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Abstract. SQISign is an isogeny-based signature scheme that has short keys and signatures and

is expected to be a post-quantum scheme. Its security depends on the hardness of the problem

to find an isogeny between given two elliptic curves over Fp2 , where p is a large prime. For

efficiency reasons, a public key in SQISign is taken from a set of supersingular elliptic curves

with a particular property. In this paper, we investigate the security related to public keys

in SQISign. First, we show some properties of the set of public keys. Next, we show that a

key generation procedure used in implementing SQISign could not generate all public keys and

propose a modification for the procedure. In addition, we confirm the latter result through an

experiment.

1. Introduction. The study of post-quantum cryptography (PQC) is increasingly im-

portant due to the rapid progress in quantum computers. Isogeny-based cryptography is

one of the candidates for PQC and attracts attention because of its short keys and cipher-

text. Indeed, SIKE [JAC+], an isogeny-based KEM, is one of the round 4 submissions to

the NIST PQC standardization process [NIS].

Isogeny-based cryptography is based on the hardness of a problem to find a secret

isogeny between given two elliptic curves. Many isogeny-based key exchanges and en-

cryption schemes are known, for example, [Cou06, RS06, JDF11, CLM+18]. On the other

hand, a practical signature scheme based on isogenies was not known until recently. In

2019, Beullens, Kleinjung, and Vercauteren [BKV19] proposed an isogeny-based signature

scheme CSI-FiSh, with short keys and signatures. However, CSI-FiSh needs a subexpo-

nential computational effort to generate public parameters. As a result, its currently

known parameter is only for 128 bits security.

SQISign is an isogeny-based signature scheme proposed by De Feo, Kohel, Leroux,

Petit, and Wesolowski [DFKL+20a] in 2020. It has shorter keys and signatures, and its
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validation of signatures is faster than CSI-FiSh. In particular, the total public key and

signature size of SQISign is five times shorter than that of CSI-FiSh in 128 bits security.

However, SQISign needs about the same time for generating a signature as CSI-FiSh.

For security, SQISign assumes a new computational assumption related to isogenies, and

validation of its hardness seems to need more research.

Furthermore, SQISign takes its public keys from supersingular elliptic curves with a

particular property to shorten the signature size and accelerate the signing. In particular,

a public key in SQISign is a supersingular elliptic curve E over Fp2 such that there exists

an isogeny E0 → E of a prime degree less than p1/4, where E0 is a public parameter and

is the curve with j-invariant 1728. There are no studies on whether the isogeny-finding

problem between such E and E0 is as difficult as the problem for random curves over

Fp2 .

1.1. Contributions. This paper discusses the security of the key generation in SQISign.

First, we investigate the properties of public keys in SQISign as supersingular elliptic

curves. Let E0 and E be as above. Then there exists an isogeny E0 → E of a prime

degree N . We show the following:

• The degree of an isogeny E0 → E prime to N is greater than p3/4/4. This means

that E is relatively far from E0 in isogeny graphs.

• The probability that E is defined over Fp is greater than 1/(p1/4 +1), much higher

than that of a random supersingular elliptic curve Fp2 .

The former ensures a certain lower bound of the computational cost of an attack. On the

other hand, the latter shows that E tends to be weak against an attack. Nevertheless,

this weakness is easily avoidable by discarding curves over Fp from public keys.

Next, we analyze the key generation procedure proposed in [DFKL+20b, Supplemen-

tary Material D], which accelerates the key generation. We show that this procedure

could not generate all public keys and confirm that by an experiment. In addition, we

propose a modification for this procedure, which has a small overhead and is expected to

generate all public keys uniformly.

2. Preliminary. We recall the mathematical background of SQISign. We refer the

reader to [Sil09] for elliptic curves and isogenies and [Voi21] for quaternion algebras.

2.1. Isogenies. An isogeny is a nonzero rational group homomorphism between elliptic

curves. Let E and E′ be elliptic curves over a field K. An isogeny φ : E → E′ induces

a map φ∗ : K(E′) → K(E) defined by φ∗(f) = f ◦ φ, where K is an algebraic closure

of K, and K(E) and K(E′) are the function fields of E and E′, respectively. The degree

of φ is the degree of field extension K(E)/φ∗(K(E′)) and is denoted by degφ. We say

φ is separable (resp. inseparable) if this extension is separable (resp. inseparable). There

exists a unique isogeny ψ : E′ → E such that ψ ◦ φ and φ ◦ ψ are the multiplication by

degφ on E and E′, respectively. We call this the dual isogeny of φ and denote it by φ̂.

The kernel of an isogeny is a finite group, and the order of the kernel is equal to

the degree of the isogeny if the isogeny is separable. Conversely, for an elliptic curve E

and its finite subgroup G, there exists a separable isogeny with kernel G. This isogeny is
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unique up to isomorphism on its codomain. We denote the codomain by E/G. Given E

and G, we can compute E/G by using Vélu’s formula [Vél71]. It takes O(#G) operations

on the field of definition of E and G by classical method and Õ(
√
#G) by improvement

[BDFLS20].

For an elliptic curve E, an endomorphism on E is an isogeny or the zero map from

E to E. The set of endomorphisms on E forms a ring by the addition on E and the

composition of maps. We call this ring the endomorphism ring of E and denote it by

End(E).

2.2. Isogeny Problems. We are interested in the following problem.

Problem 1. Given two supersingular elliptic curves E1 and E2 over Fp2 , find an isogeny

from E1 to E2.

Isogeny-based cryptography is based on the hardness of this problem, i.e., it is con-

sidered that this problem cannot be solved in polynomial time in log p even by using a

quantum computer. We add some conditions to the input and the output in individual

protocols.

Problem 1 can be solved in Õ(p) operations on Fp2 by a brute-force attack since the

number of supersingular elliptic curves over Fp2 up to isomorphism is
⌊
p
12

⌋
+ ε, where

ε = 0, 1, 2 depending on p mod 12. In particular, a random walk from E1 (a composition

of isogenies of a small degree) is expected to meet E2 after O(p) steps. Some algorithms

improve the computational complexity from Õ(p) to Õ(p1/2). We focus on the following

two algorithms in this paper.

2.2.1. Meet-in-the-Middle algorithm [Gal99]. This algorithm is based on the birthday

paradox. To solve Problem 1, one makes distinct p1/2 isogenies from E1 and E2. These

isogenies include isogenies φ from E1 and ψ from E2 of the same codomain with a high

probability. The composition ψ̂ ◦φ is an isogeny we want. This algorithm runs in Õ(p1/2)

operations and requires storage for size Õ(p1/2). If one knows that there is an isogeny

from E1 to E2 of a smooth degree d < p, then the number of operations and the storage

size in this algorithm can be improved to Õ(d1/2).

2.2.2. Delfs-Galbraith algorithm [DG16]. This algorithm is based on the fact that the

number of supersingular elliptic curves over Fp up to isomorphism is Õ(p1/2). The first

step is to find isogenies to curves over Fp from E1 and E2, respectively. One can do

this with a high probability by computing O(p1/2) isogenies. Let φ1 : E1 → F1 and

φ2 : E2 → F2 be such isogenies. The second step is to find an isogeny between F1 and

F2. This step can be done by computing O(p1/2) isogenies over Fp. Let ψ : F1 → F2 is

such an isogeny. Then the composition φ̂2 ◦ψ ◦φ1 is an isogeny we want. This algorithm

also runs in Õ(p1/2) operations but requires size O(log p) storage. In addition, we can use

the Meet-in-the-Middle algorithm for finding ψ [DG16, Algorithm 1]. This part runs in

Õ(p1/4) and requires storage for size Õ(p1/4).

2.3. Quaternion Algebras. A quaternion algebra over Q is a division algebra B rep-

resented by

B = Q+Qi+Qj +Qij, i2 = a, j2 = b, ij = −ji (1)
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for some a, b ∈ Q×. For α = x + yi + zj + tij ∈ B(x, y, z, t ∈ Q), we define a canonical

involution of α is defined by x− yi− zj − tij and denote it by ᾱ. The reduced norm of

α is defined by αᾱ and denoted by n(α). Note that n(α) = x2 − ay2 − bz2 + abt2 ∈ Q.

A quaternion algebra B overQ is ramified at a place v ofQ if B⊗QQv is not isomorphic

to the algebra of 2× 2 matrices over Qv. For a prime p, there exists a quaternion algebra

ramified exactly at p and ∞. Such an algebra is unique up to isomorphism. We denote

it by Bp,∞. For Bp,∞, we can take a as a negative integer and b = −p in (1). In the case

p ≡ 3 (mod 4), we can take a = −1. This is the case we are interested in.

An order of a quaternion algebra B is a subring of B that is a Z-module of rank 4.

Let O be an order of B. For α ∈ O, we have n(α) ∈ Z. For an ideal I of O, we define the

reduced norm of I by gcd{n(α) | α ∈ I} and denote it by n(I). Two left O-ideals I and J

are equivalent if there exists α ∈ B such that I = Jα. A maximal order is an order that

is not contained in any other order. For a subset Λ ⊆ B, we define its left order OL(Λ)

and right order OR(Λ) as

OL(Λ) = {α ∈ B | αΛ ⊆ Λ}, OR(Λ) = {α ∈ B | Λα ⊆ Λ}. (2)

For two maximal orders O and O′, a connecting ideal of O and O′ is an ideal I satisfying

OL(I) = O and OR(I) = O′.

Let p be a prime and K an imaginary quadratic field in which p does not split. Then

there exists an inclusion K ↪→ Bp,∞. We say an order O of K is optimally embedded in a

maximal order O of Bp,∞ if there exists an inclusion ι : O ↪→ O and there is no inclusion

κ : O′ ↪→ O such that O ⊊ O′ and κ|O = ι. We need the following lemma for our result.

Lemma 2 ([Kan89, Theorem 2’]). Suppose that two orders O1 and O2 in K are optimally

embedded in a maximal order in Bp,∞ with different images. Then the inequality D1D2 ≥
p2 holds, where D1 and D2 are the discriminants of O1 and O2, respectively.

2.4. The Deuring Correspondence. Let E be an elliptic curve over a finite field of

characteristic p. We say that E is supersingular if End(E) is isomorphic to a maximal

order of Bp,∞. If E is supersingular, then the j-invariant j(E) is in Fp2 . On the other

hand, for any maximal order O of Bp,∞, there exists a supersingular elliptic curve over

Fp2 whose endomorphism ring is isomorphic to O. In addition, we have a one-to-one

correspondence (the Deuring correspondence) between Gal(Fp2/Fp)-conjugate classes of

supersingular j-invariants over Fp2 and isomorphism classes of maximal orders in Bp,∞.

Let E be a supersingular elliptic curve over Fp2 and O maximal order of Bp,∞ isomor-

phic to End(E). By fixing an isomorphism, we identify End(E) with O. Then, we have

the following correspondence between isogenies from E and left O-ideals. For an isogeny

φ : E → E′, we define

Iφ := {α ∈ O | α(P ) = O for all P ∈ kerφ}, (3)

where O is the identity element of E. Then Iφ is a left O-ideal. Conversely, for a left

O-ideal I, we define an isogeny φI as an isogeny with kernel E[I] := ∩α∈I kerα. Under

this correspondence, we have degφ = n(Iφ), and two left O-ideals I and J are equivalent
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if and only if E/E[I] ∼= E/E[J ]. An isomorphism

Bp,∞ → End(E/E[I])⊗Z Q, α 7→ 1

n(I)
φI ◦ α ◦ φ̂I (4)

induces an isomorphism OR(I) → End(E/E[I]). This isomorphism induces a correspon-

dence between left OR(I)-ideals and isogenies from End(E/E[I]). Under this correspon-

dence, the canonical involution Ī := {ᾱ | α ∈ I} corresponds to the dual isogeny φ̂I .

Given a supersingular elliptic curve E over Fp2 , computing a maximal order isomor-

phic to End(E) is as hard as the isogeny problem over Fp2 [EHL+18, Wes22]. On the

other hand, we know isomorphisms to maximal orders for some special curves. The fol-

lowing example is essential for this paper. Let p be a prime satisfying p ≡ 3 (mod 4). We

take Bp,∞ so that i2 = −1 and j2 = −p. We define an elliptic curve

E0 : y2 = x3 + x (5)

over Fp2 and a Z-submodule

O0 := Z+ Zi+ Z
1 + i

2
+ Z

i+ ij

2
(6)

of Bp,∞. Then E0 is supersingular, O0 is a maximal order, and End(E0) is isomorphic to

O0. The elliptic curve E0 has two non-integer endomorphisms, ι and π, defined as

ι : (x, y) 7→ (−x, ξy) and π : (x, y) 7→ (xp, yp), (7)

where ξ ∈ Fp2 is a square root of −1. We have an isomorphism from End(E0) to O0

defined as ι 7→ i and π 7→ ij.

2.5. KLPT algorithm. KLPT (Kohel-Lauter-Petit-Tignol) algorithm is a core algo-

rithm in SQISign. This subsection overviews the original algorithm by [KLPT14] and a

generalized algorithm by [DFKL+20a].

An order O of Bp,∞ is special p-extremal if O is a maximal order and contains a

subring R + jR such that R is a quadratic order of minimal discriminant in O. In the

case p ≡ 3 (mod 4), the order O0 defined in (6) is special p-extremal by taking R = Z[i].
The order O0 is isomorphic to the endomorphism ring of an elliptic curve with j-invariant

1728 and is used in the proposed parameter of SQISign. Thus, we consider this order in

this paper.

The original KLPT algorithm [KLPT14] takes an ideal I of a special p-extremal order

O and outputs an ideal J equivalent to I with a smooth reduced norm. One can give a

condition on the reduced norm n(J) as input, and the success probability of the algorithm

is higher with a larger n(J). By applying an improvement by Petit and Smith [PS18], the

algorithm terminates in a polynomial time in log p with a high probability if n(J) ≥ p3.

The Deuring correspondence says that we can regard the KLPT algorithm as an

algorithm transforming an isogeny into an isogeny of a smooth degree.

De Feo et al. [DFKL+20a] generalized the KLPT algorithm. Their generalized KLPT

algorithm transforms an ideal of any maximal order. Let O0 be a special p-extremal order

and O a maximal order. The input of the generalized KLPT algorithm is a connecting

ideal I0 of O0 and O and a left O-ideal I. Its output is a left O-ideal J equivalent to

I with a smooth reduced norm. In this algorithm, the condition on the reduced norm
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n(J) is stronger than that of the original. In particular, the generalized KLPT algorithm

requires n(J) ≥ p3N3, where N is the minimum of the reduced norms inert in R of ideals

equivalent to I0.

3. SQISign. In this section, we recall the protocol and some features of SQISign.

3.1. Protocol. Let O0 be a special p-extremal order and E0 a supersingular elliptic

curve over Fp2 whose endomorphism ring is isomorphic to O0. We consider the following

zero-knowledge proof. The public parameters are p, O0, and E0. The protocol proves the

knowledge of a secret isogeny τ : E0 → EA with a public key EA. Note that one can

compute the correspondence between isogenies and ideals of O0 defined in Section 2.4

(for detailed algorithms, see [DFKL+20a, DFLW22]). The protocol is as follows:

1. The prover computes an isogeny ψ : E0 → E1 and sends E1 as a commitment to

the verifier.

2. The verifier computes an isogeny φ : E1 → E2 and sends φ and E2 as a challenge

to the prover.

3. The prover computes ideals Iτ and Iφ◦ψ◦τ̂ , applies the generalized KLPT algorithm

to these ideals, and obtains an ideal J corresponding to an isogeny from EA to E2.

Then s/he computes the isogeny σ corresponding to J and sends σ as a response

to the verifier.

4. The verifier check that σ is an isogeny from EA to E2 and the kernel of φ̂ ◦ σ is

cyclic.

The zero-knowledgeness of this protocol is based on the assumption that it is hard to

compute the secret τ from the output σ of the generalized KLPT algorithm. SQISign is a

signature scheme obtained by applying the Fiat-Shamir transform to the above protocol.

3.2. Parameters. It is required that the degree of the isogeny is smooth and its kernel is

defined over a small field for efficient computation of isogenies. Since we use supersingular

elliptic curves over Fp2 , it is desired that the kernel of an isogeny is defined over Fp2 .
Costello [Cos20] proposed a method to compute isogenies using quadratic twists, by

which the (p + 1)-torsion subgroup and the (p − 1)-torsion subgroup of a supersingular

elliptic curve over Fp2 can be defined over Fp2 . On the other hand, the degree of the

response σ is equal to the reduced norm of an output of the generalized KLPT algorithm,

i.e., greater than p3. Therefore, the kernel of σ cannot be defined over Fp2 even by using a

quadratic twist. The solution by [DFKL+20a] is to separate σ into small-degree isogenies

whose kernels are defined over Fp2 . To determine the kernels of intermediate isogenies,

one needs to transport the information of the ideal Iσ by isogenies whose degrees are

prime to deg σ. The degree of this auxiliary isogeny must be greater than p3/2 in the

original method [DFKL+20a], and it was improved to p5/4 by [DFLW22].

Proposed parameters of SQISign by [DFKL+20a, DFLW22] use an isogeny of degree

a power of two for σ due to the computational efficiency. For defining the kernels of σ

and the auxiliary isogeny over Fp2 , the characteristic p is chosen to satisfy

p+ 1 = 2fT1S1 and p− 1 = 2T2S2,
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where f ≥ 2, T := T1T2 is a smooth odd integer and the degree of the auxiliary isogeny,

and S1, S2 are cofactors not used for isogenies. To achieve λ bits of classical security and

λ/2 bits of quantum security, it is necessary that p ≈ 22λ. Examples of p’s of 128 bits of

classical security can be found in [DFKL+20a, DFLW22].

The reason that p + 1 has a big power of 2, i.e., p ≡ 3 (mod 4), is to take E0 as in

(5) and O0 as in (6). In the rest of this paper, we mainly consider this case.

3.3. Key Generation. We use the notation in the protocol in Section 3.1. The domi-

nant part of signing computation in SQISign is to compute the response isogeny σ. The

cost of this part is almost proportional to log(deg σ) = log(n(J)). As we stated in Section

2.5, the reduced norm of J is greater than p3N3, where N is the minimum of the degrees

inert in R of the isogeny from E0 to EA. Typically, we have N ≈ p1/2 (see [KLPT14, Sec-

tion 3.1]). On the other hand, [DFKL+20a] proposed to choose EA such that N < p1/4.

We denote the set of isomorphism classes of such curves by Kp, i.e.,

Kp := {EA | ∃τ : E0 → EA s.t. deg τ < p1/4 and deg τ is inert in R}/ ∼ . (8)

This reduces the degree of σ from p9/2 to p15/4. The reason for taking the bound p1/4 is

so that the cardinality of Kp is about p1/2. This makes the cost of a brute-force attack

for the secret isogeny O(p1/2) = O(2λ) in a classical computer. [DFKL+20a] claimed that

other attacks like as in Section 2.2 do not improve this cost, i.e., restricting public keys

in Kp does not reduce the security of SQISign.

The key generation procedure proposed in [DFKL+20a] is as follows:

1. Select a prime N < p1/4 inert in R uniformly at random.

2. Select a left O0-ideal I of reduced norm N uniformly at random.

3. Compute a left O0-ideal J equivalent to I whose reduced norm is a power of 2 by

the KLPT algorithm.

4. Compute the isogeny τ corresponding to J and obtain a public key EA as the

codomain of τ .

Note that there are N +1 left O0-ideals of reduced norm N , and this procedure does not

sample a public key in Kp uniformly at random (the sampling is weighted by the inverse

of N + 1).

An alternative key generation procedure was proposed in [DFKL+20b, Supplemen-

tary Material D]. This alternative procedure replaces Step 2 and Step 3 above with the

following.

2’. Set e := ⌈log2 p⌉ and take γ ∈ O0 of reduced norm N2e at random.

3’. Set I := O0γ +O0N and J := O0γ̄ +O02
e.

Here, I is equivalent to J and it holds n(I) = N and n(J) = 2e. Since 2e ≥ p, we can

expect that there exists an isogeny from E0 to EA of degree 2e for all public keys EA. An

advantage of the alternative key generation procedure is to reduce the degree of τ from

p3 to p. This reduces the computational cost of τ by about one-third.

The quaternion γ in the alternative procedure can be obtained by RepresentInteger

(Algorithm 1) or alternatively FullRepresentInteger (Algorithm 2) if O0 is defined as (6).

In these algorithms, Cornacchia(M) is Cornacchia’s algorithm [CP05, Algorithm 2.3.12],
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Algorithm 1: RepresentIntegerO0
(M) [DFKL+20b, Algorithm 1]

Input : M ∈ Z such that M > p.

Output: γ ∈ R+ jR of reduced norm M .

1 Set m := ⌊
√
M/p⌋.

2 Sample integers z, t from [−m,m] at random and set M ′ :=M − n(j(z + ti)).

3 if Cornacchia(M ′) = ⊥ then

4 Go back to Step 2.

5 Set x, y := Cornacchia(M ′).

6 return γ := x+ yi+ j(z + ti).

Algorithm 2: FullRepresentIntegerO0
(M) [DFLW22, Algorithm 1]

Input : M ∈ Z such that M > p.

Output: γ ∈ O0 = Z+ Zi+ Z 1+i
2 + Z i+ij

2 of reduced norm M .

1 Set m := ⌊
√
4M/p⌋.

2 Sample an integer z from [−m,m] at random.

3 Set m′ := ⌊
√
4M/p− z2⌋.

4 Sample an integer t from [−m′,m′] at random and set M ′ := 4M − p(z2 + t2).

5 if Cornacchia(M ′) = ⊥ then

6 Go back to Step 2.

7 Set x, y := Cornacchia(M ′).

8 if x ̸≡ z (mod 2) or y ̸≡ t (mod 2) then

9 Go back to Step 2.

10 return γ := (x+ yi+ j(z + ti))/2.

which returns integers x, y such that n(x + yi) = M or ⊥ if such integers do not exist.

Because Cornacchia(M) requires the prime factorization of M , we use an alternate of it,

which returns ⊥ if the factorization does not succeed within a certain effort, in practice.

Note that there may be multiple solutions to n(x+ yi) =M , and different solutions may

generate different keys. Therefore, the output of Cornacchia(M) should be randomized.

The implementation1 in [DFKL+20a] uses the alternative procedure. However, the

security analysis of this procedure is left open.

4. Properties of the Public Keys. We consider the security of restricting public keys

in a special set Kp. In the rest of this paper, we let p be a prime such that p ≡ 3 (mod 4),

O0 a maximal order defined in (6), and E0 a supersingular elliptic curve defined in (5).

4.1. Distance from E0. Let E be a supersingular elliptic curve over Fp2 . If there is

an isogeny from E0 to E of a smooth degree d < p and d is known, then the Meet-in-

1https://github.com/SQISign/sqisign

https://github.com/SQISign/sqisign
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the-Middle attack finds the isogeny by Õ(d1/2) operations, which is smaller than the cost

of the general case. Therefore, we are interested in whether a curve in Kp has such an

isogeny. The following theorem gives a lower bound of the smooth degree d.

Theorem 3. Let E be a supersingular elliptic curve in Kp. Suppose that there exists an

isogeny φ : E0 → E such that degφ is prime to N . Then deg(φ) ≥ p3/4/4.

Proof. Let n be the degree of φ. We have an embedding Z+ niZ ↪→ End(E) defined by

a + bni 7→ a + bφ ◦ ι ◦ φ̂. Therefore, there exists an order O ⊇ Z + niZ in Q(i) that is

optimally embedded in End(E). On the other hand, an isogeny E0 → E of degree N

induces an optimal embedding Z + NiZ ↪→ End(E). Since n is prime to N , the above

two embeddings are distinct. Therefore, from Lemma 2, we have 4N2disc(O) ≥ p2. Since

disc(O) ≤ disc(Z+ niZ) = 4n2, it follows that n ≥ p3/4/4

Theorem 3 implies that the computational complexity of the Meet-in-the-Middle at-

tack to a public key is at least Õ(p3/8). This means that a public key in SQISign tends

to be far from E0 and can be considered to be relatively secure against the Meet-in-the-

Middle attack.

4.2. Public Keys over Fp. For a supersingular elliptic curve E over Fp, we can find an

isogeny from E0 to E by Õ(p1/4) operations because E0 is defined over Fp. If we choose

E uniformly at random from supersingular elliptic curves over Fp2 , then the probability

that E is defined over Fp is about p−1/2. On the other hand, we show that the probability

that a public key in SQISign is defined over Fp is greater than 1/(p1/4 + 1) under the

following plausible heuristic.

Heuristic 4. Let N be sampled from primes less than p1/4 and inert in Z[i] uniformly

at random. Then the probability that −p is a quadratic residue modulo N is 1/2.

Before stating our result, we recall an ideal class group action on supersingular elliptic

curves over Fp. Let E be a supersingular elliptic curve over Fp. Then the Fp-endomorphism

ring is isomorphic to Z[
√
−p] or Z[ 1+

√
−p

2 ], and the ideal class group of the isomorphic

order acts on E. In particular, for an ideal I of the order, there exists an isogeny over

Fp from E of degree the norm of I. Therefore, for an odd prime N splitting in Q(
√
−p),

there are two isogenies over Fp from E corresponding to two prime ideals above N in

Q(
√
−p). For more detail on the group action, see [DG16, CLM+18].

Now, we state our theorem on the probability that a public key is defined over Fp.

Theorem 5. Let N be sampled from primes less than p1/4 and inert in Z[i] uniformly

at random. Let φ be sampled from isogenies from E0 of degree N uniformly at random.

Then, under Heuristic 4, the probability that the codomain of φ is defined over Fp is

greater than 1/(p1/4 + 1).

Proof. There are exactly N+1 isogenies from E0 of degree N . If −p is a quadratic residue

modulo N , then N splits in Q(
√
−p). In this case, there are two isogenies over Fp from

E0 of degree N corresponding to two prime ideals above N in Q(
√
−p). The codomains

of these isogenies are defined over Fp. Therefore, by Heuristic 4, the probability that the

codomain of φ is at least (1/2)(2/(N + 1)) > 1/(p1/4 + 1).
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This theorem says that SQISign of λ bits security generates a weak public key with a

probability of at least 2−λ/2. This is still exponentially small and can easily be avoided

by checking whether a public key is defined over Fp.

5. Consideration for the Alternative Key Generation Procedure. This section

shows that the alternative key generation procedure stated in Section 3.3 could not gen-

erate all public keys and propose a modification for the procedure.

This fact reduces the security of SQISign because a brute-force attack for secret keys

is one of the best attacks currently known.

5.1. Lack of Keys. Let EA be a public key in SQISign with an isogeny τ : E0 →
EA of degree N . We set e := ⌈log2 p⌉ as in the alternative procedure. Then there are

about p isogenies from E0 of degree 2e. On the other hand, the number of supersingular

elliptic curves over Fp2 up to isomorphism is about ⌊ p12⌋. By the Ramanujan property

of a supersingular isogeny graph, we can regard the codomains of the isogenies from

E0 of degree 2e to be uniformly distributed in all supersingular elliptic curves over Fp2 .
Therefore, there are about 12 isogenies from E0 to EA of degree 2e. However, these

isogenies could not appear in the outputs of the alternative key generation procedure

since the subroutine Cornacchia needs a prime factorization of a large integer.

Let φ : E0 → EA be an isogeny of degree 2e and γ = a + bi + c 1+j2 + d i+ij2 be

the quaternion corresponding to τ̂ ◦ φ ∈ End(E0). Since n(γ) = N2e ≈ p5/4, we need a

prime factorization of size about p5/4 to obtain γ. Furthermore, if we use RepresentInteger

to generate γ in Step 2’, then c and d must be even. Therefore, the probability that

RepresentInteger outputs γ is about 1/4 even if we can factorize large integers.

Consequently, the probability that EA is obtained by the alternative procedure is 3×
Prob(factorization success) if we use RepresentInteger, or 12×Prob(factorization success)

if we use FullRepresentInteger. We estimate Prob(factorization success) below and show

that the alternative procedure may not generate all public keys even by using FullRepre-

sentInteger.

5.2. Success Probability of Factorization. The success probability of factoriza-

tion depends on what method we use. In this paper, we consider a trial division com-

bined with a primality testing. In particular, we factorize only integers of the form

(B-smooth integer)× prime, where B is a smoothness bound. We call an integer of this

form a B-CF number2.

We let b be a positive integer and consider the probability that an integer less than

2ν is a 2b-CF number. We estimate this probability by

1

2ν

(
ν∑
s=b

2sρ
(s
b

)
(li(2ν−s)− li(2ν−s−1)) + li(ν − b− 1)

)
, (9)

where ρ is the Dickman function and li is the logarithmic integral.

Table 1 shows the estimation in (9) and experimental estimation for b = 10. The

formula (9) was computed by using SageMath [SD20]. The experiment was conducted

2“CF” stands for Cornacchia Friendly.
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by using Julia language and considered two cases. The first is the percentage of 210-

CF numbers to random integers less than 2ν . The second is that of random integers

represented by the sum of two integers. The codes are available at https://github.

com/hiroshi-onuki/keys_in_sqisign. This result shows that there is no big difference

between our estimation and the experiment, and that the ratio of CF numbers in random

integers and that in the sums of two squares are almost the same.

Experiment

ν Estimation in (9) Random integer Sum of squares

266 4.72% 6.98% 7.06%

269 4.66% 6.95% 6.91%

322 3.87% 5.79% 5.75%

400 3.10% 4.60% 4.61%

500 2.47% 3.69% 3.65%

Table 1. The estimation in (9) and experimental estimation with 100,000 samples for b = 10.

The alternative key generation procedure needs factorizations of about N2e or 4N2e

depending on using RepresentInteger or FullRepresentInteger. As in Table 1, factor 4 does

not have a significant impact one the success probability of factorizations. Therefore, we

should use FullRepresentInteger. For 128 bits security, SQISign uses p of size 2256 and then

4N2e ≈ 2322. Table 1 shows that 12 chances for a public key are too small to expect to

generate the key. Even if we increase the smoothness bound to 220 or 230, the probability

estimated by (9) is 7.84% or 12.10%, respectively. These are still small, considering the

tendency for the sum of two squares not to be smooth.

5.3. Proposed Modification. Instead of increasing the smoothness bound, we propose

to increase the exponent e. If we add ε to e, the number of quaternions corresponding

to each public key is 2ε times larger. On the other hand, the computational cost of

key generation increases by ε/⌈log2 p⌉. In the following, we show that a small overhead

of computational cost can improve the distribution of public keys by the alternative

procedure.

Let r be the probability that input of Cornacchia in the alternative procedure can

efficiently be factorized. We assume that this probability does not depend on each public

key. If we add ε to the exponent e then we can expect that there are 12 · 2ε quaternions

corresponding to each public key. Therefore, the alternative procedure is expected to

generate 12·2εr quaternions corresponding to each public key, and the standard deviation

of the number of the quaternions is
√

12 · 2εr(1− r). This gives us a way to determine ε.

If we want α times the expected value to be greater than s times the standard deviation,

then we determine ε satisfying ( s
α

)2 1− r

r
< 12 · 2ε. (10)

For example, in the case of 128 bits security, we assume r = 2% (less than the

probability in Table 1 for ν = 322) and take α = 0.1 and s = 2. Then taking ε =

11 satisfies the condition (10). This shows that by assuming the distribution can be

https://github.com/hiroshi-onuki/keys_in_sqisign
https://github.com/hiroshi-onuki/keys_in_sqisign
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Algorithm 3: Computing the set of all left O0-ideals of degree N

Input : A prime N inert in Z[i].
Output: The set I of all left O0-ideals of degree N

1 Set γ := RepresentInteger(N2e), where e = ⌈log2 p⌉.
2 Set I0 := O0γ +O0N .

3 Set I := {I0}.
4 for n ∈ [1, N ] do

5 Set α := n+ i.

6 Append In := (I0 ∩ Oα)α−1 to I.
7 return I.

approximated by a normal distribution, the numbers of quaternions corresponding to

about 95.4% of keys are expected to be within 10% of the expected value by 11/256 ≒
4.29% overhead 3 of the computation cost.

5.4. Experiment. This subsection gives experimental results for the key distribution

in the alternative procedure. The experiment was conducted by Julia language. The code

is available at https://github.com/hiroshi-onuki/keys_in_sqisign.

Our experiment uses the characteristic p of 256 bits proposed in [DFKL+20a] and

small degrees N of secret isogenies. In particular, we use

N ∈ {211, 223, 227, 239, 251, 1019, 2003}.

Note that 4N2e ≈ 2266 ∼ 2269 in these cases. Therefore, the probability that a public key

is generated by the alternative procedure is estimated in the rows ν = 266 and ν = 269

in Table 1.

The procedure of the experiment is as follows. First, we prepare a numbered set

(I0, . . . , IN ) of all left O0-ideals of reduced norm N . This can be done by Algorithm 3,

which uses the fact that the quaternion i acts as a distortion map on the torsion subgroup

E0[N ] since N is inert in Z[i]. Next, we generate a random left O0-ideal I of reduced

norm N by the alternative procedure and check which In for n = 1, . . . , N is equal to I.

The number of these random left ideals is 100N for each N .

Table 2 shows the numbers of distinct keys generated by the alternative procedure

using RepresentInteger or FullRepresentInteger, and these numbers as percentages of the

number of all keys of the corresponding reduced norm. This result shows that the alter-

native procedure hardly generates all keys even by using FullRepresentInteger.

In addition, the effectiveness of increasing the exponent e was checked by the same

experiment. Fig. 1 to 7 shows histograms of keys generated by the alternative procedure

using FullRepresentInteger with e = ⌈log2 p⌉ + ε for ε = 0, 5, 11. These figures show that

the distributions of the keys are almost uniform in the case ε = 11. This confirms our

estimation in Section 5.3.

3More precisely, the computational cost of the key generation jumps up when the exponent
exceeds a multiple of the degree of a separated isogeny.

https://github.com/hiroshi-onuki/keys_in_sqisign


ON THE PUBLIC KEYS IN SQISIGN 13

RepresentInteger FullRepresentInteger

N Number Number/(N + 1) Number Number/(N + 1)

211 8 3.77% 38 17.92%

223 52 23.21% 150 66.96%

227 48 21.05% 142 62.28%

239 84 35.00% 142 59.17%

251 24 9.52% 138 54.76%

1019 128 12.55% 424 41.57%

2003 264 18.16% 742 37.03%

Table 2. The numbers of distinct keys generated by the alternative procedure.
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Fig. 1. The distribution of keys generated by the alternative procedure for N = 211.

Fig. 2. The distribution of keys generated by the alternative procedure for N = 223.

Fig. 3. The distribution of keys generated by the alternative procedure for N = 227.

Fig. 4. The distribution of keys generated by the alternative procedure for N = 239.

Fig. 5. The distribution of keys generated by the alternative procedure for N = 251.
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Fig. 6. The distribution of keys generated by the alternative procedure for N = 1019.

Fig. 7. The distribution of keys generated by the alternative procedure for N = 2003.
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