way to capture this intuition is to say that any adversary should have to spend n times as much
computing time to break n instances, than that needed to break 1 system (for some suitable notion of “breaking”).
This intuition was formalized asymptotically by AGK as the Scaling Factor (SF). Informally:

SF
(n,κ)
PKE =

resources necessary to break n out of κ instances
resources necessary to break 1 out of 1 instance .

Assume that SF(n,κ)
KEM ≥ η for some η ≥ 1; another way to interpret our results would then be to show that it

follows that SF(n,κ)
PKE ≥ η for each of our constructions. As our results are formulated in the concrete-security

setting, we do not give a formal definition of the scaling factor and a proof of inheritance, although we sketch
the argument below.

In order to conclude that a construction inherits the scaling factor of the underlying KEM, we would have
to show two things. Firstly, that

resources necessary to break n out of κ PKE instances
≥ resources necessary to break n out of κKEM instances ;

this follows (with a small loss) for our main construction from Corollary 4. Secondly, that

resources necessary to break 1 KEM instance
≥ resources necessary to break 1 out of 1 PKE instance .

Then, it follows from

resources necessary to break n out of κKEM instances
≥ η (resources necessary to break 1 out of 1 KEM instance)

that

resources necessary to break n out of κ PKE instances
≥ η (resources necessary to break 1 out of 1 PKE instance) ,

32

which, when dividing both sides by the single-instance resources (and omitting negligible terms) yields SF(n,κ)
PKE ≥

η.
However, the second point is somewhat counterintuitive as it seemingly requires showing a “reverse reduc-

tion”, namely that a break against the KEM results in a break against the PKE. In other words, if the PKE inherits
the multi-instance security of the KEM but itself is already harder to break than the KEM, the scaling factor
might be reduced. Another subtlety is that the security notion used for the KEM might also cause unexpected
complications.

Specifically for our constructions and proofs, the reverse reduction for Theorem 6 is straightforward. On
the other hand, the reverse reduction for Theorem 9 already takes a bit more work: a reduction could simply
forward the first part of a challenge ciphertext to theKEM adversary and use its decryption oracle to simulate
the KEM’s plaintext checking oracle.

In other words, we are confident that for our main construction, the scaling factor is essentially preserved
from KEM to PKE. Nonetheless, as the scaling factor remains underdeveloped both in the concrete security
setting and in the context of primitive-to-construction inheritance, we refrain from providing a full formal defi-
nition and analysis of the scaling factor and instead opt for a more classical interpretation of the advantages we
achieve (Corr. 5).

	 Multi-Instance Secure Public-Key Encryption

