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Abstract. We introduce the notion of a universal random oracle. Analogously to a classical random
oracle it idealizes hash functions as random functions. However, as opposed to a classical random oracle
which is created freshly and independently for each adversary, the universal random oracle should
provide security of a cryptographic protocol against all adversaries simultaneously. This should even
hold if the adversary now depends on the random function. This reflects better the idea that the strong
hash functions like SHA-2 and SHA-3 are fixed before the adversary decides upon the attack strategy.

Besides formalizing the notion of the universal random oracle model we show that the model is asymp-
totically equivalent to Unruh’s auxiliary-input random oracle model (Crypto 2007). In Unruh’s model
the adversary receives some inefliciently computed information about the random oracle as extra input.
Noteworthy, while security in the universal random oracle model implies security in the auxiliary-input
random oracle model tightly, the converse implication introduces an inevitable security loss. This im-
plies that the universal random oracle model provides stronger guarantees in terms of concrete security.
Validating the model we finally show, via a direct proof with concrete security, that a universal random
oracle is one-way.

1 Introduction

The random oracle methodology [F'S87, BR93| has turned out to be a useful tool to design cryptographic
protocols with practical efficiency, while allowing security proofs if one assumes that the hash function be-
haves ideally. That is, in the security proof one assumes that the involved hash function acts optimally like
a random function. The underlying assumption is that, if one later uses a strong hash function like SHA-2
or SHA-3 in practice, then any attack against the protocol must be due to unexpected weakness in the hash
function. While the soundness of this approach has been disputed, e.g., [Nie02l, (GK03, BBP04, [(CGHO04],
we have not yet experienced practical schemes showing such weaknesses (i.e., without incorporating an
obvious structural shortcoming in this regard).

1.1 The Universal Random Oracle Model

Security in the random oracle model considers executions where the random oracle is chosen when the
attack starts, independently of the adversary and its strategy. If one goes back to the original idea of later
plugging in SHA-2 or SHA-3, however, the order compared to practical settings is in fact reversed: These
hash functions have been designed first and are already available, such that the adversary may actually
take advantage of this a-priori knowledge in the attack. In contrast, common security games first fix the
adversary and then initialize the random oracle.

At first it seems as if the idea of making the adversary depend on the random oracle would refute the
idea of eliminating the presence of any structural weakness of the hash function. But recall that we still



consider the random oracle to be a random function, only that the adversary may now depend on this
random function. In a sense, the adversary still cannot exploit functional properties of the hash functions,
but it may take into account that the actual hash function in the protocol is fixed before the protocol
is attacked, or even designed. We call this a universal random oracle, because the same random oracle
should work against all adversaries.

On a technical level the difference between the two approaches, the classical random oracle model and
the universal one, becomes apparent through the usage of the Borel-Cantelli lemma, as done for example
in the famous work by Impagliazzo and Rudich [IR89]. The Borel-Cantelli lemma allows to reverse the
order of quantifiers in the sense that if for any adversary the probability of an attack for a random oracle
is negligible, then there exists an oracle which works against all adversaries. In fact, a random oracle will
work almost surely against all adversaries.

Hence, while one could use in principle the Borel-Cantelli lemma to switch from the random oracle
model to the universal one, the lemma comes with two disadvantages. First, the final step in the argument,
namely that a random function works against all adversaries, only works against the countable class of
uniform adversaries (unless one makes further restrictions on the security reduction itself [BLN09, BN13]),
and thus excludes non-uniform adversaries. The second disadvantage is that the asymptotic statement of
the Borel-Cantelli lemma infringes with the notion of concrete security. But the latter is important for
schemes aiming at practicality. Hence, using the Borell-Cantelli lemma in principle indeed allows to go
from classical random oracles to universal ones, but comes at a price.

1.2 Defining Universal Random Oracles

Defining the universal random oracle model (UROM) is more challenging than one would envision. A
straightforward approach would be to demand that for a random oracle O no adversary A can win the
corresponding security experiment Game (with more than negligible probability € in the security parameter
A):

Po [VA Je € negl VA : Pgame [Gamer’O()\)} < 6()\)} =1.

However, as we argue this definition appears to be too liberal: We provide an experiment which was
secure in this version of the UROM, although the experiment is both intuitively insecure and also provably
breakable in the ordinary random oracle model. This would violate our intuition that the UROM provides
stronger security guarantees than the ordinary ROM.

The above mismatch also motivates our actual definition of the UROM. As in the random oracle model
we aim for security for a given security parameter, such that the quantification over \ appears outside of
the probability over the random oracle:

Vs € poly Je € negl VA : Po [VA € SIZE (s())) : Pgame [GameA’O()\)} < 5(/\)] >1—¢g(N).

To let the adversary A depend on the random oracle we quantify over all adversaries in the probability for
O, and only use a size bound s(\) on the outside. We give more details about this choice within. Another
justification for the correctness of our approach is by relating this model to existing definitions, especially
to the auxiliary-input random oracle model.

1.3 Relationship to Auxiliary-Input Random Oracles

Unruh [Unr07] defined the auxiliary-input random oracle model (AI-ROM) as an extension of the classical
random oracle model. In this model the adversary A receives as input some information about the pre-
viously sampled random oracle O, provided by some unbounded algorithm z© with oracle access to the



random oracle. This can, for example, be a collision found in exponential time such that random oracles
are not collision-resistant in this model.

Unruh’s main technical result, called lazy sampling with auxiliary input [UnrO7, Theorem 2|, is to
relate the statistical distance of outputs for adversaries receiving auxiliary input z© for random oracle O,
to the one when instead having access to a fresh random oracle (but which is consistent on some fixed
values with the original oracle). He shows that the statistical distance between the two settings is of order
O(«/ST/ P) where S is the bit size of auxiliary information, 7" is the number or random oracle queries of
the adversary, and P is the number of coordinates to be fixed. The bound was subsequently improved to
O(ST/P) by Coretti et al. [CDGS18], matching a lower bound of Dodis et al. [DGKI17].

Here we show that the two models, AI-ROM and UROM, are equivalent. That is, if a game is secure
in one model, then it is also secure in the other model. Remarkably, there is a security degradation when
going from AI-ROM to UROM: If a game is e-secure in the AI-ROM, then it is “only” y/e-secure in the
UROM. We also show that this quadratic loss is inevitable in general. The other direction holds tightly,
i.e., e-security in the UROM implies e-security in the AI-ROM. In this sense, the UROM gives stronger
security guarantees for concrete bounds.

Another interesting aspect of UROM is that the separation of the game’s randomness from the ran-
domness of choosing the random oracle allows for more freedom in setting the security bounds. The above
equivalence of UROM and AI-ROM holds for negligible bounds for both the game’s and the random oracle’s
randomness, but the UROM model also allows for notions where the game should have a negligible success
probability for any adversary, with all but exponentially-small probability in the selection of the random
oracle.

1.4 Relationship to Global Random Oracles

Canetti et al. [CJS14], and later Camenisch et al. [CDG™18§]|, considered the notion of global random
oracles in the Universal Composability (UC) framework [Can01]. The starting point of the global random
oracle model is the observation that, even if multiple components of a cryptographic protocols are proven
UC secure in the (standard) random oracle model, their composition is not necessarily secure if the random
oracle is replaced by the same hash function in all components. The global random oracle model now says
that a single, global random oracle functionality is available to all parties. A security proof in the model
allows for one random oracle to be used in all components, and therefore also to be replaced with the same
hash function everywhere.

The global random oracle model and the UROM are close in spirit in light of the idea that the same hash
function may be used at several places, but are technically somewhat orthogonal. The global random oracle
model is investigating cross-effects of hash function deployments between different protocol executions (but
a fresh random oracle instance is chosen when considering an attack on the composed setting). In contrast,
the UROM is concerned with dependencies of the adversary with respect to the universally available random
oracle within an abstract security game. This abstract security game may be compound of several protocols
but is not cast in a simulation-based setting like the UC framework.

1.5 Proving Security in the UROM

We finally give an example of how to show security in the UROM, by showing that one-wayness exists in the
UROM. Of course, we can immediately transfer any security result from the AI-ROM via the equivalence,
however, this example lets us use the above mentioned flexibility in choosing our security bounds to show
that one-wayness exists for all but exponentially few (universal) random oracles.

The proof of one-wayness follows the compression technique of Gennaro and Trevisan [GT00]. Similar
approaches have also been given for the AI-ROM [DGKI17, [CDGS18]; our goal here is to exercise security



arguments in the UROM model. The line of reasoning is as follows. If there was a successful adversary
against the one-wayness of the UROM, then we can compress the random oracle with the help of the
adversary. The important point here is that the adversary may depend on the random oracle for this
compression, making the approach employable in the UROM. If the adversary is too successful then we
can actually compress beyond information-theoretic lower bounds. Of course, we state the latter fact in
terms of concrete security in the UROM.

2 Preliminaries

In this section we present the basic notions of negligible functions, security games, and the (classical)
random oracle model, and one-wayness. The notions of the UROM and AI-ROM are given in the subsequent
sections.

2.1 Negligible Functions

We use the standard of notion of negligible function and state some very basic but useful properties
afterwards:

Definition 2.1 (Negligible Functions) A function ¢ : N — R is called negligible if for any polynomial
p: N — R* there exists A € N such that

1
VA>A:e()\) < —.
p()
We denote the set of all negligible functions by negl and the set of all functions which are not negligible by
non-negl.

Note that we allow negligible functions € to be negative at some inputs. When quantifying over
all negligible functions we can restrict ourselves to non-negative functions by considering the pointwise
maximum max{0,e(A)}. If and only if ¢ is negligible so is this maximum. Analogously, we can always
presume €(\) < 1 when quantifying over all negligible functions. This follows by considering the pointwise
minimum min{1,e(X)}.

When considering definitions we sometimes bound success probabilities for a sequence of events E)
(e.g., an adversary winning a security game for parameter \), by negligible functions:

Je € negl VA € N: P[E,)] < e(N).

Note that we can quantify over all A since we can change the negligible function ¢ at finitely many points.
When negating this statement, e.g., when describing that there exists a successful adversary, we get

Ve € negl 3N € N: P[E,] > e(A). (1)

This means that for any (negligible) bound we find a security parameter where the probability of the
event, e.g., the adversary winning, exceeds this bound. When showing our relationship of the UROM to
the AI-ROM we use that the above holds if and only if

Ve € negl 3N € N: P[E)] > €2(\). (2)

To see this note that we may only consider non-negative functions € bounded from above by 1. But
then the function §(\) := y/e(\) is well defined and it holds that §(\) > () for all security parameters.
Furthermore, § is negligible if and only if ¢ is.



Hence, when quantifying over all negligible functions we can always switch between € and § and get the
desired bound. More precisely, assume that statement holds. Take some arbitrary negligible function
e. Our goal is to show that there exists some A such that P[Ey] > €2(\). But this follows straightforwardly
from the first statement since £(\) > €2()\). For the converse note that, if statement holds, then for
any given negligible function ¢ we can consider the function §(\) = /() in the second statement. By
assumption there exists some A where the probability exceeds 6%(A) = &(\). This shows that the first
statement holds in this case as well for any negligible function.

2.2 Security Games

We consider abstract security games involving the adversary A and an oracle ©. We denote by Game™© (\)
the binary outcome of executing the security game. We often emphasize the dependency of algorithms
and functions by using subscripts, e.g., we write Ap to denote the fact that the adversary may depend on
oracle O, or €4,0(A) to indicate that the function ¢ depends on both the adversary and the oracle. We
use the terms security game and experiment interchangeably.

Further, by A®, we denote that the adversary A has oracle-access to O. We view A as a (family of)
circuit(s) that have a special oracle gate, which allows A to query the oracle. We capture adversaries with
an upper bound s(\) of the size for non-uniform adversaries resp. run time for uniform adversaries via a
set SIZE (s(\)). The set of efficient adversaries is given by SIZE (poly).

We write Pgame [GameAg’O()\)} for the probability that adversary A with access to random oracle O
wins in the security game Game. Here, the probability is over all random choices in the game, including
the randomness of the adversary. The random oracle, however, is fixed at this point and the adversary
may depend on O. The oracle is usually chosen “outside” of the game.

2.3 The Random Oracle Model

A random oracle O is an oracle that gives access to a truly random function. We assume that for every
security parameter A, oracle O maps inputs from {0, 1}* or from {0, 1}3‘1()‘) to outputs from {0,1}*, where
{0,1}=4N) denotes the set of strings of bit length at most d()\). For so-called length-preserving random
oracles the domain for every security parameter A is simply {0, 1}A, i.e., inputs are of length d(\) = A
exactly. In the classical random oracle model we pick the oracle O as part of the game. In this case we
usually write Pgame,0 [Gamer’O(A)} for the probability of A winning the corresponding game. Note that
here now A usually does not depend on O beyond the oracle access.
With the above notation we can phrase the (classical) random oracle model as follows.

Definition 2.2 (ROM) An experiment Game is secure in the ROM iff
VA € SIZE (poly) Je € negl VA € N : IP’QGame{GameAO’O()\)} <e(N).

2.4 One-Wayness in the Random Oracle Model

To define that a random oracle O immediately gives a one-way function we simply state the security game
Gameé\(,ov’o()\) as follows. Run A9 (1%, O(z)) for x <-${0,1}* to obtain a value x*. Let the game output 1 if
and only if O(x) = O(x*). If we assume length-preserving random oracles, as in Section |5, we necessarily
have z* € {0,1}* then:

Gameé\’,(\?(/\)

1: x+${0,1}*
2: 2" +$A°(1Y, O(x))
3: return 1if O(z*) = O(z) else 0
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Note that if we later switch to the UROM, then the one-wayness security game does not change, only the
oracle setting.

3 The Universal Random Oracle Model UROM

A straightforward formalization of the universal ROM may now be be to demand that, with probability
1, a random oracle O is good for all adversaries A. That is, for each adversary the success probability is
negligible for the given random oracle:

VAo € SIZE (poly()\))

Fo Jes0 €negl VA € N

: PGame [GameAO’O()\)} < eA’o()\)] =1.

The issue with this approach is that it identifies a case which is both intuitively insecure and also prov-
ably insecure in the (plain) random oracle, to be secure in this version of the UROM, as we discuss in
Appendix [A]

We next present the, in our view, right definition of the UROM. The essence from the above failed
definitional attempt is that we have to pull out the quantification of the security parameter from the outer
probability, and therefore all preceding quantifiers. But moving out the quantification over all adversaries
would infringe with our idea to make the adversary depend on the random oracle. To re-install this idea
we set a bound on the adversarial success probability and run time resp. size, and define “good” random
oracles for all adversaries within such bounds:

Definition 3.1 (UROM) A security game Game is secure in the UROM if
Vs € poly Tz, € negl YA € N : Po VAo € SIZE (s(V)) : Peame| Game™@ P ()| < &,(V)] > 1 - ,(V).

Note that with the “outer” negligible error function €4 we account for “bad” random oracles, for which
the security game may be easy to win, e.g., breaking one-wayness for the all-zero oracle O. Since we may
consider finite domains and ranges for O for the fixed-size adversaries (for given security parameter \),
such bad random oracles may have a non-zero probability. The negligible function expresses that such
oracles are very sparse. As the weakness of the random oracle may depend on the adversarial size, e.g.,
many hardcoded preimages in the one-wayness experiment may affect the security, we make the negligible
function also depend on the size s. The “inner” probability then captures that no adversary (of the given
size) can win the security game with high probability, but here the probability is only over all the random
choices of the game and adversary.

Both the inner and outer negligible error terms are based on the same function. We could have chosen
different negligible functions 4 (for the inner game probability) and ds for the outer oracle probability,
and quantify over the existence of such negligible functions (Jes, ds € negl). But the pointwise maximum,
vs(A) := max{es(A), ds(A)}, would also be negligible and satisfy the bounds:

e For v,(\) = 65(\) > e4()) we have
1= 04(\) < Po VAo € SIZE (5(\)) : Peame|Game o O(A)| < e,(V)]
< Po|VAo € SIZE (5(V)) : Peame|Game @O (1) ] < 55(V)].

e For 75(\) = £5(\) > 65(\) we have
Po|¥Ao € SIZE (5())) : Poame [Game @9 (1) < (1)

It thus suffices to consider a single negligible function.



4 UROM vs. AI-ROM

In this section we show that UROM and AI-ROM are equivalent, although not tightly related. We first
present the AI-ROM and then show both directions of the equivalence.
4.1 AI-ROM

The auxiliary-input random oracle model AI-ROM [Unr07] allows a preprocessing through an unbounded
oracle algorithm z() which on input the security parameter outputs a polynomial-size string. This string
is then given as auxiliary information about the random oracle to the adversary A. Experiments in which
the adversary needs to find a collision in the (unkeyed) random oracle are for example insecure in the
Al-ROM: The function 2©(1*) exhaustively searches for a collision = # 2’ of complexity A and outputs this
pair; adversary A simply outputs the collision. This is in contrast to security in the regular ROM in which
no efficient A is able to find such a collision with non-negligible probability.

Definition 4.1 (AI-ROM) An experiment Game is secure in the AI-ROM iff
VA, 20 3¢ € negl YA : Po,Game| Game! "0 (3)] < e(N).

We will now show the equivalence of the two notions. Section will show that AI-ROM implies
UROM, and Section [4.3] will show the reverse implication.

4.2 AI-ROM implies UROM
Theorem 4.2 (AI-ROM = UROM) If Game is secure in the AI-ROM then it is also secure in the UROM.

Proof. Assume an experiment Game is insecure in the UROM, i.e., negating the security requirement we
have

3s € poly Ve € negl N € N : Po [VA@ € SIZE (s()\)) : Pgame [GameAO’O(/\)] < E()\)] <1—¢e(N).

We will show that the experiment is also insecure in the AI-ROM, by constructing an adversary pair (Aay, 2)
against the auxiliary-input setting. First, to get a better intuition we switch to the complementary event
of the outer probability for our successful attack again the UROM:

3s € poly Ve € negl A € N« Po[FAo € SIZE (1) : Poame|Game 0P (V)] > ()] > e().

This formula now states the the fraction of “bad” random oracles O for which there exists a successful
adversary, exceeding the bound () for some parameter A, cannot be upper bounded by any negligible
function e(A). We can capture this set 2 = Q, .  of bad random oracles as

Q:={o ] JAo € SIZE (5(1)) : Peame|Game @O (N)] > £(3) }

Note that all parameters s, e, A are fixed via the quantifiers when defining this set. This is especially true
for the security parameter A, so the condition is not a statement over all security parameters. To emphasize
this we can also write the definition of ) implicitly as

35 € poly Ve € negl I\ € N YO € 2 3Ap € SIZE (5(V) : Poame|Game @O (2)] > e().
Note that for the fixed values s,e, A we have Po[O € Q] > ¢(\) and therefore

Po Game [GameAO’O()\)] > PGame [GameA@’o(A) |O € Q} PolO € Q] > 2(N).
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Next we define an inefficient function 2.’ that, given any oracle O and security parameter A\, outputs
(a circuit description of) the adversary Ay of size at most s(A) with the highest success probability against
the game. This adversary will win the game with probability more than (\) for any oracle in §2 according
to the definition. Further, we define Ap;, which is the universal circuit that will interpret the circuit
returned by zs;. Note that the universal circuit A has polynomial size, since the size of Ay is bounded
by the (fixed) polynomial s(\) and the execution of a circuit can be done efficiently. Therefore we can
conclude that there exists a pair (Aaj, zs), where Aaj is polynomially bounded. This pair is successful in
the given game for any bad oracle from the set €2:

I(Ani, 27) Ve € negl I\ € NYO € Q: Pagme | Game R O(3)] > ().

It remains to show that a similar bound also holds when we go back to picking O at random from all
random oracles instead of the set 2. To this end we use our assumption that the probability of an oracle
being in Q is at least e(\):

3(Aar, 20)) Ve € negl IX e N : Po, Game [GameAﬁ(z?)’o()\)] > e2(N).
According to the discussion about negligible functions we can rewrite this as

S

3(Ani, 2{)) Ve € negl I\ € N : Po Game [GameAﬁ<Z? W(A)] > e(\).
But this means that the protocol cannot be secure in the AI-ROM. ]

In terms of exact security, the derived adversary Aa; has roughly the same running time as A. But
its success probability drops from e(A) (for A) to €2(\). In general this is inevitable, though. For any
k = w(\) consider the game Game™*?(\) which returns 1 if the leading k bits of O(0*) are all 0 and if,
in addition, k& random coin flips also land all on 0. Then the probability that any pair (Aaj, z) wins in
the AI-ROM setting is at most 272%. But in the UROM setting we can set £(\) to be 27, because for all
“good” oracles O with the leading k bits of O(0}) being different from 0 no adversary can win the game.
4.3 UROM implies AI-ROM

Theorem 4.3 (UROM = AI-ROM, tightly) If Game is secure in the UROM then it is also secure in
the AI-ROM.

For the proof we use the so-called splitting lemma [PS00] which allows to relate the probability of
events over a product space X X Y to the ones when the X-part is fixed:

Lemma 4.4 (Splitting Lemma [PS00]) Let D = Dx x Dy be some product distributions over X x Y.
Let Z C X x Y be such that Pp[(x,y) € Z] > €. For any a < e call x € X to be a-good if

P, cspy [(2,y) € Z] > € — a.
Then we have P, .gp, [v is a-good] > a.
Proof (of Theorem . Assume that we have a successful attacker in the AI-ROM:
I(Ani, 217) Ve € negl I\ € Nt Po game|Game RO (V)] > ().

We show that we can build a successful adversary A in the UROM model. We first apply the splitting
lemma (Lemma for fixed Aaj, z,¢, A. We will only consider such choices which exceed the bound &(\).



We define the distribution Dx as the choice of a random oracle O, and Dy as the randomness in the game
(for both the game and the adversary), as well as Z as the events in which (Aaj, z) wins the game for the
random oracle. This happens with probability at least £(A) by assumption. If we now choose a to be %5
then we get that Po[O is a-good] > ie. Therefore,

I(Aal, 2) Ve € negl IN € N: Po [IP’Game [GameA/?l(zo)’O()\)} > %5} > %5
As %5 is negligible iff € is, and since we quantify over all negligible functions, we get
3(Aar,2) Ve Enegl AN e N : Po [}P’Game {GameAi\ol(Zo)’O()\)} > 5()\)] >e(N).

Since Ap; is polynomially bounded, and z() only returns a polynomial-size string, we can view Aa; as
a circuit of polynomial size s(\). But then we can interpret the AI-ROM adversary pair as consisting
of an oracle-dependent component, namely the polynomial-size string z©, and a general part Aaj. If we
hardcode the string 29 we can write this as a single oracle-dependent adversary Ao of polynomial size
s(A\). Moving this oracle-dependent algorithm inside the outer probability we obtain:

35()) € poly Ve € negl I\ € N : Po|3Ao € SIZE (5(A) : Poame|Game GO (V)| > £(1)] > e(A).
This shows that the have a successful adversary against the UROM. U

Remarkably, the reduction here is tight. If we have an adversary Ap) and z against the AI-ROM, then
we get a successful adversary A against UROM with the same running time (as AI-ROM) and, except for
a factor %, the same success probability. This shows that the AI-ROM and UROM model are qualitatively
equivalent. Yet, quantitatively, a security bound in the AI-ROM may be significantly looser than in the
UROM (see the discussion after Theorem ). This means that a direct proof in the UROM may yield tighter
bounds.

4.4 Advantages of UROM

While AI-ROM and UROM are equivalent as shown in the last two sections, we argue that UROM has some
advantages over AI-ROM, as it provides more flexibility in choosing security bounds. By having separate
bounds for the selection of the random oracle and the success probability of an adversary in the security
game, we can for example demand that a game might only be won with negligible probability, for all but
an exponential fraction of random oracles. Or, conversely, we could show that a game is secure for every
second random oracle, if we can be reasonably sure that we can use one of the good oracles, while in the
AlI-ROM; a proof might not be possible at all.

For the former, we will give an example in the next section, showing that UROM is a one-way function
for nearly all oracles.

5 Universal Random Oracles are One-way Functions

In this chapter, we will show that random oracles exist in the UROM (more specifically, that the oracle
itself is a one-way function). This result serves as an example how to prove security in the UROM, and
how to show that a game is secure for all but an exponential fraction of random oracles. Our proof will use
the compression technique introduced by Gennaro and Trevisan [GT00], although our notation is closer
to the argument by Haitner et al. [HHRS15].

We note that similar results exist for the AI-ROM [DGK17, [CDGSIS]|, which shows that in the AI-ROM,
a one-way function exists which no adversary can invert with probability higher than ’S—AT + 2%, where A

9



denotes the size of the non-uniform advice the adversary gets about the oracle, and 7" denotes the number
of queries to the oracle. Obviously, their result could be translated to a security bound in the UROM due
to the equivalence of the two notions, but the goal here is to present a proof that directly works in the
UROM.

The idea of the proof is that, if we have a successful adversary against the random oracle O, then we
can use this (specific) adversary to compress the oracle O into a smaller description, contradicting lower
bounds for the description size of random oracles. The reason that this works in the UROM is that the
compression can of course depend on the random oracle, such that the adversary, too, can depend on O.

For simplicity reasons, we will assume for this chapter that the random oracle O is always length-
preserving (i.e., d(A) = ). Note that the existence of length-preserving one-way functions is equivalent to
the existence of general one-way functions |Gol01], so this assumption does not influence the result.

We state the result in terms of exact security, using the general UROM approach where we have different
probabilities for the inner and outer probability (for the game hardness resp. for the random oracle):

Theorem 5.1 Let S be the mazximum size of an adversary. Then, in the Universal Random Oracle Model,
the random oracle is a one-way function with security bounds % and 27 for the inner and outer probability,
under the condition that P-S < 2M4 and \ > 55:

1

Po|3Ao € SIZE(S) : Pyr o110 [AG(1%, O(2)) € O7H(O(2))] > P} <27

The asymptotic version follows as an easy corollary:

Corollary 5.2 UROM is a one-way function in the UROM model: For every polynomial s(\) bounding
the size of an adversary, there exists a negligible function es(\) such that for all security parameters X,

Po|FAo € SIZE (s(N)) : Py o112 [4G(1, 0()) € 071 (O(@))] > e,(N)] <27

Our compression argument will work as follows: Assuming that the random oracle O in the UROM
is not a one-way function, we will show that we can describe the oracle O with less bits than should be
required for a truly random function. For this we assume that A is deterministic; if it is not, then we
can make it deterministic by hard-coding the best randomness. We also assume that A needs to output a
preimage of size A and thus only makes queries of this size; any other queries do not help to find a preimage
of A bits and could be easily answered randomly by A itself. Both of these assumptions only increase the
size of A at most by a small, constant factor which does not affect our proof.

We give an encoder algorithm which encodes the entire UROM-oracle O using the successful adversary
A, as well as a decoder algorithm which reconstructs O without access to the oracle itself, using the shorter
output of the encoder only. The code for both algorithms is given in Figure [II The encoder starts by
defining the set I of all images y on which Ap is able to find some preimage z. Note that, as Ap is
deterministic, for given O, we can indeed specify if Ap is successful on some input y or not. Further, the
encoder creates two initially empty sets: Y, which will contain all the y’s for which we reply on Ap to
recover one of y’s preimages (and which we therefore do not have to save explicitly); and Z, which will
contain all full pairs (z,y) with O(z) = y. Therefore, Y denotes the set for which values we actually
compress (by not saving the corresponding x-values).

As long as the set I of invertible images still contains values, the encoder takes the lexicographically
smallest value y out of I and adds it to Y. We simply write min I for this element (line. Now, the encoder
emulates a run of Ap with y as input and checks for all queries. There are two types of queries we need to
take care of: The first one are hitting queries, i.e., queries to O which return y (line. In this case, however,
A has already given us the preimage, therefore, we abort the simulation at this point. The second type of
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Encoder®(1*, Ap) Decoder(1",Y, Z, Ap)

1: I+ {ye{0,1}*AZ(y) successful} 1: O <« Initialize with Z

2: Y, Z+ 0 2: whileY #0:

3: whilel#(: 3 Yy < minY

4: y < min [ 4: Emulate AS(y):

5: Y+~ YU{y}, I+ I\{y} 5: On O-query :

6: Emulate AS(y) : 6: if O(z) # L:

7 On O-query z : 7: return O(z)

8: if O(x)=y: 8 else

9: abort emulation with result 9: abort emulation with x
10 : if O(J;) el: 10 : T Ag(y) /| or z in abort
11: I I\{O(z)} 11 : O(z) «y
122 return O(z) 12: endwhile

13 : T Ag (y) / or x result of abort 13: return O
14 : Z « ZJ{(2, )]0 =y, 2’ # x}
15 : endwhile

16: Z« ZU{(@"y)|y ¢Y,0@) =y}
17: return (Y, Z, Ap)

Figure 1: Encoder and Decoder for UROM-oracle O.

queries we have to handle are queries that return values y which are still in 7 (line. To make sure we have
no circular dependencies between these values, we remove these values from the set I. After the execution
of Ap finishes and found a preimage z, we add all further preimages 2’ # x of y that Ap did not return to
Z and continue (line . Finally, after the set I has become empty, we add all preimages of y ¢ Y (as pairs
with the image) to Z (line . The encoder eventually returns the sets Y, Z, plus a description of Ap.

The decoder, on input Y, Z and Ap, starts by initializing O with all the preimage-image-pairs in Z
(line . Now, similar to the encoder, the decoder goes through all values in Y in lexicographical order
and emulates a run of Ay using the partial definition of (. Note that at this point, we already have a
partial description of O that consists of all value-image-pairs we got via Z as well as all preimages we
reconstructed in previous steps. Therefore, for each query z, the adversary A» makes to the oracle, we
first check if O(z) # L, i.e., if O is already defined on that value (line @ If this is the case, we just
return the value saved in O. However, if this is not the case, we know that the call to O is a hitting query.
The reason is that the encoder would have recognized this case and made sure that the value would have
been saved in Z (by potentially removing it from I, see line — except for the case where that query
is a hitting query. Therefore, in this case, we can already abort the simulation with result  (line E[) If
none of the queries is a hitting query and we therefore do not abort, then we eventually obtain x from
the adversary (line , since the encoder has only put y into Y because the adversary is successful for y.
Finally the decoder sets O(z) to y.

Note that the lexicographic order here is rather arbitrary — the important part is that the encoder
always knows exactly which partial information the decoder will have when it will try to decode a specific
y, so any fixed order on the images is fine.

The decoder will always return the original oracle O when given the information the encoder returns.
However, we still need to argue that the information returned by encoder is actually smaller than a
straightforward description of O.

11



Lemma 5.3 Let Ap be a deterministic adversary against the one-wayness of O of size S < s(\). Further,
let Ao be successful on a fraction of % of all input challenges x € {0,1}*. With probability 1 — 2=*~1 the
encoder algorithm describes O using at most

a

22 N
2log + 2 —a)A+ S

A

. . _ 2
bits, where a is defined as a = 7 pg.

Proof. First note that with probability 1 — 27, oracle O will have no y such that y has more than A2
preimages. To show this we start with the probability that a specific ¥ has more than \? preimages. For
this, we model each of the 2" inputs z as a random variable X; such that X; = 1 iff this  maps to y.
Then the number of preimages is the sum of all X;, denoted by X. Now, we can use the Chernoff bound
for a binomial distribution B(n,p) to bound the probability of y having too many preimages:

P[X > (1+6)np] <

el "
(1+ 5)<1+5)] '
Using n =2, p=2"" and § = \?, we get
)\2

€ -2
(14 A2)1+A2 <2

2

Po |07 (y)| > N| <

for A > 3. Therefore, the probability that each value y € {0,1}* has at most A\? preimages is
Po ¥y, |07 (y)| < | 2 1-2227") > 1—27L,

Now that we can assume that the number of preimages of all y is bounded by A%, we know that I,
the set of all y on which A is successful, has at least size )\%—,P, where % is the success probability of Ap.
Furthermore, Ap makes at most S queries on any input. Hence, Xf01r each y the encoder adds to Y, it
removes at most S values from I. Therefore, Y has at least size )\22-7PS'

We will now encode Y by giving the positions of the values in Y in {0,1}*. For this we need log (|2;|)

A
bits, since we have at most (IQYI) such sets of size |Y'|. Similarly, we can encode the corresponding preimages

x in {0,1}* which the encoder found for each y € Y with the same amount of bits. Denote this set as X.
Note that these positions of the 2’s in X enables a shorter presentation of the set Z of pairs (z/,y’) with
y' ¢ Y, which the encoder also outputs. Instead of storing the pairs we only need to go through the values
x' € {0, 1})‘ in lexicographic order, skipping over the values in X, and only store the corresponding values
1y’ in this order. This allows us to recover the pairs in Z with the help of the positions in X, but now we
only to to store (2* — |Y|)\ extra bits to represent Z, plus the log (‘2;‘) bits to encode X. Finally, we need
S bits for the description of Ap.

Now, the above size corresponds to the size if the adversary has a success probability of exactly % and
makes exactly S queries for each input. However, for any sensible parameters, this should yield an upper
bound on the size of the description for any adversary that makes less queries and is successful on a larger
fraction of images (if this is not the case, we can of course always adjust our en- and decoder to initialize

I with exactly a P-fraction of all ys and always remove exactly S items from I for every y we add to Y).
O

12



Proof (for Theorem . To prove Theorem [5.1] we have to show that for parameters S,P and A,

Po {HAO € SIZE (S) : Ppe_(p.1)r [A%(l%@@:)) € (9—1((9(1:))} > ]13] <27

Lemma tells us two things: First, that at most a 272! fraction of the oracles @ has more than \?
preimages for some y. Further, we know that for those oracles with at most A? preimages for each value,
if Ap is successful, we can encode the oracle using at most

2)\
210g<a> + (2 —a)A+ S

Now, however, this means that the number of oracles that can be encoded in this

2
<2A> 9@ —a)x oS
a

Therefore, using P, S < 24 and A2PS > 2 one can encode only a fraction of

way is at most

(2>‘)22(2’\—a))\25 (%)2(1 95 | e2glags  (2a95()2pg)2a

a

2,\2>\ < 2a\ - q2a - (2)\)a
A A
s o2 )\4 p262 255 < o2\ p262 22

N>~
>

N 2 egr Vg3 2 sxig3+1\
B \T==) <77

<2721 for A > 55.

of all 222" oracles.

In summary, Ap can invert either those oracles O that have some y with more than A\? preimages (which
happens with probability at most 27*~1), or those that can be encoded as above (which is a fraction of
272~1). Note that both bounds are independent of the choice of S and P. Therefore,the probability that
a random oracle O is invertible with more than probability % is bounded by 27

Po|340 € SIZE (s(V)) : By [A9(1), 0@@)) € 071 (0(x))] > H

<2 Ml oAl — oA

This proves the theorem. O

6 Conclusion

In our paper we have presented an alternative approach to define security for idealized hash functions.
Whereas the classical random oracle model assumes that the idealized hash function is specific for each
adversary, the UROM model allows arbitrary dependencies of the adversary on the random oracle. This
appears to be a natural and necessary generalization of the ROM when instantiating the random oracle
with known hash functions like SHA-2 or SHA-3. Our UROM has been defined in light of this idea.
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Once we had carved out our model, we could evaluate it. We thus related our definition to Unruh’s
auxiliary-input random oracle model. There, the dependency of the adversary on the random oracle is
defined by an unbounded preprocessing stage, giving a polynomial-sized advice to the adversary. We
then proved our security notion equivalent to AI-ROM which further solidifies the validity of our UROM
definition and, vice versa, also means that the AI-ROM provides strong security guarantees. Remarkably,
the security bounds are not tightly related.

One of the differences between the UROM and the AI-ROM, and potentially one of the advantages of
the UROM, is that our model allows for more flexibility concerning the sources of insecurities. Specifically,
in our model one can separately fine-tune the probabilities for the random oracle and the random choices
of the adversary. For instance, one could go so far and simply ask for a non-zero probability for a good
random oracle, still stipulating a negligible success probability for the adversary. One could then argue, or
hope, that SHA-2 or SHA-3 is indeed one of these good random oracles to provide strong security against
all adversaries.

An interesting aspect may be to transfer the UROM or the AI-ROM to the UC setting and the global
random oracle model. As mentioned before, the global random oracle model and the idea of having an
adversarial dependency on the random oracle (as in UROM and AI-ROM) are incomparable. In principle,
however, it should be possible to consider a universal random oracle in the global UC setting as well.
Given the subtleties in the simpler game-based setting for defining the UROM, we expect this to be far
from trivial, though.
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A Defining Universal Random Oracles

In this section we present an alternative definition for UROM and argue why it is inappropriate, motivating
also our definition of UROM (Definition on page [6]).

The Naive Approach. We start with the straightforward adoption of the idea to make the adversary
depend on the random oracle by splitting the success probabilities for the experiment Game and the random
oracle O, stating that the random oracle should work for all adversaries:

A security game Game is secure in the naive UROM if

VAo € SIZE (poly(A))

Po Jdea,o € negl VA

: Pcame [GameA%O()‘)} < EA,O(A)] =1.

We next argue that that there is a game which is trivially insecure when considered in the plain random
oracle model, but provably secure according to naive UROM. This is counterintuitive because we expect
universal random oracles to provide stronger security guarantees compared to the classical ROM. Let O
be length-preserving and the domain size of the random oracle be d(\) = A. The game is defined as:

GameAg’O()\) =1 <= 0(0") =0mod \?

where we interpret the A-bits output of O(0*) as an integer between 0 and 2* — 1. We ignore here for
simplicity that this integer reduced mod\? is only statistically close to a random number between 0 and
A2 — 1, and from now on calculate with a probability of % that the experiment Game returns 1 and the
adversary wins.

First note that this experiment Game is insecure in the standard random oracle mode (Definition
on page , because the trivial adversary who does nothing wins with non-negligible probability has a
success probability of at least )\—12, where the probability is over the choice of O only. We next show that
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it is secure in the naive UROM, though. To this end we first negate the security statement of the naive
UROM and consider the complementary probability. That is, we have to show:

JAp € SIZE (poly())) 40.0 B
Fo [ Veao €neglIy L Game [Game"SO(N)] > e40(N)| =0,
We first note that the experiment is independent of the adversary, such that we can simplify the statement
to:

Po|Veo € negl I\ : Poame |Game? (V)| > co(V)] = 0.

Next observe that the experiment is deterministic, once O is chosen randomly “on the outside”. This
means that we can restrict ourselves to negligible functions € which only take on values 0 and 1, and also
drop the probability over Game and instead use the output of the game directly:

Po [Vso enegl,ep : N— {0,1} X : Game?()\) > 5@(/\)] =0.

It suffices now to show that, with probability 0 over the choice of O, experiment Game outputs 1 for
infinitely many security parameters A. If the game only outputs 1 finitely often for a fixed oracle O, say,
up to a bound A € N, then we can consider the binary-valued negligible function e%()\) = 1 if A < A, and
0 elsewhere. For this function the game’s output would not exceed the bound 5/(5()\) for any A. In other
words, it suffices to show that the (deterministic) experiment Game outputs 1 for infinitely many security
parameters:

Po [for infinitely many A € N : Game®(\) = 1} =0.

We next apply the Borel-Cantelli lemma to show that this is indeed the case. Let E) describe the event
that the game is won for security parameter \. Then Pp[E)\] = /\—12 over the choice of the random oracle
Q. Therefore, since the hyperharmonic series converges,

i P[E)\] < o0.
A=1

The Borel-Cantelli lemma now tells us that the probability that infinitely many F) happen is 0. Therefore,
the game is indeed secure in the naive UROM.

Towards the sophisticated UROM. Let us recap what goes wrong with the naive approach above.
Borel-Cantelli tells us that for a random oracle O the probabilities of Game outputting 1 become small
such that the adversary will only be successful on finitely many security parameters (with probability
1). This yields a fundamental, yet from a cryptographic perspective somewhat counterintuitive property
of adversaries: An adversary might be only successful on finitely many security parameters (except with
probability 0), even though the adversary has a polynomial success probability for each individual security
parameter!

The difference to the ordinary random oracle model is that, there, we rather state security in reverse
order, i.e., for a given security parameter A the probability of an adversary breaking the game for random
oracle O is negligible. We would like to resurrect this behavior while preserving the idea of having
a universal random oracle. The approach is basically to move out the quantification over all security
parameters (V) out of the probability for oracle O. This, however, means that the preceding quantification
over the adversary and the negligible function (VA3eV\) needs to be moved outside of Pp[-] as well. But
this infringes with our idea of the universal random oracle model where the adversary may depend on O.
To re-install this property we only move out a bound s(\) on the adversary’s size, and still quantify over
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all adversaries of this maximal size s(\). This yields our definition of the universal random oracle model

(Definition [3.1)):
¥s € poly e, € negl VA € N : Po|¥Ao € SIZE (5(1)) : Poame [Game®S O ()] < (V)] > 1 es().

The outer negligible function £4(\) now becomes necessary since for fixed A we only consider oracle O of
restricted input and output size, determined by the size bound of the adversary and the fixed game.
Besides the equivalence to the auxiliary-input random oracle model and the immediate implication
that security in this version of the UROM implies security for ordinary random oracles, we can also discuss
directly why our counter example for the naive approach is also labeled as insecure. Recall that Gameo()\)
outputs 1 if @(0*) = 0 mod A2. Then for any given parameter A we have Pp [Gameo()\) = 0} <1- % It

follows that there is no negligible bound () such that this probability at least 1 — e4(\).
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